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Abstract
This paper investigates the topology optimization design of viscoelastic planar shell structures to minimize the random vibra-
tion intensity under non-stationary random excitation. The excitation is is modeled as uniformly modulated evolutionary 
random process. The viscoelastic material is characterized using the Golla Hughes McIavish (GHM) model, and dissipative 
coordinates are introduced to construct the augmented system equations. To measure the intensity of random responses, 
the averaged power spectral density (PSD) of the displacement response over a specific frequency band and time interval 
is considered as the design objective and solved by a scheme that combines the pseudo excitation method (PEM) and the 
high precision direct (HPD) integration method. The relative density of the viscoelastic material is the design variable. The 
density-based approach is employed to achieve the optimal distribution. Sensitivity analysis is performed to obtain gradient 
information. The proposed method is verified through numerical simulation. In addition, the effects of frequency band, time 
interval, ambient temperature and multiple excitations on the optimization results are also discussed.

Keywords Viscoelastic shell structures · Pseudo excitation method · Non-stationary random excitation · Topology 
optimization · Frequency- and temperature-dependent

1 Introduction

Thin-walled structures are often utilized as main load-bear-
ing elements and are subjected to dynamic loads. Since these 
structures tend to be light and thin for the aim of high per-
formance, serious vibration problems arise, affecting com-
fort and even bringing catastrophic consequences. One of 
the effective means of reducing structural vibration is using 
damping materials on the surface of the structure (Haci-
yev et al. 2018; Slifka and Whitton 2019; Cao and Zhang 
2011). The schematic illustration of viscoelastic composite 
structure is presented in Fig. 1. Considering that additional 
damping materials increase the overall mass of the structure 

and also affect the dynamic performance, it is essential to 
optimize the design of damping materials for shell structures 
using topology optimization methods.

For the sake of getting better structural performance, con-
tinuum topology optimization have been widely applied for 
the initial conceptual design of structures in the last two 
decades. Bendsøe (1988) studied the problem of optimal 
material distribution inside the structure. Subsequently, solid 
isotropic material with penaligation (SIMP) models (Bend-
søe 1999; Lin and Yan 2001), bi-directional evolutionary 
structural optimization (Xie 1993; Huang 2007), independ-
ent continuous mapping (Yang and Liu 1999) and level set 
method (Wang and Wang 2003; Allaire and Jouve 2004) 
have been developed one after another. With the continuous 
maturity of optimization methods, the application of topol-
ogy optimization of damping material in vibration control 
is researched extensively. Such studies are mainly divided 
into two categories: (1) dynamic properties purpose, aim-
ing to obtain a large intrinsic/weighted modal loss factor 
(MLF) (Zheng et al. 2015; Moita and Soares 2013; Xu et al. 
2017; Kim et al. 2013); (2) dynamic response purpose, the 
load form is generally harmonic excitation (Fang and Zheng 
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2015; Zheng et al. 2016; Takezawa et al. 2016; Zhang and 
Wang 2018), which can also be extended to transient exci-
tation (Zhao 2016; Lee 2015; Yan and Cheng 2016; Zhang 
2014; Yun 2018). In addition to planar plate and shell struc-
tures, damping material topology optimization for vibration 
reduction has also been applied in cylindrical shell structures 
(Yun 2018; Li et al. 2012).

The above studies mainly focus on the topology optimi-
zation of the damped structure subjected to the determin-
istic excitations. However, many random excitations exist 
in the real environment, such as earthquake, wind, wave 
and mechanical vibration disturbances. In order to solve 
such problems, Lin and Yan (2001) proposed the pseudo 
excitation method (PEM). In recent years, PEM have been 
widely applied for structural topology optimization under 
stationary random excitation with fruitful results. Lin et al. 
(2011) adopted PEM to optimize a piezoelectric energy 
device under stationary random vibration. Zhang and Liu 
(2015) proposed a response solution approach combining 
PEM and mode acceleration method (MAM) to achieve a 
better optimized configuration. Guided by the suggestion of 
calculating the random response of structures, Zhao et al. 
(2020) studied topology optimization by considering the 
constraints of dynamic stress responses under stationary 
random excitations. Meanwhile, Zhu et al. (2017) applied 
the topology design technology to frame structure subjected 
to random vibrations. Yang et al. (2017) further optimized 
the structures subjected to the excitation of random filtered 
white noise using the SIMP method. However, so far only 
limited work has focused on the optimal design of damp-
ing materials when subjected to random excitation. Fang 
and Hou (2018) discussed the optimal configuration of CLD 
treatment for attenuating the root mean square (RMS) of 
random response.

The aforementioned results are performed under the 
assumption of stationary random excitation. However, air-
craft structures are often subject to non-stationary random 
excitations. For example, pressure fluctuations in the exter-
nal turbulent boundary layer can lead to typical non-station-
ary random vibration. As a result, it is useful and practical to 
further study the optimal design of damped structures when 
subjected to non-stationary random excitation to reduce the 

vibration and noise. In recent years, many achievements have 
been introduced in the field of structural response and sensi-
tivity analysis. Zhang et al. (2014) developed the PEM-based 
method to study non-stationary seismic problem. Li et al. 
(2016, 2017) analyzed the structural non-stationary random 
response by Karhunen–Loeve expansion. Bremner et al. 
(2019) reviewed transient statistical energy analysis models 
for non-stationary noise. Hu et al. (2016) propose a time-
domain sensitivity expression of non-stationary random 
excitation. In addition, Li et al. (2020) developed a explicit 
method for solving non-stationary stochastic dynamic prob-
lems and applied it to the optimal design of damping struc-
tures under non-stationary stochastic excitation. Restricted 
by the computational cost and theoretical complexity, the 
structural optimization design using additional damping 
materials to reduce the vibration level under non-station-
ary random excitation is relatively rare. Especially consid-
ering the nonlinear properties of damping materials with 
frequency and temperature, the problem becomes more 
complicated. Many researchers (Oh 2008; Shu et al. 2014; 
Mokhtari et al. 2017) have pointed out that the frequency- 
and temperature-dependent properties of viscoelastic mate-
rials are remarkable for the study of dynamic response and 
optimal design of viscoelastic composite structures, but they 
have not received enough attention in the present study.

Inspired by these difficulties, this paper develops a topol-
ogy design method of the damping material for planar shell 
structure under non-stationary random excitation, in which 
the dynamic properties of damping materials are charac-
terized by the GHM model. No previous work has been 
reported to systematically address such problems. First, the 
governing equations of viscoelastic composite structures 
with frequency and temperature effects are established. 
Then, the PEM transforms the structural non-stationary 
random response into virtual transient response analysis 
under deterministic excitation. The HPD method is used to 
solve the virtual transient response. The average value of 
the displacement PSD in the specified frequency band and 
time interval is taken as the dynamic performance index. 
Sensitivity analysis is performed analytically to obtain gra-
dient information. The optimization process is developed to 
obtain the optimal configuration of the damped structure to 
minimize the random response intensity.

The main contents are organized as follows. Section 2 intro-
duces the GHM model to characterize the viscoelastic materi-
als and establishes the governing equation of the three-layer 
composite structure. Section 3 develops a PEM-HPD-based 
method to analyze the composite structures under non-sta-
tionary random excitation. In Sect. 4, density-based optimi-
zation design problem is formulated and sensitivity analysis 
is performed. Section 5 presents several numerical examples 
and also further discusses the optimization results. Finally, the 
major conclusions are provided in Sect. 6.

Fig. 1  The schematic illustration of the viscoelastic composite struc-
ture
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2  System equation of viscoelastic composite 
structures

2.1  Finite element modeling

The damping composite structure is discretized by three-layer 
shell elements in Fig. 2, which respectively denote the base 
structure, viscoelastic layer and constrained layer. The struc-
tural dynamic model is established based on the first shear 
deformation theory (FSDT), which is well suited for thin and 
medium thickness plates, also has good predictive capacity 
and moderate computational times for larger-scale finite ele-
ment models. An eight-node shell element with five degrees 
of freedom at each node, called the Serendip element (Zienk-
iewciz and Taylor 2000), is used in the finite element discre-
tization process. The studies (Souhir et al. 2015) have proven 
that this element provides excellent performance for modeling 
constrained damping structures. The finite element nodes are 
located on the neutral plane of the laminated structure. The 
neutral axis can be assigned by force balance in the z-axis.

The elemental mass and stiffness matrices can be obtained 
as follows

where i = b, d, c , respectively, denotes the base struc-
ture, viscoelastic layer and constrained layer; N represent 
the shape function matrix; �i is corresponding material 
density. D refers to elastic matrix and B is the strain-dis-
placement matrix. dV denotes the elementary volume. 
Then the composite elemental matrices can be obtained as 
me = me

b
+me

d
+me

c
 and ke = ke

b
+ ke

d
+ ke

c
.

Then the corresponding system equations for undamped 
three-layer structure are shown as

(1)me
i
= ∫Ωe

�iN
TNdV

(2)ke
i
= ∫Ωe

(
BT
1i
DiB1i + BT

2
DiB2

)
dV

(3)Mÿ +Ky = Rf(t)

where M,K ∈ RN×N respectively denote the global mass and 
stiffness matrices; y is the displacements response; R repre-
sents the direction and position of the excitation, composed 
of 0 or 1; f ∈ RN×1 indicates the external load vector.

2.2  GHM viscoelastic approach

The considered three-layer composite damping structure 
contains a viscoelastic layer in the middle of two elastic 
layers, thus the overall structure exhibits obvious viscoelas-
tic behavior in addition to elastic behavior. Therefore, the 
global stiffness matrix can be divided into elastic matrix Ke 
and viscoelastic matrix Kv(s) as shown below.

Then, the frequency-independent constant matrix can be 
separated from the Kv(s) , and the viscoelastic stiffness 
matrix is written as the multiplication of the constant matrix 
Kv with the frequency-dependent modulus G(s), as follows

Therefore, by Laplace transforms at both sides of Eq. (3) and 
substituting Eqs. (4) and (5), the system equation in Laplace 
domain can be obtained

 Golla (1985), Mctavish (1993) described the frequency-
dependent modulus G(s) as:

where the constant factor G0 is the steady-state value, and 
the constants �i , �i and �i are decided by the measurements 
of G(s). The NG denotes the number of mini-oscillator terms.

Substitute Eqs. (7) into (6) and introduce dissipative 
coordinates

Then the time-domain governing equation of the damping 
composite structure can be obtained by Laplace inverse 
transformation

with

(4)K = Ke +Kv(s)

(5)Kv(s) = G(s)Kv

(6)
(
s2M +Ke + sG(s)Kv

)
y(s) = Rf(s)

(7)G(s) = G0

(
1 +

NG∑
i=1

�i
s2 + 2�i�is

s2 + 2�i�is + �2
i

)

(8)z(s) =
�2

s2 + 2��s + �2
y(s)

(9)MGŸ + DGẎ +KGY = RF(t)

Fig. 2  Schematic of the three-layer shell elements
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where MG ; DG and KG ∈ �n×n , with n = N(1 + NG) , are the 
augmented mass, damping and stiffness matrices, respec-
tively. Here only give the system matrices corresponding 
to the first-order micro-oscillator. The cases of multi-order 
micro-oscillators can be easily obtained by extension, so it 
is omitted here for brevity.

Obviously, the GHM model can accurately describe the 
dynamics characteristics of viscoelastic materials, and it is 
integrated with the traditional finite element method to estab-
lish the second-order linear system equation with constant 
coefficients.

3  Non‑stationary random response analysis 
of the augmented system equation based 
on the PEM and HPD methods

In this section, the PEM-based random response of the three-
layer viscoelastic structure when subjected to non-stationary 
random excitation is presented. Generally speaking, due to 
the complexity of the calculation of the structural random 
response under such excitation, the non-stationary vibration 
energy related to the frequency distribution in random vibra-
tion is often ignored, thus it can be simplified to uniformly 
modulated evolution random excitation, expressed as follows

where g(t) and g(t) denote the slowly varying modulation 
function and matrix; x(t) and x(t) represent the zero-mean 
stationary random process and matrix. The PSD matrix 
Sxx(�) can be written as

in which, r denotes the number of random excitations and � 
represents the excitation frequency. �j and �j denote, respec-
tively, the jth eigenvalue and eigenvector of Sxx(�) . The �j is 
defined as �j ≜ √

�j�
∗
j
.

Then construct the virtual excitation of the following 
form using eigenvalues and eigenvectors

(10)

MG =

[
M 0

0
�NG

�2
NG

�̄�v

]
, KG =

[
Ke + (1 + �NG

)�̄�v − �NG
�̄�v

−�NG
�̄�v �NG

�̄�v

]
,

DG =

[
0 0

0
2�NG

�NG

�NG

�̄�v

]
, Y =

{
y

z

}
, F(t) =

{
f(t)

0

}

(11)F(t) = g(t)x(t)

(12)g(t) =

⎡⎢⎢⎢⎣

g1(t)

g2(t)

⋱

gr(t)

⎤⎥⎥⎥⎦
, x(t) =

⎡⎢⎢⎢⎣

x1(t)

x2(t)

⋮

xr(t)

⎤⎥⎥⎥⎦

(13)Sxx(�) =

r∑
j=1

�j�
∗
j
�T
j
=

r∑
j=1

�∗
j
�T
j

Replace Eq. (14) with the external load term of Eq. (9), and 
obtain

where Yj denotes the pseudo response corresponding to jth 
pseudo random excitation. The PEM converts the non-sta-
tionary random response analysis in Eq. (9) into the solu-
tion process of transient response under deterministic load 
in Eq. (15).

Considering the introduction of auxiliary dissipative 
coordinates in the established augmented system equa-
tion, the dimension of the system equation is significantly 
increased. Thus, a common method for reducing the com-
putational cost is to transform the system matrices into the 
reduced-order modal space, in which the system response 
can be written as

where uj is the modal space coordinates. By premultiplicat-
ing both sides of Eq. (15) by �T and substituting Eq. (16), 
the reduced-order governing equation is shown as follows

where D = �TDG� . The response vector uj can be obtained 
by using the central difference method and newmark-� , to 
solve Eq. (17).

To avoid the small enough time step required by the 
traditional algorithm, and further improve the efficiency 
and accuracy of solving the constructed pseudo transient 
response, the HPD is employed to obtain the pseudo tran-
sient response of Eq. (17).

The HPD integration method follows the introduction 
of dyadic variables in the Hamiltonian system and makes 
the associated matrix transformations, which allows the 
problem of solving the dynamics equations to be trans-
formed into the process of solving differential equations. 
Therefore, suggested by Zhong and Williams (1994), Eq. 
(17) can be written as the general form as

in which

According to the theory, the general solution of Eq. (18) can 
be expressed as

(14)Fj(t) =
√
�jg(t)�jexp(i�t) j = 1, 2,… , r

(15)MGŸj + DGẎj +KGYj = R
√
𝜅jg(t)𝜑jexp(i𝜔t)

(16)Yj = �uj

(17)Iüj + Du̇j + �uj = �TR
√
𝜅jg(t)𝜑jexp(i𝜔t)

(18)v̇ = Hv + r(t)

(19)

H =

�
A I

B A

�
, v =

�
uj
qj

�
, r(t) =

�
0

�TR
√
𝜅jg(t)𝜑jexp(i𝜔t)

�

A = −�∕2, B = −
�
� − ��∕4

�
, qj = u̇ j + �u ∕2
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The numerical discretization of Eq. (20) is carried out, and 
the time step is set as △t = tk+1 − tk . One obtains

where k denotes the iterations number.
The matrix T for the first term in Eq. (21) can be 

expanded by

When b = 2N is large enough, � is extremely small. Using 
the Taylor expansion, one obtain

substituting Eqs. (23) into (22), we obtain

Since the element value of Jiter is very small relative to the 
identity matrix I , in order to reduce the rounding error of 
the computer, the recursive operation of the following form 
is performed

With little loss of precision, Eq. (24) can be written

The second term in Eq. (21) is a vector integral. Lin et al. 
(1995) and Shang et al. (2020) adopted the assumption of 
load linearization in time step to obtain numerical solutions. 
However, the inverse operation of matrix is inevitable, which 
is not only computationally expensive, but also has poor 
numerical stability, and may not exist inverse matrix. There-
fore, Newton–Coates formula is utilized here to calculate the 
vector integral in Eq. (21) by numerical integration to avoid 
the matrix inversion of non-homogeneous equation.

(20)v = exp(Ht)v0 + ∫
t

0

exp(H(t − �))r(�)d�

(21)

vk+1 = exp
(
Htk+1

)
v0 + ∫

tk+1

0

exp
(
H
(
tk+1 − �

))
r(�)d�

= exp
(
H△t

)(
exp

(
Htk

)
v0 + ∫

tk

0

exp
(
H
(
tk − �

))
r(�)d�

)

+ ∫
tk+1

tk

exp
(
H
(
tk+1 − �

))
r(�)d�

= Tvk + ∫
tk+1

tk

exp
(
H
(
tk+1 − �

))
r(�)d�

(22)

T
(

△t
)

= exp
(

H ×△t
)

=
[

exp
(

H ×△t∕b
)]b

=
[

exp(H × �)
]b =

[

exp(H × �)
]2N

(23)
exp(H × �) = I + J0 ≈ I +H × � + (H × �)2∕2! + (H × �)3∕3!

(24)T =
(
I + J0

)2N
=
(
I + Jiter

)2N−iter

(25)
for(iter = 0;iter < N + 1;iter + +)Jiter = 2 × Jiter−1 + Jiter−1 × Jiter−1

(26)T = I + JN

The general solution can be obtained by combining Eqs. 
(26) and (27) and substituting them into Eq. (21). Then the 
displacement response of the original space can be obtained 
by Eq. (16).

4  Topology optimization scheme

In this paper, it is assumed that the base layer and the con-
strained layer are not involved in the optimization, and only 
the viscoelastic damping layer sandwiched in the middle 
is the designable domain. In this optimization model, the 
density of the core material is the optimization design vari-
able. When the density of the core material is 1, it indicates 
that the region is covered with the solid core material, and 
when the density of the core material is 0, it indicates that 
there is no core material in the region. It should be noted that 
when the density of all materials in the viscoelastic layer is 
0, the constrained layer damping structure is degraded to 
two elastic layers (i.e., only the base layer and the confining 
layer). The volume of the damping material is defined as 
the constraint condition. The topology optimization problem 
of considered viscoelastic structures under non-stationary 
random excitations is expressed as

where xe refers to design variable; n denotes the elements 
number; fv is the volume fraction; V0

e
 is the eth element vol-

ume when xe = 1 ; xmin is the minimum value of relative den-
sity, with a value of 0.1.

4.1  Objective function

Referring to the work of Shang et al. (2020), in order to be 
able to measure more comprehensively the vibration sup-
pression performance of the layout scheme of the damping 

(27)

∫
tk+1

tk

exp
(
H
(
tk+1 − �

))
r(�)d�

= 7exp
(
H△t

)
�
(
tk
)
+ 32exp

(
H ⋅

3

4
△t

)
�

(
tk +

1

4
△t

)

+ 12exp
(
H ⋅

1

2
△t

)
�

(
tk +

1

2
△t

)

+ 32exp
(
H ⋅

1

4
△t

)
�

(
tk +

3

4
△t

)
+ 7�

(
tk+1

)

(28)

find ∶ xe, e = 1, 2,… n

min ∶ c

subject to ∶ MGŸ + DGẎ +KGY = RF(t)

n∑
e=1

xeVe − fv

n∑
e=1

V0
e
≤ 0

0 ≤ xmin ≤ xe ≤ 1
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material for a given range of time and frequency, here the 
objective function c is chosen as the mean value of the dis-
placement PSD of concerned DOFs in the given frequency 
band 

[
�� ,��

]
 and time interval [0, T] . The calculation for-

mula is as follows:

where SYiYi(�, t) is the displacement PSD of ith DOF and m 
denotes the number of concerned DOFs. According to the 
PEM, the displacement PSD can be calculated as:

4.2  Material interpolation model

The well-known SIMP scheme performs well in static 
optimization of structure, but it has some limitations in 
configuration design under dynamic load. Since the pun-
ished stiffness is a high-order small quantity relative to the 
mass, local modal problem will be generated in the region 
with relative density less than 0.01, which is not conducive 
to the stable progress of optimization iteration. In order to 
eliminate this influence and obtain a clear design layout, 
polynomial interpolation scheme (PIS) (Zhu et al. 2010) 
is adopted as:

where Ne denotes the number of design variables; The pen-
alty parameters p and q penalize the intermediate densities, 
with values of 3 and 1 respectively in this paper.

4.3  Non‑stationary random sensitivity analysis 
of viscoelastic plate

The sensitivity analysis reflects the sensitivity of the 
objective function with respect to design variables and 
provides an efficient search path for structural dynamics 
optimization design. The time-domain sensitivity analy-
ses of viscoelastic plate when subjected to non-station-
ary random excitation through direct differential method 

(29)c =
1

m

1

T

1

�� − ��
∫

��

��
∫

T

0

m∑
i=1

SYiYi(�, t)dtd�

(30)SYiYi(�, t) =

r∑
j=1

(
Yj
)∗
i
(�, t)

(
Yj
)T
i
(�, t)

(31)

M =

Ne∑
e=1

(
me

b
+
(
xe
)q
me

d
+me

c

)

Ke =

Ne∑
e=1

(
ke
b
+

15
(
xe
)p

+ xe

16
ke
d
+ ke

c

)

�̄�v =

Ne∑
e=1

(
15

(
xe
)p

+ xe

16
ke
d

)

(DDM) and adjoint variable method (AVM) are derived 
respectively.

4.3.1  DDM‑based sensitivity analysis

By solving the sensitivity of Eq. (29) with respect to the 
design variable xe , one obtain

in which 
�SYiYi

(�,t)

�xe
 can be solved by

Thus, the Eq. (32) is equivalent to solve the sensitivity of 
pseudo transient response. The pseudo response sensitivities 
�(Yj)i
�xe

 can be obtained

where L is the vector of all terms with 0 except ith DOF 
being 1.

Differencing Eq. (15) with respect to the design vari-
ables xe , one obtain

Considering RFj are independent of design variables, so 
�RFj

�xe
= 0.

therefore Eq. (35) can be rewritten as

with

Obviously, Eqs. (36) and (15) have exactly the same system 
matrices, except that the external excitation are different. 
The partial derivative �MG

�xe
 , �DG

�xe
 , �KG

�xe
 can be obtained at the 

element level on the basis of Eq. (31). Then, the same linear 
transformation can be applied to the reduced-order space for 
Eq. (36), and the proposed HPD method can be utilized to 
calculate it. Since Eq. (36) needs to be solved once for each 

(32)
�c

�xe
=

1

m

1

T

1

�� − ��
∫

��

��
∫

T

0

m∑
i=1

�SYiYi(�, t)

�xe
dtd�

(33)

�SYiYi(�, t)

�xe
=

r�
j=1

⎛⎜⎜⎝
�
�
Yj
�∗
i
(�, t)

�xe

�
Yj
�T
i
(�, t) +

�
Yj
�∗
i
(�, t)

�
�
Yj
�T
i
(�, t)

�xe

⎞⎟⎟⎠

(34)
�
(
Yj
)
i

�xe
=

�
(
LTYj

)
�xe

= LT
�Yj

�xe

(35)
MG

𝜕Ÿj

𝜕xe
+ DG

𝜕Ẏj

𝜕xe
+KG

𝜕Yj

𝜕xe
+

𝜕MG

𝜕xe

Ÿj +
𝜕DG

𝜕xe
Ẏj +

𝜕KG

𝜕xe
Yj −

𝜕RFj

𝜕xe
= 0

(36)MG
̈̃Yj + DG

̇̃Yj +KGỸj = F̃j

(37)

Ỹj =
𝜕Yj

𝜕xe
, ̇̃Yj =

𝜕Ẏj

𝜕xe
, ̈̃Yj =

𝜕Ÿj

𝜕xe
, F̃j = −

𝜕MG

𝜕xe
Ÿj −

𝜕DG

𝜕xe
Ẏj −

𝜕KG

𝜕xe
Yj
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design variable, the efficiency of DDM-based sensitivity 
analysis decreases sharply as the number of design variables 
increases.

4.3.2  AVM‑based sensitivity analysis

For the topology optimization as the number of design vari-
ables is much larger than that of objective functions, a more 
effective method for sensitivity analysis is developed by con-
structing a series of adjoint equations.

The integral H from Eq. (29) is defined as follows

By combining Eqs. (15) and (38), the adjoint vector 
�j(j = 1, 2,… r) in the time domain is introduced to con-
struct the Lagrangian function L as

with

where �j denotes the corresponding adjoint vector of jth 
pseudo transient excitation and the superscript (∗) represents 
conjugate. Since Eq. (15) always holds at arbitrary time, H 
is equal to the Lagrange function L.

Differentiating Eq. (39) in regard to design variables xe and 
considering the independence between pseudo transient excita-
tion and design variables, one can be obtained

with

Here, integrating Q̃j by parts and setting the initial condition 
to zero, then adding Dj , we can get

(38)H = ∫
T

0

SYY (�, t)dt

(39)

L
(
Y1,…Yj,…Yr, 𝜉1,… 𝜉j,… 𝜉r

)
= H +

r∑
j=1

L̃j +

r∑
j=1

L̃∗
j

(40)

L̃j = ∫
T

0

𝜉T
j

�
MGŸj + DGẎj +KGYj − R

√
𝜅jg(t)𝜑jexp(i𝜔t)

�
dt

(41)
𝜕L

𝜕xe
=

r∑
j=1

((
Dj + D∗

j

)
+
(
Qj + Q̃j

)
+
(
Qj + Q̃j

)∗)

(42)Dj = ∫
T

0

�SYY

�Yj

�Yj

�xe
dt

(43)Qj = ∫
T

0

𝜉T
j

(
𝜕MG

𝜕xe
Ÿj +

𝜕DG

𝜕xe
Ẏj +

𝜕KG

𝜕xe
Yj

)
dt

(44)Q̃j = ∫
T

0

𝜉T
j

(
MG

𝜕Ÿj

𝜕xe
+ DG

𝜕Ẏj

𝜕xe
+KG

𝜕Yj

𝜕xe

)
dt

The adjoint equation can be obtained by making Eq. (45) as 
zero to eliminate the �Yj

�xe
 term in Eq. (41). Using the variable 

substitution method, let � = T1 − t to transform the original 
terminal value problem into the initial value problem, as 
follows

where 𝜉j(𝜏) = 𝜉j(T − t) . Clearly, Eq. (46) can be converted 
to the reduced-order modal space, and then HPD method is 
employed to solve such equation. Once the adjoint vector �j 
i s  obtained,  Eq.  (41)  can be s impl i f ied to 
�L

�xe
=
∑r

j=1

�
Qj + Q∗

j

�
.

Thus, the objective sensitivity is obtained as follows

At discrete frequency and time points, the AVM-based 
sensitivity analysis depends only on the number of adjoint 
equations. As a result, sensitivity analysis based on AVM is 
significantly more efficient than that based on DDM.

Furthermore, regardless of whether the sensitivity anal-
ysis method is based on DDM or AVM, the calculation 
process does not involve calculating the sensitivity of the 
eigenvalues and eigenvectors of the structure with respect to 
the design variables, and also avoids the sensitivity solution 
problem of multiple eigenvalues. It has brought significant 
improvements in the accuracy and efficiency of sensitivity 
calculation.

4.4  Optimization flowchart

The sensitivity filtering technology (Sigmund and Peters-
son 1998) is used to address the checkerboard patterns 
and mesh dependence in topology optimization results. 
The filter radius is set to twice the element length. This 
filter modifies the design sensitivity of a specific element 
based on a weighted average of the element sensitivities 
in a fixed neighborhood, which is purely heuristic but pro-
duces results that are very similar to the local gradient con-
strained results and require almost no additional CPU time. 
The Heaviside projection method is then applied to obtain 

(45)

Dj + Q̃j = ∫
T

0

(
𝜕SYY

𝜕Yj

+ 𝜉T
j
MG − �̇�T

j
DG + 𝜉T

j
KG

)
𝜕Yj

𝜕xe
dt −⋯

(
�̇�T
j
(T)MG − 𝜉T

j
(T)DG

)𝜕Yj(T)

𝜕xe
+ 𝜉T

j
(T)MG

𝜕Ẏj(T)

𝜕xe

(46)

⎧
⎪⎨⎪⎩

M
T

G

d
2𝜉j

d𝜏2
+ D

T

G

d𝜉j

d𝜏
+K

T

G
𝜉j = −

𝜕ST
YY

𝜕Yj

𝜉j(0) = 0,
d𝜉j(0)

d𝜏
= 0

(47)
�c

�xe
=

1

m

1

T

1

�� − ��
∫

��

��

m∑
i=1

r∑
j=1

(
Qj + Q∗

j

)
d�



 F. Wu et al.100 Page 8 of 19

clear optimization results. The hyperbolic tangent func-
tion is selected by the Heaviside function, with a projec-
tion threshold of 0.5. The parameter � is initially set to 0.5 
and is multiplied by 2 for each iteration until it reaches 20 
and remains unchanged. The globally convergent method of 
moving asymptotes (GCMMA) algorithm (Svanberg 1995) 
is utilized as optimizer to update the design variables. The 
optimization process will cease when certain convergence 
criterion satisfies. The computations of all examples are 
implemented in MATLAB R2018a. Figure 3 presents the 
flowchart of optimization procedures.

5  Numerical examples

To eliminate the problems caused by geometric complex-
ity, a three-layer planar shell structure is presented as the 
numerical example to verify the proposed design approach, 
as presented in Fig. 4. The model is a simply supported 
square plate, composed of two isotropic materials, with 
a downward vertical excitation at the center of the square 
plate. The material of the base structure and the restrained 
layer is aluminum, while the viscoelastic layer is made of 
242F01. The material 242F01 is a kind of ultra-pure viscoe-
lastic damping polymer and is manufactured by 3MTM . The 

length L of the three layers is 200 mm, and the thickness is 
also consistent, with a value of 2 mm. The material proper-
ties are given in Table 1. The viscoelastic materials 242F01 
are characterized by the GHM model, and the coefficients 
of the first-order micro-oscillator term at room temperature 
(25 °C) are obtained by the least square method, as shown 
in Table 2. Here, viscoelastic layer is considered as a design 
domain, while the other two elastic layers are non-design 
domains. The 60 × 60 four-node quadrilateral shell ele-
ments is utilized to discretize the square plate to obtain the 
efficiently accurate optimization results and capture more 
topological details. In all cases, the integration steps of the 
frequency band and time interval are 0.01 Hz and 0.001 s, 
respectively.

5.1  Response and sensitivity analysis

The external load is a concentrated non-stationary random 
excitation, which is assumed to be modeled as the single 
modulation random excitation. The amplitude of PSD is 1 
N2∕Hz , and the uniform modulation function is given as 
g(t) = 12.21

(
e−0.4t − e−0.5t

)
 . Considering that the modes 

involved in the calculation should cover the range of excita-
tion frequencies, the first 50 modes are used in the example 
while taking into account both accuracy and efficiency. Here, 
the damping layer is assumed to completely cover the base 
structure, with the preset relative density of 1. The frequency 

Fig. 3  Flowchart of the optimization procedures

Table 1  Materials properties of 
viscoelastic composite structure

Materials Density ( kg∕m3) Young’s modulus 
( Gpa)

Poisson’s ratio Loss factor

Base structure 2780 71 0.3 0.01
Damping layer 1240 G(�,T) 0.4 �(�,T)

Constrained layer 2780 71 0.3 0.01

Table 2  Parameters of viscoelastic material

Parameters G
0

� � �

First order 0.0047868 991.58 33329 210710

Fig. 4  Simply supported square plate subjected to the non-stationary 
random excitation
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band and time interval of excitation are [100Hz, 105Hz] and 
[0.0s, 0.2s] respectively.

To validate the correctness of the results, statistics-based 
Monte Carlo acheme is employed to illustrate the efficiency 
of PEM. Figure 5 represents the comparisons of the standard 
deviation curve of the displacement response at the speci-
fied location and the corresponding calculation time. It can 
be found that the results obtained by PEM and Monte Carlo 
method with 10,000 samples are highly consistent, which 
verifies the correctness of PEM results. On the contrary, 
due to the small number of samples, the error caused by 
Monte Carlo method based on 3000 samples is relatively 
large, indicating that the calculation accuracy of Monte 
Carlo method is greatly affected by the number of samples 
selected. In addition, in terms of calculation time, the PEM 
takes significantly less time than Monte Carlo acheme based 
on 3000 and 10,000 samples. Further, HPD and Newmark 
methods at different time steps are compared in terms of 
standard deviation of displacement response and calcula-
tion efficiency, as shown in Fig. 6. It can be observed that 
PEM-HPD gets almost the same result when � = 0.001 and 
� = 0.004 , while PEM-Newmark shows the obvious differ-
ence at two different time steps. This means the sensitiv-
ity of time step to PEM-HPD is much lower than that of 
PEM-Newmark. Therefore, considering accuracy and effi-
ciency, it is acceptable to choose a relatively rough time 
step � = 0.004.

Then, DDM-based and AVM-based sensitivity analysis 
are performed. For comparison, finite difference method 
(FDM) is also adopted as:

(48)�c

�xe
≈

c
(
xe +△xe

)
− c

(
xe
)

△xe

where △xe is a very small value, here, △xe = xe∕1000.
Figure 7 presents the contour of objective sensitivities 

obtained by different methods. In order to make the more 
convincing comparison, the relative errors between the sen-
sitivity results obtained by different methods are also cal-
culated and the contour of the absolute values are shown in 
Fig. 8. Obviously, the DDM-based and AVM-based sensi-
tivity results are basically the same except for differences 
near the loading point. The maximum of the relative error is 
about 2.73%, and the minimum is only 0.31%. These results 
strongly confirm the accuracy of the developed sensitivity 
analysis methods. The gap, however, is in calculation time 
listed in Table 3. The AVM-based method takes only 52 s, 
much lower than 197 s required for DDM-based method. 
For FDM-based method, the efficiency improvement is more 
obvious. Compared with the required 428 s, the calculation 
time of AVM-based sensitivity analysis is reduced by nearly 
80%.

5.2  Optimization results

The same uniformly modulated excitation is adopted as the 
external load. The initial value of relative density is set as 
0.5. The iterative history of the convergence process is illus-
trated in Fig. 9. The objective function converges stably to 
the optimal solution after 32 iterations, and the volume con-
straint also reaches the given value.

The topological evolution of the iterative process is 
shown in Fig. 10, where the “blue” configuration represents 
the area covered with damping material, the “green” contour 
denotes the base structure, and the constrained layer is hid-
den. A “0-1” polarization distribution of the design variable 
can be observed. The damping material is symmetrically 

(a) (b)

Fig. 5  Comparison of non-stationary random response analysis: a Standard deviation of displacement response; b Computational time
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and partially attached around the loading points of the base 
structure to suppress vibrations effectively.

The time history curves of the standard deviation of the 
displacement response at the center of the plate are pre-
sented in Fig. 11. The “black” curve denotes the undamped 
plate, and the “red” and “blue” curves represent the plate 
covered with uniformly and optimized damping materials, 

respectively. The uniformly damped plate is completely cov-
ered by the damping material with half the thickness of the 
initial design for satisfying 50% volume constraint. Obvi-
ously, the proposed method effectively reduces the displace-
ment vibration level. Compared with undamped plate and 
uniformly damped plate, the standard deviation of displace-
ment response of the optimized plate is reduced by 73.17% 
and 43.22%, respectively. Figure 12 shows and compares 
the eigenfrequencies and eigenvectors of all the modes (in 
the sequence from 1 to 10) before and after optimization. 
The redistribution of damping material on the base struc-
ture changes the eigenfrequencies significantly, with the 
eigenfrequencies of some modes decreasing and the others 

(a) (b)

Fig. 6  Performance at different time steps: a Standard deviation of displacement response; b Computational time

Fig. 7  Contour of objective 
function sensitivities: a DDM; b 
AVM; c FDM

Fig. 8  Contour of sensitivity 
error: a DDM and FDM; b 
DDM and AVM; c AVM and 
FDM

Table 3  Calculation time of different sensitivity analysis methods

Methods AVM DDM FDM

Calculation time (s) 52 197 428
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increasing. In particular, the modal exchange between 2nd, 
3rd and 5th, 6th modes can be observed clearly. The vari-
ations of the vibration shapes are extremely limited due to 
the unchanged geometry shape and mechanical properties 
of the viscoelastic plate. However, the 10th mode of the 
optimized structure is unique and fails to find a match in 
Fig. 12a, which is attributed to the change in the layout of 
the damping material that affects the vibration characteris-
tics of the structure.

Since the non-stationary random excitation is essentially 
a coupling of transient and steady-state processes, for the 
comparison purpose, the optimization results based on 
steady-state displacement response and stationary random 
excitation are also given here as shown in Fig. 13. Figure 13a 

is the optimized layout obtained subject to harmonic excita-
tion and Fig. 13b is the optimized layout obtained by sta-
tionary random excitation. It should be emphasized that the 
model conditions and the optimization setup remain the 
same as the other cases, except for the excitation loads. It can 
be observed that the difference between the optimized lay-
outs subjected to harmonic excitation and stationary random 
excitation and the optimized layout for the non-stationary 
random excitation in Fig. 10 is significant. Specifically, the 
design configuration obtained by harmonic excitation is rela-
tively regular, with the area distribution roughly correlating 
with the vibration shapes of the adjacent modes; the design 
configuration of the stationary random excitation expands on 
this to include additional laying area for better suppression 
of the other modes that are being excited; and for the non-
stationary random excitation, the damping layout is much 
more complex and detailed due to the combination of its 
frequency-domain and time-domain characteristics. These 
results fully confirm the influence of non-stationary random 
excitation on the optimization results of damping materials 
and its own uniqueness.

5.3  Discussions

On the basis of the optimization results in previous section, 
this section focuses on discussing the influence of several 
concerned parameters on the topological configuration of 
viscoelastic structure, including different viscoelastic mate-
rial, frequency band and time interval of the random excita-
tion, ambient temperature, and the multiple excitations.

Fig. 9  The iterative histories of the objective function and volume 
constraint

Fig. 10  Topological con-
figuration evolution of damped 
structures. a iteration=1; b 
iteration=2; c iteration=4; d 
iteration=8; e iteration=15; f 
iteration=30
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5.3.1  Influence of different viscoelastic material

In this section, another different viscoelastic material is con-
sidered as the damping layer to compare the influence of 
different frequency-dependent modulus on the design solu-
tions. The frequency band and time interval of excitation 
are set as [180Hz, 185Hz] and [0.0s, 0.2s] , respectively. The 
ambient temperature is 25 °C. Here the GHM model is used 
to characterize the frequency-dependent properties of the 
viscoelastic material. One viscoelastic material is the previ-
ously mentioned 242F01, the other viscoelastic material is 
DYAD606. In order to compare clearly the differences in the 
frequency-dependent modulus of the two viscoelastic mate-
rials, the trend plots of the storage moduli and loss factors 
of the two materials with frequency are displayed in Fig.14. 
Obviously, the properties of the two viscoelastic materials 
are significantly different. 242F01 is relatively soft and has 
a large loss factor, While DYAD606 is relatively hard and 
has a small loss factor.

The optimized layout designs of the viscoelastic plate for 
two different viscoelastic material are given in Table 4, and 
the displacement standard deviation curves obtained before 
and after optimization are also shown for comparison. It can 

Fig. 11  Standard deviation of displacement response at the center 
point of the plate

Fig. 12  Vibration shapes of 
viscoelastic structure. a before 
optimization; b after optimiza-
tion

(a)

(b)
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be seen that the two different frequency-dependent moduli 
have a significant effect on the layout design of the damping 
material. For 242F01, the material is relatively softer and 
has better damping performance, so it is mainly covered in 
the middle and the surrounding areas where the modal strain 
energy is larger; whereas for DYAD606, due to its relatively 
higher hardness, and poorer damping performance, the dis-
tribution area is relatively closer to the boundary in order to 

increase the stiffness at the boundary to achieve more energy 
dissipation. This is also supported by the displacement 
standard deviation curves, where the case of laying 242F01 
has a greater overall decrease in the vibration intensity and 
better vibration suppression performance than the case of 
DYAD606. The results demonstrate that different viscoelas-
tic materials can significantly change their optimal layout in 
the structure due to their different stiffness and loss factors.

Fig. 13  The optimized layouts 
of damping material by different 
excitation loads

(a) steady-state excitation (b) stationary random excitation

Fig. 14  Frequency-dependent 
shear modulus for two different 
viscoelastic materials

(a) Storage Modulus (b) Loss Factor

Table 4  Optimization results of 
viscoelastic plate with different 
viscoelastic materials

Viscoelastic materials Optimal layouts Response curves

242F01

DYAD606
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5.3.2  Influence of excitation frequency band

Here, [60Hz, 65Hz] , [120Hz, 125Hz] , [180Hz, 185Hz] , and 
[240Hz, 245Hz] is selected as the different excitation fre-
quency bands, while the excitation time interval is set as 
[0.0s, 0.2s] and the ambient temperature is 25 °C. The topo-
logical design configurations of the viscoelastic plate for 
different excitation bands are given in Table 5, and the dis-
placement standard deviation curves obtained before and 
after optimization are also shown below the corresponding 
configurations. Obviously, the displacement response at the 
center of the plate decreases significantly in different exci-
tation frequency bands, and the optimized damping layout 
can effectively suppress the vibration. However, the opti-
mal layouts corresponding to different frequency bands are 
obviously disparate. In addition, design layouts obtained by 
higher frequency bands are more complex and localized than 
those obtained by lower frequency bands. This is because the 
excitation of higher frequency band can excite more higher-
order modes, and the damping material always covers the 

region with larger modal strain energy to achieve the optimal 
performance of vibration suppression. It is confirmed that 
the excitation frequency bands have a notable effect on the 
optimal configuration of viscoelastic structures.

5.3.3  Influence of time interval size

The comparison of topological configurations obtained in 
different time intervals is investigated. The common fre-
quency band of excitation is [180Hz, 185Hz] and the ambient 
temperature is 25 °C. [0.0s, 0.1s] , [0.0s, 0.2s] , [0.0s, 0.5s] , and 
[0.0s, 1.0s] are considered as the time intervals, respectively. 
Table 6 shows the optimized configurations and the corre-
sponding displacement standard deviation curves for viscoe-
lastic plates with different time interval sizes. The excellent 
vibration suppression performance confirms the effective-
ness of the optimization method. It can be observed that 
the optimized layouts obtained for [0.0s, 0.5s] and [0.0s, 1.0s] 
are highly similar, but shows a large difference compared to 
the optimized configurations for [0.0s, 0.1s] and [0.0s, 0.2s] . 

Table 5  Optimization results of 
viscoelastic plate under different 
excitation frequency bands

Frequency bands Optimal layouts Response curves

[60Hz, 65Hz]

[120Hz, 125Hz]

[180Hz, 185Hz]

[240Hz, 245Hz]
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This indicates that the time interval size has a certain effect 
on the final optimized configuration. With the increase of 
time interval size, the final topology optimization results of 
damping materials tend to be stable, and closer to the opti-
mization results with steady-state displacement response as 
the design objective. This is due to the increase of the time 
interval size, the free vibration of the structure determined 
by the initial conditions gradually attenuates due to the exist-
ence of damping materials, and the structural vibration also 
begins to stabilize. When the time interval is large enough, 
there is only the pure forced vibration caused by the external 
loads, of which amplitude and period are only related to the 
applied load and do not change with the increasing time.

5.3.4  Influence of ambient temperature

Here, the main purpose is to investigate the effect of the 
fluctuation of viscoelastic material properties caused 
by the change of ambient temperature on the structural 
design configuration. The frequency band and time 
interval of excitation are fixed as [150Hz, 155Hz] and 

[0.0s, 0.2s] respectively. Four different temperatures are 
considered, i.e. 10 °C, 25  °C, 40  °C and 50  °C, of which 
shear moduli are all represented by the GHM model, cor-
responding to the coefficients of the respective micro-
oscillators. Figure 15 plots the variation curves of storage 
modulus and loss factor of viscoelastic materials at differ-
ent temperatures in the frequency domain. Obviously, the 
energy storage and dissipation characteristics of damping 
materials are closely related to the ambient temperature. 
The optimized topology layout of the damping plate is 
shown in Table 7, and the variation curves of respec-
tive displacement standard deviation in the time domain 
are also given. Although the frequency band and time 
interval of excitation are consistent, it can still be seen 
that the topology of the damping plate shows some vari-
ation due to the significant difference in the viscoelastic 
properties of the damping material caused by the tem-
perature changes. As the ambient temperature increases, 
the viscoelastic weight of the damping material changes, 
which is reflected in the performance index as the stor-
age modulus decreases and the loss factor increases. We 

Table 6  Optimization results of 
viscoelastic plate in the different 
time intervals

Time intervals Optimal layouts Response curves

[0.0s, 0.1s]

[0.0s, 0.2s]

[0.0s, 0.5s]

[0.0s, 1.0s]
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can conclude that the optimized layout of the damping 
material shows a better vibration suppression effect with 
increasing temperature. Generally, at lower temperatures, 
the optimal configuration is mainly concentrated in the 
center of the plate to achieve higher stiffness perfor-
mance, while at higher temperatures, the damping mate-
rials are mainly distributed in the center and boundary of 
the plate to obtain maximum energy dissipation.

5.3.5  Influence of the number of random excitations

The topology optimization problem of viscoelastic plates 
under multi-points non-stationary random excitations is 
studied. The cases of two-points and four-points random 
excitations are taken as examples. To avoid problems 
caused by asymmetry, assume that the position of exci-
tation applied is symmetric, as shown in Fig. 16. The 
frequency band and time interval of excitation are set as 
performed [180Hz, 185Hz] and [0.0s, 0.2s] for more promi-
nent comparison. Use the center of the plate as the refer-
ence point for the optimized design, and keep the other 
relevant settings consistent with the previous cases. For 
more convenient comparison, the configuration of single 
random excitation is also presented. The design layouts 
of multiple random excitations and obtained standard 
deviation curves are given in Table 8. The displacement 
responses at the central reference point of the viscoelastic 
plate are significantly suppressed under different numbers 
of random excitations, confirming the universality and 
scalability of the proposed method. One can be observed 
that the damping materials all exhibit aggregation near 
the loading point, and the others are mainly concentrated 
around the boundary to maximize the energy dissipation. 
The results demonstrate that the distribution character-
istics of the optimal configuration of the damping mate-
rials are influenced by the location and the number of 
excitations.

Fig. 15  Shear modulus curves 
in frequency domain at different 
temperatures

(a) Storage modulus (b) Loss factor

Table 7  Optimization results of viscoelastic plate at the different 
ambient temperatures

Ambient 
tempera-
tures

Optimal layouts Response curves

10 °C

25 °C

40 °C

50 °C
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6  Conclusions

This paper investigates the design optimization of a 
three-layer viscoelastic planar shell structure under non-
stationary random excitation. The goal is to minimize 
the mean value of the displacement PSD within a speci-
fied frequency band and time interval. The GHM model 
is utilized to characterize the dynamic properties of vis-
coelastic materials. Additionally, an augmented dynamic 
equation is established by introducing the auxiliary dis-
sipation coordinates. The study models non-stationary 
random excitations as uniformly modulated evolutionary 
random process, and analyzes the random response of 

the augmented system using the time-domain PEM-HPD 
approach. Non-stationary random sensitivity analysis is 
then performed based on the DDM and AVM methods, 
respectively. The validity and applicability of the proposed 
method are verified through several numerical examples. 
The precision and efficiency of the developed means for 
non-stationary random response and sensitivity analysis 
of the augmented system are compared. Numerical results 
demonstrate that this method can achieve a clear optimal 
solution, and significantly reduce the random vibration 
intensity of the structure without adding extra weight. In 
addition, this paper discusses the impact of frequency band 
and time interval of random excitation, ambient tempera-
ture and multiple excitations on optimization results. The 

Fig. 16  Viscoelastic plates with 
different number of random 
excitations

(a) Two random excitations (b) Four random excitations

Table 8  Optimization results 
of viscoelastic plate under the 
different number of the random 
excitations

Excitations number Optimal layouts Response curves

Single excitation

Two excitations

four excitations
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paper presents a practical tool for the optimal design of 
viscoelastic structures under the non-stationary random 
excitation, and can also be extended to design configura-
tions of cylindrical shell structures and hollow cylindrical 
shell structures.
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