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Abstract
Global reliability sensitivity index measures the effect of uncertainty of model input on model failure probability, which 
is critical for simplifying analysis model and the reliability-based design optimization model. For efficiently estimating 
the global reliability sensitivity index of each model input, this paper transforms it into estimating an unconditional 
failure probability and a two failure modes-based parallel system failure probability from the perspective of single-loop 
estimation method. Furthermore, the relationship of computational accuracy among the global reliability sensitivity index, 
the unconditional failure probability, and the two failure modes-based system failure probability is constructed, on which 
the error stopping criterion-based sequentially adaptive Kriging model approach is developed to significantly decrease the 
number of calls to the actual limit state functions and the corresponding computational time under the sufficient accuracy. 
Results of three case studies covering explicit and implicit limit state functions demonstrate the accuracy and efficiency of 
the proposed method.

Keywords  Global reliability sensitivity index · Single-loop estimation process · Sequential adaptive Kriging model · Error 
propagation analysis · Error stopping criterion

1  Introduction

Reliability measures the ability of structures or systems fulfill-
ing their functions under the required conditions. Due to the 
uncertainties of geometry, material and loads are considered 
in reliability analysis, a large number of calls to the limit state 
function are required to analyze the failure probability. In gen-
eral, the limit state function is implicit in engineering problems 
such as the finite element model (FEM)-based limit state func-
tion. Once FEM analysis may require a lot of CPU time espe-
cially for the giant structures, and thus, a large number of FEM 
analyses are difficult to meet the requirements of rapid reliabil-
ity analysis in engineering. For this reason, researchers have 
investigated the various efficient algorithms from different per-
spectives, including the approximately analytical algorithms 
(Keshtegar and Meng 2017; Rosario et al. 2019), numerical 
simulation algorithms (Liu 2001; Xiang et al. 2023; Hristov 
and Diazdelao 2023), moment-based algorithms (Zhang and 
Pandey 2013; Lu et al. 2017; Li et al. 2019a), and the adaptive 
surrogate model-based algorithms (Bichon et al. 2008; Echard 
et al. 2011). The adaptive surrogate model-based algorithms 
not only inherent the universality of numerical simulation 
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methods but also avoid a large number of calls to limit state 
function by using the surrogate to substitute the actual limit 
state function, which have been extensively investigated in 
the past decade. The surrogate model combined Monte Carlo 
simulation (MCS) algorithm (Bichon et al. 2008; Echard et al. 
2011) was one of the prior adaptive surrogate model-based 
algorithms to be investigated, where MCS samples construct 
the candidate sampling pool (CSP) for selecting the potential 
training samples and adaptively updating the surrogate model 
in order to ensure that the positive or negative limit state signs 
of MCS samples can be accurately recognized by the surro-
gate model. To decrease the size of CSP for enhancing the 
efficiency of selecting the potential training samples, impor-
tance sampling technique combined surrogate model method 
(Echard et al. 2013), subset simulation technique combined 
surrogate model method (Zhang and Quek 2022), and line 
sampling technique combined surrogate model method are 
researched (Wang et al. 2023).

Based on reliability analysis, it is necessary to explore 
the influence of each input variable on reliability, i.e., 
reliability sensitivity analysis. Ref. (Li et al. 2012) defined 
the global reliability sensitivity index aims at quantifying 
the sensitivity information of each model input to the 
model failure probability by fixing the input over its whole 
distribution range. Suppose the limit state function is Y=g(X) 
where X = [X1, ...,Xn] is the n-dimensional input variables. 
g(X) > 0 denotes the safety state, g(X) < 0 denotes the 
failure state, and g(X)=0 denotes the limit state. The failure 
domain is usually defined as F= [x ∶ g(x) < 0] and the 
corresponding failure probability is defined as follows,

where f
X
(x) is the joint probability density function (PDF) 

of variables X and Pr [⋅] is the probability operation.
The form of the global reliability sensitivity index (Li 

et al. 2012) is

where Pf |Xi
=E(IF|Xi) is the conditional failure probability, 

E(⋅) is the expectation operator, V(⋅) is the variance operator, 
and IF(⋅) is the indicator function of the failure domain 

defined as IF(x) =
⎧

⎪

⎨

⎪

⎩

0g(x) ≥ 0

1g(x) < 0
.

Wei et al. (2012) standardized it through dividing Eq. (2) 
by the variance of the indicator function of the failure 
domain, i.e.,

(1)Pf = Pr [g(X) < 0] = ∫g(x)<0

f
X
(x)dx,

(2)�P
i
= E(Pf − Pf |Xi

)2 = V(E(IF|Xi))

(3)Si =
�P
i

V(IF)
=

V(E(IF|Xi))

V(IF)

From Eq. (3), it can be seen that traditional MCS is a 
nested double-loop process to estimate the item V(E(IF|Xi)) 
where the outer loop is to estimate the variance of the 
conditional failure probability Pf |Xi

 and the inner loop is 
to estimate the conditional failure probability Pf |Xi

 at each 
realization of Xi . To efficiently estimate the global reliability 
sensitivity indices, single-loop estimation method (Wei 
et al. 2012), maximum entropy-based method (Yun et al. 
2019a) and Bayes formula-based method (Wang et  al. 
2018, 2019; Li et al. 2019b) have been investigated. Wei 
et al. 2012 constructed the single-loop estimation method 
by introducing the corresponding independent identically 
distributed variables and the corresponding number of 
calls to the limit state function is linearly dependent on the 
dimensionality of model inputs. Yun et al. 2019a proposed 
the maximum entropy-based method where the number of 
calls to the limit state function only relies on the analysis 
of unconditional fractional moments but the accuracy 
depends on the estimation accuracy of unconditional 
fractional moments and optimization process for finding 
the fitting parameters of unconditional and conditional 
PDFs of model output in the maximum entropy method. To 
overcome the dependence of number of limit state function 
evaluations on the dimensionality of model inputs, Wang 
et al. 2018 investigated the Bayes formula-based method 
in which the estimation of global reliability sensitivity 
indices is transformed into identifying the unconditional 
failure domain and estimating the failure-conditional PDFs. 
Estimating the failure-conditional PDFs does not require 
any extra calls to limit state function after estimating the 
unconditional failure probability but the estimation accuracy 
of global reliability sensitivity index relies on the estimation 
accuracy of failure-conditional PDF. For discounted 
failure domain, failure-conditional PDF is difficult to be 
accurately estimated by the present methods such as the 
maximum entropy method (Bierig and Chernov 2016), the 
kernel density method (Barabesi and Fattorini 2002), the 
Edgeworth expansion method (Assaf and Zirkle 1976), etc. 
To avoid estimating the failure-conditional PDF, He et al. 
2019 used the conditional probability theorem to transform 
the estimating failure-conditional PDF into a series of 
interval probabilities while how to determine the interval 
influences the accuracy of approximation.

In this paper, based on the single-loop estimation 
method, an efficient algorithm is investigated in order 
to avoid the direct simulation process and inherent the 
accuracy of the single-loop estimation method. Firstly, 
based on the introduced independent identically distributed 
variables, the estimation of global reliability sensitivity 
index is equivalently transformed into estimating the 
unconditional failure probability and a two failure modes-
based parallel system failure probability with the same 
form of the two failure modes’ limit state functions and 
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different distributions of the corresponding model inputs 
where the two failure modes-based parallel system failure 
probability is an equivalent derivation to estimate the 
denominator of Eq. (3). Secondly, to efficiently estimate 
the unconditional failure probability and the two failure 
modes-based parallel system failure probability, the 
sequentially adaptive Kriging model of the limit state 
function is constructed to recognize the states (failure or 
safety) of the used random samples. Thirdly, to balance 
the accuracy and efficiency, error stopping criterion is 
constructed by propagating the estimation errors of the 
unconditional failure probability and the two failure 
modes-based parallel system failure probability. The 
innovations of the proposed method are summarized as 
follows.

1.	 Compared to directly applying the adaptive Kriging 
(AK) to recognizing the states (failure or safety) of 
random samples used in the single-loop estimation 
method, the proposed method transforms the directly 
recognizing states of all used samples into estimating the 
unconditional failure probability and the equivalently 
derived two failure modes-based parallel system 
failure probability. By virtue of the learning function 
in the system failure probability analysis, the states of 
all conditional samples do not require to be identified 
compared to directly applying the AK model into the 
single-loop method, which can reduce the number of 
calls to limit state function in adaptively updating the 
Kriging model.

2.	 By sequentially and adaptively updating Kriging 
model, the size of CSP in estimating the equivalently 
derived two failure modes-based parallel system failure 
probability can be reduced since the samples with safe 
states in the unconditional failure probability analysis 
can be removed from the CSP in estimating the derived 
system failure probability, which will accelerate the 
adaptively updating process of Kriging model for 
estimating the equivalently derived two failure modes-
based parallel system failure probability.

3.	 Based on propagation of error, the relationship among 
the estimate error of global reliability sensitivity index, 
the estimate error of unconditional failure probability, 
and the estimate error of the two failure modes-based 
parallel system failure probability is established and 
then the corresponding error stopping criterion-based 
adaptive Kriging is constructed which can balance the 
accuracy and efficiency.

The rest of this paper is organized as follows. Section 2 
briefly reviews the single-loop estimation method for 

estimating the global reliability sensitivity index. Section 3 
elaborately introduces the proposed adaptive Kriging-based 
parallel system reliability method under error stopping 
criterion for estimating the global reliability sensitivity 
index. Section 4 analyzes the global reliability sensitivity 
index of a roof truss structure, an aero-engine turbine disk 
structure, and a wing structure with composite shin to 
verify the accuracy and efficiency of the proposed method. 
Section 5 summarizes the conclusions.

2 � The brief review of the single‑loop 
simulation method for estimating 
the global reliability sensitivity index

To construct the single-loop estimation process of 
V(E(IF|Xi)) , the relationship between the variance and 
expectation as well as the total expectation law are used to 
establish the following formula,

where E(I
F
)=E(I2

F
) and Pf=E(IF) . Then, Eq. (4) is rewritten 

as

The single-loop estimation formula of E(E2(IF|Xi)) is 
constructed by introducing the corresponding independent 
identically distributed variables, i.e.,

where X̃−i is the independent identically distributed 
variables of X−i , and by introducing X̃−i the double-loop 
nested integration is transformed into a 2n − 1 dimensional 
single-loop integration.

The MCS processes for estimating E(E2(IF|Xi)) by Eq. (6) 
and the global reliability sensitivity index Si are summarized 
as follows.

Step 1: Generate two N × n-size sample matrices of X 
by f

X
(x) , i.e.,

(4)Si =
V(E(IF|Xi))

V(IF)
=
E(E2(IF|Xi)) − E2(IF)

E(I2
F
) − E2(IF)

(5)Si =
V(E(IF|Xi))

V(IF)
=
E(E2(IF|Xi)) − P2

f

P
f
− P2

f

(6)

E(E2(IF|Xi))=∫Xi

(
∫
X−i

IF(x−i, xi)fX−i
(x−i)dx−i

)2

fXi
(xi)dxi

=∫Xi
∫
X−i

∫
X̃−i

IF(x−i, xi)IF(x̃−i, xi)fX−i
(x−i)fX̃−i

(x̃−i)fXi
(xi)dx−idx̃−idxi
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Step 2: Generate another sample matrix Ci by 
combining the i  th column of matrix A and all the 
columns except the i th of matrix B , i.e.,

Step 3: Compute the values of indicator function of the 
failure domain for each sample in matrices A and Ci , then 
two N-dimensional vectors are obtained, i.e.,

Step 4: Compute the global reliability sensitivity index 
Si by Eq. (11),

where D∗
i
 , P∗

f
 , and D∗ are estimated by using the information 

in vectors I
A
 and I

Ci
 , i.e.,

where I(j)
A

 and I(j)
Ci

 are the j th elements of vectors I
A
 and I

Ci
 

respectively.
From the aforementioned steps, it can be seen that 

(n + 1)N  samples are used to estimate all inputs’ global 
reliability sensitivity indices, which means that (n + 1)N 
samples’ indicator function values of failure domain 
require to be identified. If the adaptive Kriging coupled 
with MCS technique (abbreviated as AK-MCS) is directly 

(7)A=

⎡
⎢⎢⎢⎢⎣

x
(1)

1
x
(1)

2
⋯ x(1)

n

x
(2)

1
x
(2)

2
⋯ x(2)

n

⋮⋮⋱⋮

x
(N)

1
x
(N)

2
⋯ x(N)

n

⎤
⎥⎥⎥⎥⎦

(8)B=

⎡
⎢⎢⎢⎢⎣

x
(N+1)

1
x
(N+1)

2
⋯ x(N+1)

n

x
(N+2)

1
x
(N+2)

2
⋯ x(N+2)

n

⋮⋮⋱⋮

x
(2N)

1
x
(2N)

2
⋯ x(2N)

n

⎤
⎥⎥⎥⎥⎦

(9)Ci = [Ai,B−i] =

⎡
⎢⎢⎢⎢⎣

x
(N+1)

1
⋯ x

(1)

i
⋯ x(N+1)

n

x
(N+2)

1
⋯ x

(2)

i
⋯ x(N+2)

n

⋮⋱⋮⋱⋮

x
(2N)

1
⋯ x

(N)

i
⋯ x(2N)

n

⎤
⎥⎥⎥⎥⎦

(10)I
A
= IF(A), ICi

=IF(Ci)

(11)Si ≈
D∗

i
− P∗2

f

D∗

(12)D∗
i
=

1

N

N∑
j=1

I
(j)

A
I
(j)

Ci

(13)P∗
f
=

1

N

N∑
j=1

I
(j)

A

(14)D∗=P∗
f
− P∗2

f

employed, (n + 1)N  candidate samples are involved in the 
process of adaptively constructing the Kriging model. To 
reduce the size of candidate samples and accelerate the 
adaptively learning process of Kriging model in order to 
efficiently and accurately estimate the global reliability 
sensitivity indices, an efficient adaptive Kriging-based 
parallel system reliability method under error stopping 
criterion is constructed in Sect. 3.

3 � The proposed adaptive Kriging‑based 
parallel system reliability method 
under error stopping criterion 
for estimating the global reliability 
sensitivity index

To directly apply AK-MCS to the single-loop method, all 
samples in matrices A and Ci(i = 1, ..., n) , i.e., (n + 1)N 
candidate samples are used to adaptively training the Kriging 
model and U learning function-based stopping criterion is 
utilized. From Eq. (12), it can be seen that if I(j)

A
 equals to 

zero, the item I(j)
A
I
(j)

Ci

 equals to zero too, and the value of I(j)
Ci

 
is unimportant. Therefore, to estimate the global reliability 
sensitivity index, Kriging model does not require to 
accurately estimate every sample’s indicator function value 
of failure domain in the (n + 1)N  candidate samples. 
Furthermore, E(E2(IF|Xi)) also can be derived as a two 
failure modes-based system failure probability, and then the 
system U learning function can be employed to accelerate 
convergence of updating Kriging model. Besides, error 
stopping criterion (ESC) is investigated in Refs. (Hu and 
Mahadevan 2016; Wang and Shafieezadeh 2019) and the 
relevant results demonstrate the efficiency of ESC compared 
to the direct U learning function-based stopping criterion. 
Thus, how to establish the estimation accuracy of global 
reliability sensitivity index with the adaptively training 
process of Kriging model is investigated in this Section. 
Section 3.1 briefly reviews the AK-MCS method, Sect. 3.2 
elaborately introduces the proposed adaptive Kriging-based 
parallel system reliability method for estimating the item 
E(E2(IF|Xi)) , Sect. 3.3 detailedly illustrates the constructed 
error propagation process and the corresponding error 
stopping criterion in global reliability sensitivity analysis 
and Sect. 3.4 summarizes the concrete steps of the proposed 
method.

3.1 � Brief review of AK‑MCS method

Kriging model is a semi-parametric interpolation technique 
based on the statistical theory and consists of the parametric 
linear regression part and the nonparametric stochastic 
process (Gao et al. 2020). The Kriging model of the limit 
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state function g(X) can be denoted as gK(X) which follows 
the normal distribution at each prediction, i.e., 
gK(X) ∼ N

(
�gK

(X), �2
gK
(X)

)
 and can provide the prediction 

mean �gK
(X) and prediction standard deviation �

gK
(X) . 

Based on the property of Kriging model, Ref. (Echard et al. 
2011) derived the U learning function which form is

where Φ(−U(x)) measures the probability of making a mis-
take by using the Kriging model to identify the sign of limit 
state function at the sample x , and the larger the U value is, 
the more accurate the state of the corresponding sample is 
identified.

Suppose the states (failure or safety) of samples in matrix 
S are required to be identified. The basic steps to identify 
the signs of limit state function of all samples in matrix S 

(15)U(X) =

|||�gK
(X)

|||
�gK (X)

T=T ∪ [x(u), g(x(u))] . Then, the Kriging model gK(X) is 
accordingly updated by taking the updated training sample 
set T into the MATLAB Dace toolbox. Then, turn to Step 2 
to further judge whether the Kriging model is convergent. If 
not, continuously execute Step 3 until the Kriging model is 
convergent.

Step 4: Use the convergent Kriging model gK(X) to iden-
tify the states (failure or safety) of all samples in matrix S , 
i.e., if 𝜇gK

(x) > 0 , the sample x is identified as failure sam-
ple, otherwise, the sample x is regarded as safety sample.

3.2 � The basic theory of the proposed adaptive 
Kriging‑based parallel system reliability 
method to estimate E(E2(I

F
|X

i
))

I n t r o d u c i n g IF̃(x−i, x̃−i, xi)  w h e r e 
IF̃(x−i, x̃−i, xi) = IF(x−i, xi)IF(x̃−i, xi) and IF̃(x−i, x̃−i, xi)=0 if 
IF(x−i, xi)IF(x̃−i, xi)=0 otherwise IF̃(x−i, x̃−i, xi)= 1 , Eq. (6) 
can be equivalently expressed as.

where IF̃(x−i, x̃−i, xi) also can be regarded as an indicator 
function of failure domain and the failure domain is defined 
as F̃= [(x−i, x̃−i, xi) ∶ IF(x−i, xi)IF(x̃−i, xi)=0].

Thus, E(E2(IF|Xi)) also can be regarded as a failure prob-
ability with F̃ failure domain and 2n − 1 dimensional input 
variables (x−i, x̃−i, xi) . Except using the indicator function of 
failure domain IF(⋅) to define the IF̃(⋅) , the limit state func-
tion g(X) also can be used to define IF̃(⋅) , i.e.,

From Eq. (17), it can be seen that E(E2(IF|Xi)) is equal to 
a two failure modes-based parallel system failure probability 
with the limit state functions being g(x−i, xi) and g(x̃−i, xi) 
where the form of limit state functions are the same but x−i 
and x̃−i are independent identical distribution which leads to 
different random samples of x−i and x̃−i . Thus, the learning 
function of Kriging model in the two failure modes-based 
parallel system failure probability analysis (Yun et al. 2019b) 
can be used to adaptively train Kriging model of g(X) to effi-
ciently estimate the E(E2(IF|Xi)) , i.e.,

(16)E
(
E2

(
IF|Xi

))
= ∫Xi

∫X−i
∫�X−i

IF̃(x−i,�x−i, xi)fX−i
(x−i)f�X−i

(�x−i)fXi
(xi)dx−id�x−idxi,

(17)

IF̃
(
x−i, x̃−i, xi

)
=

{
0 g

(
x−i, xi

) ≥ 0 ∪ g
(
x̃−i, xi

) ≥ 0

1 g
(
x−i, xi

)
< 0 ∩ g

(
x̃−i, xi

)
< 0

(18)Ũ
(
x−i, x̃−i, xi

)
=

{
max

[
U
(
x−i, xi

)
,U

(
x̃−i, xi

)]
if 𝜇gK

(
x−i, xi

) ≥ 0 ∪ 𝜇gK

(
x̃−i, xi

) ≥ 0

min
[
U(x−i, xi),U(x̃−i, xi)

]
if𝜇gK

(x−i, xi) < 0 ∩ 𝜇gK
(x̃−i, xi) < 0

by adaptive Kriging model are divided into the following 
four steps.

Step 1: Randomly select a few of samples N0 in matrix S 
and estimate the limit state function values of these samples. 
Then, the training sample set T is firstly constructed by these 
N0 samples, i.e., T=

⋃N0

i=1
[x(i), g(x(i))] . The initial Kriging 

model gK(X) is constructed by using the MATLAB Dace 
toolbox based on the training sample set T.

Step 2: Judge whether the current Kriging model is 
convergent. Calculate the U values of all sample in 
matrix S by Eq. (15). If the minimum value of U, i.e., 
min
x∈S

U(x) is larger or equal to 2 which implies that the 
confidence of correct sign prediction of the limit state 
function at every sample in matrix S is larger than or 
equal to 1 − Φ(−2) = 97.7% , the current Kriging model is 
regarded as a convergent and highly accurate one (Echard 
et al. 2011). Otherwise, the current Kriging model should 
be updated.

Step 3: Update the current Kriging model. The next best 
training sample is selected by the minimum value of U, i.e., 
x(u) = min

x∈S
U(x) and the training sample set is updated, i.e., 
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where U(x−i, xi) and U(x̃−i, xi) are the classical U learning 
function (Echard et al. 2011) defined as

The potential best training sample in the current iteration 
of learning Kriging model can be selected by

I f  𝜇gK
(x

(u)

−i
, xi) ≥ 0 ∪ 𝜇gK

(x̃
(u)

−i
, xi) ≥ 0  s a t i s f i e s , 

[(x
(u)

−i
, xi), g(x

(u)

−i
, xi)] is added into the current training sample 

set if U(x
(u)

−i
, xi) > U(x̃

(u)

−i
, xi) or [(x̃(u)

−i
, xi), g(x̃

(u)

−i
, xi)] is added 

into the current training sample set if U(x
(u)

−i
, xi) ≤ U(x̃

(u)

−i
, xi) . 

I f  𝜇gK
(x−i, xi) < 0 ∩ 𝜇gK

(x̃−i, xi) < 0  s a t i s f i e s , 
[(x

(u)

−i
, xi), g(x

(u)

−i
, xi)] is added into the current training sample 

set if U(x
(u)

−i
, xi) ≤ U(x̃

(u)

−i
, xi) or [(x̃(u)

−i
, xi), g(x̃

(u)

−i
, xi)] is added 

into the current training sample set if U(x
(u)

−i
, x

i
) > U(x̃

(u)

−i
, x

i
).

The basic stopping criterion of adaptively learning Krig-
ing model is min

(x−i,xi)∈A,(x̃−i,xi)∈Ci

U(x−i, x̃−i, xi) ≥ 2 which means 

that every value of IF̃(⋅) in the N samples is correctly esti-
mated with a probability of Φ(2) = 97.7% at least by the 
current training Kriging model. Besides using the direct U 
learning function-based training stopping criterion, Ref. (Hu 
and Mahadevan 2016; Wang and Shafieezadeh 2019) 
proposed the U learning function-based ESC which can 
sufficiently balance the accuracy and efficiency. Thus, in the 
estimation processes of E(IF) and E(E2(IF|Xi)) , ESC can be 
embedded. Nevertheless, the estimation error of Si cannot be 
directly reflected from the estimation errors of E(IF) and 
E(E2(IF|Xi)) . Section  3.3 will establish the estimation 
accuracy of Si with the accuracy of E(IF) and E(E2(IF|Xi)) to 
guarantee the estimation accuracy of Si under the ESC in 
estimating the E(IF) and E(E2(IF|Xi)).

3.3 � Error propagation analysis 
and the corresponding error stopping criterion 
of updating Kriging model in global reliability 
sensitivity analysis

Let Pfi
 denote E(E2(IF|Xi)) , Si can be equivalently expressed 

as

where Si is a function of Pfi
 and Pf .

(19)U(x−i, xi)=
|�gK

(x−i, xi)|
�gK (x−i, xi)

(20)U(x̃−i, xi)=
|𝜇gK

(x̃−i, xi)|
𝜎gK (x̃−i, xi)

(21)[x
(u)

−i
, x̃

(u)

−i
, xi] = arg min

(x−i,xi)∈A,(x̃−i,xi)∈Ci

U(x−i, x̃−i, xi)

(22)Si =
Pfi

− P2

f

Pf − P2

f

Further denoting Pfi
 and Pf  by x1 and x2 , respectively, Si 

can be further equivalently expressed as

Using x∗
1
 and x∗

2
 denote the approximate values of x

1
 

and x
2
 , the approximate value of Si can be obtained as 

S∗
i
=S∗

i
(x∗

1
, x∗

2
) . Apply Taylor expansion series at the value 

(x∗
1
, x∗

2
) of (x

1
, x

2
) , Si(x1, x2) can be expressed as

where x1 − x∗
1
= �(x∗

1
) and x2 − x∗

2
= �(x∗

2
) denote the error 

between the estimates and the accurate values of x1 and x2 , 
respectively.

Generally, �(x∗
1
) and �(x∗

2
) are small values, and by 

neglecting the higher-order small terms, Si(x1, x2) can be 
approximately rewritten as

Based on Eq. (25), the absolute error between Si(x1, x2) 
and Si(x∗1, x

∗
2
) is derived as

Then, the relative error between Si(x1, x2) and Si(x∗1, x
∗
2
) 

is derived based on Eq. (26) as

where �(x∗
1
) and �(x∗

2
) denote the relative error of the estimate 

x∗
1
 and x∗

2
 , respectively, and

(23)Si(x1, x2) =
x1 − x2

2

x2 − x2
2

(24)

Si(x1, x2) =Si(x∗1, x
∗
2) +

[(

�Si
�x1

)∗

(x1 − x∗1) +
(

�Si
�x2

)∗

(x2 − x∗2)
]

+ 1
2!

[(

�2Si
�x21

)∗

(x1 − x∗1)
2 + 2

(

�2Si
�x1�x2

)

(x1 − x∗1)(x2 − x∗2)

+

(

�2Si
�x22

)∗

(x2 − x∗2)
2

]

+ ...

(25)Si(x1, x2) ≈ Si(x∗1, x
∗
2) +

[(

�Si
�x1

)∗

(x1 − x∗1) +
(

�Si
�x2

)∗

(x2 − x∗2)
]

(26)
�(S∗i ) = Si(x1, x2) − Si(x∗1, x

∗
2)

=
[(

�Si
�x1

)∗

(x1 − x∗1) +
(

�Si
�x2

)∗

(x2 − x∗2)
]

(27)
�
r

(
S
∗
i

)
=
�
(
S
∗
i

)
S
∗
i

=
x
∗
1

S
∗
i

(
�S

i

�x1

)∗ �
(
x
∗
1

)
x
∗
1

+
x
∗
2

S
∗
i

(
�S

i

�x2

)∗ �
(
x
∗
2

)
x
∗
2

=
x
∗
1

S
∗
i

(
�S

i

�x2

)∗

⋅ �
r

(
x
∗
1

)
+

x
∗
2

S
∗
i

(
�S

i

�x2

)∗

⋅ �
r

(
x
∗
2

)

(28)
�Si

�x1
=

2x1x2 − x2 − x2
1

(x1 − x2
1
)2

(29)
�Si

�x2
=

1

x1 − x2
1
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Then, by taking the estimates P∗
fi
 and P∗

f
 into Eq. (27), 

the relationship among �r(S∗i ) , �r(P
∗
fi
) , and �r(P∗

f
) is 

constructed, i.e.,

where P∗
f
 is the estimate of P

f
 , P∗

fi
 is the estimate of P

fi
 , S∗

i
 is 

the estimate of S
i
 calculated by P∗

f
 and P∗

fi
.

To calculate �r(P∗
f
) and �r(P∗

fi
) , the actual values of P

f
 and 

P
fi
 should be known in advance but P

f
 and P

fi
 are the target 

estimates which cannot be known before estimation. Thus, 
�r(S

∗
i
) cannot be calculated before obtaining the actual S

i
 . For-

tunately, the maximum values of �r(P∗
f
) and �r(P∗

fi
) can be 

estimated in the processes of estimating P∗
f
 and P∗

fi
 by Kriging 

model. Then, the following inequality can be obtained, i.e.,

where �max
r

(P∗
f
) is the maximum relative error between P∗

f
 

and P
f
 , and �max

r
(P∗

fi
) is the maximum relative error between 

P∗
fi
 and P

fi
.

Therefore, the maximum value of �r(Si) is accordingly 
obtained, i.e.,

Let g(1)
K
(X) denote the updated Kriging model of g(X) with 

�max
r

(P∗
f
) ≤ �thr

r
(P

f
) and g(2)

K
(X) denote the updated Kriging 

model of g(X) with �max
r

(P∗
fi
) ≤ �thr

r
(P

fi
) where g(2)

K
(X) is 

adaptively updated based on the final g(1)
K
(X) . �thr

r
(P

f
) and 

�thr
r
(P

fi
) denote the predefined accuracy of the estimate P∗

f
 

and P∗
fi
 , respectively. P∗

f
 is estimated by using g(1)

K
(X) , P∗

fi
 is 

estimated by using g(2)
K
(X) , and S∗

i
 is estimated by taking P∗

f
 

and P∗
f
i

 into Eq. (22). Then, the maximum value of �r(Si) is 
estimated by taking �max

r
(P∗

f
) , �max

r
(P∗

fi
) , P∗

f
 , P∗

fi
 , and S∗

i
 into 

Eq. (32). If �max
r

(S∗
i
) ≤ �thr

r
(S

i
) , �r(S∗i ) ≤ �thr

r
(S

i
) holds where 

(30)

�r
�
S∗
i

�
=

P∗
f

S∗
i

⎛
⎜⎜⎜⎝

2P∗
f
P∗
fi
− P∗

fi
− P∗2

f�
P∗
f
− P∗2

f

�2

⎞
⎟⎟⎟⎠
�r

�
P∗
f

�
+

P∗
fi

S∗
i

�
1

P∗
f
− P∗2

f

�
�r

�
P∗
fi

�

(31)

�
r

�
S
∗
i

� ≤
��������

P
∗
f

S
∗
i

⎛
⎜⎜⎜⎝

2P∗
f
P
∗
f
i

− P
∗
f
i

− P
∗2
f�

P
∗
f
− P

∗2
f

�2

⎞
⎟⎟⎟⎠

��������
�max

r

�
P
∗
f

�

+

������

P
∗
f
i

S
∗
i

�
1

P
∗
f
− P

∗2
f

�������
�max

r

�
P
∗
f
i

�

(32)

�max
r

(

S∗i
)

=

|

|

|

|

|

|

|

|

P∗
f

S∗i

⎛

⎜

⎜

⎜

⎝

2P∗
f P

∗
fi
− P∗

fi
− P∗2

f
(

P∗
f − P∗2

f

)2

⎞

⎟

⎟

⎟

⎠

|

|

|

|

|

|

|

|

�max
r

(

P∗
f

)

+
|

|

|

|

|

|

P∗
fi

S∗i

(

1
P∗
f − P∗2

f

)

|

|

|

|

|

|

�max
r

(

P∗
fi

)

�thr
r
(S

i
) is the predefined accuracy of the estimate S∗

i
 . There-

fore, we can use �max
r

(S∗
i
) ≤ �thr

r
(S

i
) as a criterion to judge 

whether the �thr
r
(P

f
) and �thr

r
(P

fi
) are set properly. If 

�max
r

(S∗
i
) ≤ �thr

r
(S

i
) are not satisfied, �thr

r
(P

f
) and �thr

r
(P

fi
) can 

be decreased to reupdate the Kriging model g(1)
K
(X) and 

g
(2)

K
(X) until the accuracy of the estimate S∗

i
 is sufficient.

Based on the constructed adaptive Kriging-based par-
allel system reliability method for estimating the item 
E(E2(IF|Xi)) and the derived estimate error of the global 
reliability sensitivity index Si related to the estimate error 
of the item E(E2(IF|Xi)) and E(IF) , the concrete steps of the 
proposed method are summarized in Sect. 3.4.

3.4 � The concrete steps of the proposed method

Based on Eq. (22), it can be seen that the key to estimating 
Si is to estimate the failure probabilities Pf  and Pfi

 . The 
estimate of Pf  only depends on the information in vector 
IA in Eq. (10) and the estimate of Pfi

 not only relies on 
vector IA but also relies on vector IC(i) . Thus, we first 
adaptively construct the Kriging model g(1)

K
(X) to estimate 

Pf  with the learning stopping criterion �max
r

(P∗
f
) ≤ �thr

r
(P

f
) 

and then accordingly update the constructed g(1)
K
(X) to 

estimate Pfi
 with the learning stopping criterion 

�max
r

(P∗
fi
) ≤ �thr

r
(P

fi
) . Besides, due to the Kriging model 

g
(1)

K
(X) can accurately identify the limit states (failure or 

safety) of the samples in matrix A and if the limit states 
of the samples in matrix A are safe the corresponding 
limit states of the samples used to estimate the parallel 
system failure probability E(E2(IF|Xi)) are safe, the 
samples in matrix A with limit states judged by Kriging 
model g(1)

K
(X) are safe and the U learning function values 

are larger or equal to 2 and the corresponding samples in 
matrix Ci can be simultaneously removed from the CSP 
used to adaptively construct the Kriging model g(2)

K
(X) to 

estimate E(E2(IF|Xi)) . Based on the above theory, the 
flowchart of the proposed method is shown in Fig. 1 and 
the concrete steps of the proposed method are summa-
rized as follows.

Step 1: Generate random samples. By f
X
(x) , two N × n

-size sample matrices of X are generated, i.e.,

(33)A=

⎡
⎢⎢⎢⎢⎣

x
(1)

1
x
(1)

2
⋯ x(1)

n

x
(2)

1
x
(2)

2
⋯ x(2)

n

⋮ ⋮ ⋱ ⋮

x
(N)

1
x
(N)

2
⋯ x(N)

n

⎤⎥⎥⎥⎥⎦
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Fig. 1   The flowchart of the proposed method



An innovative adaptive Kriging‑based parallel system reliability method under error stopping… Page 9 of 17  51

Step 2: Construct the initial Kriging model g(1)
K
(X) . Ran-

domly select N0 ≪ N samples from matrix A and estimate the 
corresponding limit state function values of the N0 samples by 
the actual limit state function g(X) to construct the initial train-
ing sample set T=

{
[x1, g(x1)], [x2, g(x2)], ..., [xN0

, g(xN0
)]
}
 . 

Then, the initial Kriging model g(1)
K
(X) can be constructed by 

using the MATLAB Dace toolbox based on the training sample 

set T , i.e., g(1)
K
(X) ∼ N

(
�
g
(1)

K

(X), �2

g
(1)

K

(X)

)
.

Step 3: Update the Kriging model g(1)
K
(X) . Judge 

whether the Kriging model g(1)
K
(X) has the sufficient accu-

racy to estimate the failure probability Pf  by using the 
maximum relative error of the failure probability estimated 
by the current Kriging model g(1)

K
(X) . To estimate the max-

imum relative error of P∗
f
 , the samples in matrix A are 

divided into two groups according to the U learning 
function values,  i .e . ,  the f irst  group samples 
x
(k)

group1
(k = 1, ...,N1) with U(x

(k)

group1
) ≥ 2 and the second 

group samples x(k)
group2

(k = 1, ...,N2) with U(x
(k)

group2
) < 2 

where N1 is the number of samples in group one and N2 is 
the number of samples in group two. Use the Kriging 
model g(1)

K
(X) to identify the failure samples in group one 

and group two, then denote the failure samples in group 
one recognized by g(1)

K
(X) as Nf1 and failure samples in 

group two recognized by g(1)
K
(X) as Nf2 . The maximum 

relative error of the failure probability estimated by the 
current Kriging model g(1)

K
(X) is estimated as (Hu and 

Mahadevan 2016)

If �max
r

(P∗
f
) ≤ �thr

r
(P

f
) , the updating process of Kriging 

model g(1)
K
(X) can be stopped and turn to step 4 to estimate 

the failure probability P
f
 as well as continuously execute 

the rest of steps. Otherwise, continuously update the Krig-
ing model g(1)

K
(X) by adding the following selected training 

samples into the training sample set T , i.e.,

Then, the training sample set T  is updated, i.e., 
T=T ∪

[
x(u), g(x(u))

]
 . By taking the current training sample 

(34)

B=

⎡
⎢⎢⎢⎢⎣

x
(N+1)

1
x
(N+1)

2
⋯ x(N+1)

n

x
(N+2)

1
x
(N+2)

2
⋯ x(N+2)

n

⋮ ⋮ ⋱ ⋮

x
(2N)

1
x
(2N)

2
⋯ x(2N)

n

⎤
⎥⎥⎥⎥⎦

(35)�max
r

(P∗
f
)= max

N∗
f2
∈[0,N2]

{|Nf2 − N∗
f2
|

Nf1 + N∗
f2

}

(36)x
(u) = argmin

x∈A
U(x)

set T into the MATLAB Dace toolbox, the Kriging model 
g
(1)

K
(X) is accordingly updated and then turn to the begin-

ning of step 3.
Step 4: Estimate the failure probability P

f
 by using the 

finished updated Kriging model g(1)
K
(X) , i.e.,

where N𝜇
g
(1)
K

(x)<0 denotes the number of failure samples in 

matrix A judged by the current Kriging model g(1)
K
(X).

Step 5: Reduce CSP to prepare for constructing g(2)
K
(X)

. Pick out the samples in matrix A with �
g
(1)

K

(x) ≥ 0 and 
U(x) ≥ 2 , and put the corresponding row number of these 
satisfied samples into vector I . Then, a new sample matrix 
A
−I is constructed by removing the samples in matrix A 

with row numbers belonging to the vector I.
Step 6: Obtain the initial Kriging model g(2)

K
(X) by 

using the finial updated Kriging model g(1)
K
(X) , i.e., 

g
(2)

K
(X)=g

(1)

K
(X).

Step 7: Set i = 1.
Step 8: Construct the CSP used in adaptively updating 

g
(2)

K
(X) to estimate P

fi
. Generate another sample matrix Ci by 

the i th column of matrix A and all the columns except the i 
th of matrix B , i.e.,

Then, the sample matrix C−I
i

 is constructed by removing 
the samples in matrix Ci with row numbers belonging to the 
vector I . Combining the matrices A−I and C−I

i
 , matrix Di is 

obtained, i.e.,Di= [A−I,C−I
i
].

Step 9: Update the Kriging model g(2)
K
(X) . Calculate the 

U learning function values of samples in matrices A−I and 
C
−I
i

 by Eq. (18), i.e.,

where x(k)
A
−I

 is the k th sample in matrix A−I and x(k)
C
−I
i

 is the k 

th sample in matrix C−I
i

.
Calculate the maximum relative error of the failure prob-

ability P
fi
 estimated by the current Kriging model g(2)

K
(X) . 

The samples in matrix Di are divided into two groups 
according to the Ũ learning function values, i.e., the first 
group samples [x(k)

group1_A−I
, x

(k)

group1_C−I
i

](k = 1, ..., Ñ1) with 

(37)P∗
f
=

N𝜇
g
(1)
K

(x)<0

N

(38)Ci= [Ai,B−i] =

⎡
⎢⎢⎢⎢⎣

x
(N+1)

1
⋯ x

(1)

i
⋯ x(N+1)

n

x
(N+2)

1
⋯ x

(2)

i
⋯ x(N+2)

n

⋮ ⋱ ⋮ ⋱ ⋮

x
(2N)

1
⋯ x

(N)

i
⋯ x(2N)

n

⎤⎥⎥⎥⎥⎦

(39)Ũ(x(k)
A−I , x

(k)
C−I
i
)=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
[

U(x(k)
A−I ),U(x(k)

C−I
i
)
]

if�gK (x
(k)
A−I ) ≥ 0 ∪ �gK (x

(k)
C−I
i
) ≥ 0

min
[

U(x(k)
A−I ),U(x(k)

C−I
i
)
]

if�gK (x
(k)
A−I ) < 0 ∩ �gK (x

(k)
C−I
i
) < 0
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Ũ(x
(k)

group1_A−I
, x

(k)

group1_C−I
i

) ≥ 2 and the second group samples 

[x
(k)

group2_A−I
, x

(k)

group2_C−I
i

](k = 1, ..., Ñ2)  w i t h 

U(x
(k)

group2_A−I
, x

(k)

group2_C−I
i

) < 2 where Ñ1 is the number of sam-

ples in group one and Ñ2 is the number of samples in group 
two. The maximum relative error of the failure probability 
P
fi
 estimated by the current Kriging model g(2)

K
(X) is esti-

mated as

where Ñf1 and Ñf2 are the failure samples in group one and 
group two, respectively, recognized by g(2)

K
(X) based on 

Eq. (17).
If �max

r
(P∗

fi
) ≤ �thr

r
(P

fi
) , the updating process of Kriging 

model g(2)
K
(X) can be stopped and turn to step 10 to estimate 

the failure probability P
fi
 as well as continuously execute the 

rest of steps. Otherwise, continuously update the Kriging 
model g(2)

K
(X) by adding the following selected potential 

training sample into the training sample set T , i.e.,

If 𝜇
g
(2)

K

(x(u1)) > 0 or 𝜇
g
(2)

K

(x(u2)) > 0 , the added training 
sample is selected as

If �
g
(2)

K

(x(u1)) ≤ 0 and �
g
(2)

K

(x(u2)) ≤ 0 , the added training 
sample is selected as

Then, the training sample set T  is updated, i.e., 
T=T ∪

[
x(u), g(x(u))

]
 . By taking the current training sample 

set T into the MATLAB Dace toolbox, the Kriging model 
g
(2)

K
(X) is updated and then turn to the beginning of step 9.
Step 10: Estimate the failure probability P

fi
 by using the 

current Kriging model g(2)
K
(X) , i.e.,

where N𝜇
g
(2)
K

(x
A−I

)<0∩𝜇
g
(2)
K

(x
C
−I
i

)<0 denotes the number of failure 

samples in matrices A−I and C−I
i

 simultaneously.
Step 11: Estimate the global reliability sensitivity index Si 

by the following equation, i.e.,

(40)𝜀max
r

(P∗
fi
)= max

N∗
f2
∈[0,Ñ2]

{|Ñf2 − N∗
f2
|

Ñf1 + N∗
f2

}

(41)
[
x(u1), x(u2)

]
= arg min

x
A−I

∈A−I ,x
C
−I
i

∈C−I
i

Ũ
(
x
A
−I , x

C
−I
i

)

(42)x
(u)=

{
x
(u1)ifU(x(u1)) ≥ U(x(u2))

x
(u2)ifU(x(u1)) < U(x(u2))

(43)x
(u)=

{
x
(u1)ifU(x(u1)) < U(x(u2))

x
(u2)ifU(x(u1)) ≥ U(x(u2))

(44)P∗
fi
=

N𝜇
g
(2)
K

(x
A−I

)<0∩𝜇
g
(2)
K

(x
C
−I
i

)<0

N

Step 12: Estimate the maximum relative error of the esti-
mate S∗

i
 , i.e., �max

r
(S∗

i
) by taking the final �max

r
(P∗

f
) , P∗

f
 , P∗

fi
 , 

�max
r

(P∗
fi
) , and S∗

i
 calculated by Eqs. (35), (37), (40), (44), and 

(45) into Eq. (32).
Step 13: Judge whether all inputs’ global reliability sensitiv-

ity indices are completely estimated. If i = n , turn to Step 14. 
Otherwise set i = i + 1 and turn to step 8.

Step 14: Judge whether the estimates satisfy the predefined 
accuracy. If not, decrease �thr

r
(P∗

f
) and �thr

r
(P∗

fi
) , and then turn 

to Step 3. Otherwise, end the analyses and output the global 
reliability sensitivity indices.

4 � Case studies

In the following case studies, Sobol’s sequence (Sobol 
1998) is chosen to generate the random samples for its 
high convergence rate. Sobol’s sequence is the best choice 
and performs optimal when the sample size N equals to a 
power of 2, i.e., N=2m ( m ∈ Z+ ) where m is a non-negative 
integer. Furthermore, all analyses are carried out in this 
paper by using the same computer with Inter (R) Core (TM) 
i7-10700CPU@2.90GHZ.

The sequential CSPs in Tables 3, 7, and 10 are the sam-
ple matrices used in the proposed method where the sam-
ples in matrix A are used to estimate Pf  and the samples in 
matrix Ei(i = 1, 2, ..., n) and A are jointly used to estimate 
Pfi

(i = 1, 2, ..., n) . The sample states (failure or safety) in 
matrices A and Ei(i = 1, 2, ..., n) are identified by the pro-
posed sequentially updated Kriging model-based method.

(45)S∗
i
=
P∗
fi
− P∗2

f

P∗
f
− P∗2

f

F

E
N/mq

A

D

C

F

B

GE

sA
cAsA

2 sA 3 sA3 sA

cAcA

cA 0.7
5 cA 0.75

c
A

P

P
P

G

C

D

A B

0.25l0.25l0.222l0.278l

1
2l

1
2l

Fig. 2   The schematic diagram of roof truss structure
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4.1 � Case study I: a roof truss structure

A roof truss is shown in Fig. 2. The top boom and the com-
pression bars are reinforced by concrete. The bottom boom 
and the tension bars are steel. The uniformly distributed load 
q is applied on the roof truss, which can be transformed into 
the nodal load P = ql∕4 . The perpendicular deflection ΔC 
of the node C can be obtained by the mechanical analysis, 
which is the function of the input variables, i.e.,

where Ac and As are the sectional area variables denoting the 
sectional area of each steel bar, Ec and Es denote the elastic 
modulus, and l denotes the length of each steel bar.

The limit state function is established as follows,

(46)ΔC =
ql2

2

(
3.81

AcEc

+
1.13

AsEs

)

where 0.025 m is the failure threshold. The six inputs q , l , 
As , Ac , Es , and Ec are regarded as random variables in this 
case study for some machining tolerances and environmental 
uncertainties. The six input random variables are assumed 
as the mutually independent normal variables, and the 
distribution parameters are shown in Table 1.

To guarantee the robustness of each estimate measured 
by the coefficient of variation (COV) of the estimate less 
than 0.1, N  in the N × 6 matrices A and Ei(i = 1, 2, ..., n) 
is set as 223 in this case study. Table 2 shows the results of 
global reliability sensitivity indices of the six input vari-
ables by using the single-loop coupled with direct AK-
MCS method and the proposed single-loop coupled with 
ESC-based adaptive Kriging coupled with parallel sys-
tem reliability (abbreviated as AK-PSR) method. Table 3 

(47)g(x) = 0.025 − ΔC,

Table 1   The distribution 
parameter of the input variables 
of the roof truss structure

Input variables q(N∕m) l(m) As

(
m2

)
Ac

(
m2

)
Es

(
N∕m2

)
Ec

(
N∕m2

)

Mean value 20,000 12 9.82 × 10−4 0.04 1.2 × 1011 3 × 1010

Standard deviation 1600 0.24 5.89 × 10−5 0.008 8.4 × 109 2.4 × 109

Table 2   The results of global 
reliability sensitivity indices 
for the roof truss structure 
estimated by the single-loop 
MCS method, the proposed 
single-loop coupled with ESC-
based AK-PSR method, and the 
single-loop coupled with direct 
AK-MCS method

Data in [] denote the COV of results with 30 iterations, and data in () denote the importance rank of each 
input.

Method Single-loop MCS The proposed single-loop coupled with 
ESC-based AK-PSR

Single-loop coupled 
with direct AK-MCS

S∗
i

S∗
i

�max
r

(S∗
i
) S∗

i

q 0.0414[0.01] (2) 0.0414[0.01] (2) 0.0148 0.0414[0.01] (2)
l 0.0077[0.03] (5) 0.0077[0.03] (5) 0.0395 0.0076[0.04] (5)
AS 0.0117[0.03] (4) 0.0117[0.03] (4) 0.0289 0.0117[0.03] (4)
AC 0.1375[0.01] (1) 0.1372[0.01] (1) 0.0110 0.1374[0.01] (1)
ES 0.0195[0.02] (3) 0.0194[0.02] (3) 0.0209 0.0194[0.02] (3)
EC 0.0029[0.08] (6) 0.0029[0.09] (6) 0.0903 0.0029[0.09] (6)

Table 3   The number of training 
samples and CPU time in the 
proposed single-loop coupled 
with ESC-based AK-PSR 
method and the single-loop 
coupled with direct AK-MCS 
method in the roof truss 
structure

N
call

 denotes the number of calls to the actual limit state function related to the number of training samples.

Sequential CSPs Ncall in the proposed single-loop coupled with 
ESC-based AK-PSR

Ncall in single-loop 
coupled with direct 
AK-MCS

A 128 128
E
1

37 92
E
2

14 60
E
3

15 44
E
4

27 34
E
5

13 29
E
6

6 24
Total Ncall 240 411
CPU time 24.65 min 193.31 min
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shows the corresponding number of calls to the limit state 
function and the CPU time of each method by setting the 
threshold of relative error of failure probabilities in each 
method as 0.01. The predefined accuracy of the estimated 
global reliability sensitivity indices is that the maximum 
error of each estimate is not larger than 10%. It can be 
seen from Tables 2 and 3 that the estimation accuracy of 
the proposed method is consistent with both the single-
loop MCS method and the single-loop coupled with direct 
AK-MCS method, while the proposed method only uses 
240 limit state function evaluations which are the smallest 
among the three methods and the corresponding results 
also demonstrate that the proposed method can reduce 
87.25% CPU time compared to directly applying the AK-
MCS to the single-loop estimation method.

4.2 � Case study II: an aero‑engine turbine disk 
structure

An aero-engine turbine disk shown in Fig. 3 is a key com-
ponent to aero-engine rotating structure which endures the 
centrifugal force and the thermal stress in the processes 
of starting and accelerating. Combined with the complex 
shape, the stress concentration position may appear in the 
pin hole and the bottom of tongue-and-groove during the 
process of work. After working for a period of time, cracks 
may appear in these positions. The load applied on the 
aero-engine turbine disk is.

where � , C , � , and J are mass density, coefficient, rotational 
speed, and cross-sectional moment of inertia, respectively. 
�=2�n where n is the rotational frequency.

The angular velocity � is changed under different flight 
conditions. In this case, two task profiles are considered, 
i.e., “start-maximum-start” and “cruise-maximum-cruise.” 
The corresponding load spectrum is shown in Table 4.

Under the state of “start-maximum-start,” the fatigue 
life is estimated by the modified Manson-Coffin equation. 
The temperature considered in this case is 450◦C , and the 
corresponding Manson–Coffin equation is

According to the data in material manual (China Aero-
nautical Materials Handbook 2001), we use the dual-stage 
linear model to reflect the relationship between the stress and 
strain and the corresponding figure is shown in Fig. 4, i.e.,

The inverse strain range-based limit state function is 
constructed as follows (Yun et al. 2019b),

(48)F=
C�2

2�
+2��2

J

(49)

Δ�t

2
= 0.0063(1 −

�m

1127
)(2Nf )

−0.045 + 0.303(2Nf )
−0.705

(50)

� =
{ �

1.6304×105
� < 750MPa

(� − 970)∕
(

4.07407 × 104
)

+ 0.01 � ≥ 750MPa

Fig. 3   Diagram of crack of an aero-engine turbine disk

Table 4   The load spectrum of the aero-engine turbine disk within 
900 h

No Working cycle Cycles Rotate speed(rpm)

1 start-maximum-start 1300 0–14,000–0
2 cruise-maximum-cruise 20,000 12,000 – 14,000 –12,000
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Fig. 4   The relationship between the strain and stress of material 
GH4169 under 450 ◦C
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where the total strain range in the main cycle, the stress 
range �(1) in the main cycle, the stress range �(2) in the 
secondary cycle, and the average stress of the main cycle 
are obtained by the following equations,

where the detailed distribution types and distribution 
parameters of the basic input variables � , C , A , J , �13000 , 
and �12000 are listed in Table 5. The threshold of combined 
fatigue life N∗ is set as 10,000 cycles.

To guarantee the robustness of the estimate measured 
by the COV of the estimate less than 0.1, N  in the N × 6 
matrices A and Ei(i = 1, 2, ..., n) is set as 219 in this case 
study. Figure 5 shows the results of global reliability 
sensitivity indices obtained by the single-loop MCS, the 
single-loop coupled with direct AK-MCS method, and 
the proposed single-loop coupled with ESC-based AK-
PSR method, from which it can be seen that the variables 
C and �12000 almost have no influence on failure prob-
ability and Table 6 only compares the results of the rest 

(51)

G(Δ�
(1)
t
, �(2)

, �(1)
, �(1)

m
)

= 0.0063(1 −
�(1)
m

1127
)(

2N∗

(1 + n)(
1

n
)�

�(2)∕�(1)
)−0.045

+ 0.303(
2N∗

(1 + n)(
1

n
)�

�(2)∕�(1)
)−0.705 −

Δ�
t

2

(52)

Δ�(1)t

=

{ ��=13000
1.6304×105

− 0 ��=13000 < 750MPa
(

��=13000 − 970
)

∕
(

4.07407 × 104
)

+ 0.01 − 0 ��=13000 ≥ 750MPa

(53)�(1)=��=13000 − 0 =

(
C�2

13000

2�
+2��2

13000
J

)/
A

(54)
�(2)=��=13000 − ��=12000

=

(
C�2

13000

2�
+2��2

13000
J −

C�2

12000

2�
−2��2

12000
J

)/
A

(55)�m = ��=13000∕2 = �LCF∕2

variables. By setting the threshold of relative error of 
failure probabilities in each method as 0.01, the accurate 
results in the single-loop coupled with direct AK-MCS 
method and the single-loop coupled with ESC-based 
AK-PSR method are obtained and the maximum relative 
errors of the estimates are less than 10%. Table 7 shows 
the number of training samples and the corresponding 
CPU time used in the single-loop coupled with direct 
AK-MCS method and the proposed single-loop coupled 
with ESC-based AK-PSR method, which demonstrates 
that compared to directly applying AK-MCS method 
the investigated method saves 35% training samples and 
65.85% CPU time under the same accuracy and robust-
ness. Results of this case study demonstrate that the pro-
posed method can well suited to the case that the input 
variables have hybrid distribution types.

4.3 � Case study III: a wing structure with composite 
shin

The NACA0012 airfoil wing (Saludheen et al. 2021; Feng 
et al. 2023) shown in Fig. 6 is analyzed in this example. 
The wing structure mainly consists of three components, 

Table 5   The distribution types and distribution parameters of vari-
ables

Random variables Distribution type Mean COV

�
(
kg∕m3

)
Lognormal 8240 0.10

C(kg∕m) Lognormal 5.67 0.15
A
(
m2

)
Normal 1.22 × 10−2 0.10

J J
(
m4

)
Normal 1.22 × 10−4 0.10

�13000 (rad∕s) Normal 1.3614 × 103 0.10
�12000 (rsd∕s) Normal 1.2566 × 103 0.10

Fig. 5   The global reliability sensitivity indices of all input variables 
of the turbine blade structure

Table 6   The results of global reliability sensitivity indices for the tur-
bine blade structure estimated by the single-loop MCS method, the 
proposed single-loop coupled with ESC-based AK-PSR method, and 
the single-loop coupled with direct AK-MCS method

Method Single-loop 
MCS

The proposed single-
loop coupled with 
ESC-based AK-PSR

Single-loop 
coupled with 
direct AK-MCS

S∗
i

S∗
i

�max
r

(S∗
i
) S∗

i

� 0.0131[0.09] 0.0131[0.09] 0.0372 0.0131[0.09]

A 0.0380[0.05] 0.0380[0.05] 0.0186 0.0380[0.05]

J 0.0117[0.09] 0.0117[0.09] 0.0412 0.0117[0.09]

�13000 0.2283[0.01] 0.2283[0.01] 0.0116 0.2283[0.01]
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Table 7   The number of training 
samples and CPU time in the 
proposed single-loop coupled 
with ESC-based AK-PSR 
method and the single-loop 
coupled with direct AK-MCS 
method in the aero-engine 
turbine disk

Sequential CSPs Ncall in the proposed single-loop coupled with 
ESC-based AK-PSR

Ncall in single-loop 
coupled with direct 
AK-MCS

A 306 306
E
1

7 73
E
2

6 54
E
3

12 43
E
4

7 35
E
5

25 30
E
6

4 24
Total Ncall 367 565
CPU time 34.53 min 101.12 min

Fig. 6   The wing structure and its composition

Fig. 7   The FEM of the wing structure
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i.e., stringers, ribs, and skin. The material of stringers and 
ribs is aluminum, and that of the skin is T-300 3 K/916. The 
isotropic material is employed to define the section of string-
ers and ribs of the wing structure, while the lamina material 
is used for the skin. The external load F is applied and the 
finite element model constructed and analyzed by ABAQUS 

6.14 is shown in Fig. 7. The maximum displacement dmax of 
the wing structure is deemed as the model response and the 
limit state function is defined in Eq. (56).

where the unit of displacement is mm, and the distribution 
parameters of input variables are shown in Table 8.

To guarantee the robustness of the estimate measured by 
the COV of the estimate less than 0.1, N in the N × 9 matri-
ces A and Ei(i = 1, 2, ..., n) is set as 217 in this case study. 
Figure 8 shows the global reliability sensitivity indices of the 
random input variables estimated by the single-loop coupled 
with direct AK-MCS method and the proposed single-loop 
coupled with ESC-based AK-PSR method, it can be seen 
from Fig. 8 that with the exception of E11 , G12∕G13 , and 
F , the global reliability sensitivity indices are all close to 
zero and thus the attention is fixed on the estimation accu-
racy of the variables E11 , G12∕G13 , and F . Table 9 gives 
the global reliability sensitivity results of the variables E11 , 
G12∕G13 , and F by setting the threshold of relative error of 
failure probabilities in each method as 0.01, from which the 
accuracy and robustness are demonstrated. Furthermore, the 
number of calls to limit state function is used in each method 
and the corresponding CPU time are shown in Table 10, and 
results in Table 10 demonstrate that compared to directly 
introducing AK-MCS method into the single-loop method, 
the proposed single-loop coupled with ESC-based AK-PSR 
method can save 108 FEM analyses and 35.63% CPU time. 
The results of global reliability sensitivity indices demon-
strate that the uncertainties of variables EAl , �Al , E22∕E33 , �23 , 
G23 , and � can be neglected in reliability analysis to simplify 
uncertainty analysis model, and F can be chosen firstly to 
decrease the failure probability by decreasing its uncertainty.

5 � Conclusions

Global reliability sensitivity analysis is a key preprocessing 
for simplifying reliability-based design optimization model, 
and its efficient algorithm has drawn widely attention. In 
this paper, an innovative efficient algorithm is proposed by 
transforming the estimation of global reliability sensitivity 
index into the estimations of two failure probabilities based 
on the single-loop method, i.e., the unconditional failure 
probability and a two failure modes-based parallel system 
failure probability which can be estimated by the limit state 
function. To avoid large number of calls to the actual limit 
state function, adaptive Kriging (AK) model can be embed-
ded. Then, the dual-stage sequential AK model of the limit 
state function is constructed to estimate the unconditional 
failure probability and the derived two failure modes-based 
parallel system failure probability accordingly, in which the 

(56)g(X) = 95 − dmax(X),

Table 8   The distribution parameters of input variables for the wing 
structure

Variables Distribution type Mean Standard 
deviation

Aluminum
 EAl(GPa) Normal 72 2.160
 �Al Normal 0.3 0.009

T-300 3 K/916
 E11(GPa) Normal 139.668 4.190
 E22∕E33(GPa) Normal 10.148 0.304
 �23 Normal 0.200 0.006
 G12∕G13(GPa) Normal 57.690 1.731
 G23(GPa) Normal 40.661 1.219
 F(N) Normal 1000 30
 �(◦) Normal 0 1

Fig. 8   The global reliability sensitivity indices of all input variables 
of the wing structure

Table 9   The results of global reliability sensitivity indices for the 
wing structure estimated by the single-loop MCS method, the pro-
posed single-loop coupled with ESC-based AK-PSR method, and the 
single-loop coupled with direct AK-MCS method

Method The proposed single-loop 
coupled with ESC-based 
AK-PSR

Single-loop coupled 
with direct AK-MCS

S∗
i

�max
r

(S∗
i
) S∗

i

E11 0.1044[0.01] 0.0185 0.1044[0.01]

G12∕G13 0.0203[0.09] 0.0714 0.0203[0.09]

F 0.4128[0.01] 0.0083 0.4129[0.01]
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learning function of system failure probability analysis can 
be used to accelerate the convergence of Kriging model. By 
error propagation analysis, the relationship among the esti-
mation errors of the global reliability sensitivity index, the 
unconditional failure probability, and the two failure modes-
based parallel system failure probability is constructed. 
Hence, the error stopping criterion can be employed in adap-
tively updating the Kriging model, and the estimate error of 
the global reliability sensitivity index can be controlled by 
adjusting the predefined limits of the estimate errors used 
in adaptive Kriging model-based processes for estimating 
the unconditional failure probability and the two failure 
modes-based parallel system failure probability. Through the 
learning function in system reliability analysis and the error 
stopping criterion, the Kriging model can be fast convergent 
while ensuring estimation accuracy. Results of a roof truss 
structure, an aero-engine turbine disk structure and a wing 
structure with composite shin demonstrate the superiority 
of the proposed method compared to directly inducting AK 
model into the single-loop method.

Due to the Kriging model can provide the prediction 
mean and prediction variance, efficient learning function 
can be constructed for adaptively updating Kriging model 
to accurately and efficiently recognize the states (failure or 
safety) of random samples which are used in reliability anal-
ysis, in this paper, the adaptive Kriging model is employed 
to substitute the actual limit state function to classify the 
used samples in the proposed algorithm for estimating the 
global reliability sensitivity indices. However, the derived 
two failure modes-based parallel failure probability-based 
global reliability sensitivity analysis formula has no limita-
tion on the types of surrogate models. Other surrogate mod-
els which can efficiently and accurately classify the used 
samples also can be employed in the proposed algorithm to 
estimate the global reliability sensitivity indices.
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