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Abstract
Practical engineering problems often involve stochastic uncertainty, which can cause substantial variations in the response of 
engineering products or even lead to failure. The coupling and propagation of uncertainty play a crucial role in this process. 
Hence, it is imperative to quantify, propagate and control stochastic uncertainty. Different from most traditional uncertainty 
propagation methods, the proposed method employs Gaussian splitting method to divide the input random variables into 
Gaussian mixture models. These GMMs have a limited number of components with very small variances. As a result, the 
input Gaussian components can be conveniently propagated to the response and remain Gaussian distributions after nonlinear 
uncertainty propagation, which is able to provide an effective method for high-precision nonlinear uncertainty propagation. 
Firstly, the probability density function of input random variable is reconstructed by Gaussian mixture models. Secondly, 
the K-value criterion is proposed for selecting split direction, taking into account both the nonlinearity and variance. The 
components of input random variables are then divided into a Gaussian mixture model with small variance along the direc-
tion determined by the K-value. Thirdly, the individual components of the Gaussian mixture model are propagated one by 
one to obtain the probability density function of the response. Finally, the convergence criterion based on Shannon entropy 
is developed to ensure the accuracy of uncertainty propagation. The efficacy of the method is verified using three numerical 
examples and two engineering examples.

Keywords Probabilistic uncertainty propagation · Gaussian mixture model · Information entropy

1 Introduction

Practical engineering problems (Vanmarcke et al. 1986; 
Guo et al. 2019) frequently involve uncertainties that arise 
from various sources, including the structure’s geometry, 
material properties, manufacturing and assembly faults, and 
random loads. The performance of mechanical structures 
can be affected by multiple sources of uncertainty, which 

can spread and amplify, resulting in fluctuations or even 
failures (Schuëller and Jensen 2008; Du and Chen 2000). 
The measurement, propagation and control of uncertainties 
are important tools to ensure the safety and reliability of 
engineering structures (Yao et al. 2011; Balu and Rao 2014).

Uncertainty is commonly categorized into two separate 
categories: epistemic uncertainty and aleatory uncertainty 
(Helton et al. 2010; Brevault et al. 2016). Epistemic uncer-
tainty emerges from limited data or information during the 
modeling process, including model uncertainty and uncer-
tainty in variable distribution parameters caused by insuffi-
cient objective knowledge (Jakeman et al. 2010; Jiang et al. 
2016). The occurrence of this issue might be attributed to 
insufficient accuracy in measuring a quantity, failure or 
incomplete understanding of the modeling process, or inad-
equate comprehension of the system’s motion mechanism. 
The main approaches to modeling epistemic uncertainty are: 
evidence theory (Barnett 2008; L Chen et al. 2023), fuzzy 
set theory (Dodagoudar and Venkatachalam 2000; Kabir and 
Papadopoulos 2018), and interval theory (Rao and Berke 
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1997; Qiu et al. 2008). Aleatory uncertainty represents 
the randomness that exists in nature or physical phenom-
ena, which cannot control or reduce such randomness, also 
called statistical uncertainty, and probability theory is used 
to research it.

Aleatory uncertainty is modeled by a probability model 
(Chen et al. 2018; Meng et al. 2021) to derive the probability 
density function (PDF), failure probability, and statistical 
characteristics of output based on distribution information 
of random variables. A substantial amount of probabilistic 
uncertainty propagation analysis method has been devised, 
which can be broadly arranged in four groups: Sampling-
based methods, Moment-based methods, Local expansion-
based methods, Surrogate-based models. Sampling-based 
methods mainly include Monte Carlo simulation (MCS) 
(Cox and Siebert 2006) and the unscented transform (UT) 
(Julier and Uhlmann 2004; Kandepu et al. 2008). MCS gen-
erates a substantial number of randomly sampled points to 
acquire uncertainty information of the system’s response. 
Although MCS is highly adaptable and accurate, it incurs 
high computational costs. For the purpose of enhancing the 
efficiency of propagating uncertainty, some special methods 
of sampling have been proposed, including Latin hypercube 
sampling (Helton and Davis 2003), importance sampling 
(Mori and Kato 2003), adaptive sampling (Bucher 1988; 
Brookes and Listgarten 2018). The UT generates sigma 
points based on the distribution of random variables, and 
then weights response values of the sigma points on the per-
formance function to acquire the statistical moments.

Moment-based methods employ a numerical integration 
approach to compute statistical moments of output response. 
They use probabilistic evolutionary methods (maximum 
entropy principle (Xi et al. 2012)) to acquire the response 
PDF, such as sparse grid numerical integration (Jia et al. 
2019), univariate dimension reduction method (Rahman 
and Xu 2004; Z Zhang et al. 2019). Nevertheless, low-order 
moments are inadequate in capturing the non-Gaussian 
properties of the output response. Additionally, the nonlin-
earity of the performance function has a substantial impact 
on the accuracy of higher-order statistical measures. Local 
expansion-based approaches require approximation of per-
formance function by Taylor expansion at reference point, 
such as first order reliability method (FORM) (Low and 
Tang 2007) and second-order reliability method (SORM) 
(Junfu Zhang and Du 2010). FORM makes a linear approxi-
mation with very high computational efficiency, but only for 
weakly nonlinear uncertainty problems. SORM performs a 
second-order approximation, considering its second-order 
curvature. However, FORM and SORM both are required to 
compute partial derivatives of performance function. Sur-
rogate-based models approximate the performance function 
by constructing a numerical model. Typical surrogate mod-
els are Kriging (Kaymaz 2005), support vector machines 

(Noble 2006), artificial neural networks (Srivaree-Ratana 
et al. 2002), etc. Due to its lower cost relative to the original 
performance function, the surrogate model is extensively 
utilized in various domains such as aviation and transporta-
tion networks. This leads to a significant reduction in com-
putational expenses. However, Surrogate-based model can 
introduce uncertainty of the numerical models.

The samples of MCS method describing the PDF are the 
same as the Dirac delta function with infinitesimal variance. 
In contrast, Gaussian mixture model (GMM) use Gaussian 
sum instead of infinitesimal sample point to describe the 
PDF (Psiaki et al. 2015). To perform uncertainty propaga-
tion using GMM, the output GMM entails being estimated 
from the GMM of the input uncertainty variables. Although 
each Gaussian component is easy to propagate by multiple 
methods, it is still a challenge to determine the weights and 
number of components. Terejanu et al. (Terejanu et al. 2008) 
pointed out that when covariance of input Gaussian distribu-
tion is infinitesimal, the weights of Gaussian components 
through nonlinear performance function remain constant. 
They introduce two different methods to update weights 
of the GMM components. Although updating weights can 
improve accuracy of uncertainty propagation, it remains a 
problem to determine the optimal number of initial Gaussian 
components. Huber et al. (Huber 2011) proposed a method 
based on GMM component weights and covariance traces 
to select Gaussian components that need to be split. How-
ever, this approach ignores the effect of nonlinearity of the 
performance function on the output response. Vittaldev et al. 
(Vittaldev and Russell 2016) greatly expanded the number 
of splits of Gaussian distributions and proposed the idea of 
simultaneous splits along multiple directions judged by Stir-
ling criterion. However, when there are multiple extremums 
of the performance function, the splitting direction judged 
by the criterion may be incorrect. Demars et al. (DeMars 
et al. 2013) detected the nonlinearity of the Gaussian dis-
tribution by the difference between the entropy of the lin-
earization and UT, and splitting was performed along the 
eigenvector when it exceeded a certain threshold. Although 
the method accurately finds the component to be split, it uses 
both linearization and UT for propagation, which increases 
the computational burden. Zhang et al. (Bin Zhang and Shin 
2021) proposed an uncertainty propagation method for arti-
ficial neural networks, which selects the Gaussian compo-
nents to be split based on the KL divergence. The initial 
input random variable of some existing method is a Gauss-
ian distribution (Huber 2011; DeMars et al. 2013; Vittaldev 
and Russell 2016). Therefore, it cannot be used with other 
types of distributions, such as Beta distribution or Gamma 
distribution.

Different from most traditional uncertainty propagation 
method, we split the input variable into a weighted combi-
nation of a series of small variance Gaussian components. 
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The response of Gaussian component with small variance 
remains Gaussian through the nonlinear performance func-
tion. This property ensures that the uncertainty propagation 
of a single Gaussian component is straightforward, efficient, 
and accurate. Consequently, the nonlinear uncertainty propa-
gation becomes a series of simple and efficient uncertainty 
propagation of a single Gaussian component.

This study presents a novel uncertainty propagation 
method based on Gaussian mixture models. Additionally, 
a new criterion is introduced to determine the direction of 
splitting. The subsequent segments of this paper are organ-
ized as follows: In Sect. 2, a Gaussian mixture model is 
employed to reconstruct PDF of input random variables. In 
Sect. 3, Gaussian components are split into Gaussian mixture 
models with small variance along the direction judged by 
K-value criterion. In Sect. 4, each component of the GMM is 
propagated using UT to obtain the output response PDF. In 
Sect. 5, the difference in the entropy of response PDF is used 
to determine the number of splits, which ensures accuracy of 
uncertainty propagation. Section 6 discusses three numerical 
examples and two engineering examples, and Sect. 7 sum-
marizes some conclusions.

2  Uncertainty variable reconstruction based 
on Gaussian mixture model

As mentioned above, the method based on input random 
variable splitting is aimed at the Gaussian distribution. Since 
the components of the GMM are Gaussian and GMM can 
approximate any non-Gaussian PDFs with a sufficient num-
ber of components (Vlassis and Likas 2002), the GMM is 
employed to reconstruct the PDF of input random variables. 
The optimal number of GMM components is selected using 
the AIC criterion.

2.1  Gaussian mixture model

GMM find extensive application in statistics, machine learn-
ing, computer vision, data mining. They are employed for 
various tasks including feature extraction, anomaly detec-
tion, speech recognition, and reconstruction of PDF. The 
GMM is a probabilistic model that uses a linear combination 
of multiple Gaussian distributions to model uncertainty, and 
it is expressed as follows

where: �k denotes weight of the kth component, �
(
x;�k,Σk

)
 

denotes the kth component of Gaussian mixture model, �k 
and Σk denote mean and covariance, respectively. To satisfy 

(1)f (x;�) =

K∑
k=1

�k�
(
x;�k,Σk

)

the properties of the probability density function (PDF is 
greater than or equal to 0, and sum of integrals is 1), so the 

weights satisfy the conditions �k ≥ 0 and 
K∑
k=1

�k = 1 . The 

parameters of GMM:� =
{
�k,�k,Σk

}K

k=1
.

To ascertain PDF of the Gaussian mixture model, the 
model parameters � need to be estimated. Suppose that a 
data set x =

(
x(1), x(2), ..., x(m)

)
 containing m samples is col-

lected. The samples in data set x are independent of each 
other, the probability that we draw this samples simultane-
ously are the product of probability of drawing each sam-
ple, which is the joint probability of the sample set. This 
joint probability is the likelihood function, as in Eq. (2):

The maximum likelihood method is usually chosen to 
estimate parameters �:

Substitute the expression of the GMM into the Eq. (3) 
and take the logarithm as follows:

To tackle the challenge of directly solving the optimiza-
tion problem in Eq. (4), expectation maximization (EM) 
algorithm is utilized to iteratively explore and identify the 
local maximum of In(L(x|�)). . In order to promote the pro-
cess of iterative algorithms, the EM algorithm introduces 
the hidden variables z , which represents the likelihood of 
the sample x(i) pertained to the zth Gaussian model. For 
each iteration, the distribution of hidden variables z is first 
calculated using parameters from the previous iteration, 
and then target parameters are estimated by updating the 
likelihood function using z . The EM algorithm consists of 
two steps: E-step and M-step.

Step E: The goal of step E is to calculate the values 
of the hidden variables z , which is tantamount to calcu-
lating probability of belonging to each Gaussian compo-
nent separately for each data point. As a result, the hidden 
parameters w form a N × K  matrix. After each iteration, 
it can be updated with the latest Gaussian parameters 
� =

(
�k,�k,Σk

)
.

(2)L(�) = L
(
x(1), x(2), x(m);�

)
=

m∏
i=1

f
(
x(i);�

)

(3)� = argmax
�

∏
i

f (x(i)|�)

(4)

In(L(x|�)) = ∑
i

In[f (x(i)|� )]

=
∑
i

In[
∑
k

�k�(x
(i),�k,Σk)]

(5)wt
i,k

=
𝛼t
k
p
�
x(i)�𝜇t

k
,Σt

k

�
∑
k̇

𝛼t
k
p
�
x(t)�𝜇t

k
,Σt

k
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The updated expression for the objective function 
Q(�, �t) is obtained by substituting the updated w into 
likelihood function.

Step M: The step M is to search the extreme value of the 
function Q(�, �t) for � , which is to search the model value for 
new iteration.

By using the function Q(�, �t) to find the partial derivative 
of �k,Σk and making it equal to 0, we can obtain �̂�k,Σ̂k To 
obtain �̂�z , we need to get the partial derivative under the condi-

tion 
K∑
k=1

�� = 1 and make it equal to 0.

2.2  Akaike information criterion

When employing EM algorithm to estimate parameter of the 
GMM, it is necessary to predefine the number of GMM com-
ponents. In real-world scenarios, it is common to have access 
to only a subset of data, with no existing categorization of 
the data. To address this problem, the number of GMM com-
ponents is estimated by Akaike Information Criterion (AIC). 
AIC, a metric for estimating prediction error and evaluating 
the relative quality of statistical models, is employed to assess 
both model complexity and goodness of fit (Burnham and 
Anderson 2004). Equation (8) presents its formulation.

where: K denote number of parameters, L(�) represent the 
value of likelihood function. Generally speaking, as the 
overall sample size increases, the likelihood function L(�) 
also increases, leading to a decrease in the value of AIC. 
Nevertheless, if the sample size is too massive, the model 
will be overfitting. Hence, it is essential to balance model 
complexity and goodness of fit, ensuring that the selected 
model strikes the right trade-off. The optimal model is deter-
mined by choosing the one with the smallest AIC value.

Through the above process, arbitrary input random vari-
ables can be characterized and modeled by GMM. Never-
theless, the individual Gaussian components of GMM may 
exhibit a significant variance. This can lead to a response that 
deviates from a Gaussian distribution and ultimately dimin-
ishes the computational accuracy when nonlinear uncertainty 
is propagated. To enhance the precision and effectiveness of 
uncertainty propagation for each individual Gaussian compo-
nent, the subsequent measure involves diminishing the vari-
ance of each Gaussian component.

(6)Q(�, �t) = E[In p(x, z|�)|x, �t] = In(p(x,wt|�))

(7)�(t+1) = argmax
�

Q(�, �(t))

(8)AIC = 2K − 2In(L(�))

3  Gaussian splitting oriented to reduce 
the variance

It is shown that when the covariance of all Gaussian 
components is infinitesimal, uncertainty propagation is 
achieved by locally approximating behavior of perfor-
mance function. So the response of the Gaussian compo-
nent remains Gaussian after nonlinear uncertainty propa-
gation, and the weights and number of components remain 
constant (Terejanu et al. 2008). Using the fundamental 
concepts mentioned above, the Gaussian components of 
the GMM can be divided iteratively until the covariance 
of each component reaches a sufficiently small value. This 
ensures that the performance function approaches line-
arity, so the response of the Gaussian components after 
uncertainty propagation can also be approximated as a 
Gaussian distribution.

Given a input random variable x described by a GMM 

f (x) =
K∑
i=1

�iN
�
x;�i,� i

�
 and the kth Gaussian component 

is split, as in Eq. (9):

where L indicates that there are L Gaussian components and 
L > 1 ; there are L weights �k,j , L means �k,j , L covariance 
�k,j , and a total of 3L free parameters, much larger than 
the number of given conditions, which is an undetermined 
problem. It can be extracted by attenuating the difference 
between �kN

(
x;�k,�k

)
 and 

∑L

j=1
�k,jN

�
x;�k,j�k,j

�
.

3.1  Splitting of univariate Gaussian component

To streamline the process of solving the splitting problem, 
the initial focus is on studying the splitting of univari-
ate Gaussian distribution, which can be easily extended 
to splitting of multivariate Gaussian distribution. The 
splitting of standard Gaussian distribution is performed 
firstly in order to create a library of splits, thus facilitating 
the subsequent propagation of uncertainty. Whereas input 
variables are characterized by non-standard Gaussian dis-
tributions, their components can be transformed into each 
other by a coordinate transformation that can transform 
the non-standard normal distribution into a standard nor-
mal distribution. In order to simplify the task of solving 
the aforementioned splitting problem, certain constraints 
are imposed: all Gaussian mixture models have the same 
covariance,��,j = � ; the means are negatively symmetri-
cally distributed along the mean � of the initial Gaussian 
component; and the weights are symmetrically distributed 
along mean � of initial Gaussian distribution. The imposed 

(9)�kN
(
x;�k,�k

)
≈

L∑
j=1

�k,jN
(
x;�k,j�k,j

)
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constraints are as in Eq. (10). Then the total number of free 
parameters is reduced to L − 1 . The univariate splitting 
library in this paper is derived from the reference (Vit-
taldev and Russell 2016).

3.2  Splitting of multivariate Gaussian component

For multivariate uncertainty problems, it becomes essen-
tial to extend the splitting methodology from univariate 
Gaussian distribution to multivariate Gaussian distribution. 
To accomplish this, the eigenvalue decomposition of the 
covariance matrix is employed for a multivariate Gaussian 
distribution N(x|�,�) , as shown in Eq. (11)..

where: �i denotes the eigenvalue and Vi denotes the cor-
responding eigenvector. The matrix V denotes a rotation 
matrix, and the rotation and translation transformations are 
in Eq. (13).

Then the transformed PDF of Gaussian distribution is:

where I is identity matrix, o is zero matrix. Since the covari-
ance of f (y) is a diagonal matrix, corresponding eigenvec-
tors align with the coordinate axes, respectively, while each 
independent distribution is also standard normal.

In the scenario when the inputs consist of multivariate 
distributions, the nonlinearity of the performance function 
and the variance of variables vary in different directions. 
Consequently, splitting in different directions yields distinct 
effects on the output results. Hence, it is imperative to divide 
in the direction that exerts the most significant influence on 
the output response. For this reason, we propose the K-value 
criterion, as in Eq. (15). This criterion enables the simul-
taneous consideration of both the impact of performance 
function’s nonlinearity and covariance of input variables on 
propagation of uncertainty.

(10)

�0 = 0,�j = −�−j j = 1, 2, ..., (L − 1)∕2

�j = �−j,

L∑
j=1

�j = 1 j = 1, 2, ..., (L − 1)∕2

�j = � j = 1, 2, ..., L

(11)� = V�VT

(12)V =
[
V1,V2...,Vk

]
� = diag

[
�1, �2,..., �k

]

(13)x = � +
√
� ⋅ V ⋅ y

(14)f (y) = N(y;o, I) =

L∏
j=1

N(y;0, 1)

where � denotes eigenvector of the covariance matrix � , 
and h denotes a specified constant, â is a unit vector rep-
resenting the split direction. � denotes the second-order 
derivative of the performance function in the direction â . In 
general, h can take a specific value in practical engineering. 
The nonlinearity of a function can be described in terms of 
curvature, which is positively correlated with the second-
order derivative. Therefore, when the value of � is larger, 
the performance function is more nonlinear. � denotes the 
magnitude of variance of random variable. Correspondingly, 
as the value of � increases, the variance also increases.

The direction of ith eigenvector is selected as splitting 
direction by the K-value criterion, and the univariate split-
ting library mentioned in the previous section is also applied 
to split the input variable, as in Eq. (16).

Substituting Eq. (16) into Eq. (14), the split Gaussian 
mixture model is obtained.

The mixture model of Eq. (17) is rotated and translated 
into the space of coordinate systems of the initial Gaussian 
distribution by the inverse transformation of Eq.  (13): 

y =
�√

�V
�−1

(x − �) . Then the multivariate GMM after 
splitting can be obtained: the weights remain constant and 
the means and covariances are as follows:

4  Uncertainty propagation for Gaussian 
components with small variance

Nonlinear performance functions can cause the initial 
Gaussian distribution to transform into a non-Gaussian 
distribution during uncertainty propagation. Nevertheless, 
research conducted by (Terejanu et al. 2008) has shown 
that even after nonlinear uncertainty propagation, the 
response of the GMM component continues to adhere to 

(15)� =
f
(
� + hâ

)
+ f

(
� − hâ

)
− 2f (�)

h2

K = ��∕2

(16)Ni

(
yi;0, 1

)
≈

K∑
k=1

�kN
(
yi;�k, �

2
k

)

(17)f (y) =

K∑
k=1

�kN
(
yi;�k, �k

) L∏
j=1,j≠i

N
(
yj;0, 1

)

(18)

�k = � + �k

√
�iVi

�k = diag
�
�1, ..., �

2
k
�i, ..., �L

�

�k = VT�kV
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the Gaussian distribution when the GMM reconstructs it 
with a sufficiently small covariance. The reason is that 
nonlinear performance function is almost linear in each 
small variance component of the GMM. Considering that 
output response of small variance Gaussian component is 
approximately Gaussian, it becomes sufficient to calculate 
the response of a finite number of points to fit the mean 
variance and thus obtain a more accurate normal distribu-
tion of the response. Thus, this paper employs UT (Julier 
and Uhlmann 2004) as an uncertainty propagation method.

The PDF of n dimensional input random variables can 
be represented by a GMM f (x) =

∑K

k=1
�kP

�
x;�k,�k

�
 

after splitting, and propagate the uncertainty for the kth 
component.

Firstly, calculate the 2n + 1 weights of the sigma points, 
as follows:

where: W (i)

m,k
 denotes the sigma point weight for calculating 

the approximate mean, w(i)

c,k
 denotes the sigma point weight 

for calculating the approximate covariance, and the param-
eters � satisfy:

where: the parameters � and t  serve as scaling factors that 
determine the spread of sigma points away from mean. � sat-
isfies 10−4 ≤ � ≤ 1 , which is usually taken as a small value to 
avoid the problem of nonlocal effects in strongly nonlinear 
systems.t ≥ 0 , as usually t = 3 − n or t = 0.

Generally speaking, sigma points are positioned at 
the mean and are symmetrically dispersed based on the 
covariance of the primary axes. The point set matrix � (i) 
is obtained by the 2n + 1 sigma points, as follows:

where 
�√

(n + �)
∑

x

�i−1

 denotes the (i − 1)th column of 
lower triangular matrix after Cholesky decomposition of 

matrix (n + �)
∑

x , and 
�√

(n + �)
∑

x

�i−n−1

 denotes 
(i − n − 1)th column of the lower triangular matrix.

Substitute each sigma point into performance function 
y = g(x) to obtain the set of points y(i) = g

(
� (i)

)
 . Then 

(19)

W
(i)

m,k
=

{
�

n+�
i = 0

1

2(n+�)
i = 1, ..., 2n

W
(i)

c,k
=

{
�

n+�
+ 1 − �2 + � i = 0

1

2(n+�)
i = 1, ..., 2n

(20)� = �2(n + t) − n

(21)

� (i) =

⎧
⎪⎪⎨⎪⎪⎩

�x i = 0

�x +
�√

(n + �)�x

�(i−1)

i = 1, ..., n

�x −
�√

(n + �)�x

�(i−n−1)

i = n + 1, ..., 2n + 1

mean �y,k and covariance Σy,k of kth Gaussian component 
after UT transformation are as follows:

When the UT is used to propagates uncertainty on the split 
Gaussian components, we assume that the weights of Gauss-
ian components keep unchanged and Gaussian components 
remain as Gaussian after the uncertainty propagation. There-
fore, the response PDF fY (y) is:

5  Convergence criterion

For the proposed approach, the input Gaussian distribution 
require to be split in Sect. 3. And subsequently, the compo-
nents of the GMM are propagated one by one using the UT in 
Sect. 4 to obtain the response PDF. However, the task of deter-
mining the optimal splitting number of input random variable 
remains an unresolved yet significant challenge. On the one 
hand, the response PDF is non-Gaussian distribution through 
a nonlinear performance function. Therefore, input random 
variables require to be split and represented by a Gaussian 
mixture model. When confronted with a highly nonlinear per-
formance function, accurately calculating the response PDF 
using only a limited number of splitting becomes challenging 
Alternatively, it should be noted that increasing the number 
of splits does not necessarily lead to improved precision in 
uncertainty propagation, as this sometimes requires significant 
processing resources.

As splitting number of input random variables raises, the 
estimated response PDF gradually approximates the true PDF, 
and its Shannon’s entropy eventually approaches a stable 
value. Therefore, we introduce an iterative strategy to gradu-
ally improve the precision of PDF estimation by progressively 
increasing the number of splits until uncertainty propagation 
requirement is satisfied. This approach can effectively control 
the computational complexity during the solving process.

For a continuous random variable X , the definition of Shan-
non’s entropy is as follows:

(22)

uy,k =

i=2n∑
i=0

W
(i)

m,k
y(i)

∑
y,k ==

i=2n∑
i=0

W
(i)

c,k

[
y(i) − �k

][
y(i) − �k

]T

(23)fY (y) =

K∑
k=1

�kN
(
y;�y,k,�y,k

)

(24)H(X) = −∫
Ω

p(x)In pX(x)dx
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where Ω is domain of PDF p(x) . When the random variable 
is Gaussian distribution pX(x) = N(x,�,Σ) , there exists an 
analytic solution for the information entropy.

When pX(x) =
N∑
i=1

cipi(x) is a Gaussian mixture model, the 

expression of Shannon’s entropy is as follows:

From Eq. (26), it is clear that there is no analytical solution. 
For this reason, when the probability distribution function is 
GMM, the value of its Shannon entropy needs to be estimated 
using the approximate value (Kolchinsky and Tracey 2017).

where:H(X|C) is the conditional entropy, as in Eq. (28); 
BD

(
pi ∥ pj

)
 is the Bhattacharyya distance, as in Eq. (29).

(25)H(x) =
1

2
log |2�eΣ|

(26)H(x) = −∫
(

N∑
i=1

cipi(x)

)
In

(
N∑
i=1

cipi(x)

)

(27)H(X) ≈ ĤHD(X) = H(X|C) −∑
i

ciIn
∑
j

cje
−BD(pi||pj)

(28)H(X|C ) =
∑
i

ciH
(
pi
)

The flow of nonlinear probabilistic uncertainty propaga-
tion algorithm based on Gaussian mixture model is shown 
in the Fig. 1.The detailed steps are outlined below:

(1) If input variable X is a Gaussian distribution or Gauss-
ian mixture model, go directly to step (3), otherwise go 
to next step.

(2) Select the best Gaussian mixture model to approximate 
non-Gaussian PDF by EM algorithm and the AIC cri-
terion, using Eq. (5) to (8).

(3) Calculate K-value �k of the performance function 
Y = f (x) in all directions, using Eq. (15).

(4) Based on size of K-value �k calculated in step (3), 
select the splitting direction m , set the initial value n of 
the splitting number and the error limit �.

(5) Along the selected splitting direction m , the Gaussian 
component is split into a Gaussian mixture model with 
smaller variance.

(6) Uncertainty propagation of the Gaussian components 
after splitting is performed by the UT, using Eq. (19) 
to Eq. (23).

(7) Calculate approximate value of entropy value of PDF 
p(y) , using Eq. (27) to Eq. (29).

(29)BD(p ∥ q) = −In∫
√
p(x)q(x)dx

Fig. 1  Flowchart of the pro-
posed method
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(8) Check whether the convergence condition is satisfied, 
and if so, proceed to the next step. If not, n = n + 2 , 
repeat step (4) to (7).

(9) Output the final response PDF.

6  Examples of algorithm performance

In this section, we validate effectiveness of the proposed 
method by using three numerical examples and two engi-
neering examples. At the same time, uncertainty propagation 
results of the proposed method are compared with those of 
the multidirectional GMM (MGMM) [37] and MCS.

6.1  Example 1: Mathematical problems 
where the input distribution is Gaussian

Consider a performance function with two output 
components:

The distributions of input random variables (r, �) are 
Gaussian distributions with mean � and covariance Σ as 
in Eq. (31), and the eigenvalues and eigenvectors are in 
Eq. (32).

We employed the proposed method, in conjunction with 
the MGMM and MCS, to investigate the uncertainty propa-
gation of the performance function y(r, �) . For the proposed 
method: since input Gaussian distribution is a multivariate 
GMM with 1 component, the K-value �k in each direc-
tion (the direction of the eigenvector) is first calculated: 
�K1

= 1.1428 , �K2
= 45.9205 . Given that the K-value in the 

v2 direction is approximately 36 times more than in the v1 
direction, the K-value in the v1 direction has a negligible 
effect on the performance function and the splitting is done 
only along the v2 direction. Secondly, the input Gaussian dis-
tribution is split into a Gaussian mixture model with smaller 
covariance along direction v2 . Third, we perform uncertainty 
propagation on each Gaussian component of the GMM to 
obtain the PDF of performance function and calculate its 
corresponding Shannon’s entropy. Finally, the number of 
splits is increased until the disparity in Shannon entropy is 
below a given error limit � . For the MGMM, the value of 
Stirling criterion �s is calculated:�S1

= 1.0913,�S2
= 0.1951 . 

(30)y =

{
r cos(�)

r sin(�)

(31)� =

[
10

�∕2

]
Σ =

[
8 0.5

0.5 1.21�2

]

(32)
�1 = 7.9376 v1 =

[
−0.9923 0.1239

]7

�2 = 12.0046 v2 =
[
0.1239 0.9923

]7

Similarly, since the �s along the v1 direction is 5.5 times 
that in the v2 direction, the splitting is done only along the 
v1 direction. For MCS, we generate a substantial number of (
1 × 105

)
 random samples and the values on the performance 

function y(r, �) are directly calculated. Thus, the outcomes 
derived from the MCS can serve as a benchmark for assess-
ing precision of the proposed approach.

From Fig. 2, it is clear that entropy difference of the 
proposed method gradually drops progressively as num-
ber of splits rises. Additionally, the number of splits along 
direction v2 converges to N = 21 × 3 = 63 , given a specific 
accuracy � = 4 × 10−3 . Error limit � needs to be chosen 
adaptively according to the specific problem. Generally 
speaking, a large K-value indicates that the nonlinearity of 
the performance function and covariance of random vari-
ables have a greater influence on the response. In order to 
ensure the accuracy of uncertainty propagation, the Gauss-
ian components need to be split more when the K-value is 
large. Therefore, the error limit � should be set relatively 
small. Conversely, the relatively large error limit � can also 
ensure the accuracy of uncertainty propagation when the 
K-value is small. For comparison with the K-value of the 
proposed method, the number of splits of MGMM along the 
direction v1 is 113. Figure 3 illustrates uncertainty propaga-
tion outcomes of MCS method, the proposed method, the 
MGMM method. It can be derived from Fig. 3a that the PDF 
2D surface diagram of the MCS method has a comparable 
"barrel shape". Meanwhile, it can be concluded from Fig. 3b 
that the shape of the PDF 2D surface obtained by proposed 
method is highly analogous to the MCS method. However, 
from Fig. 3a and c, it can be inferred that PDF calculated by 
MGMM differs very much from MCS.

To provide a comprehensive assessment of computa-
tional accuracy of the proposed method and the MGMM 
method, Table 1 presents the joint CDF of multiple response 

Fig. 2  The difference of entropy by proposed method
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functions y(r, �) − y and corresponding relative errors. y rep-
resents the boundary value of the joint CDF of the response 
function. The joint CDF outcomes of the proposed method 
show minimal discrepancies when compared to those 
obtained by the MCS across all five cases. For instance, 
when y = (0,−5) , the maximum relative error of the pro-
posed method is merely 2.95%. In the remaining cases, the 
CDF results of the proposed method closely align with those 
derived from the MCS method. However, the MGMM has 
a minimum error of 44% and a maximum error of 432%. 
Consequently, the analysis of the response PDF and CDF 
confirms that the proposed method achieves a notable degree 
of precision in this specific example.

The cost of proposed method is discussed next. In this 
example, we use MCS and MGMM as a comparison of the 
proposed method. The MCS is used as a benchmark and 
calls the performance function 105 times. For MGMM, the 
number of splits is 113 and the number of times it calls the 
performance function is 565. Although the number of calls 
to the performance function is much smaller than the MCS, 
the accuracy is insufficient since it chooses the wrong direc-
tion of the split. For proposed method, the number of splits 
is 63 and the number of calls to the performance function is 
315. Compared to MGMM, it calls fewer performance func-
tion and the accuracy of uncertainty propagation is higher. 
In this paper, the calculation cost is related to the number 

of dimensions and splits. For cases with a high number of 
dimensions or a large number of splits, the computational 
burden will be larger. But at the same time, uncertainty 
propagation accuracy will also increase.

6.2  Example 2: Mathematical problems 
with Gaussian and non‑Gaussian

Consider the following performance function:

where x1 and x2 are independent of each other, and their 
parameters are shown in Table 2.

For normal distribution, parameter 1 is mean � and 
parameter 2 is standard variance � ; for Gamma distribu-
tion, parameter 1 is shape parameter � and parameter 2 is 
scale parameter �.

For a non-Gaussian distribution of input random vari-
ables, it needs to be reconstructed with a Gaussian mixture 
model. First, we generate 1000 sample points based on the 
non-Gaussian distribution x1 , and EM algorithm is used to 
estimate parameters of GMM, while gradually increasing 
the number of Gaussian components. Based on the multi-
ple GMMs, the one with the smallest AIC value is chosen 
as the best GMM using the AIC criterion. In this example, 
the best GMM consisting of two Gaussian components is 
used to reconstruct the PDF of the Gamma distribution, and 
Table 3 presents the parameters of this model. The approxi-
mate GMM PDF of x1 and the PDF of the original distribu-
tion are shown in Fig. 4, from which it can be observed that 

(33)y = cos
(
x1 − 10.4

)
+ cos

(
x2
)
+ 0.08 ∗ x2

Fig. 3  Comparison of PDFs by 
MCS, the proposed method, and 
MGMM. a The PDF of MCS 
with 105 samples. b The PDF by 
proposed method. c The PDF by 
MGMM method

(a) The PDF of MCS with 105 samples (b) The PDF by proposed method (c) The PDF by MGMM method

Table 1  Comparison of joint CDF by MCS, the proposed method, 
and MGMM

Boundary y MCS The proposed 
method

The MGMM method

CDF CDF �
0
(%) CDF �

0
(%)

(− 1,5) 0.07399 0.07592 2.6053 0.12142 64.0938
(5,0) 0.15319 0.15009 2.0242 0.22202 44.9308
(0,− 5) 0.15327 0.14876 2.9468 0.32224 110.2348
(5,− 10) 0.07301 0.07411 1.5090 0.38875 432.5022
(10,− 10) 0.08628 0.08858 2.6739 0.45616 428.6858

Table 2  Distribution type and parameters of random variables

Random vari-
ables

Distribution type Parameter 1 Parameter 2

x
1

Gamma 80 0.13
x
2

Normal 5.5 8.2
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the GMM PDF is almost identical to the original Gamma 
distribution PDF.

Prior to uncertainty propagation, it is necessary to com-
bine the marginal distributions of x1 and x2 into a joint PDF. 
The joint PDF can be obtained by multiplying each marginal 

distributions since the two input random variables are inde-
pendent, then the number of components of the joint PDF is 
n = 2 × 1 = 2 . Subsequently, the Stirling criterion of MGMM 
and the K-value of the proposed method are employed to 
ascertain direction of splitting, as outlined in Table 4. It is 
observable that for K-value, since the �K of the two compo-
nents of the GMM in the direction 2 is approximately 5 times 
that in direction 1, both components of the GMM are split 
along direction 2. However, for the Stirling criterion, the �s 
in the direction 1 is approximately 2 times that in the direc-
tion 2, both components of the GMM are split along direction 
1.According to the splitting direction of the two methods, the 
splitting is carried out separately, and then uncertainty propa-
gation is performed, while the MCS method is also used to 
calculate the response PDF as a reference, and the outcomes 
are depicted in Fig. 5a. In contrast to the MGMM method, 
response PDF curve by proposed method agrees better with 
MCS method. Meanwhile, the CDF of the output response 
is shown in Fig. 5b. For the proposed method, the CDF of 
response is highly analogous to MCS method, while the 
MGMM method significantly diverges from the MCS.

Furthermore, Table 5 displays joint CDF of multiple 
response functions and corresponding relative errors. 
Upon examining all five situations, it is evident that the 
proposed method consistently achieves a small relative 
error. For instance, the proposed method has a maximum 
relative error of only 7.6% when 

−
y = 0 , and the smallest 

relative error is only 0.04% when y = 2 . However, the min-
imum error of the MGMM method is 8.11%, and the maxi-
mum error is 914%. The accuracy of the response PDF 
and CDF illustrates that the proposed method effectively 

Table 3  GMM parameters for Gamma distribution

Random variable Weight � =
(
0.5531, 0.4469

)

x
1

Mean � =
(
9.9667, 10.9639

)
Standard deviation � =

(
0.9540, 1.3228

)

Fig. 4  Reconstruction of input variables PDF of x
1

Table 4  The splitting direction 
of the variable and the splitting 
number

Proposed method The MGMM

Component 1 Component 2 Component 1 Component 2

Value of criterion
(
0.3349, 2.2480

)
(0.4325, 2.2480) (0.3390, 0.1784) (0.3969, 0.1784)

Split direction 2 2 1 1
Split number 23 19 25 27

Fig. 5  Response PDF, CDF by 
MCS, the proposed method, and 
MGMM. a The output response 
PDF. b The output response 
CDF

(a) The output response PDF (b) The output response CDF
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propagates uncertainty with good accuracy in this par-
ticular instance.

6.3  Example 3: Mathematical problems 
where the input distributions are non‑Gaussian

The performance functions are as follows:

where x1 and x2 are independent and their parameters are 
in Table 6.

For Log-normal distribution, the log-mean is represented 
by parameter 1, while parameter 2 denotes the log-variance. 
For Gamma distribution, the shape parameter is represented by 
parameter 1, and parameter 2 denotes scale parameter. Since 
input random variables x1 and x2 are both non-Gaussian, they 
need to be reconstructed by GMMs respectively. The GMM of 
x1 consists of 5 components, while the GMM of x2 consists of 
3 components. The parameters are shown in Table 7. The PDF 
of the GMM and the original distribution are shown in Fig. 6. 
It is evident that the PDF curves of the GMM closely resemble 
those of the original distributions x1 and x2.

The joint PDF can be obtained by multiplying each mar-
ginal distributions since the two input random variables x1 
and x2 are independent. Thus, the number of components of 
the joint PDF is n = 5 × 3 = 15 . Under the K-value of the 
proposed method, both components of the GMM are split 
along direction 2. In contrast, the Stirling criterion of the 
MGMM requires splitting along direction 1 for component 
1, 4, 7, and 13, while the remaining components are split 
along direction 2.

Figure 7 displays outcomes of uncertainty propagation 
obtained from MCS, the proposed method, the MGMM. 
Response PDF acquired by the MCS shows an obvious 
bimodal pattern, with distinct peaks at y ≈ −2.1,y ≈ 1.4 . 

(34)

f (x) =
7

√√√√
(
x1 − 4.9536

)
∗
(
x1 − 5.7897

)
∗
(
x1 − 6.9

)

+
((
x2 − 14.2474

)
∗
(
x2 − 18.4091

))2
Table 5  Joint CDF by MCS, the proposed method, and MGMM

Boundary y MCS The proposed 
method

The MGMM method

CDF CDF �
0(%) CDF �

0(%)

-1 0.04201 0.04413 5.0452 0.42616 914.4358
0 0.21806 0.23466 7.6113 0.54603 150.4037
1 0.56283 0.56409 0.2247 0.66183 17.5902
2 0.83153 0.83188 0.0425 0.76404 8.1165
3 0.98191 0.96157 2.0717 0.84644 13.7963

Table 6  The distribution of the random variable and related param-
eters

Random vari-
ables

Distribution type Parameter 1 Parameter 2

x
1

Gamma 50 0.1
x
2

Log-normal 2.5 0.2

Table 7  The approximate GMM parameters of x
1
 and x

2

Random variables Weight Mean Standard deviation

x
1

� = (0.3195, 0.1917, 0.1663,

3.7459 × 10
−4
, 0.3221)

� = (4.9536, 5.7897, 4.6878

8.3423, 4.7466)

� = (0.3492, 0.3492, 0.3492,

0.3492, 0.3492)

x
2 � =

(
0.3357, 0.0345, 0.6298

)
� =

(
14.2474, 18.4091, 11.1754

)
� =

(
2.9081, 2.9081, 2.9081

)

Fig. 6  Reconstruction of input 
variables PDF of x

1
 and x

2
 . a 

Random variable x
1
 . b Random 

variable x
2

(a) Random variable 1x (b) Random variable 2x
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The PDF by the proposed method well match MCS, and 
column 3 of Table 8 displays the splitting count for each 
Gaussian component. Conversely, the response PDF under 
the MGMM can only displays the initial peak, while the sec-
ond peak appears excessively smooth and exhibits a greater 
degree of inaccuracy when compared to MCS. Meanwhile, 
CDF of output response is shown in Fig. 7b. The response 
CDF derived from the proposed method demonstrates good 
consistency with MCS method, while MGMM has a very 
large deviation compared with the MCS method.

Furthermore, Table 9 presents the joint CDF outcomes of 
multiple response functions, together with their related rela-
tive errors. Upon examining all five situations, the proposed 
method achieves a negligible relative error. For instance, the 

proposed method has a maximum relative error of only 3.6% 
when y = 1.5.However, the maximum relative error of the 
MGMM is 85%. The accuracy of the response PDF and CDF 
illustrates that the proposed method effectively propagates 
uncertainty with high accuracy in this particular instance.

6.4  Example 4: RV reducer

RV reducer typically consists of a 2-stage reduction mech-
anism that offers a substantial transmission ratio, smooth 
transmission, small inertia, large output torque, small size, 
high precision, high reliability and high impact resistance, 
etc. Therefore, it is widely used in industrial machinery, aer-
ospace and automotive industries, robotics, medical equip-
ment and precision instruments to achieve high precision 
control and transmission. RV reducer is primarily composed 
of shell, input shaft, planetary gear set, ring gear, output 
shaft, bearings, seals, lubrication system, support structure. 
The detailed structure as shown in the Fig. 8 (Yang et al. 
2021).

The performance function of the contact functional 
fatigue strength of the planetary gear teeth is shown in 
Eq. (35), and the parameters d1,d2,d3 and X1 denote the mod-
ulus, the number of central gears, the number of planetary 
gears, and the width of the planetary gears, respectively. 

Fig. 7  Response PDF and CDF 
by MCS, the proposed method, 
and MGMM. a PDF of output 
response. b PDF of output 
response

(a) PDF of output response (b) PDF of output response

Table 8  The splitting direction and splitting number of input random 
variables

Component of GMM The proposed method The MGMM method

Split 
direc-
tion

Split number Split 
direc-
tion

Split number

Component 1 2 17 1 5
Component 2 2 13 2 13
Component 3 2 29 2 29
Component 4 2 25 1 5
Component 5 2 23 2 23
Component 6 2 27 2 27
Component 7 2 15 1 5
Component 8 2 11 2 11
Component 9 2 23 2 23
Component 10 2 23 2 23
Component 11 2 7 2 7
Component 12 2 29 2 29
Component 13 2 15 1 3
Component 14 2 15 2 15
Component 15 2 29 2 29

Table 9  The joint CDF by MCS, the proposed method, and MGMM

Boundary Y MCS The proposed 
method

The MGMM 
method

CDF CDF �
0
(%) CDF �

0
(%)

− 2.4 0.08093 0.08220 1.5663 0.15007 85.4210
− 1.3 0.75952 0.74907 1.3756 0.71443 5.9367
0 0.80284 0.77824 3.0640 0.77027 4.0567
0.5 0.80323 0.78385 2.4128 0.79083 1.5438
1.5 0.99531 0.95902 3.6457 0.86246 13.3477
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Each random variable obeys a multimodal distribution, and 
GMM is used to model the random variables, whose distri-
bution parameters are shown in Table 10.

The joint PDF of input random variables can be obtained 
by multiplying each marginal distribution. The number of 

(35)

Y = g(d,X) = 297.6064

√
7161.8144

X1d
2
1
d3
3

(d2 + d3) − 1100

components of the joint PDF is n = 2 × 2 × 2 × 2 = 16 . 
The K-value criterion is applied to each Gaussian com-
ponent of the joint GMM, and the splitting is performed 
along the direction with the largest K-value, all the split-
ting directions are direction 1, and all the number of split-
ting is 5, then the number of splitting is n = 16 × 5 = 80 . 
The response PDF of the MCS and the proposed method 
are shown in Fig. 9a. The response PDF calculated by the 
proposed method is very close to the PDF derived from 
MCS, which achieves nonlinear uncertainty propagation 
with high precision. Meanwhile, it can be observed from 
Fig. 9b that response CDF of the proposed method is also 
in total accordance with the outcomes acquired by the 
MCS.

Furthermore, Table 11 presents CDF of multiple response 
functions together with their related relative error. Upon 
examining all five situations, the proposed method achieves 
a small relative error. For instance, the proposed method has 
a maximum relative error of only 2.0% when Y = −1015.18 , 
and the minimum relative error is 0.02% when Y = −860 . 

Fig. 8  The structure of RV 
reducer (Yang et al. 2021)

Table 10  Parameters of individual random variable

Random 
variables

Weights Means Standard deviations

d
1

(
0.5, 0.5

)
(1.65,2.61) (0.16,0.18)

d
2

(
0.4, 0.6

)
(12.5,17.9) (1.2,1.3)

d
3

(
0.4, 0.6

)
(49.4,59.4) (2.5,2.5)

X
1

(0.6,0.4)
(
4.48, 5.31

)
(0.15,0.18)

Fig. 9  Response PDF and CDF 
by the proposed method and 
MCS. a The PDF by proposed 
method and MCS. b The CDF 
by proposed method and MCS

(a) The PDF by proposed method and MCS (b) The CDF by proposed method and MCS
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The accuracy of the response PDF and CDF illustrates that 
the proposed method effectively propagates uncertainty with 
high accuracy in this particular instance.

6.5  Example 5: NASA challenging problem

In 2014, NASA released a publication on the complex issue 
of uncertainty propagation in spacecraft and system design 
(Crespo et al. 2014), as shown in Fig. 10. The structural per-
formance function is a two levels of uncertainty propagation 
process. The first level is to propagate uncertainty param-
eters to the subsystem response (intermediate variable x ), 
after obtaining uncertainty information of the intermediate 
variable x , it is used to the second level uncertainty propaga-
tion to obtain uncertainty information of final performance 
function g.

The inputs of first-level uncertainty problem are 21 uncer-
tain variables, which are expressed in Eq. (36). Because the 
input variables p is mainly classified into three types: ran-
dom uncertainty, epistemic uncertainty, and stochastic and 
epistemic mixed uncertainty. And this paper only studies the 
stochastic uncertainty problem, so this complex uncertainty 
parameter is simplified and only stochastic uncertainty is 
considered. Additionally, some parameters are held constant, 
as shown in Tables 12 and 13.

where: p is a random variable; h is the first level model of 
the system and x is an intermediate variable; d is the design 
variable.

In this example, the PDF of p8, p15, p17 is reconstructed by 
a 3-component GMM. The optimal number of GMM com-
ponents is 1 for p21 , and the specific parameters are shown in 
Table 14. The GMM PDF of random variables and original 
distribution are shown in Fig. 11. from which it can be seen 
that the PDF curve of GMM closely resembles that of the 
original Gamma distribution.

The joint PDF can be obtained by multiplying each 
marginal distribution. Given that input random variables 
are independent, the number of components of the joint 
PDF is determined to be n = 3 × 3 × 3 = 27 . Due to the 
five-dimensional nature of the output response PDF, it is 
not possible to visually represent the joint PDF using 3D 
graphics. Therefore, the marginal PDFs of the response are 
displayed individually. The PDFs of the first-level uncer-
tainty problem using the proposed method and the MCS are 
shown in Fig. 12, from which it can be seen that the PDF of 
x1, x2, x3, x4, x5 by the proposed method and MCS coincide 
almost exactly.

Furthermore, Table 15 presents the joint CDF of multiple 
response functions and their accompanying relative errors. 
Upon examining all five situations, the proposed method 
achieves a small relative error. For instance, the proposed 

(36)

⎧⎪⎪⎨⎪⎪⎩

x1 = h1(p1, p2, p3, p4, p5)

x2 = h2(p6, p7, p8, p9, p10)

x3 = h3(p11, p12, p13, p14, p15)

x4 = h4(p16, p17, p18, p19, p20)

x5 = p21

.

Table 11  Relative errors of the CDF between MCS and the proposed 
method

Boundary Y MCS The proposed method

CDF CDF �
0(%)

− 1015.18 0.17549 0.17196 2.0122
− 980 0.55109 0.54769 0.6169
− 940 0.88396 0.87123 1.4400
− 900 0.98968 0.99005 0.0375
− 860 0.99968 0.99989 0.0221

Fig. 10  NASA challenge problems

Table 12  Parameters of random variable

Random variables Distribution type Parameters

p
4
, p

5
, Normal � =

(
0.47.0.45

)
,

,� =
(
2.2, 0.40

)
, p = 0.35

p
8

Beta (�, �) = (4, 4)

p
15

Beta (�, �) = (6, 6)

p
17

Beta (�, �) = (5, 5)

p
21

Beta (�, �) = (30, 30)

Table 13  Parameters of deterministic variable

Deterministic variables

p
1
= 0.5 p

2
= 0.7 p

3
= 0.7 p

6
= 0.5 p

7
= 0.5

p
9
= 0.5 p

10
= 0.5 p

11
= 0.2 p

12
= 0.3 p

13
= 0.2

p
14

= 0.1 p
16

= 0.7 p
18

= 0.5 p
19

= 0.5 p
20

= 0.5
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method has a maximum relative error of only 5.6% and 
the minimum relative error is 2.2%. The accuracy of the 
response PDF and CDF illustrates that the proposed method 
effectively propagates uncertainty with good accuracy for 
the first-level uncertainty propagation problem.

Since the result of first-level uncertainty propagation 
is the joint PDF, the GMM of intermediate variable x is 
directly used as the input probability distribution for the 
second-level uncertainty problem. The PDFs of the sec-
ond-level uncertainty derived from MCS and the proposed 
method are shown in Fig. 13, respectively. Based on the 
analysis of Fig. 13, it can be inferred that the proposed 
method exhibits certain discrepancies when compared 
with the MCS method for g1, g2, g3.However, the PDF 

curve is globally comparable to the MCS. And in the other 
variables, the PDF curves obtained from MCS and the 
proposed method are in complete agreement.

Furthermore, Table 16 presents the joint CDF of mul-
tiple response functions and their accompanying relative 
errors. Upon examining all five situations, the proposed 
method achieves a small relative error. For instance, the 
proposed method has a maximum relative error of only 
5.1% and the minimum relative error is 1.4%. The accuracy 
of the response PDF and CDF illustrates that the proposed 
method effectively propagates uncertainty with good accu-
racy for the second-level uncertainty propagation problem.

Table 14  Approximate GMM 
parameters for the random 
variables p

8
, p

15
, p

17
, p

21

Random 
variables

Weights Means Standard deviations

p
8

� = (0.2832, 0.2736, 0.4432) � =
(
0.3207, 0.6793, 0.5007

)
� =

(
0.0102, 0.0102, 0.0102

)
p
15

� = (0.2707, 0.2675, 0.4617) � = (0.3519, 0.6452, 0.4989) � = ( 0.0074, 0.0074, 0.0074 )

p
17

� = (0.4395, 0.2848, 0.2757) � =
(
0.4492, 0.3428, 0.6542

)
� =

(
0.0092, 0.0092, 0.0092

)
p
21

� = 1 � = 0.4999 �= 0.0041

Fig. 11  PDF curve with Gamma 
distribution and GMM
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7  Conclusion and outlook

This paper develops a new method for propagating 
uncertainties in the presence of nonlinear performance 

functions. When the input follows multivariate Gaussian 
distribution, a K-value criterion is proposed, which can 
select the direction of splitting. The criterion can take 
into account the influence of the nonlinearity of perfor-
mance function and the variance of the input variables 
on the response. The appropriate number of components 
for Gaussian distribution splitting can be determined by 
using the approximate entropy of the output response as 
the criterion for convergence. Based on the outcomes of 
multiple cases, it is found that the accuracy of the pro-
posed method is relatively high. Therefore, this method 
can serve as a valuable approach for effectively propagat-
ing uncertainties with a high degree of precision. Fur-
thermore, it can be expanded and applied to multi-level 
uncertainty propagation of intricate products. Inaccurate 
multi-level uncertainty propagation might result in error 
accumulation, necessitating a high-precision method for 
uncertainty propagation. Meanwhile, the proposed method 
needs to be further improved and upgraded. The current 

1x 2x 3x

4x 5x

Fig. 12  Joint PDF of intermediate variable x by proposed method and MCS

Table 15  Relative errors of the joint CDF by MCS and the proposed 
method

Boundary x MCS The proposed method

CDF CDF �
0(%)

(
0.42, 1.07, 0.78, 0.92, 0.6

)
0.006651 0.006331 4.8218

(0.43,1.07, 0.8,0.94, 0.45) 0.020925 0.021382 2.1855
(0.43,1.055, 0.85,0.91, 0.55) 0.001603 0.001513 5.6196(
0.44, 1.055, 0.85, 0.94, 0.5

)
0.009194 0.008896 3.2458

(0.44,1.07, 0.78,0.94, 0.5) 0.031168 0.032446 4.10363
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6g

7g 8g

5g4g

1g 2g 3g

Fig. 13  Joint PDF of output g calculated by MCS and the proposed method

Table 16  Relative errors of the joint CDF by MCS and the proposed method

Boundary g MCS The proposed method

CDF CDF �
0(%)

(
−0.3,−0.76, 0, 1.9 × 10−3, 0.25, 2.5 × 10−3,−1.23 × 10−4,−2.29 × 10−3

)
3.59 × 10−5 3.76 × 10−5 4.7323(

−0.21,−0.7, 0, 2.3 × 10−3, 0.5, 2.5 × 10−3,−1.4 × 10−4, 2.32 × 10−3
)

9.66 × 10−4 9.81 × 10−4 1.4563(
0.3,−0.76, 0.5, 1.9 × 10−3, 0, 1.8 × 10−3,−1.23 × 10−4,−2.49 × 10−3

)
2.35 × 10−4 2.30 × 10−4 2.2155

(0.77,−0.76, 0, 2.3 × 10−3, 0.25, 3.3 × 10−3,−1.17 × 10−4,−2.44 × 10−3) 9.27 × 10−4 9.74 × 10−4 5.1021(
0.98,−0.63, 0, 1.9 × 10−3, 0.5, 4.2 × 10−3,−1.14 × 10−4,−2.38 × 10−3

)
18.96 × 10−4 19.66 × 10−4 3.7281
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algorithm may lead to a large amount of computation for 
high-dimensional problems or a substantial number of 
splits.
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