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Abstract
The Blended-Wing-Body (BWB) layout represents an innovative subsonic transport aircraft design. Drawing inspiration 
from the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) proposed by National Aeronautics and Space 
Administration (NASA), this study focuses on a design optimization for the entire structure of a BWB civil aircraft. A 
PRSEUS-based finite element model was established and subjected to a static analysis. The results indicate a considerable 
structural strength margin, suggesting potential for lightweight design advancements. Meanwhile, the structural region divi-
sion techniques were adopted to analyze the sensitivity of the BWB aircraft structure and to sort the parameters affecting its 
mass. Subsequently, seven surrogate modeling techniques were employed to train a surrogate model for the BWB aircraft 
structure to analyze the primary factors affecting its prediction accuracy. Among various modeling approaches, the optimal 
heuristic computation (ES) method demonstrates superior prediction accuracy and enhances the efficiency of optimal solu-
tion searches, resulting in a 18.45% mass reduction in the optimized BWB civil aircraft structure. Based on the optimization 
results of the ES model, a dual-loop optimization strategy was proposed by considering the vibration effects on the BWB 
aircraft. This strategy facilitates the optimization of the dimensional parameters of the BWB aircraft structure, resulting in 
substantial 17.83% increase in the first-order natural frequency of the optimized structure. After two rounds of optimization, 
the mass of the optimized BWB aircraft structure accounted for only 25% of the maximum takeoff mass. Consequently, the 
proposed optimization strategies present robust applicability and high efficiency, providing a valuable reference for design-
ers and researchers in related fields.

Keywords BWB civil aircraft · PRSEUS structure · Surrogate modeling techniques · Ensemble of surrogate model · 
Engineering design optimization

List of symbols
E  Elastic modulus
G  Shear modulus
�  Poisson's ratio
�  Density
�s  Tensile strength
�b  Yield strength
�bs  Shear strength
P0  Standard atmospheric pressure
HP  Flight altitude
ΔP  Operational load

P  Design load used for analysis
Xt  Longitudinal tensile strength
Xc  Longitudinal compressive strength
Yt  Lateral tensile strength
Yc  Lateral compressive strength
S12  In-plane shear strength
RMSE  Root mean square error
MAE  Maximum absolute error
aye(x)  Prediction value ŷe(x) of the ensemble of 

surrogate model
ayi(x)  Prediction value of the ith individual 

surrogate model
�i(x)  Weight coefficient of the i th individual 

surrogate model
GMSE  Generalized mean square error
y
(

xi

)

  Actual value of the surrogate model
ŷ(−i)

(

xi

)

  Predicted value of the surrogate model
n  Number of training sample points
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M  Number of surrogate models
GMSEi  GMSE Value of the i th surrogate model
Ei  Square root of GMSEi

barEi  Average value of Ei for all surrogate 
models

�  Significance of barE
�  Significance of Ei

ŷe
(

𝜔i, ŷ
(−i)

(

xi
))

  Predicted value of the ensemble of 
surrogate model constructed using all 
training sample points except 

(

xi, y
(

xi
))

W   Structural mass
Vi  Mass design variable
Tmax  Maximum Tsai–Wu failure factor
Smax  Maximum Mises equivalent stress
Umax  Maximum displacement
Fa  First-order natural frequency
Ni  Modal design variable

1 Introduction

The Blended Wing Body (BWB) represents an innovative 
and unconventional aircraft layout. Its potential to revolu-
tionize fuel consumption rate and aerodynamic efficiency 
positions BWB civil aircraft as the leading candidates to 
replace traditional tubular fuselage designs (Liebeck 2004; 
Chakraborty and Mavris 2017; Flansburg 2017; Arend, et al. 
2017; Gern 2013; Min, et al. 2018; Corman et al. 2018; 
Mukhopadhyay et al. 2018; Kashiwagura and Shimoyama 
2018). However, its non-circular sectional fuselage intro-
duces unique challenges, particularly in handling the stress 
induced by cabin pressurization loads, exacerbated by bend-
ing moments from both the wing and fuselage (Mukhopad-
hyay 2012; Liebeck 2003). Faced with serious strength chal-
lenges, the National Aeronautics and Space Administration 
(NASA) and Boeing jointly proposed the Pultruded Rod 
Stitched Efficient Unitized Structure (PRSEUS). This initia-
tive aims to leverage the mechanical properties of PRSEUS, 
such as high tensile and compressive strengths, significant 
stiffness and stability margins, and superior load-bearing 
efficiency (Wu et al. 2013). As illustrated in Fig. 1, the geo-
metric structure of the PRSEUS panel consists of dry woven 
materials, pre-hardened rods, and foam core materials (Prze-
kop 2012; Velicki and Jegley 2011; Papapetrou et al. 2016; 
Li and Velicki 2008).

Numerous studies have delved into the optimization of 
BWB aircraft. Qin et al. (2004) investigated the aerody-
namic characteristics of the BWB layout based on existing 
models and completed the design optimization. Hansen and 
Horst (2008) proposed a two-stage optimization strategy for 
typical parts of the BWB aircraft fuselage structure. Mean-
while, they explored the design optimization of single-layer, 
double-layer, and sandwich structures under multiple load 

and constraint conditions. Mukhopadhyay (2014) analyzed 
finite element models to assess the effects of skin thick-
ness, stringer spacing, and frame spacing on the fuselage 
deflection, stress distribution, and structural mass in BWB 
aircraft. Furthermore, Mukhopadhyay (2012) introduced 
six fuselage structural configurations in BWB aircraft to 
identify the lightest mid-fuselage configuration. Qian and 
Alonso (2018), utilizing high-precision optimization meth-
ods, reduced the ratio of the primary structural mass to the 
maximum takeoff mass. Subsequently, they incorporated 
buckling constraints into the optimization framework (Qian 
and Alonso 2021). Li (2015) applied a global–local calibra-
tion method to optimize the BWB entire aircraft structure, 
significantly reducing its mass. Zhu et al. (2019a) proposed 
a “global–local” structural optimization strategy for BWB 
airliners. Their case study revealed heightened optimiza-
tion efficiency, particularly advantageous in the conceptual 
design stage. Xiao et al. (2019) established a comprehen-
sive platform for analyzing and optimizing overall param-
eters of BWB civil aircrafts, investigated its overall design 
scheme through multi-disciplinary as well as single- and 
multi-objective approaches, resulting in valuable achieve-
ments. Quinlan and Gern (2016) used the BWB conceptual 
design and structural optimization program (HCDstruct) for 
structural optimization of medium-fidelity whole-machine 
with various BWB conceptual schemes, facilitating com-
prehensive mass assessment of conceptual schemes. Singh 
et al. (2016) applied topology optimization techniques to the 
layout design of BWB aircraft, yielding a rational structural 
layout for BWB airliners.

However, the aforementioned studies did not encompass 
vibration design constraints, and our literature review indi-
cates a gap in research on the overall structural optimization 
of BWB civil aircraft that targets modal constraints. In the 
context of practical aircraft structural design, incorporating 
modal constraints in structural optimization is essential. It is 
crucial to recognize that optimal structural designs obtained 
without considering vibration may exhibit substantial dis-
crepancies compared to designs that incorporate vibration 

Fig. 1  PRSEUS structure
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considerations. Accordingly, this study proposed a dual-loop 
optimization strategy that considers the vibration impact on 
the BWB civil aircraft and balances both static mechani-
cal and vibration performance. The optimization strategies 
proposed in this study can offer a reference for designers and 
researchers in related fields.

2  Finite element model analysis of BWB civil 
aircraft

Northwestern Polytechnical University (NPU) proposed a 
BWB passenger aircraft scheme, known as NPU-330 (Chen 
et al. 2019). The aerodynamic shape of the BWB civil air-
craft is depicted in Fig. 2, and its scaled-down model is illus-
trated in Fig. 3. Extensive high and low-speed tests were 
conducted in an industrial-grade wind tunnel, accompanied 
by thorough reviews and validations for both low- and high-
speed designs. Taking the BWB civil aircraft as a case study, 
this study focuses on the structural design optimization. The 
maximum takeoff mass of the BWB civil aircraft is 210 tons, 
with a range of 13,000 km, as outlined in Table 1.

The BWB aircraft employs specific methods for mass pre-
diction (Zhu et al. 2019b), as displayed in Table 2.

2.1  Mesh model

The aircraft structure was designed using CATIA V5R18, 
as given in Fig. 4. After that, BWB civil aircraft structure 

was divided into mesh (Tables 3, 4), with a mesh size of 50 
mm and type as quads.

Convergence study was conducted, specifically target-
ing the wing, the most load-bearing and deformation-prone 
region of the BWB civil aircraft structure. The analysis 
employed finite element models with mesh sizes of 40 mm, 

Fig. 2  Aerodynamic shape of the BWB civil aircraft

Fig. 3  Scale-down model of the BWB civil aircraft

Table 1  Key parameters of BWB civil aircraft

Parameter Value Unit

Number of passengers 300 –
Fuel mass 76,000 kg
Maximum takeoff mass 210,000 kg
Range 13,000 km
Cruise Mach number 0.84 Ma
Wingspan 63.12 m
Aspect ratio 0.65 –

Table 2  Mass prediction of BWB civil aircraft

Section Mass (kg) Proportion (%)

Front fuselage 3000 1.4
Middle fuselage 30,000 14.3
Rear fuselage 3000 1.4
Wing 8000 3.8
Connectors 6000 2.9
Whole aircraft 50,000 23.8
Maximum takeoff mass 210,000 100.00

Fig. 4  CATIA model of the BWB civil aircraft

Table 3  Structural unit type for the BWB civil aircraft

BWB civil aircraft structure Element type

Frame Solid elements
Skin, floor, partition, wing rib, and wing beam Shell elements
Floor reinforcement, partition reinforcement Beam elements
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50 mm, 60 mm, 70 mm, 80 mm, 120 mm, 130 mm, 140 
mm, 160 mm, and 200 mm. The results, presented in the 
Table 5, reveal that while the wing's deformation remains 
largely unaffected by mesh size variation, its Mises equiva-
lent stress and Tsai–Wu failure factor show considerable 
sensitivity to changes in mesh size.

Figures 5, 6, 7, and 8 demonstrate the results of our finite 
element convergence study. The study shows that with an 
increasing number of elements, both the maximum Mises 
equivalent stress and the Tsai–Wu failure factor initially 
increase rapidly, then stabilize after reaching the conver-
gence threshold. The converged mesh size was 120 mm, 
comprising 31,079 elements, and mesh sizes less than 120 
mm satisfy the numerical accuracy criteria.

Figures 9 and 10 demonstrate the entire structure and 
the internal structure of the aircraft, respectively. The 
overall BWB aircraft structure primarily consists of skin, 
frames, stringers, partitions (the component separation 
surfaces between various fuselage sections and separation 
surfaces that subdivide the middle fuselage into distinct 
compartments), floors, wing ribs, and wing beams. The 
PRSEUS structure comprises straps, stacks, and pultruded 
rods. For the BWB aircraft, many parts, including upper 
and lower skin, component stacks, component flanges, 
component straps, floors, partitions, wing ribs, and wing 
beams, are composed of AS4 carbon fiber composite 
laminates (Wang et al. 2012). Among them, the 0° fibers 
of the stringer stacks, stringer flange, and stringer straps 
composite laminates are parallel to the direction of the 
stringer. In contrast, those of the skin, floor, frame stacks, 
frame flange, and frame straps composite laminates are 

Table 4  Structural unit type for the PRSEUS

PRSEUS structure Element type

Strap, skin, and stack Shell elements
Pultruded rod Beam elements

Table 5  Finite element 
convergence study

Mesh size 
(mm)

Elements number Maximum displace-
ment (mm)

Maximum Mises equiva-
lent stress (MPa)

Maximum Tsai–
Wu failure factor

40 269,623 3307 753.6 1.053
50 206,985 3290 749.6 1.054
60 120,708 3304 743.1 1.04
70 88,115 3303 750.8 1.05
80 68,231 3302 747.5 1.044
120 31,079 3286 752 1.04
130 25,704 3338 709.4 1.017
140 22,499 3336 652.5 1.004
160 16,932 3318 640.8 0.9784
200 12,097 3319 637.1 0.9702

Fig. 5  Convergence study using the Mises equivalent stress (elements 
number)

Fig. 6  Convergence study using the Mises equivalent stress (mesh 
size)
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parallel to the direction of the frames. In addition, the 0° 
fibers of the fuselage partition composite laminate exhibit 
parallel direction with the global coordinate system Y-axis. 
Besides, the 0° fibers of partition and wing rib compos-
ite laminate and those of wing beam composite laminate 
are parallel to the X-axis and Z-axis of the global coordi-
nate system, respectively. The stringer pultruded rods are 
made of T800 carbon fiber and 3900-2B resin (Wang et al. 
2012), and the foam core of the frames is fabricated of 
Rohacell foam (Wang et al. 2012). The composite material 
properties of the BWB aircraft are listed in Tables 6 and 
7, respectively.

The BWB civil aircraft PRSEUS structure is shown 
as in Fig. 11. The stringer is connected to the frames in 
a shared-node fashion. One-way carbon fiber pultruded 
rods are installed on top of the stringer. Since the pul-
truded rods are simplified as beam elements with circular 
cross-sections, it is not possible to simulate their com-
posite material stack. We have determined the equivalent 
elastic modulus of the pultruded rods based on previous 
research (Yj et al. 2024). The flanges at bottom of the 
stingers, along with the straps, are stitched and connected 
to the skin. The frames are perpendicular to the stringers, 
consisting of a foam core and a composite stack. Similar 

Fig. 7  Convergence study using the Tsai–Wu failure factor (elements 
number)

Fig. 8  Convergence study using the Tsai–Wu failure factor (mesh 
size)

Fig. 9  Mesh model of the BWB civil aircraft

Fig. 10  Internal structure of the mesh model for the BWB civil air-
craft

Table 6  Composite material 
properties

Engineering con-
stants

Value

E1(MPa) 67,154.93
E2(MPa) 33,542.99
E3(MPa) 34,956.42
G12(MPa) 16,340.57
G13(MPa) 16 340.57
G23(MPa) 5515.81
�12 0.4
�13 0.4
�23 0.095
�(t/mm3) 1.60e−9
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to the stingers, flanges of the frames are also stitched with 
the straps to the skin, forming an out-of-plane reinforce-
ment structure.

Currently, some traditional metal materials still have 
certain market although the composite materials are 
increasingly applied in aircraft structures. In the BWB 
civil aircraft, the traditional metal materials are adopted 
in reinforcement frames of fuselage, the leading and trail-
ing edge skins of the wings, and other areas with stress 
concentrations to enhance strength. Generally, 7075 alu-
minum alloy is employed in aircraft structures, and its 
primary parameters are provided in Table 8.

The structural symmetry of a half-model finite element 
representation enables its application in mechanical anal-
ysis of the BWB civil aircraft, with a total of 1,076,039 
nodes and 1,233,271 elements.

2.2  Structural analysis

The extreme loads for aircraft follow the provision in Air-
worthiness Standards for Transport Category Airplanes 
under the U.S. Federal Aviation Regulations FAR-25 (Fed-
eral Aviation Administration, FAA 2018). For BWB aircraft, 
over 80 load conditions are essential for evaluation and anal-
ysis to determine the specific load scenarios. In this study, 
the extreme load conditions under a 2.5 g overload in pitch 
maneuver with an added 1.5 times safety factor was selected 
for the aircraft to validate its performance under extreme 
situations. Meanwhile, this work checked the full aircraft 
strength and stiffness and optimize the structural design of 
the aircraft.

As shown in Fig. 12, to assess the impacts of external 
loads on the BWB civil aircraft structure, three translational 
degrees of freedom were constrained on the symmetry plane. 
This analysis necessitates the application of location-specific 
distributed loads on the structure. In this section, pressure 
distributions on the wing and tail, derived from fluid analy-
sis, are mapped onto the airplane using coordinate systems. 
Aerodynamic loads on the fuselage are assigned to its struc-
tural mesh nodes and this is accomplished by automatically 
correlating the aerodynamic mesh nodes with the corre-
sponding structural mesh nodes' numbers and coordinates.

The load includes not only the airplane's self-weight but 
also the fuel weight, which is segmented into three compo-
nents: the left and right wing tanks, and the fuselage tank. 
As depicted in Fig. 13, the fuel volumes in the left and right 
wing tanks (A1 and A2) amount to 23 tons each, while the 
fuselage tank (B1) contains 30 tons. The total fuel volume 
reaches 76 tons. For the semi-modeled aircraft, the fuel vol-
ume is 38 tons. Additionally, a safety factor of 1.5 has been 
applied to all loads.

A primary objective in aircraft design is the reduction of 
external atmospheric pressure's impact on cabin pressure. In 
this study, the pressurization load corresponds to a pressure 
differential of 0.0633 MPa between the interior and exterior 
of the fuselage at 2000 m altitude. As shown in Fig. 14, for 

Table 7  Material properties of pultruded rod and foam core

Material Bulkhead foam sandwich 
layer

Longitudinal spar 
top pull-extrusion 
rod

E(MPa) 144.79 126,932.48
� 0.45 0.3
�(t/mm3) 9.99e−11 1.60e−9

Fig. 11  PRSEUS structure of the BWB civil aircraft

Table 8  Primary parameters of 
7075 aluminum alloy

Symbol Value Unit

E 71,000 MPa
� 0.33 –
� 2700 kg/m3

�s 524 MPa
�b 455 MPa
�bs 150 MPa

Fig. 12  Aerodynamic load
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the BWB civil aircraft's structural model, an internal pres-
sure representing double this differential, 0.1266 MPa, is 
applied.

In the formula, P0 represents the standard atmospheric 
pressure; HP denotes the flight altitude; ΔP is the operational 
load; P is the design load used for analysis.

The Tsai–Wu failure criterion is a valuable tool for 
accounting for the difference in tensile and compressive 
performance of carbon fiber composites and its relation-
ship with their failure strengths. As expressed in Eqs. 3 
and 4, the Tsai–Wu failure criterion posits that the material 
failure occurs when the stress component in the primary 
laminate direction meets the failure criterion. In this study, 
the Tsai–Wu failure criterion was employed to check the 
static strength of the BWB civil aircraft structure, and the 

(1)ΔP = P0−P0 ×

(

1 −
HP

44,300

)5.256

= 0.0633MPa,

(2)P = 2ΔP = 0.1266MPa.

involved strength values of the composite materials are 
presented in Table 9. 

 
In the equations above, �1 , �2 , and �6 refer to the lon-

gitudinal, transverse, and shear stress, respectively; Xt 
and Yt are the longitudinal and lateral tensile strength, 
respectively; Xc and Yc denote the longitudinal and lateral 
compressive strength, respectively; and S12 represents the 
in-plane shear strength.

Herein, the Tsai–Wu criterion was served as the struc-
tural strength failure criterion to assess the strength of the 
aircraft structure. The strength of the aluminum alloy was 
checked against allowable values. The numerical results 
in Fig. 15 demonstrate that the maximum displacement of 
the BWB aircraft occurs at the wingtip, with the largest 
displacement in the lift direction being 2884 mm. At this 
time, half-model of the BWB aircraft is 31,560 mm in 

(3)
F1�1 + F2�2 + F11�

2
1
+ F22�

2
2
+ F66�

2
6
+ 2F12�1�2 = 1,

(4)

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪
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1
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+
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+

1

Yc
,

F11 = −
1
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,

F22 = −
1

YtYc
,

F66 =
1

S2
12

,

F12 = −
1

2

√

F11F22.

Fig. 13  BWB civil aircraft fuel tank location

Fig. 14  Pressurization load

Table 9  Strength values of composite materials (Velickia and Barajaj, 
damage arresting composite for shaped vehicle-final report1. 2009)

Parameter Symbol Value (MPa)

Longitudinal tensile strength Xt 724.64
Longitudinal compressive strength Xc 546.06
Lateral tensile strength Yt 320.61
Lateral compressive strength Yc 261.31
In-plane shear strength S12 206.15

Fig. 15  Pre-optimization displacement of the BWB civil aircraft
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wide, and the deformation in the lift direction accounts 
for approximately 9.14% of the width, meeting the stiff-
ness requirements. Meanwhile, the half-model of the BWB 
aircraft weighs 32.68 tons, with a total mass of 65.36 tons, 
which is relatively heavy.

Figure 16 displays the comprehensive stress distribution 
diagram, while Fig. 17 illustrates the Tsai–Wu failure crite-
rion factor cloud diagram for the BWB civil aircraft struc-
ture. As mentioned earlier, the strength of the aluminum 
alloy is assessed against the strength limit of the alloy, while 
the evaluation of composite materials relies on the Tsai–Wu 
failure criterion. Upon examining the stress cloud diagram, it 
becomes apparent that the stress propagation is continuously 
distributed, with the central section of the wing leading edge 
being the primary concentration point of maximum stress. 
The maximum Mises equivalent stress is 377.4 MPa, which 
is less than 557.4 MPa, satisfying the strength requirements 
for the aluminum alloy. Besides, the cloud diagram unveils 
that the maximum Tsai–Wu failure factor reaches 0.9356, 
which is below the failure value of 1, thereby meeting the 
strength requirements of the composite materials. Notably, 
this maximum failure factor is also located at the wing skin. 
Consequently, both the evaluations of the metal and non-
metal structure for the BWB aircraft point to the necessity 

for enhancing the strength of the wing section. The BWB 
aircraft compiles with the requirements for strength, provid-
ing significant optimization potential.

3  Optimization of BWB civil aircraft 
ensemble of surrogate model

The integration of global optimization algorithms with finite 
element models is a common approach to address nonlinear 
engineering optimization. However, global optimization 
algorithms typically require multiple iterations, and a single 
finite element model exhibits quite extensive computation 
time, making the combined use of them computationally 
intensive. To alleviate this computational burden, the sig-
nificant role of leveraging surrogate models based on the 
relationship between optimization indicators and design 
variables can't be ignored. Considering the inherent highly 
nonlinear nature of the entire BWB aircraft, the applica-
tion of global optimization methods based on ensemble of 
surrogate models can enhance the optimization accuracy 
and efficiency. To circumvent the limitations of individual 
surrogate models, this study proposes an innovative design 

Fig. 16  Pre-optimization 
equivalent displacement of the 
BWB civil aircraft

Fig. 17  Pre-optimization Tsai–
Wu failure factor cloud diagram 
of the BWB civil aircraft
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optimization approach for BWB aircraft structure based on 
the ensemble of surrogate models.

3.1  Sensitivity analysis

This study used a quasi-isotropic laminate, and employed 
the total thickness of components as the primary design vari-
ables. The total thickness represents the sum of the thick-
nesses of each ply. The finite element analysis results of 
the BWB aircraft structure mentioned earlier reveal that the 
strength values in most regions of the aircraft are comfort-
ably distant from the material strength limits. This obser-
vation suggests significant strength margins in these areas, 
highlighting the potential for structural mass optimization. 
Based on strength values, the aircraft was divided into vari-
ous regions based on structural characteristics, including 
sections like skin, frames, and stringers, yielding a total of 
202 regions. Furthermore, the Latin Hypercube Sampling 
method was employed in this study. On one hand, it can 
ensure a uniform distribution of experimental points in the 
design space, enhancing the accuracy and realism of the fit-
ting between factors and responses. On the other hand, it can 
identify the design parameters that significantly impact the 
overall aircraft structure mass by sampling the levels of 202 
design variables and their response values, thus initiating 
sensitivity analysis of the model.

The upper and lower limits of the variables were defined 
as [− 50%, 50%]. A series of finite element simulation cal-
culations were carried out with mass serving as the response 
parameter. By sampling 1000 sets of parameter combina-
tions, the Pareto contribution values for each design vari-
able were obtained, as represented in Fig. 18. It provides 
a visual depiction of the structural design parameters that 
significantly impact the aircraft mass (the top 46 based on 
their Pareto contribution values). Collectively, these top 46 
influencing factors contribute to a cumulative Pareto value 
of 80.03%. Among them, MRFPARTR (the naming rule of 
the design variables is presented in “Appendix”) emerges 
as the most influential design parameter, with a Pareto con-
tribution value of 14.03%. Although the impacts of other 
individual design parameters may not very pronounced, their 
combined effect on mass is obviously substantial and cannot 
be ignored. These design parameters will serve as the design 
variables for the subsequent phases of scheme optimization. 
In this way, the original 202 design variables were reduced 
to 46 areas, enhancing the optimization efficiency.

3.2  Ensemble of surrogate model

Essentially, the surrogate models are to construct a math-
ematical model using interpolation or fitting techniques to 
serve as a substitute for complex engineering problems. In 
this study, the objective is to establish a surrogate model 

for the BWB aircraft structure that can replace the finite 
element model for calculations, ultimately enhancing opti-
mization efficiency. The commonly used surrogate models 
encompass the Kriging model, the Radial Basis Function 
(RBF) model, and the Polynomial Response Surface (PRS) 
model. Both the global and local accuracy indicators are 
typically adopted to validate the accuracy of surrogate 
models.

Root Mean Square Error ( RMSE ), as a global accuracy 
indicator, is calculated using Eq. (5). A smaller RMSE indi-
cates a higher prediction accuracy of the surrogate model.

In the equation above, ai is the actual response value of 
the sample point; âi is the predicted value from the surrogate 

(5)RMSE =

�

∑n

j=1
(ai − âi)

2

n
.

Fig. 18  Tsai–Wu failure factor Pareto contribution values of the BWB 
civil aircraft
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model corresponding to the test sample point; and n refers to 
the number of test samples.

The local accuracy indicator is generally represented by the 
Maximum Absolute Error ( MAE ), as calculated with Eq. (6). 
The smaller the MAE , the higher the prediction accuracy of 
the surrogate model.

The ensemble of surrogate model, also known as the 
weighted average surrogate model, is unique due to utiliza-
tion of various base functions for distinct types of surrogate 
models. However, it’s challenging to match a suitable sur-
rogate model for unknown complex engineering problems. 
Fortunately, the ensemble of surrogate model technique can 
effectively address this issue. The prediction value ŷe(x) of 
the ensemble of surrogate model can be expressed as follows:

where ŷi(x) is the prediction value of the ith individual sur-
rogate model; �i(x) refers to the weight coefficient of the i th 
surrogate model; and 

∑M

i=1
�i(x) = 1.

To optimize the predictive accuracy of the ensemble of sur-
rogate model, the assignment of weight factors is a critical 
consideration. Research (Viana et al. 2009) suggests that the 
selection of weight factors should meet the following two basic 
principles: (1) the weight factor should be proportional to the 
accuracy of the corresponding surrogate model; and (2) such 
selection could avoid poor performance of the approximation 
model in regions where samples are sparse. The Generalized 
Mean Square Error ( GMSE ) is often selected to evaluate the 
cross-validation. The closer the value of GMSE is to 0, the bet-
ter the performance. This study investigated the weight factors 
based on GMSE.

where y
(

xi

)

 is the actual response value at xi ; ŷ(−i)
(

xi

)

 refers 
to the predicted response value of the surrogate model 
constructed using all training sample points except for 
(

xi, y
(

xi
))

 ; and n represents the number of training sample 
points.

The weight factor calculation methods based on GMSE 
adopted in this study included Inverse Proportional Aver-
age Method (Zerpa et al. 2005) (EZ), Heuristic Calculation 
Method (Goel et al. 2006) (EG), Mean Square Error Minimi-
zation Method (Acar and Rais-Rohani 2008) (EA), and Opti-
mal Heuristic Calculation Method (Ye and Pan 2017) (ES).

(6)MAE =
max|ai − âi|

max
(

ai
)

−min(ai)
.

(7)ŷe(x) =

M
∑

i=1

𝜔i(x)ŷi(x),

(8)GMSE =
1

n

n
∑

i=1

[

y
(

xi

)

− ŷ(−i)
(

xi
)]2

,

3.2.1  EZ method

The EZ method stipulates that the weight factor of each sur-
rogate model is inversely proportional to its prediction error, 
that is, there is a larger weight for the surrogate model with 
a smaller prediction error.

In the expressions above: M is the number of surrogate 
models; GMSEi denotes the GMSE value of the i th surrogate 
model; and Ei stands for the square root of GMSEi.

3.2.2  EG method

The EG method determines the corresponding weight factors 
by non-parametrically calculating the global errors of each 
surrogate model.

In the equation: barE is the average value of Ei for all sur-
rogate models; while � and � represent the significance of 
barE and Ei , respectively, which are usually set as � = 0.05 
and � = −1.

3.2.3  EA method

EA method transforms the calculation of the weight fac-
tor into an optimization process to determine the optimal 
combination of weight factors through iterative searching 
and optimization algorithms. Its ultimate goal is to assign 
the weight factors of each surrogate model by minimizing 
the mean squared error of the ensemble of surrogate model, 
thereby minimizing the prediction error.

In the equation above: ŷe
(

𝜔i, ŷ
(−i)

(

xi
))

 is the predicted 
value of the ensemble of surrogate model constructed using 
all training sample points except 

(

xi, y
(

xi
))

.

(9)�i =

1

Ei

∑M

j=1

1

Ej

,

Ei =
√

GMSEi.

(10)�i =

�

Ei + �barE
��

∑M

j=1

�

Ej + �barE
��

,

barE =
1

M

∑M

i=1
Ei.

(11)

⎧

⎪

⎨

⎪

⎩

find𝜔i, i = 1, 2,… ,M,

minGMSEe =
1

n

∑n

i=1

�

y
�

xi
�

− ŷe
�

𝜔i, ŷ
(−i)

�

xi
���2

,

s.t.𝜔i ≥ 0,
∑M

i=1
𝜔i = 1,
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3.2.4  ES method

The unknown parameters α and β for the EG method control 
the importance of the average and the individual surrogate 
model, respectively. Smaller values of α and more nega-
tive values of β result in higher weight factors assigned to 
the best surrogate model. The free ability to freely adjust α 
and β contributes to a higher flexibility of this weight fac-
tor calculation method, and reasonable parameter values 
will help to obtain a high-precision ensemble of surrogate 
model. In the EG method, the values of α and β are fixed as 
0.05 and − 1, respectively. However, using fixed values of α 
and β may not be adapt to various characteristic engineer-
ing problems. Therefore, adjusting α and β becomes crucial 
for addressing different problems. To tackle this challenge, 
the ES method optimizes these two parameters as design 
variables to minimize the GMSE value of the constructed 
ensemble of surrogate model.

After the weight factor of the individual surrogate model 
was determined, the ensemble of surrogate model was con-
structed using the following mathematical expression:

Both the EA and ES methods employ the Sequential 
Quadratic Programming (SQP) algorithm for optimization, 
with the specific parameters detailed in Table 10. Next, the 
prediction accuracy of three individual surrogate models 
(e.g., Kriging, RBF, PRS) was compared with that of the 
four ensemble of surrogate models (EZ, EG, EA, and ES).

3.3  Comparison of surrogate model accuracy

In this section, the 46 structural partitions mentioned above 
were selected as design variables. The upper and lower limits 
for each design variable remain consistent with those speci-
fied in the previous section. The maximum Tsai–Wu failure 

(12)

⎧

⎪

⎨

⎪

⎩

find 𝛼, 𝛽, 𝛼 < 1, 𝛽 < 0,

minGMSEe =
1

n

∑n

i=1

�

y
�

xi
�

− ŷe
�

𝜔i, ŷ
(−i)

�

xi
���2

,

s.t.
∑M

i=1
𝜔i = 1,Ei + 𝛼barE > 0.

(13)ŷe = 𝜔Kriging ⋅ ŷKriging + 𝜔RBF ⋅ ŷRBF + 𝜔PRS ⋅ ŷPRS.

factor from the static analysis of the BWB aircraft structure 
was served as the response quantity. Generally, collecting 
training data to construct a surrogate model requires a con-
siderable amount of computational time and resources, as 
highlighted in prior research (Wang and Shan 2006; Joseph 
2016). During the model construction, it aims to extract as 
much information as possible from limited sample points to 
improve the model precision. To mitigate the uncertainties in 
the experimental process and increase the generalizability of 
the experiment, the Latin Hypercube Sampling method was 
adopted in this section, generating a total of 1128 training 
sample points.

Individual surrogate models (Kriging, RBF, and PRS) 
are constructed using the generated training sample points 
along with their true objective function values. In the case 
of the Kriging model, the Gaussian function is determined 
as the correlation function. For the RBF model, the multi-
quadratic function is adopted as the basis function. A quad-
ratic polynomial response surface model is selected as the 
fundamental framework of the PRS model.

After construction of individual surrogate models, ensem-
ble of surrogate models were trained using the three surro-
gate models as meta-models. Meanwhile, different weight 
factor calculation methods were employed to calculate the 
weight factors for each surrogate model. Table 11 presents 
the weight factors for the ensemble of surrogate models con-
structed using the EZ, EG, EA, and ES methods. Remark-
ably, the RBF model, distinguished by its prediction capa-
bility, received the largest weight factor in all four methods. 
In the EZ and EG methods, the weight factors were dis-
tributed according to their predictive capabilities, gradually 
increasing as the precision of the individual surrogate model 
improved. The EG method, with given constants � = 0.05 
and � = −1 , constructed an ensemble of surrogate model 
similar in form to the EZ model, leading to closely aligned 
weight factors. In contrast, weight factors calculated by the 
EA method did not exhibit a strict linear relationship with 
model performance. In the ES method, after optimization, 
the optimal values for α and β are − 0.05 and − 4.21, respec-
tively, showing varying degrees of reduction compared to 
the given values. The Kriging, RBF, and PRS ensemble of 
surrogate models constructed by the ES method possessed 
the weight factors of 0.035, 0.812, and 0.153, correspond-
ing to the predictive capabilities of the individual surrogate 

Table 10  Input parameters of the SQP algorithm

Input parameter Value

Max Number of Iterations 50
Termination Accuracy 1.0e−6
Relative Step Size 0.001
Minimum Absolute Step Size 1.0e−4
Failed Run Penalty Value 1.0e30
Failed Run Objective Value 1.0e30

Table 11  Weight factors of the ensemble of surrogate models

�
1
 (Kriging) �

2
 (RBF) �

3
 (PRS)

EZ 0.225 0.459 0.316
EG 0.230 0.452 0.318
EA 0.279 0.711 0.010
ES 0.035 0.812 0.153
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models. The methods for constructing ensemble of surrogate 
models based on iterative optimization are assimilate toward 
the individual surrogate model with the best predictive capa-
bility, gradually reducing the weight factor of the individual 
model with poorer predictive accuracy.

After training, 112 randomly generated test sample points 
were based to verify the accuracy of the surrogate models. 
To minimize the random error of the experimental results, 
10 repeated experiments were conducted, producing 10 sets 
of results. The number of training points and test points are 
based on the values mentioned in reference (Acar 2010). 
For the seven constructed surrogate models, the MAE and 
RMSE were calculated to evaluate the prediction accuracy of 
each surrogate model. The boxplots of these three indicators 
are illustrated in Figs. 19 and 20, respectively. The shorter 
the length of the rectangular box in the boxplot, the denser 
the data distribution, the less dependence on the experimen-
tal design, and the higher stability of the model.

An examination of the length of the rectangular boxes 
and the median lines in the figures reveals that all ensem-
ble of surrogate models outperform their individual sur-
rogate models. This demonstrates that the ensemble of sur-
rogate models generally exhibit higher prediction accuracy 
and greater stability in comparison to individual surrogate 
models. Among the ensemble of surrogate models, the 
EZ and EG models possessed very close accuracy, which 
aligns with the weight factor selection results discussed 
earlier. The introduction of the E parameter in the EG 
model improves the optimization stability, resulting in 
slightly superior predictive accuracy when compared to 
the EZ model. However, the ES and EA surrogate mod-
els show significantly enhanced predictive capabilities 
than the EZ and EG models. Ensemble of surrogate mod-
els constructed through optimization methods consist-
ently outshine their counterparts constructed with given 

parameters. Notably, the ES surrogate model is superior to 
all other ensemble of surrogate models. An analysis of the 
median lines of the rectangular boxes unveils that the ES 
model outperforms the other three models. Furthermore, 
an assessment of the lengths of the rectangular boxes indi-
cates that the ES model boasts a relatively shorter box 
length, signifying the best stability.

The average of the experimental results serves as a 
valuable metric for characterizing the overall predictive 
capability of the surrogate model, while the optimal value 
reflects the highest predictive potential of the model. 
Table 12 presents the mean and optimal values of MAE 
and RMSE . The table suggests that among the RBF surro-
gate model attains the highest prediction accuracy. Among 
the ensemble of surrogate models, the ES model exhibits 
the best accuracy. Notably, the error indicators for most 
ensemble of surrogate models are better in contrast those 
of their individual surrogate models. The ES model, in 
particular, achieves higher prediction accuracy in all indi-
cators, and its average MAE and RMSE value is very close 
to the optimal value, reinforcing its performance.

Fig. 19  Box plot for MAE of models

Fig. 20  Box plot for RMSE of models

Table 12  Mean and optimal values of MAE and RMSE

Surrogate model MAE RMSE

Mean Optimal value Mean Optimal value

Kriging 0.34212 0.20461 0.17399 0.12127
RBF 0.31203 0.15018 0.14883 0.07414
PRS 0.31438 0.17834 0.16360 0.10415
EZ 0.16158 0.14429 0.15132 0.11573
EG 0.18870 0.15302 0.15328 0.11723
EA 0.09819 0.07754 0.08126 0.06275
ES 0.06230 0.04904 0.05273 0.04031
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3.4  Optimization using the ensemble of surrogate 
model

The optimization involves the 46 regions into which the 
BWB aircraft structure was divided, and the divided areas 
exhibit a higher Pareto contribution to the mass. As analyzed 
previously, the structural strength of the BWB aircraft is suf-
ficient and the upper and lower limits of the design variables 
are [− 50%, 50%]. The objective function aims to minimize 
the total mass of the BWB aircraft. However, several con-
straints that must be satisfied during this process. The Mises 
equivalent stress within aluminum alloy structure of the 
BWB aircraft should not exceed 557.4 MPa; the Tsai–Wu 
failure factor should not surpass 1; and the displacement 
should not exceed 3156 mm. The mathematical model for 
the mass optimization of the BWB civil aircraft structure is 
defined as follows:

In the formula, W  represents the mass of the BWB civil 
aircraft structure; Vmin

i
 and Vmax

i
 denote the lower and upper 

limits of the mass design parameters for the BWB civil air-
craft structure, respectively set at − 50% and 50% of their 
initial design values; Tmax is the maximum Tsai–Wu failure 
factor of the BWB civil aircraft structure; Smax is the maxi-
mum Mises equivalent stress of the BWB civil aircraft struc-
ture; and Umax is the maximum displacement of the BWB 
civil aircraft structure.

Compared to traditional optimization methods, the Parti-
cle Swarm Optimization (PSO) algorithm is more likely to 
locate the global optima, ensuring greater population diver-
sity and reducing the risk of falling into local optima. In 
theory, having more particles can expedite the algorithm’s 
ability to explore the solution space and converge to the 
global optimum faster.

Taking the maximum Tsai–Wu failure factor as an exam-
ple, one of the constraints in the optimization of the BWB 
civil aircraft structure, Fig. 21 illustrates the impact of the 
MFLSKIN2 and MFUSKIN3 design parameters on the max-
imum Tsai–Wu failure factor of the BWB civil aircraft struc-
ture. The distribution map shows that areas with higher and 
lower maximum Tsai–Wu failure factors are spread through-
out. This indicates that the maximum Tsai–Wu failure factor 
of the BWB civil aircraft structure does not linearly increase 
or decrease with changes in the sizes of the two selected 
design variables, but multiple maximum or minimum values 
may appear when the two variables reach certain sizes. In 
other words, the optimization problem of static strength for 

(14)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

MinW

s.t. Vmin
i

≤ Vi ≤ Vmax
i

Tmax < 1

Smax < 557.4MPa

Umax < 3156mm.

the BWB civil aircraft structure is a multi-peak and multi-
valley problem with multiple optimal (or worst) solutions, 
and choosing the PSO algorithm helps to avoid results get-
ting trapped in local optima.

The PSO algorithm was employed in this study to opti-
mize the various components of the BWB aircraft structure 
after partitioning. The input parameters of this algorithm 
are provided in Table 13. To ensure a global distribution 
of particles, the number of particles is set as 1128, and the 
maximum number of iterations for each particle is the value 
of 50.

The optimization results of the seven surrogate models 
are presented in Table 14. Judging from the actual predicted 
accuracy, it is evident that the relative errors of the indi-
vidual surrogate models are above 10%, whereas those for 
the ensemble of surrogate models are below 10%. Specifi-
cally, the relative errors of the EA and ES models are above 
5%, while those of the EZ and EG models are below 5%. 
Regarding the constraint conditions, all three individual sur-
rogate models fail to satisfy the specified constraints. The 

Fig. 21  Influence of MFUSKIN3 and MFLSKIN2 on the maximum 
Tsai–Wu failure factor

Table 13  Input parameters of the PSO algorithm

Parameter Value

Maximum iterations 50
Number of particles 1128
Inertia 0.9
Global increment 0.9
Particle increment 0.9
Maximum velocity 0.1
Maximum failure iterations 5
Filed run penalty value 1.0e30
Failed run objective value 1.0e30
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maximum Tsai–Wu failure factors for all of them exceed the 
permissible value of 1. In contrast, the ensemble of surrogate 
models all satisfy the constraints.

The optimization outcomes of the four ensemble of sur-
rogate models reveal that the objective values of the EZ and 
ES models are 26.64 tons and 26.65 tons, respectively, show-
ing the smallest values. In contrast, the EA model yields the 
largest objective value, reaching 27.15 tons. Comparison on 
the applications of various surrogate models in optimizing 
the BWB structure demonstrates that the ensemble of surro-
gate models possess the generally higher predictive capabil-
ity. The weaker predictive capability of individual surrogate 
models results in their non-compliance with constraints. The 
EZ and ES models contribute more to achieving satisfactory 
optimal solutions than the EG and EA models.

In the ensemble of surrogate models, the weight factors 
for the EZ and EG models are not significantly different, 
which is reflected in the closely matched optimization 
results for both models. By leveraging iterative optimiza-
tion methods to determine the weight factors, the relative 
errors of the EA and ES methods are small, measuring at 
3.73% and 2.68%, respectively, and the ultimately yielded 
final objective values are 27.15 tons and 26.65 tons. Com-
pared to the EA model, the ES model not only delivers bet-
ter predictive accuracy but also promotes the search for the 

optimal solution. Consequently, it can be concluded that 
using the ES model as a substitute of the finite element 
model is suitable for the static mechanical optimization 
of the BWB structure.

The optimization results of the ES model are illustrated 
in below figures, with Figs. 22, 23, and 24 explicating 
the Mises equivalent stress, Tsai–Wu failure factor, and 
displacement after optimization, respectively. The opti-
mization results of the design variables is presented in 
“Appendix”. After optimization, the aluminum alloy part 
of the BWB aircraft structure experiences the maximum 
Mises equivalent stress of 506.4 MPa, which is lower than 
the allowable stress of 557.4 MPa. Its maximum Tsai–Wu 
failure factor is 0.9458, which follows within the crite-
ria of 1. Furthermore, BWB aircraft structure displays a 
maximum displacement of 3031 m, which is less than the 
constrained 3156 m. In addition, the optimized structure 
weights 26.65 tons, resulting in a reduction of 18.45% in 
comparison to the mass before optimization (32.68 tons).

Table 14  Optimization results 
of the severe models

Optimal solutions based on 
various surrogate models

Kriging RBF PRS EZ EG EA ES

W(tons) Simulation value 26.68 26.70 26.53 26.64 26.86 27.15 26.65
T Predicted value 0.830 0.944 0.958 0.860 0.886 0.885 0.919

Simulation value 1.024 1.051 1.108 0.946 0.948 0.922 0.946
Allowable value 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Relative error 19.44% 10.74% 14.97% 8.67% 6.16% 3.73% 2.68%

S(MPa) Simulation value 426.0 409.0 448.6 510.3 411.5 492.7 506.4
Allowable value 557.4 557.4 557.4 557.4 557.4 557.4 557.4

U(mm) Simulation value 3073 3103 3160 3109 3081 3039 3031
Allowable value 3156 3156 3156 3156 3156 3156 3156

Fig. 22  Post-optimization Mises 
equivalent stress of ES model
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4  Optimization of BWB civil aircraft 
considering vibration

Resonance presents a safety concern in civil aviation, as 
effects induced by resonance, such as flutter, can lead to 
the destruction of an aircraft and result in severe safety 
incidents. Additionally, resonance can impact passenger 
comfort during air travel, leading to considerable incon-
venience throughout the journey. Modal analysis plays a 
crucial role in the overall aircraft analysis, as it unveils the 
inherent frequencies and vibration modes of the aircraft 
structure, enabling early structural improvements and thus 
avoiding resonance.

4.1  Surrogate model optimization considering 
vibration

An optimization model for the BWB civil aircraft con-
sidering vibration was established in this study. The first-
order structural modal natural frequency of the BWB 
structure are displayed in Fig. 25. Compared with the 

literature (Li and Qin 2020), the first-order mode also 
occurs in the wing of BWB aircraft, with a natural fre-
quency of 1.83 Hz, closely aligning with the results calcu-
lated in this study. Therefore, this structural model is used 
in the subsequent optimization efforts. With the first-order 
natural frequency as the response parameter, the vibration 
performance of the BWB civil aircraft was subjected to 
a sensitivity analysis. In this analysis, the top 45 modal 
design parameters with a Pareto contribution value totaling 
80.12% were selected, as depicted in Fig. 26.

The optimization for improving vibration performance 
builds upon the static optimization results. After one round 
of optimization, the mass of the BWB aircraft structure is 
sufficiently reduced, but the first-order natural frequency 
still falls short of the allowable value. Therefore, the pri-
mary optimization objective is to maximize the first-order 
natural frequency of the BWB aircraft. The optimization 
considering vibration involves two types of design varia-
bles: one is associated with vibration performance, and the 
other pertains to static performance. The design variables 
for vibration performance comprise the aforementioned 45 
partition variables, while those for static performance are 
the 11 partition variables that overlap between modal and 

Fig. 23  Post-optimization Tsai–
Wu failure factor of ES model

Fig. 24  Post-optimization dis-
placement of ES model
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static parameters. The upper and lower limits of the design 
variables are both set at [− 50%, 50%] to provide sufficient 
optimization flexibility. The structure must meet several 
critical constraints related to mass, material strength, 
deformation, and the first-order natural frequency. These 
constraints encompass the following. The total mass of 
the BWB civil aircraft is less than 26.65 tons, the Mises 
equivalent stress of aluminum alloy is below 557.4 MPa, 
and the Tsai–Wu failure factor should not exceed 1. In 
addition, the displacement is limited to less than 3 156 
m, and the first-order natural frequency is greater than 
1.83 Hz. Given that optimization problem involves a large 
number of design variables and constraints from different 
disciplines, this study a dual-loop optimization approach 
that integrates both vibration and statics considerations by 
referencing literature (Zhu et al. 2019a). The mathematical 
model for the modal optimization of the BWB civil aircraft 
structure is defined as follows:

In the formula, Fa is the first-order natural frequency 
of the BWB civil aircraft structure; Nmin

i
 and Nmax

i
 respec-

tively represent the lower and upper limits of the modal 
design parameters for the BWB civil aircraft structure, 
set at − 50% and 50% of their initial design values; W  is 
the mass of the BWB civil aircraft structure; Tmax is the 
maximum Tsai–Wu failure factor of the BWB civil aircraft 
structure; Smax is the maximum Mises equivalent stress of 

(15)
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s.t. Nmin
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≤ Ni ≤ Nmax
i

W < 26.65 tons

Tmax < 1

Smax < 557.4MPa

Umax < 3156mm

Fa < 1.83Hz.

Fig. 25  BWB civil aircraft pre-
optimization first-order natural 
frequency

Fig. 26  Pareto contribution values for the first-order natural fre-
quency of the BWB civil aircraft
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the BWB civil aircraft structure; and Umax is the maximum 
displacement of the BWB civil aircraft structure.

4.2  Dual‑loop optimization for vibration and statics

The newly introduced dual-loop strategy for the BWB air-
craft structure primarily focuses on optimizing vibration 
performance. It employs modal and static optimization as 
its primary and secondary objectives, respectively. The pro-
posed method is illustrated in Fig. 27 and comprises a pri-
mary loop and a secondary loop. The primary loop is to find 
the optimal values of design parameters that maximize the 
first-order natural frequency of the structure. The secondary 
loop inputs the optimal values obtained from the primary 
loop to calculate the Tsai–Wu failure factor, Mises equiv-
alent stress, and displacement. It then feeds back into the 
primary loop, continuously iterating the design parameters 
until all response values are within the permissible range. In 
this manner, this dual-loop approach effectively transforms a 
complex an optimization problem with numerous variables 
into a primary and secondary loop optimization problem, 
effectively turning static strength stiffness issues and modal 

problems into a dual-loop issue. In the secondary loop, the 
static performance optimization variables were initially set 
as the optimal values from a previous round of optimization. 
The output results easily satisfy the constraint conditions and 
can be resolved with a relatively low computational cost. 
Given the minimal computational cost in the secondary loop, 
the vibration performance in the primary loop can be opti-
mized within a reasonable computational budget.

The dual-loop optimization strategy is illustrated in 
Fig. 28. The entire optimization process can be performed 
automatically. The primary loop focuses on optimizing the 
vibration performance of the aircraft. 45 Partition vari-
ables that significantly influence the first-order natural fre-
quency were sampled, with their upper and lower limits set 
at [− 50%, 50%]. Furthermore, surrogate models for mass 
response and modal response were constructed using the 
Kriging, RBF, and PRS methods, respectively. Based on the 
results of the error analysis, the surrogate models built using 
the RBF method demonstrated good predictive capability 
for each response variable. Consequently, the RBF model 
was adopted for both mass response and modal response. 
The optimization objective in this case is to maximize the 
first-order structural natural frequency, while adhering to 
specific constraints. These constraints dictate that the total 
mass of the BWB aircraft structure should be less than 26.65 
tons, and the first-order natural frequency should be greater 
than 1.83 Hz. The design variables of the secondary loop 
were selected from the 11 structural partitions that over-
lap between the modal parameters and the static mechani-
cal parameters, with upper and lower limits set at [− 50%, 
50%]. The ES ensemble of surrogate model is utilized for 
the Tsai–Wu failure factor response, stress response, and 
displacement responses. These design settings in the sec-
ondary loop are consistent with the optimized parameters 
detailed in Sect. 4.3. 

The optimization algorithm employs the PSO algorithm. 
In this study, the number of particles was set to 1081, with 
other parameters set according to Table 13. The iterative 
process of optimization, as illustrated in Fig. 29, corresponds 
to the primary loop in the dual-loop optimization frame-
work. In the figure, solid circles represent feasible solutions, 
indicating particles distributed throughout the space. Solid 
triangles symbolize local optimal solutions, signifying the 
best particles in the same region; while marked solid tri-
angles are global optimal solutions, representing the best 
particles globally. In addition, solid circles tend to primar-
ily concentrated in the lower left and upper right regions 
of the diagram, suggesting that feasible solutions gradually 
converge toward the global optimum as the optimization pro-
gresses. To visualize this convergence, local optimal solu-
tions were extracted from the optimization results to plot the 
curves, with the fitting curve depicting the progression of the 
first-order natural frequency increasing with the number of Fig. 27  BWB civil aircraft optimization process
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iterations. The first-order natural frequency rapidly grows 
within the first 13 iterations, and experiences a slight fluctua-
tion subsequently. The global optimum is achieved during 
the 23rd iteration. 

The optimization results of the design variables is pre-
sented in “Appendix”. The optimization results after the 
dual-loop are shown in Figs. 30, 31, 32, and 33. These fig-
ures offer insights into displacement (Fig. 30), Mises equiva-
lent stress (Fig. 31), Tsai–Wu failure factor (Fig. 32), and the 
first-order natural frequency (Fig. 33) of the optimized BWB 
aircraft structure. It is evident that the wing area bears a rela-
tively large load, resulting in the most significant displace-
ment deformation. Specifically, the wingtip displacement is 
3093 m. Additionally, the maximum Mises equivalent stress 
in the aluminum alloy is 506.4 MPa, the maximum Tsai–Wu 
failure factor for composite materials is 0.943, and the first-
order natural frequency reaches 2.0329 Hz. It is noteworthy 
that all these values meet the constraints for deformation, 
stress, Tsai–Wu failure factor, and modal frequency, indicat-
ing the successful achievement of design goals.    

As presented in Table 15, after the dual-loop optimiza-
tion, the mass, Tsai–Wu failure factor, and stress level of 
the BWB aircraft structure experience minimal changes. 
However, the first-order natural frequency has increased 
to 2.0329 Hz, reflecting an improvement of 17.83%. Such 
result indicates that the dual-loop optimization for vibra-
tion and statics effectively enhance the first-order natural 

Fig. 28  Optimization frame-
work

Fig. 29  Iteration progression of the first-order natural frequency
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frequency without compromising strength and stiffness or 
adding mass. After the dual-loop optimization, the BWB 
civil aircraft structure weights 52.54 tons, with the air-
craft structure accounting for 25.02%. Reference data from 
Chen et al. (2019) indicates that the structural weight fac-
tor in this study falls within a reasonable and acceptable 

range, confirming the accuracy and reliability of the over-
all optimization results. 

4.3  Stability analysis

In the optimization process, only strength criteria were 
employed. However, as Fig. 32 unequivocally illustrates, 

Fig. 30  The post-optimization 
displacement of the dual-loop

Fig. 31  The Mises equivalent 
stress of the dual-loop after 
optimization

Fig. 32  Tsai–Wu failure factor 
of optimized dual-loop
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the wing skin is subjected to substantial compressive 
loads, potentially resulting in buckling. This section 
employs a small-scale local model for stability analysis 

to ascertain whether the BWB civil aircraft structure is 
prone to buckling.

In static strength analysis, the wing skin is identified 
as the most critical area and is highly prone to buckling. 
Figure 34 illustrates that a section of the wing panel, spe-
cifically from the area exhibiting the highest Tsai–Wu 
failure factor, has been chosen to serve as a small-scale 
local model.

Figure 35 displays a wing panel from the BWB civil 
aircraft structure, measuring 2300  mm in length and 
770 mm in width. According to Table 17, the wing skin's 
minimum thickness post-optimization is 1.96 mm. Utilizing 
these dimensions, a small-scale local model known as the 
PRSEUS plate has been developed for buckling analysis. 
This analysis aims to evaluate whether the PRSEUS plate 
could experience buckling instability under extreme condi-
tions at its minimal thickness. Additionally, Fig. 35 presents 
an in-plane displacement of 5.75 mm for the wing panel, 
which, as derived from the BWB civil aircraft structure’s 
validation data, will be used as the external load in designing 
the PRSEUS plate model.

Fig. 33  The first-order natural 
frequency of the optimized 
dual-loop

Table 15  The optimization 
results of BWB civil aircraft

Before 
optimiza-
tion

ES ensemble of surro-
gate model optimization

Vibration and statics 
dual-loop optimiza-
tion

Structural mass (tons) 32.68 26.65 26.27
Maximum deformation (mm) 2884 3031 3093
Maximum Mises equivalent stress (MPa) 377.4 506.4 506.4
Maximum Tsai–Wu failure factor 0.9356 0.9458 0.9432
First-order natural frequency (Hz) – 1.7253 2.0329

Fig. 34  Selection of a small-scale local model
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Figure 36 illustrates the load boundary conditions for 
the PRSEUS plate, which consist of: a fixed right bound-
ary, a left boundary that restricts Y-direction translation 
and all rotational movements, and the application of an 
8 mm X-direction displacement load on the left, margin-
ally surpassing the wing panel's in-plane displacement of 
5.75 mm. The top and bottom boundaries are constrained, 
limiting Y-direction translation, all rotational movements, 
and Z-direction rotational freedom.

Figure 37 displays the nonlinear buckling response 
curve of the PRSEUS plate. Analysis of this curve sug-
gests that despite a decrease in structural stiffness under 
the specified displacement load, there is no significant 
reduction that impacts the load-bearing performance. Con-
sequently, it can be deduced that no failure has occurred. 
Additionally, the curve shows the in-plane displacement 

Fig. 35  Construction of a small-
scale local model

Fig. 36  Boundaries of a small-
scale local model

Fig. 37  End shortening and load curve of PRSEUS plate
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contour of the PRSEUS plate at an end shortening of 
5.75 mm.

5  Conclusion

This paper focuses on the design optimization strategies for 
the BWB civil aircraft. The main conclusions are summa-
rized as follows:

(1) Seven BWB civil aircraft structural surrogate models 
were developed using surrogate modeling techniques. 
Key considerations in constructing these ensemble of 
surrogate models are highlighted. The EG model, struc-
turally similar to the EZ model, incorporates the barE 
parameter to enhance stability during its construction. 
This enhancement marginally improves the EG model's 
predictive capabilities over the EZ model. The EA and 
ES models, employing iterative optimization meth-
ods for weight factor determination, tend to converge 
toward or diverge from the single surrogate model with 
the highest or lowest accuracy, respectively. This study 
analyzes the primary factors influencing the predictive 
capacity of the ensemble of surrogate models and the 
principles governing the determination of their weight 
factors, informing the construction of ensemble of sur-
rogate models in related domains.

(2) A comparison of various surrogate models applied in 
optimizing the structure of BWB civil aircraft reveals 
that individual surrogate models generally exhibit poor 
predictive capabilities. In contrast, ensemble of surro-
gate models tend to show superior prediction accuracy, 
with the EA and ES models, developed using optimiza-
tion methods, significantly outperforming the EZ and 
EG models, which are based on predefined parameters. 
Notably, the ES model has proven more effective in 
achieving satisfactory optimal solutions, particularly 
suitable for the lightweight design of BWB civil air-
craft structures. Utilizing the ES model, the mass of the 
BWB civil aircraft structure was reduced by 18.45%, 
with a mass coefficient of 25.38%. The application 
of the ES model in this optimization context offers 
insights for the optimization of ensemble of surrogate 
models in related fields.

(3) Based on the optimization results of the ES model, the 
influence of vibration effect on the BWB civil aircraft 
structure is considered, and a dual-loop optimization 
strategy that takes into account both vibration and static 
factors is proposed. In this approach, the primary loop 

focuses on optimizing modal design parameters, while 
the secondary loop adjusts static design parameters. 
Post-optimization, the first-order natural frequency of 
the BWB civil aircraft structure increased by 17.83%, 
with its mass constituting 25.02% of the maximum 
takeoff mass. This dual-loop optimization effectively 
enhances the first-order natural frequency without com-
promising the static strength and stiffness or adding to 
the mass, thereby offering insights for optimization in 
similar domains.

(4) A small segment of the wing skin, identified as the most 
compressed area in the BWB civil aircraft structure 
following dual-loop optimization, was chosen as the 
small-scale local model known as the PRSEUS plate. 
The conducted stability analysis on this plate revealed 
that, despite a decrease in structural stiffness under 
the applied load, there was no significant diminution 
affecting the load-bearing capacity. Consequently, it is 
inferred that no damage occurred, thus maintaining the 
stability of the entire aircraft after optimization. Future 
studies aim to incorporate stability considerations into 
the optimization framework, focusing on the synergistic 
optimization of strength, stability, and modal character-
istics.

Appendix

The design variables of the BWB aircraft structure are 
marked using different colors in Fig. 26 and the corre-
sponding optimization results are listed in Tables 16 and 
17. To clearly explain the naming rules, design variables 
are divided into several categories including the skin, parti-
tion, floor, stack, spar, and rod. For design variables related 
to skin, taking the variable “MFLSKIN” as an example, 
the “MF” denotes “Middle Fuselage,” “LSKIN” indicates 
“Lower Skin,” and the last number present its location, 
as illustrated in Fig. 26. In a similar way, for the variable 
“MRFPARTR,” “MRF” indicates “Mid and Rear Fuse-
lage,” “PARTR” denotes “Partition Reinforcement.” For 
design variables related to floor, the “FLOOR” in variable 
“MFFLOOR2” indicates “FLOOR,” “FLOORR” in vari-
able “MFFLOORR” indicates “FLOOR Reinforcement.” 
For design variables related to spar, the “WSPAR” indi-
cates “Spar of the wing.” For design variables related to 
stack, the “MFFSTACK” indicates “Frame stack of the 
middle fuselage.” For design variables related to rod, the 
“FFPROD” indicates “Pultruded rod of the forward fuse-
lage” (Fig. 38).
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Table 16  ES ensemble of surrogate model optimization

Structural component Variable name Initial value Lower limit Upper limit Optimal solution

Floor of the middle fuselage MFFLOOR2 9.28 4.64 13.91 5.63
MFFLOOR3 3.55 1.77 5.32 2.22
MFFLOOR4 2.86 1.43 4.29 2.06
MFFLOOR5 2.43 1.21 3.64 2.32
MFFLOORR 12.00 6.00 18.00 8.25

Frame stack of the middle fuselage MFFSTACK1 2.90 1.45 4.36 2.79
MFFSTACK3 3.18 1.59 4.78 3.79
MFFSTACK4 5.26 2.63 7.89 3.29
MFFSTACK6 7.97 3.98 11.95 5.76
MFFSTACK7 5.42 2.71 8.13 4.07

Lower skin of the middle fuselage MFLSKIN1 5.87 2.93 8.80 3.67
MFLSKIN2 7.78 3.89 11.67 5.34
MFLSKIN3 7.00 3.50 10.50 5.13
MFLSKIN4 7.78 3.89 11.67 4.86

Partition of the middle fuselage MFPART1 2.58 1.29 3.87 2.21
MFPART2 2.73 1.36 4.09 1.71
MFPART3 4.95 2.48 7.43 3.66

Partition of the mid and rear fuselage MRFPART1 10.42 5.21 15.63 9.21
MRFPART2 9.48 4.74 14.22 5.92
MRFPARTR 64.00 32.00 96.00 41.76

Upper skin of the middle fuselage MFUSKIN1 5.95 2.97 8.92 4.16
MFUSKIN3 9.60 4.80 14.40 7.95
MFUSKIN4 8.99 4.50 13.49 8.67
MFUSKIN6 8.17 4.08 12.25 5.95

Partition of the wing and the middle fuselage MFWPART 10.78 5.39 16.17 14.82
Floor of the forward fuselage FFFLOOR 12.00 6.00 18.00 7.87
Frame stack of the forward fuselage FFFSTACK 4.19 2.10 6.29 3.07
Partition of the forward fuselage FFPART 4.19 2.10 6.29 2.62
Skin of the forward fuselage FFSKIN1 4.80 2.40 7.20 5.08

FFSKIN2 4.71 2.36 7.07 2.94
FFSKIN3 5.05 2.53 7.58 3.13
FFSKIN4 3.46 1.73 5.20 4.76

Pultruded rod of the forward fuselage FFPROD 7.18 3.59 10.77 6.98
Pultruded rod of the rear fuselage RFLPROD 4.61 2.30 6.91 4.54

RFUPROD 4.61 2.30 6.91 4.53
Skin of the rear fuselage RFLSKIN 5.76 2.88 8.63 7.91

RFUSKIN 2.40 1.20 3.60 3.30
Skin of the leading and trailing edges of the wing WLTLSKIN2 3.02 1.51 4.53 3.02

WLTLSKIN4 3.30 1.65 4.95 2.06
WLTLSKIN5 4.64 2.32 6.96 5.37
WLTUSKIN1 3.14 1.57 4.71 2.69
WLTUSKIN3 4.64 2.32 6.96 3.78
WLTUSKIN4 3.30 1.65 4.96 4.54

Skin of the wing WUSKIN5 3.90 1.95 5.84 5.36
WUSKIN6 7.20 3.60 10.80 7.07
WLSKIN6 3.71 1.86 5.57 5.10
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Table 17  Vibration and statics dual-loop optimization

Structural component Variable name Initial value Lower limit Upper limit Optimal 
solution

Lower skin of the middle fuselage MFLSKIN4 2.64 1.32 3.96 1.32
MFLSKIN5 5.35 2.67 8.02 5.36
MFLSKIN6 6.50 3.25 9.75 3.25

Upper skin of the middle fuselage MFUSKIN4 8.67 4.34 13.01 9.29
MFUSKIN5 2.91 1.46 4.37 1.66
MFUSKIN6 5.95 2.98 8.93 5.29

Spar of the wing WSPAR1 8.77 4.38 13.15 6.20
WSPAR2 9.27 4.63 13.90 8.76
WSPAR3 5.26 2.63 7.89 5.59
WSPAR4 5.24 2.62 7.86 5.81

Lower skin of the leading and trailing edges of the wing WLTLSKIN1 3.14 1.57 4.71 2.23
WLTLSKIN2 3.02 1.51 4.53 2.95
WLTLSKIN3 3.24 1.62 4.86 4.35
WLTLSKIN4 2.06 1.03 3.09 2.07
WLTLSKIN5 5.37 2.68 8.05 6.51

Lower pultruded rod of the wing WLPROD1 5.46 2.73 8.19 5.06
WLPROD2 5.02 2.51 7.53 5.11
WLPROD3 7.10 3.55 10.64 5.42
WLPROD4 4.85 2.43 7.28 5.05
WLPROD5 4.20 2.10 6.31 4.51
WLPROD6 4.43 2.21 6.64 5.84

Lower skin of the wing WLSKIN1 1.96 0.98 2.94 1.76
WLSKIN2 2.79 1.40 4.19 4.01
WLSKIN3 3.98 1.99 5.97 5.20
WLSKIN4 4.76 2.38 7.14 3.25
WLSKIN5 4.82 2.41 7.23 4.72
WLSKIN6 5.10 2.55 7.65 6.41

Upper skin of the leading and trailing edges of the wing WLTUSKIN1 2.69 1.34 4.03 1.96
WLTUSKIN2 2.47 1.24 3.71 1.35
WLTUSKIN3 3.78 1.89 5.67 5.73
WLTUSKIN4 4.54 2.27 6.81 2.06
WLTUSKIN5 3.24 1.62 4.86 3.35

Upper pultruded rod of the wing WUPROD1 6.66 3.33 9.99 4.12
WUPROD2 4.70 2.35 7.05 5.01
WUPROD3 7.01 3.50 10.51 5.11
WUPROD4 3.52 1.76 5.27 4.28
WUPROD5 1.27 0.64 1.91 1.31

Upper skin of the wing WUSKIN1 2.69 1.34 4.03 1.96
WUSKIN2 2.99 1.49 4.48 2.57
WUSKIN3 3.79 1.90 5.69 4.18
WUSKIN4 4.50 2.25 6.75 5.01
WUSKIN5 5.36 2.68 8.04 5.52
WUSKIN6 7.07 3.54 10.61 9.06
WUSKIN7 8.50 4.25 12.75 9.33
WUSKIN8 7.73 3.87 11.60 9.08
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