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Abstract
Surrogate-based aerodynamic robust design optimization uses a surrogate model to calculate the robustness indices, which 
strongly relies on the overall accuracy of the model, as well as the efficient exploration of the design space. For most sur-
rogate modeling approaches, significant inaccuracies are often observed at the outlier region of the design space, where 
very few samples are spotted. A novel method using Chebyshev transformation is applied to re-allocate the orthogonal Latin 
hypercube sample set to alleviate the corner errors and eventually improve the overall accuracy. An inner Kriging model is 
developed using the sampling method, and robustness indices are calculated based on the subspaces adjacent to the sampling 
points. Subsequently, an outer robust model is constructed with the robustness indices as the target. Ultimately, a combina-
tion of the inner and outer models is utilized with the genetic algorithm to accomplish multi-objective robust optimization. 
Theoretical tests are undertaken for classic test functions, showing the advantage of the proposed approach. Based on this 
method, aerodynamic robust design optimizations are carried out on the RAE 2822 airfoil, for which the lift coefficient and 
drag coefficient are optimized for a given range of geometrical parameters. An increase of 1.94% lift coefficient and a reduc-
tion of 2.53% drag coefficient are achieved compared to the baseline design without sacrificing the robust performances.

Keywords Robust design optimization · Surrogate modeling · Sampling strategy · Chebyshev polynomial · Orthogonal grid

1 Introduction

Aerodynamic performance in transonic conditions involves 
various nonlinear physics, such as shock waves and sepa-
rated flow (Zhao et al. 2019). Subtle fluctuations of oper-
ating conditions and/or geometrical distortion can have an 
amplified effect on the loading and eventually on the aero-
dynamic performances. To address this issue, robust aero-
dynamic design optimization is utilized to anticipate perfor-
mance variations under various uncertainties. The variations 
in aerodynamic performance stem from uncertainties in the 
design variables and design/operating parameters. Global 

robust optimization aims to identify a design that achieves a 
target response with minimal variation. This paper focuses 
on the uncertainty of design variables. However, the meth-
odology in its mathematical formulation, can be applied to 
both types of uncertainties. Uncertainty analysis methods 
can be categorized as sampling, perturbation, and surrogate-
based methods, among others, based on different stochas-
tic simulation processes (Tang and Zhou 2015; Wu et al. 
2018; Beyer and Sendhoff 2007). Among these techniques, 
the surrogate-based robust design optimization has become 
increasingly popular in aerodynamic shape design (Jiang 
et al. 2018; Hanazaki and Yamazaki 2024). Tao and Sun 
have developed a multi-fidelity surrogate-based optimiza-
tion framework, which was used to optimize the robustness 
of transonic airfoils and wings (Tao and Sun 2019). Lee and 
Kwon (2006) compared the results of deterministic opti-
mization with robust optimization and found that the latter 
achieved better robust performance. Jaeger et al. (2013) dis-
covered that optimizing the wing with a smaller aspect ratio 
leads to more reliable and robust performance.

The advantages of surrogate-based robust design optimi-
zation lie in its overall representation of the design space, 
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involving an inner modeling process and an outer robust 
optimization process. These processes can be either iterative 
or independently successive. The former approach does not 
establish a determinant robust model. Instead, robustness 
indices are calculated and integrated into the optimization 
process using various stochastic simulation methods (Fang 
et al. 2021). When applying uncertainty quantification to 
models, varying uncertainties and model-related errors can 
significantly impact the robust solutions. In these cases, 
the focus is often on finding a better solution, rather than 
the best solution. Thus, this approach may not be ideal for 
black-box problems with a large number of computations, 
particularly those with high dimensions. Additionally, it is 
not well suited for systematic modeling of a given system.

The second method treats the two processes as a single 
loop. The surrogate and robust models are built and refined 
together until they reach maximum accuracy (Ribaud et al. 
2020). The model is updated only if the robust solution is not 
satisfactory. This approach is a multi-objective optimization 
with robustness indices objectives, which is more widely 
used in engineering practices (Jones and Martins 2021; 
Pang et al. 2023). To calculate robustness, there are vari-
ous methods available, such as Monte–Carlo simulation and 
polynomial chaos expansion (Zhao 2015). However, accu-
rate modeling of the function of interest is essential for this 
approach to be effective.

To improve the accuracy of the modeling of design space, 
the two most critical characteristics considered are orthogo-
nality and uniformity (Zhang et al. 2019; Song et al. 2018). 
Various sampling methods have been proposed to achieve 
this. For the measure of space infill, Fang and Wang pro-
posed the L∞ uniformity (Fang 1994), which is measured 
by the discrepancy. Latin hypercube sampling (LHS) is a 
multidimensional, stratified sampling method that can gener-
ate a variable number of samples. The LHS design ensures 
that only one sample represents each level in each dimen-
sion (Giunta et al. 2003). To address the issue of insufficient 
stability in LHS, Park (Leary et al. 2003) proposed an Opti-
mal Latin Hypercube (OLH) sampling method to effectively 
improve the situation of poor distribution caused by the 
randomness of LHS. Nearly Orthogonal Latin Hypercube 
(NOLH) sampling takes into account four different criteria 
and dramatically improves the space-filling properties of 
the resultant LHS (Cioppa and Lucas 2007). Smolyak grids 
(S-G) or sparse grids are designed to efficiently approximate 
and integrate functions on multidimensional hypercubes 
(Ullrich 2008; Plaskota and Wasilkowski 2004).

However, a common challenge arises when calculating 
the robustness indices using the above sampling methods, 
particularly in the “extrapolating” region of the design 
space. The approximation often becomes less accurate, simi-
lar to the “Runge effect” observed when Lagrange interpo-
lation uses isometric samples. This can directly impact the 

calculation of the robustness indices and, in turn, the robust 
design results. Therefore, this study attempts to improve the 
overall accuracy of the surrogate model by rearranging the 
samples by Chebyshev transformation. The rearrangement 
will increase the number of samples in the outlier region, 
thus reducing the corner error of design space. Additionally, 
a robustness indices calculation method based on random 
sampling of neighborhood subspace is proposed to optimize 
the response and robustness simultaneously.

The structure of this paper is as follows: Sect. 2 intro-
duces a novel sampling technique known as Chebyshev-
transformed orthogonal grid sampling. In Sect. 3, we detail 
the process of calculating robustness indices using this 
approach and provide a robust design optimization process. 
The superiority of the proposed approach is testified by sev-
eral test functions (Sect.  4), and it is applied to the robust 
aerodynamic optimization of RAE 2822 transonic airfoil 
(Sect. 5). Conclusions of this study and some perspectives 
are drawn in Sect. 6.

2  Chebyshev‑transformed orthogonal grid

2.1  Runge effect and corner error

The Runge effect arises when constructing high-order 
polynomial interpolation using uniform nodes for certain 
functions. Significant errors are often observed at the edge 
of the interpolation interval, deteriorating the accuracy of 
high-order polynomial prediction. Many surrogates and ker-
nel-based interpolants suffer the similar error (Zhang et al. 
2014), as a result, different acquisition functions and sequen-
tial design approaches tend to allocate sampling points on 
the corners/borders of the design space (Wang et al. 2024; 
Iuliano 2019). Approaches that are capable of reducing the 
Runge effect are believed to be effective in reducing the 
above-mentioned corner errors.

The Runge effect reflects the following inequality:

where f(x) is the true function of interest, p∗
n
(x) is the poly-

nomial approximation and Hn is the set of all polynomials 
of an order less than n.

When creating complex surrogate models using tradi-
tional sampling methods, similar issues to the Runge effect 
may arise. This results in a large error at the edges of the 
design space, which reduces the overall accuracy of the 
model. This error, known as the “corner error,” may be less 
important in traditional optimization designs, but it becomes 
significant when robustness is introduced. Traditional opti-
mization designs prioritize local accuracy near the optimal 
solution to improve optimization precision. Nevertheless, 

(1)‖‖f (x) − p∗
n
(x)‖‖∞ ≻ min

pn∈Hn

‖‖f (x) − pn(x)
‖‖∞,
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it has been shown that even functions that are unimodal or 
monotonic may contain multiple local robust optimal solu-
tions (Lee and Park 2006), resulting in a complex robust 
design problem. In these instances, any corner error can 
greatly impact the calculation of the robustness indices.

2.2  Chebyshev‑transformed OLH sampling

The Runge effect can be addressed by utilizing Chebyshev 
polynomials. Potential theory suggests that a series of Che-
byshev polynomials is a highly effective method for repre-
senting a smooth non-periodic function (Driscoll et al. 2014; 
Trefethen 2013). To optimize and reduce computational 
complexity, various methods of polynomial interpolation in 
Chebyshev points and expansion in Chebyshev polynomi-
als have been proposed. Chebyshev polynomials are also 
frequently utilized as a surrogate model, particularly in the 
realm of uncertainty quantification (Wu et al. 2015; Fu et al. 
2022). In conclusion, the use of Chebyshev polynomials is 
expected to achieve the following objectives:

Inspired by the solution of the Runge effect, Chebyshev 
polynomials are employed to address the corner error issue 
in this study. Instead of direct utilization for surrogate 
modeling, our approach focuses on leveraging Chebyshev 
polynomials to generate non-uniform sample sets (Zhang 
et al. 2024). The extrema of these polynomials, known as 
Chebyshev points of the second kind, are determined by 
projecting equiangular grids onto a unit circle, which can 
be mathematically expressed using the cosine rule:

Figure 1 presents the process of creating Chebyshev extrema, 
where the samples are strategically placed at the ends of the 
interval to minimize corner error. Additionally, if there is a 
uniform or quasi-uniform sample set in an n-dimensional 

(2)‖‖f (x) − p∗
n
(x)‖‖∞ = min

pn∈Hn

‖‖f (x) − pn(x)
‖‖∞.

(3)xi = cos
i�

nch
, i = 0, 1, ..., nch.

space represented by an evenly distributed pattern on a 
hypersphere, the cosine rule can be employed to extend the 
extrema of the Chebyshev polynomials to a design space 
with dimensions.

The Chebyshev transformation process in a high-dimen-
sional design space involves several important steps. First, it is 
crucial to obtain a set of initial samples. One reliable method 
for generating these points is through OLH sampling, which 
provides excellent uniformity and orthogonality and can gener-
ate any desired number of samples. When using this method, it 
is recommended to choose a design space range of [−1, 1]n and 
determine the number of samples based on specific require-
ments. Once the OLH samples have been generated, the next 
step is to perform the Chebyshev transformation. For multi-
dimensional problems, it is advisable to transform the coor-
dinates of each dimension separately using the appropriate 
conversion formula:

where xini is the initial coordinate of samples and xtr is the 
transformed coordinate.

Then, a Chebyshev-transformed OLH sampling, referred to 
as Cheb-OLH sampling in this study, is generated. It is worth 
noting that xtr ranges from −1 to 1. Therefore, it is necessary 
to adjust the design space based on the specific circumstances.

Figure 2 shows the comparison of the OLH sampling 
(Fig. 2a) and the Cheb-OLH sampling (Fig. 2b) in two 
dimensions. While the original OLH sampling is uniform, 
the points undergo a shift that aligns their projection onto 
each dimension with the one-dimensional Chebyshev 
extrema distribution. This transformation is intended to 
mitigate the adverse effects of the corner effect, which can 
compromise the accuracy of modeling.

3  Surrogate‑based robust design 
optimization

The Gaussian process in the category of Kriging models 
utilizes Gaussian distribution to stochastically model an 
unknown process. It comprises a regression function and a 
random variable that adheres to preset statistical rules. The 
approaches are supposed to have better nonlinear approxi-
mation and are able to provide theoretical error prediction 
as well as its distribution (Dong and Lu 2022), which are 
frequently employed to tackle black-box problems where the 
underlying mechanisms are unclear. The Kriging model is 
represented as follow:

where ŷ(x) is the function estimation of the unknown point, 
� is the regression coefficient, FT(x) is a polynomial in x, 

(4)xtr = cos
(1 − xini)�

2
,

(5)ŷ(x) = F
T(x)𝛽 + z(x),

Fig. 1  The extrema of Chebyshev polynomials
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used to model the period of the stochastic process, and z(x) 
is a random term.

The fluctuations in the response can be attributed to the 
uncertainties in the design variables. The primary objective 
of global robust optimization is to attain a design that yields 
the desired response with minimal variation. In this particu-
lar investigation, the Kriging model is employed to establish 
a precise and comprehensive mapping correlation between 
the design variables and response, as well as to compute the 
robustness indices. Additionally, the standard deviation is 
utilized to measure the robustness, which can be computed 
through the formula below:

where mSS is the number of samples used in the stochas-
tic simulation process; fi is the response at the ith random 
sample; and �f  is the mean of the response values of all 
random samples. The standard deviation �f  ranges from 0 
to positive infinity by definition. However, in the context of 
purely mathematical modeling and prediction, which does 
not take the positive definition into account, hence there 
may be instances where the prediction result turns out to be 
negative, contrary to � ⩾ 0 . To address this, the natural log 
of the standard deviation ln� is employed as the robustness 
indices. It is important to emphasize that the standard devia-
tion reflects the fluctuation of the response value and a lower 
standard deviation indicates higher robustness.

In this study, the Cheb-OLH sampling method is sup-
posed to reduce corner error and improve the global accu-
racy of the Kriging model. Then, this model was utilized 
to conduct stochastic sampling in the subspace of sam-
ples, resulting in obtaining the standard deviations of the 
responses within the range. Additionally, the normal stochas-
tic sampling was chosen to calculate the robustness indices, 
taking into account that the uncertainty of design variables 
in engineering is typically distributed. Once the responses 

(6)�f =

√√√√ 1

mSS − 1

mSS∑
i=1

(
fi − �f

)2,

and robustness indices of all locations in the design space 
are calculated, the global robust optimization problem can 
be defined as

Minimize f (x), ln�f .
An algorithm for global robust optimization is proposed 

using Cheb-OLH sampling and Kriging model. The steps of 
the proposed algorithm are as follows (Fig. 3):

Step 1:  Cheb-OLH sampling and construction of the 
inner Kriging model

The set of samples, denoted as S , is obtained by the 
Cheb-OLH sampling method described in Sect. 2. Then, 
the responses Y at each sample can be obtained through 
experimentation or simulation. Finally, the Kriging model 
is established based on S and Y . The higher the accuracy 
of the model, the lower the error of the robustness indices, 
resulting in greater precision during optimization.

Step 2: Calculations of robustness indices using normal 
stochastic sampling

In this step, the inner Kriging model is utilized to deter-
mine the standard deviation for the outer robust model. To 
obtain additional information in the design space, uniform 
sampling is employed, gathering SRO from the design space. 
Normal stochastic sampling was adopted in the subspace 
of each sample in SRO . The size of the subspace is estab-
lished at 5% of the design space and the number of stochastic 
samples was initially set at mSS . Finally, responses of mSS 
samples is predicted and ln� is calculated. This process is 
not a computational burden since the surrogate approximate 
model is represented by mathematical expressions.

Step 3:  Construction of the outer robust model
During this stage, the sample set is SRO and the response 

is considered as ln� . And the outer robust model is estab-
lished based on SRO and ln�.

Step 4:  Global robust optimization
The forecasting of response value is done with the 

inner Kriging model, while the outer robust model is uti-
lized to predict the robustness indices. In the pursuit of 
multi-objective optimization, the Non-dominated Sort-
ing Genetic Algorithm II (NSGA-II) (Deb et al. 2000) 

Fig. 2  Comparison of two 
sampling methods. a OLH. b 
Cheb-OLH
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is employed, resulting in the Pareto front. The NSGA-II 
algorithm boasts fast running speeds and excellent conver-
gence of the solution set.

Step 5:  Determination and verification of global robust 
optimum

In this step, both performance and robustness should 
be comprehensively considered. The global robust opti-
mum should be selected from the Pareto front based on 
engineering practice. Ultimately, experimental or numeri-
cal techniques are utilized to validate the precision of the 
robust optimum. If the findings are trustworthy, the opti-
mization process is finalized; if not, adaptive sampling, 
also known as sequential design, involves increasing the 
number of samples to enhance model accuracy.

4  Benchmark tests

Several benchmark mathematical problems are solved to 
illustrate the validity of the suggested design methodology. 
The test problems are selected from a variety of classi-
cal optimization test functions. Our current investigation 
focuses on design spaces with dimensions less than four, 
with plans for further study on higher dimensions based 
on the insights gained from our present results. For com-
parison, only the number of samples is varied, whereas the 
robust optimization process remains unchanged.

4.1  One‑dimensional function test

A 10th-order polynomial is used to test the proposed robust 
optimization method, which is defined as follows:

where x ∈ [0, 10] . The four local optimal solutions of f(x) 
without considering robustness are shown in Table 1.

In considering robustness, it is important to note that 
the optimization results may change. We conducted tests 
using the proposed method to confirm this. Firstly, 29 sam-
ples were selected using Chebyshev extrema, and the real 
responses were calculated to build the Kriging model. Fig-
ure 4a displays the true function and Fig. 4b displays the 
inner Kriging model. Following this, an additional set of 
100 samples was chosen uniformly across the design space 

(7)

f (x) = 2.201370 × 10−3x10 − 1.052876 × 10−1x9 + 2.151650x8

− 2.460697 × 101x7 + 1.734160 × 102x6 − 7.821379 × 102x5

+ 2.267874 × 103x4 − 4.114980 × 103x3 + 4.357030 × 103x2

− 2.327900 × 103x + 5.5 × 102,

,

Fig. 3  Flowchart of robust 
optimization

Table 1  Local optimal solutions 
of f(x)

No. x f(x)

1 0.620 73.313
2 2.836 92.231
3 7.402 321.378
4 9.695 20.651
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and their standard deviations were calculated within a 5% 
neighborhood. Figure 4c shows the outer robust model.

In Fig. 4, the inner Kriging model and the original model 
exhibit remarkable alignment, showcasing four distinct local 
minimums. Conversely, the outer robust model displays a 
total of seven local minimums, which includes the previ-
ously mentioned four local minimums, as well as three local 
maximums.

The NSGA-II algorithm was employed for multi-objec-
tive optimization, the Pareto solutions are found to be con-
centrated mainly in three regions—the first, second, and 
fourth local optimal solutions in Table 1. This is because 
these positions represent both the locally optimal solutions 
of f(x) and ln� . The best solution with the smallest ln� is 
chosen, which offers the robust optimum as x = 2.0884 , 
f (x) = 105.1381 , and ln� = −0.2913 . The proposed method 
can achieve robust optimal results without getting stuck in 
local optima.

4.2  Two‑dimensional function tests

To assess the effectiveness of the innovative sampling tech-
nique, we developed a Kriging model utilizing distinct sam-
pling methods: OLH and Cheb-OLH. The Root Mean Square 
Error (RMSE) was employed for analyzing the overall accu-
racy of the Kriging model, which can be calculated using 
the following formula:

where mt = mn
0
 is the number of test samples, ŷ(i)t  is the pre-

dicted value at test point i, and y(i)t  is the true value at the 
same point.

The test was performed on a two-dimensional Rosenbrock 
function (Rosenbrock 1960) defined by

(8)rmse =

���� mt�
i=1

(e(i))2∕mt, e
(i) = ‖ŷ(i)

t
− y

(i)
t
‖,

where x1 ∈ [−2, 2], x2 ∈ [−2, 2] . The function is unimodal, 
and the global minimum lies in a narrow, parabolic valley. 
The inner Kriging model is constructed with 29 OLH and 
Cheb-OLH samples, respectively. The RMSE of the for-
mer is 1.8959, while for the latter, it is notably smaller at 
0.3906. To further demonstrate the “corner error" reduction 
by Cheb-OLH sampling, the error distribution of OLH and 
Cheb-OLH is presented in Fig.  5. The findings reveal that 
the maximal absolute error (AE) of OLH sampling occurred 
at the corner of the design space, and this was significantly 
reduced through the use of the Chebyshev transformation.

It is evident that the Kriging model created using the 
Cheb-OLH sampling method closely approximates the 
real function. Figure 6 shows the comparison of contours 
between the true function and the inner Kriging model. 
The robustness indices are determined using the inner 
Kriging model and the outer robust model is then con-
structed, as demonstrated in Fig. 7 by comparing predicted 
values to true values. The robust model contains several 
local optimal solutions situated in the gradual valley 
(Fig. 7a). To enhance the global accuracy of the multi-
modal function, the number of robust samples is set at 
intervals of 102 , 202 , 302 , and 402 . The global accuracy 
did not experience significant changes when the number 
of samples rose to 302 . Therefore, the number of robust 
model samples mRO = 302 , and the number of local sub-
space samples mSS = 1600. 

After conducting robust optimization, the results were 
chosen from the Pareto front, which is outlined in Table 2. 
Initially, robust optimum 1 was selected based on the 
smallest function value, without considering robustness. 
However, significant discrepancies between the predicted 
value and real value of ln� emerged. This can be attrib-
uted to the poor accuracy of the inner Kriging model near 
that point. The Cheb-OLH sampling prioritizes global 

(9)f (x1, x2) = 100(x2 − x2
1
)
2
+ (x1 − 1)2,,

Fig. 4  One-dimensional function test. a Original function. b Inner Kriging model. c Outer robust model
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accuracy, neglecting local accuracy near the optimal solu-
tion, which may account for this issue.

Based on the outer robust model, the best robust solution 
is robust optimum 2. This result is located near (0,0) and 
has a high level of robustness. Additionally, robust optimum 
2 has good precision in both the predicted value and real 
value.

The Branin function (Branin 1972) is selected as another 
test function, which is defined by

where x1 ∈ [−5, 5], x2 ∈ [0, 15] . The upper bound of x1 , 10 
is reduced to 5 to compare the two locally optimal solutions 
of f. Similar to the Rosenbrock function, the surrogate mod-
els are shown in Figs. 8 and  9, and the robust optimization 
results are shown in Table 3.

It can be seen from the table that the robust optimum 
1 with the smallest function value still has a large error. 
While the robust optimum 2 with high level of robustness 
has higher precision. The result is similar to the Rosenbrock 
function due to large error near the global optimum. How-
ever, the global minimum and the robust optimum of the 
Brinin function coincide. Despite these factors, we believe 
that robust optimum 2 is still a strong and reliable outcome 
for robust optimization.

4.3  Four‑dimensional function tests

The first test was performed on a four-dimensional Trid 
function (Adorio and Diliman 2005), defined by

(10)
f (x1, x2) =

(
x2 −

5.1

4�2
x2
1
+

5

�
x1 − 6

)2

+ 10
(
1 −

1

8�

)
cos x1 + 10

,

(11)f (x) =

n∑
i=1

(xi − 1)2 −

n∑
i=2

xixi−1,

Fig. 5  AE distribution of 
Rosenbrock function. a OLH. b 
Cheb-OLH

Fig. 6  Contours of Rosenbrock function. a Original function. b Inner 
Kriging model

Fig. 7  Contours of ln� . a True value. b Outer robust model

Table 2  Robust optimization results of Rosenbrock function

(x1, x2) f(x) ln�

Optimum (1,1) 0 – 0.78
Robust optimum 1 (1.24,1.55) 0.11 0.66
True value 0.06 – 0.42
Robust optimum 2 (– 0.21,0.06) 1.49 – 1.83
True value 1.50 – 1.99
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where n is the dimensionality and n = 4 in our study. The 
function is usually evaluated on the hypercube xi ∈ [−n2, n2] 
for all i = 1, 2, ..., n . For four-dimensional problems, the 
number of initial samples m = 137 , the number of robust 
model samples mRO = 54 , and the number of local subspace 
samples mSS = 1600 . According to the robust optimization 
process proposed in Sect. 3, the results are shown in Table 4.

It is clear that the predicted value of the function is pre-
cise. This suggests that the inner Kriging model is also 
highly precise. However, it should be noted that ln� of robust 
optimum 1 is relatively large, which is the same as the result 
in the two-dimensional tests. This is because the Kriging has 
difficulty fitting multi-modal functions, especially when it 
comes to local optimal solutions.

The next test is the four-dimensional Styblinski-Tang 
function (Ustun et al. 2023) defined by

where n = 4 and xi ∈ [−5.12, 5.12], i = 1, 2, ..., n . The robust 
optimization results of this function are shown in Table 5.

Although the inner Kriging model boasts high accuracy, 
the outer robust model predicts a significant deviation from 
the actual value. This could be attributed to two factors. 
Firstly, the number of robust samples may be insufficient, 
resulting in information loss during the construction of 
the multi-modal robust model. Secondly, the properties of 
the function may play a role. Unlike the Trid function, the 

(12)f (x) =
1

2

n∑
i=1

(x4
i
− 16x2

i
+ 5xi),

Fig. 8  Contours of Branin 
function. a Original function. b 
Inner Kriging model

Fig. 9  Contours of ln� . a True 
value. b Outer robust model

Table 3  Robust optimization results of Branin function

(x1, x2) f(x) ln�

Optimum 1 (−�, 12.275) 0.398 – 2.69
Optimum 2 (�, 2.275) 0.398 – 3.37
Robust optimum 1 (3.17,2.28) 0.13 – 2.46
True value 0.40 – 3.19
Robust optimum 2 (– 0.10,6.16) 19.39 – 2.89
True value 19.56 – 2.78

Table 4  Robust optimization results of Trid function

(x1, x2, x3, x4) f(x) ln�

Optimum (4,6,6,4) – 16 – 2.02
Robust optimum 1 (3.99,5.99,5.92,3.96) – 15.99 0.63
True value – 15.99 – 1.99
Robust optimum 2 (0.19,0.04,0.01,0.14) 3.29 – 0.20
True value 3.29 – 0.24
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Styblinski–Tang function has multiple local optima in the 
design space, which compromises the global accuracy of the 
inner Kriging model. This underscores the limitations of the 
Kriging when dealing with multi-modal functions.

Based on the above test results, the properties of the test 
function have a significant impact on the test results, par-
ticularly when there is more than one local optimal solution. 
Kriging is limited when dealing with multi-modal functions, 
and the error for the robustness indices is especially large 
at the minimum function value. However, for multiple test 
functions, the robust optimization method proposed in this 
paper can still achieve better robust design results.

On the other hand, the function of interest in practical 
engineering applications is sufficiently approximated by 
low-order polynomials (Soulat et al. 2013; Martins and 
Kennedy 2021) Therefore, the robust optimization based on 
Cheb-OLH sampling in this study can be useful for most 
engineering applications. Furthermore, for problems with 
multiple locally optimal solutions in function characteristics, 
localized sampling strategies can be employed when con-
structing the model, which is beyond the scope of this study.

5  Case study: Robust design optimization 
of RAE 2822 airfoil

During the manufacture of a wing, there are several uncer-
tain factors that may result in deviations from the original 
design, thereby impacting its aerodynamic performance. 
Consequently, the design of airfoil aerodynamic perfor-
mance is regarded as a quintessential robust design prob-
lem. In this study, the aerodynamic robust optimization of 
the RAE 2822 airfoil is carried out to verify the proposed 
method. Moreover, the geometric parameters of RAE 2822 
airfoil are chosen as the design variables.

5.1  Airfoil profile parameterization

There are two primary methods for parameterizing airfoils, 
namely deformative and constructive methods. Deforma-
tive methods involve modifying an existing airfoil to create 

a new shape. Conversely, constructive methods define 
the new airfoil shape based solely on the design varia-
bles. Notable examples of deformative methods include 
Hicks–Henne Bump Functions (Nemati and Jahangirian 
2020) and Radial Basis Function Domain Element (Ren-
dall and Allen 2008), while constructive methods encom-
pass Class Function/Shape Function Transformations 
(CST) (Kulfan 2007), B-Splines, and PARSEC (Sobiec-
zky 1999).

The Hicks–Henne function can obtain a smooth geo-
metric shape and has the advantage of high accuracy and 
stability. It generates subtle perturbations based on the 
reference airfoil without nonphysical geometry, thus it is 
applicable and selected for airfoil profile parameteriza-
tion in the manufacturing error uncertainty analysis. The 
expressions of the Hicks–Henne function are described 
as follows:

where yup and ylow represent the upper and lower surface 
functions of the airfoil, respectively. y0up and y0low represent 
the upper and lower surface functions of the base airfoil, 
respectively. x represents the chord length of the airfoil, 
which ranges from 0 to 1. np is the number of type func-
tions, determined according to the design requirements. k 
is the number of variables controlling key points of airfoil 
thickness distribution. Pk is a design variable, and the air-
foil shape is changed by assigning a value to Pk . fk(x) is the 
Hicks–Henne basis function, which is defined as follows:

where xk is the node chosen between the leading and trailing 
edge of the airfoil.

Due to the geometric error near the leading edge has a 
more important influence on the airfoil (Zhao et al. 2017), 
four parameters P1,P2,P3,P4 are selected as the uncertain 
variables. In this study, the airfoil non-dimensional chord 
length is set to 1, x1 is 0, and x2 is 0.03. The correspond-
ing ranges of Hicks–Henne function coefficients P1,P2,P3 
and P4 are [ −0.005,0.005]. With such level of geometric 
uncertainty, the samples with leading edge uncertainties 
for airfoil RAE2822 are shown in Fig. 10.

(13)yup(x) =y0up(x) +

np∕2∑
k=1

Pkfk(x) ,

(14)ylow(x) =y0low(x) +

np∑
k=np∕2+1

Pkfk(x) ,

(15)fk(x) =

{
x0.25(1 − x)e−20x, k = 1

sin3(�xe(k)), 2 ⩽ k ⩽ np − 1
,

(16)e(k) =
log 0.5

log xk
, 0 < xk < 1 ,

Table 5  Robust optimization results of Styblinski-Tang function

(x1, x2, x3, x4) f(x) ln�

Optimum (– 2.90, – 2.90, – 2.90, – 
2.90)

– 156.66 – 1.66

Robust optimum 1 (– 2.87, – 2.92, – 2.84, – 
2.87)

– 160.10 1.04
True value – 156.55 – 1.40
Robust optimum 2 (1.08,1.12,1.18,1.15) – 23.11 – 1.44
True value – 26.45 0.49
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5.2  Numerical simulation and validation

The RAE 2822 transonic airfoil simulation is solved by 
steady-state Reynolds-Averaged Navier–Stokes (RANS) 
equations together with a SST k − � turbulence model clo-
sure. The nominal flow conditions are the ones described in 
Cook et al. (1979) for the test case #13A. The nominal free-
stream Mach number M = 0.74 , angle of attack � = 3.19◦ , 
and Reynolds number Re = 2.7 × 106 . Since the wind tun-
nel experiment is disturbed by the wind tunnel wall at the 
same angle, the angle of attack needs to be corrected for 
the numerical calculation condition of free incoming flow 
(Lin 2021). According to existing study (Coakley 1987), 
the angle of attack is revised to 2.8◦ , and the Mach number 
remains unchanged.

The calculation domain for RAE 2822 is two-dimensional 
C-type topology, as shown in Fig. 11. The length and width 
of which are 30 times chord length, and the airfoil surface is 
modeled as a no-slip wall. To ensure accuracy, the first layer 
of the grid near the wall has a height of 10−5 times the chord 

length, and the local fine mesh is applied to keep y+ below 
1. The pressure algorithm and the second-order upwind dif-
ference scheme are applied, with the convergence criterion of 
residual less than 1 × 10−5.

To validate the numerical simulation method, the lift coef-
ficient ( Cl ) and drag coefficient ( Cd ) acquired through CFD 
simulation were compared with experimental results (Cook 
et al. 1979), as presented in Table 6. Additionally, the pres-
sure coefficient ( Cp ) of the airfoil surface was also compared, 
as shown in Fig. 12. The results reveal that the margin of error 
for both drag and lift coefficients is lower than 10%, while the 
curve of the pressure coefficient displays remarkable consist-
ency. Therefore, the CFD simulation has effectively validated 
the performance prediction of the RAE 2822 airfoil. 

5.3  Optimization of aerodynamic performance 
and robustness indices

Global robust optimization is performed to enhance the per-
formance and the robustness of RAE 2822 airfoil, which can 
be formulated as

where Pk are design variables for k = 1, 2, 3 and 4.

(17)
minimize

⎧⎪⎨⎪⎩

Cd

−Cl

ln �(Cd)

ln �(Cl)

subject to Pk ∈ [−0.005, 0.005]

,

Fig. 10  Samples with leading edge uncertainties for airfoil RAE 2822

Fig. 11  Calculation domain and mesh for RAE 2822

Fig. 12  Comparison of pressure coefficient distribution

Table 6  Comparison of experiment and CFD

C
l

C
d

Experiment 0.733 0.0188
CFD 0.70745 0.02017
Relative error – 3.49% 7.29%



Surrogate-based robust design optimization by using Chebyshev-transformed orthogonal grid  Page 11 of 15 127

A total of 137 samples were generated using OLH 
and transformed based on the positions of the Chebyshev 
extrema, as proposed in Sect. 2. These samples formed 137 
different parametric geometric models. CFD simulations 
were performed on each of these models, and the values of 
Cd and Cl were obtained. Based on the data, the inner Krig-
ing surrogate model was constructed for the two objectives.

Next, the number of robust model samples mRO was set 
to 54 and the number of local subspace samples mSS was set 
to 1600. The robustness indices were calculated based on 
the inner Kriging model and the outer robust model was 
constructed.

Surrogate-based multi-objective optimization was per-
formed by adopting the NSGA-II algorithm with an initial 
population of 2000, evaluated over 30 generations.

Regardless of the robustness of the design, the goal is to 
minimize Cd and maximize Cl . The Pareto front is shown 
in Fig. 13a. The optimal solution was chosen based on the 
lift-drag ratio and marked as opt1.

Then, the objectives ln�(Cd) and ln�(Cl) were selected for 
the two-objective optimization process (Fig. 13b). Conse-
quently, the lift-drag ratio was still taken into consideration 
under the premise of enhancing robustness. And the robust 
optimal solution was selected and denoted as opt2.

Finally, a comprehensive 4-objective optimization was 
executed. Two optimal solutions were selected from the 
Pareto solutions. Opt3 signifies a scenario where the per-
formance is maximized without sacrificing robustness, 
while opt4 represents the optimal solution for maintaining 
robustness while achieving the desired performance level. 
The results of the four optimizations are depicted in Fig. 13.

From Fig. 13, it is clear that while traditional optimal 
design (opt1) can achieve optimal airfoil performance, the 
robustness of its lift coefficient is significantly reduced. This 
means that any manufacturing errors on the airfoil surface 

may impact its performance, and the desired design result 
may not be achieved. On the other hand, optimizing only 
the robustness indices (opt2) can enhance the robustness of 
the airfoil and reduce the impact of uncertain factors on its 
performance. However, the performance of the airfoil will 
be decreased. Hence, there are some defects in the above 
two design results.

The results of four-objective optimization (opt3 and opt4) 
are close to the Pareto solutions in terms of performance and 
have improved robustness compared to the initial design. 
Nevertheless, obtaining minimum values for both aerody-
namic performances and robustness indices concurrently is 
unattainable. Consequently, choosing the optimal solution 
necessitates weighing trade-offs and making compromises.

The robust optimization results are compared with the 
reference configuration in Table 7. Opt3 managed to increase 
Cl by 1.94% compared to the reference configuration and 
decrease Cd by 2.53%. Opt4 managed to increase Cl by 
2.19% compared to the reference configuration and decrease 
Cd by 2.08%. At the same time, its robustness indices are 
also improved, which fully reflects the superiority of this 
robust design method.

In the benchmark test, the insufficient accuracy of the 
model results in inaccurate calculation of the robustness 
indices. Therefore, CFD simulation and verification of 
optimization results are required. The predictions differed 
slightly from the CFD results (Table 7). The differences were 
not greater than 1% for the four optimal results, which were 
within the numerical uncertainty of the CFD simulations.

The geometric profile comparison between the airfoil of 
opt3, opt4, and the reference airfoil is presented in Fig. 14. It 
can be observed that the lower surface of opt3 closely aligns 
with the reference airfoil, while its upper surface exhibits an 
enlargement in the Y-direction. These results suggest that a 
larger leading edge profile tends to enhance performance 

Fig. 13  Pareto front. a Aerodynamic performance. b Robustness indices
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and reduce sensitivity to uncertainties. Despite a reduction 
in size on the lower surface of opt4 airfoil, its performance 
and robustness are still improved due to the expansion of its 
upper surface. This highlights that the upper surface plays 
a predominant role in determining the overall aerodynamic 
characteristics of an airfoil.

Figure 15a reveals a higher peak of suction closer to the 
leading edge in the optimized airfoil, indicating an increase 
in suction on the upper surface and an improvement in the 
lift coefficient. The leading edge robust optimization also 
induces a slight negative displacement of the shock position 
along the X-axis, as illustrated in Fig. 15b.

Table 7  Results of multi-
objective robust optimization P

k
(×10−3) C

d
C
l

ln�(C
d
) ln�(C

l
)

Reference (0, 0, 0, 0) 0.02017 0.70745 – 11.31 – 8.07
Opt1 (4.99, 0.74, – 4.94, – 3.20) 0.01907 0.71528 – 11.37 – 7.94
Opt1 CFD 0.01928 0.71616
Opt2 (0.09, – 2.50, 1.47, 4.72) 0.02058 0.70036 – 12.04 – 8.54
Opt2 CFD 0.02061 0.70067
Opt3 (4.19, 0.82, – 2.09, 0.71) 0.01956 0.71891 – 11.39 – 8.12
Opt3 CFD 0.01966 0.71850
Opt4 (3.86, 0.87, – 0.11, 2.50) 0.01972 0.72026 – 11.43 – 8.14
Opt4 CFD 0.01975 0.72016

Fig. 14  Comparisons of airfoil profiles. a Whole profile. b Profile zoomed to the leading edge

Fig. 15  Comparison of opt3 
and reference airfoil. a Pres-
sure coefficient distribution. b 
Shadowgraph
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Normally, f luid flows in a pro-pressure direction, 
from high-pressure to low-pressure areas. However, an 
anomalous flow direction is observed starting from the 
peak of the upper airfoil, where the fluid moves from the 
low-pressure to high-pressure area. This phenomenon is 
referred to as an inverse pressure gradient, which leads to 
the conversion of kinetic energy of the upper airflow into 
pressure potential energy along the X-direction. The robust 
optimization of the airfoil involves passivation of the lead-
ing edge and a slight reduction in the length of the inverse 
pressure gradient region along the X-direction. Neverthe-
less, there is higher boundary layer energy and increased 
lift force generated by the suction surface compared to 
reference conditions.

To better understand the functional mapping from the 
design space to the objective space, the Self-Organizing 
Map (SOM) (Kohonen 1990) visualization was created 
with all initial individuals and optimization results, as 
shown in Fig. 16. The SOM is a type of neural network 
designed to understand high-dimensional data using low-
dimensional representations. Each variable is depicted 
as a two-dimensional map which preserves the topologi-
cal properties of the initial individuals. One individual is 
always found at the same two-dimensional position from 
one map to another and distinguished from the other indi-
viduals according to their colors, which represent the mag-
nitude of the variable.

In Fig. 16, the eight maps represent the values of the 
four variables and the four objectives. The positive cor-
relation is obviously observed between P2 and Cl . In the 
local region, there is a certain correlation between P1 and 
Cl . However, there is an absence of any meaningful asso-
ciation between P3,P4 and Cd,Cl . This suggests that the lift 
coefficient of RAE 2822 airfoil is more closely linked to its 
upper surface shape. Furthermore, there is no correlation 
between Cd,Cl and their standard deviations. 

6  Conclusion

In this study, a Chebyshev-transformed OLH sampling 
method is proposed to perform a robust aerodynamic 
design optimization. The method was inspired by the func-
tional potential theory which can solve the “Runge effect” 
problem, and the Chebyshev transformation was extended 
to higher-dimensional design space, thus improving the 
global accuracy of the surrogate model and reducing the 
corner error. A novel robust optimization technique has 
been introduced based on the surrogate model. The method 
involves computing robustness indices and constructing a 
robustness model via a high-precision surrogate model. 
Through the application of robust optimization and utiliz-
ing both models, the robust design optimization results can 
be enhanced without sacrificing performance.

Theoretical tests were performed on a variety of bench-
mark functions ranging from one-dimensional to four-
dimensional cases. All the tests favored the proposed 
method. However, in the process of testing, there is also 
a problem of insufficient local sampling points. For this 
problem, locally intensive methods should be applied.

Based on the Cheb-OLH sampling and surrogate model, 
a multi-objective robust optimization succeeded in boost-
ing the aerodynamic performance and robustness of the 
RAE 2822 airfoil. Compared with the reference, the opti-
mized design improved the lift coefficient by 1.94% and 
drag coefficient by 2.53%. Moreover, the robustness indi-
ces also improved by nearly 1%. For all robust optimal 
results, the differences between the predictions of the sur-
rogate model and the CFD simulation results were less 
than 1%. The reduction in corner error using the Cheb-
OLH sampling method and the robust design based on 
surrogate model are favorable, which is worthy of further 
promotion for many other engineering applications.

Fig. 16  SOM visualization of dominated points, reference (blue point), opt1 (green pentacle point), opt2 (green square point), opt3 (green trian-
gle point), and opt4 (green circle point). (Color figure online)



 S. Jing et al.127 Page 14 of 15

Acknowledgments This research was supported by the National Natu-
ral Science Foundation of China (Grant Nos. 12272354 and 12302229), 
the Natural Science Foundation of Henan Province (Grant No. 
222300420547), and Postdoctoral Fellowship Program of China Post-
doctoral Science Foundation (Grant No. GZC20232400). This work 
was supported by the National Supercomputing Center in Zhengzhou, 
as well as Hefei Advanced Computing Center. The authors acknowl-
edge HEXAGON MSC CRADLE for the CFD solver licenses provided.

Author contributions  Corresponding author Zebin Zhang: (zebin.
zhang@zzu.edu.cn) and Author Xianzong Meng: (xianzongmeng@
zzu.edu.cn) are co-corresponding authors of this paper.

Declarations 

Conflict of interest The authors have no conflict of interest to declare 
that are relevant to the content of this article.

 Replication of results The detailed process of the proposed Cheb-OLH 
sampling and the surrogate-based robust design optimization are shown 
in Sects. 2 and  3. Codes and datasets for replication can be provided 
up on request from the corresponding author.

References

Adorio, EP, Diliman UP (2005) MVF-multivariate test functions 
library in C for unconstrained global optimization

Beyer HG, Sendhoff B (2007) Robust optimization—a comprehensive 
survey. Comput Methods Appl Mech Eng 196(33–34):3190–3218

Branin FH (1972) Widely convergent method for finding multiple 
solutions of simultaneous nonlinear equations. IBM J Res Dev 
16(5):504–522

Cioppa T, Lucas TW (2007) Efficient nearly orthogonal and space-
filling latin hypercubes. Technometrics 49(1):45–55

Coakley T (1987) Numerical simulation of viscous transonic airfoil 
flows. In: AIAA 25th Aerospace Sciences Meeting

Cook PH, Mcdonald MA, Firmin MCP (1979) AGARD advisory report 
No. 138 experimental data base for computer program assessment

Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-
dominated sorting genetic algorithm for multi-objective optimiza-
tion: NSGA-II. Lect Notes Comput Sci 1917(5):849–858

Dong B, Lu Z (2022) Efficient adaptive kriging for system reliability 
analysis with multiple failure modes under random and interval 
hybrid uncertainty. Chin J Aeronaut 35(5):333–346

Driscoll TA, Hale N, Trefethen LN (2014) Editors, chebfun guide, 
pafnuty publications

Fang K (1994) Uniform design and uniform design table. Science 
Press, Beijing

Fang H, Gong C, Li C, Zhang Y, Ronch AD (2021) A sequential opti-
mization framework for simultaneous design variables optimiza-
tion and probability uncertainty allocation. Struct Multidisc Optim 
63(3):1307–1325

Fu C, Zhu W, Yang Y, Zhao S, Lu K (2022) Surrogate modeling for 
dynamic analysis of an uncertain notched rotor system and roles 
of chebyshev parameters. J Sound Vib 524:116755

Giunta A, Wojtkiewicz S, Eldred M (2003) Overview of modern design 
of experiments methods for computational simulations. In: 41st 
Aerospace Sciences Meeting and Exhibit

Hanazaki K, Yamazaki W (2024) Robust design optimization of super-
sonic biplane airfoil using efficient uncertainty analysis method 
for discontinuous problem. Aerospace 11(1):64

Iuliano E (2019) Efficient design optimization assisted by sequential 
surrogate models. Int J Aerosp Eng 1:1–34

Jaeger L, Gogu C, Segonds S, Bes C (2013) Aircraft multidiscipli-
nary design optimization under both model and design variables 
uncertainty. J Aircr 50(2):528–538

Jiang C, Zheng J, Han X (2018) Probability-interval hybrid 
uncertainty analysis for structures with both aleatory and 
epistemic uncertainties: a review. Struct Multidisc Optim 
57(6):2485–2502

Jones DR, Martins JRRA (2021) The direct algorithm: 25 years later. 
J Global Optim 79(3):521–566

Kohonen T (1990) The self-organizing map. Proc IEEE 
78(9):1464–1480

Kulfan B (2007) A universal parametric geometry representation 
method - CST. In: 45th AIAA Aerospace Sciences Meeting and 
Exhibit

Leary S, Bhaskar A, Keane A (2003) Optimal orthogonal-array-based 
latin hypercubes. J Appl Stat 30(5):585–598

Lee SW, Kwon OJ (2006) Robust airfoil shape optimization using 
design for six sigma. J Aircr 43(3):843–846

Lee KH, Park GJ (2006) A global robust optimization using kriging 
based approximation model. JSME Int J Ser C 49(3):779–788

Lin ZF (2021) Research on efficient global aerodynamic optimization 
design algorithm based on co-kriging model. PhD thesis, National 
University of Defense Technology

Martins JRRA, Kennedy GJ (2021) Enabling large-scale multidisci-
plinary design optimization through adjoint sensitivity analysis. 
Struct Multidisc Optim 64(5):2959–2974

Nemati M, Jahangirian A (2020) Robust aerodynamic morphing 
shape optimization for high-lift missions. Aerosp Sci Technol 
103:105897

Pang Y, Lai X, Zhang S, Wang Y, Yang L, Song X (2023) A Kriging-
assisted global reliability-based design optimization algorithm 
with a reliability-constrained expected improvement. Appl Math 
Model 121:611–630

Plaskota L, Wasilkowski GW (2004) Smolyak’s algorithm for inte-
gration and l 1 -approximation of multivariate functions with 
bounded mixed derivatives of second order. Numer Algorithms 
36(3):229–246

Rendall TCS, Allen CB (2008) Unified fluid-structure interpolation 
and mesh motion using radial basis functions. Int J Numer Meth 
Eng 74(10):1519–1559

Ribaud M, Blanchet-Scalliet C, Helbert C, Gillot F (2020) Robust opti-
mization: a kriging-based multi-objective optimization approach. 
Reliabil Eng Syst Saf 200:106913

Rosenbrock HH (1960) A automatic method for finding the greatest or 
least value of a function. Comput J 3(3):174–184

Sobieczky H (1999) Parametric airfoils and wings. Recent Dev Aero-
dyn Des Methodol 65:71–87

Song C, Yang X, Song W (2018) Multi-infill strategy for kriging 
models used in variable fidelity optimization. Chin J Aeronaut 
31(3):448–456

Soulat L, Ferrand P, Moreau S, Aubert S, Buisson M (2013) Efficient 
optimisation procedure for design problems in fluid mechanics. 
Comput Fluids 82:73–86

Tang T, Zhou T (2015) Recent developments in high order numerical 
methods for uncertainty quantification. Sci Sinica 58(7):891

Tao J, Sun G (2019) Application of deep learning based multi-fidelity 
surrogate model to robust aerodynamic design optimization. Aer-
osp Sci Technol 92:722–737

Trefethen LN (2013) Approximation theory and approximation prac-
tice. Society for Industrial and Applied Mathematics (SIAM), 
Philadelphia, PA

Ullrich T (2008) Smolyak’s algorithm, sampling on sparse grids and 
sobolev spaces of dominating mixed smoothness. East J Approx 
14(1):1–38



Surrogate-based robust design optimization by using Chebyshev-transformed orthogonal grid  Page 15 of 15 127

Ustun D, Erkan U, Toktasand A, Lai Q, Yang L (2023) 2D hypercha-
otic Styblinski–Tang map for image encryption and its hardware 
implementation. Multimed Tools Appl 83(12):34759

Wang P, Bai Y, Lin C, Han X (2024) A hybrid criterion-based sample 
infilling strategy for surrogate-assisted multi-objective optimiza-
tion. Struct Multidisc Optim 67(3):44

Wu J, Luo Z, Zhang N, Zhang Y (2015) A new interval uncertain opti-
mization method for structures using chebyshev surrogate models. 
Comput Struct 146:185–196

Wu X, Zhang W, Song S (2018) Robust aerodynamic shape design 
based on an adaptive stochastic optimization framework. Struct 
Multidisc Optim 57(2):639–651

Zhang Z, Demory B, Henner M, Ferrand P, Gillot F, Beddadi Y, Fran-
quelin F, Marion V (2014) Space infill study of kriging meta-
model for multi-objective optimization of an engine cooling fan. 
In: ASME Turbo Expo 2014: Turbine Technical Conference and 
Exposition

Zhang Z, Han Z, Ferrand P (2019) High anisotropy space exploration 
with co-kriging method. In: Proceedings Lego - 14th International 
Global Optimization Workshop

Zhang Z, Jing S, Li Y, Meng X (2024) Corner error reduction by che-
byshev transformed orthogonal grid, in press. Engineering with 
Computers

Zhao K (2015) Complex aerodynamic optimization and robust design 
method based on computational fluid dynamics. PhD thesis, 
Northwestern Polytechnical University

Zhao H, Gao Y, Wang C (2017) Effective robust design of high lift 
nlf airfoil under multi-parameter uncertainty. Aerosp Sci Technol 
68:530–542

Zhao H, Gao Z, Xu F, Zhang Y (2019) Review of robust aerodynamic 
design optimization for air vehicles. Arch Comput Methods Eng 
26(3):685–732

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.


	Surrogate-based robust design optimization by using Chebyshev-transformed orthogonal grid
	Abstract
	1 Introduction
	2 Chebyshev-transformed orthogonal grid
	2.1 Runge effect and corner error
	2.2 Chebyshev-transformed OLH sampling

	3 Surrogate-based robust design optimization
	4 Benchmark tests
	4.1 One-dimensional function test
	4.2 Two-dimensional function tests
	4.3 Four-dimensional function tests

	5 Case study: Robust design optimization of RAE 2822 airfoil
	5.1 Airfoil profile parameterization
	5.2 Numerical simulation and validation
	5.3 Optimization of aerodynamic performance and robustness indices

	6 Conclusion
	Acknowledgments 
	References




