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Abstract
This paper presents a novel multi-fidelity model-management framework based on the estimated error between the low-
fidelity and high-fidelity models. The optimization algorithm is similar to classical multi-fidelity trust-region model-man-
agement approaches, but it replaces the trust-radius constraint with a bound on the estimated error between the low- and 
high-fidelity models. This enables globalization without requiring the user to specify non-intuitive parameters such as the 
initial trust radius, which have a significant impact on the cost of the optimization yet can be hard to determine a priori. We 
demonstrate the framework on a simple one-dimensional optimization problem, a series of analytical benchmark problems, 
and a realistic electric-motor optimization. We show that for low-fidelity models that accurately capture the trends of the 
high-fidelity model, the developed framework can significantly improve the efficiency of obtaining high-fidelity optima 
compared to state-of-the-art multi-fidelity optimization methods and a direct high-fidelity optimization.

Keywords  Multi-fidelity optimization · Electric-motor optimization · Error estimates

1  Introduction

High-fidelity numerical modeling and optimization tools 
have become an integral part of the detailed design process 
for systems such as aircraft and their components. How-
ever, the large computational cost of high-fidelity analysis 
and optimization often precludes its use at earlier stages in 
the design process, ultimately limiting the effectiveness of 
such analyses. This is unfortunate, as it is during the con-
ceptual design phase that engineers have the most flexibility 
to explore the design space and consider novel concepts. 
Currently, decisions at the conceptual design phase are 
largely dominated by experience, engineering intuition, and 
low-fidelity analyses. These decision-making processes can 
be quite effective when designing systems that iterate on 
past designs. However, they can fail when the designers are 
engaging in clean-sheet design and exploring truly novel 

concepts. It is in these cases where the use of high-fidelity 
analysis and optimization would be most effective at sup-
porting the design process.

Multi-fidelity analysis and optimization methods pro-
vide an effective framework for combining the computa-
tional efficiency of low-fidelity methods with the accuracy 
of high-fidelity tools. When dealing with models of multiple 
fidelities, it is essential to have a methodology to effectively 
distribute work between the models to balance speed and 
accuracy. At the 2010 National Science Foundation work-
shop on Multidisciplinary Design Optimization for Com-
plex Engineered Systems, Boeing Technical Fellow Dr. 
Evin Cramer highlighted this need for a model-management 
strategy by identifying several aspects of multi-fidelity mod-
eling that need to be addressed (Simpson and Martins 2011). 
Namely, she identified the difficulty in choosing the correct 
level of fidelity for the right application, the ability to effec-
tively use multiple levels of fidelity at once, and a lack of 
maturity in multi-fidelity tools that preclude their industrial 
adoption.

In a review of multi-fidelity methods, Peherstorfer et al. 
(2018) differentiate between three types of multi-fidelity 
model-management strategies: adaptation, fusion, and filter-
ing. They define adaptation strategies as those that adapt the 
low-fidelity model based on information from the high-fidel-
ity model, fusion strategies as those that combine low- and 
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high-fidelity outputs, and filtering strategies as those that 
use the high-fidelity model only when indicated by a low-
fidelity model. For completeness, the following paragraphs 
highlight some relevant literature related to each of these 
multi-fidelity approaches.

Multi-fidelity optimization approaches that employ fusion 
strategies typically follow the Efficient Global Optimiza-
tion (EGO) framework described by Jones et al. (1998). In 
these approaches, one constructs a multi-fidelity surrogate 
(or emulator) that fuses data from the low- and high-fidelity 
models. Various fusion strategies have emerged through the 
years. Kennedy and O’Hagan (2001) developed a Gaussian-
process-based multi-fidelity method to learn the discrepancy 
between a low- and high-fidelity model in a Bayesian frame-
work. Forrester et al. (2007) developed a co-Kriging-based 
multi-fidelity surrogate that eases some of the computational 
burden associated with estimating the Gaussian-process 
(GP) hyperparameters. More recently, Eweis-Labolle et al. 
(2022) developed a generalized multi-fidelity surrogate 
based on latent map GPs that can efficiently fuse arbitrary 
numbers of models, and can support discrete inputs.

There have been numerous studies developed that opti-
mize these GP-based multi-fidelity surrogates; we refer the 
reader to the literature (Keane 2003; Forrester et al. 2007; 
Jo and Choi 2014; Foumani et  al. 2023) for examples. 
Despite their broad usage and effectiveness on many prob-
lems, EGO-type multi-fidelity optimization formulations 
have difficulties handling large numbers of design variables 
and general nonlinear constraints (Shi et al. 2021). Despite 
recent efforts to ameliorate the difficulty of GPs to handle 
large design spaces (Shan and Wang 2010; Eriksson and 
Jankowiak 2021), the curse of dimensionality is still a prob-
lem (Viana et al. 2014; Shi et al. 2021).

Multi-fidelity filtering strategies are perhaps the least 
studied in the literature, though there has been a renewed 
interest lately. Réthoré et al. (2014) used a filtering-based 
optimization strategy to optimize a wind farm layout. Fur-
ther, Wu et al. (2022b) developed a sequential multi-fidelity 
approach specifically designed for multi-disciplinary prob-
lems that can consider arbitrary levels of fidelity for each 
discipline. The authors subsequently used this sequential 
multi-fidelity approach to perform a multi-fidelity aero-
structural optimization of a large-scale transport aircraft (Wu 
et al. 2022a). Despite the great promise shown by filtering 
methods, the implementations typically require modifica-
tions to the underlying software, making it harder for general 
practitioners to take advantage of them.

Adaptation model-management strategies have largely 
been built upon the Trust-Region Model-Management 
(TRMM) approach introduced by Lewis (1996) and Alex-
androv et al. (1998). Originally limited to unconstrained 
optimization, Alexandrov et  al. (2001) later extended 
the TRMM framework to a general Approximation and 

Model-Management Optimization (AMMO) design-
optimization framework, supporting augmented Lagran-
gian optimization, multilevel algorithms for large-scale 
constrained optimization (MAESTRO), and sequential 
quadratic programming (SQP). TRMM methods general-
ize the classic trust-region SQP optimization method by 
replacing the high-fidelity model’s quadratic approxima-
tion with a low-fidelity model. By calibrating the low-
fidelity model at each optimization iteration—such that the 
objectives and constraints and their gradients are equal to 
the high-fidelity model—the sequence of low-fidelity sub-
optimizations will provably converge to the high-fidelity 
optimum (Alexandrov et al. 2001).

These TRMM-based methods have been the subject of 
continued research interest. Gratton et al. (2008) devel-
oped a method to recursively apply the TRMM framework 
to arbitrary levels of fidelity. Their method is similar to the 
class of multigrid methods used for solving partial differ-
ential equations, as it switches between levels of fidelity 
to accelerate convergence to the optimum. Olivanti et al. 
(2019) extended this approach with a new gradient-based 
criterion to determine when to switch between fidelity 
levels. March and Willcox (2012b) further developed a 
variation of the TRMM framework that satisfies the high-
fidelity first-order optimality conditions without needing 
to evaluate high-fidelity gradients. Subsequently, they 
extended this method to support constrained optimiza-
tion (March and Willcox 2012a). Elham and van Tooren 
(2017) replaced the trust region merit function-based step 
acceptance criteria with a filter method that considers 
decreases in the objective function and infeasibility sepa-
rately when deciding to accept or reject a step. Nagawkar 
et al. (2021) developed a method that achieves the required 
first-order consistency between the low- and high-fidelity 
models by using a manifold mapping to ensure that the 
low-fidelity model is a reliable representation of the high-
fidelity model during the low-fidelity sub-optimization 
process.

Outside of the TRMM-based approaches, Bryson and 
Rumpfkeil (2018) developed a multi-fidelity quasi-Newton 
framework that uses the low-fidelity model in its line-search 
procedure. Compared to conventional TRMM methods that 
only calibrate the low-fidelity model at each design iteration, 
this quasi-Newton method also builds and maintains a high-
fidelity Hessian approximation. By maintaining this high-
fidelity Hessian approximation, the multi-fidelity method 
is able to pick more effective descent directions than would 
be possible using the low-fidelity Hessian. Further, the algo-
rithm can efficiently switch to a direct high-fidelity optimiza-
tion should the low-fidelity model be deemed too inaccurate. 
Finally, Hart and van Bloemen Waanders (2023) developed an 
approach that uses post-optimality sensitivities with respect to 
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model discrepancy at the end of the low-fidelity optimization 
to update the high-fidelity optimization solution.

While the multi-fidelity quasi-Newton approaches show 
great promise at reducing the cost of finding high-fidelity 
optima, their algorithms requires a special implementation 
and cannot use an off-the-shelf optimization algorithm, likely 
limiting its adoption. In the case of TRMM-based approaches, 
the trust-region constraint introduces parameters (e.g., the ini-
tial radius and radius scaling factors) that are not intuitive and 
may be difficult for practitioners to define. While TRMM and 
related algorithms will converge robustly for a wide range of 
parameters, computational cost can be adversely affected by 
poor choices (Conn et al. 2000, Chapter 17; Gould et al. 2005). 
In addition to the potential issues associated with parameter 
selection, we hypothesize that the isotropy of the trust-radius 
constraint can impede optimization progress as it cannot 
account for possible anisotropy in the error in the calibrated 
low-fidelity model. Thus, the main algorithmic contribution of 
this work is to define the trust region in terms of the estimated 
error between the low- and high-fidelity models. This defini-
tion allows the optimization to take higher-quality steps than 
conventional TRMM methods. Furthermore, users can then 
select a target error tolerance for, say, the objective function 
rather than needing to define non-intuitive parameters. Thus, 
we present a multi-fidelity model-management framework 
based on error estimates between the low- and high-fidelity 
models.

The rest of this paper is organized as follows. Section 2 
details the error-estimate calculation. Section 3 describes the 
proposed model-management framework. Section 4 presents 
results from the error-estimate model-management framework, 
considering a simple demonstration problem, a series of ana-
lytical benchmark problems, and a realistic problem show-
casing the optimization of an electric motor. Finally, Sect. 5 
discusses the presented model-management framework and 
highlights future areas of research.

2 � Error estimates

Consider a high-fidelity model fhi ∶ ℝ
n
→ ℝ and a low-fidel-

ity model flo ∶ ℝ
n
→ ℝ . Let x ∈ ℝ

n be the common design 
variables shared by the two models. Fernández-Godino et al. 
(2016) identify two distinct categories used to calibrate the 
low-fidelity model to the high-fidelity data: additive/multipli-
cative corrections, and comprehensive corrections.

Additive corrections are of the form:

where � (k)(x) is the additive correction function defined 
based on the calibration point x(k) . Superscripts (k) indicate 
that a quantity has been evaluated at or is defined by the k

(1)f̂ (k)(x) = flo(x) + 𝛾 (k)(x),

-th calibration point x(k) . Multiplicative corrections are of 
the form:

where �(k)(x) is the multiplicative correction function. The 
order of the calibration indicates the level of continuity 
between low- and high-fidelity models; zeroth-order cali-
bration implies that f̂ (k)

(
x(k)

)
= fhi

(
x(k)

)
 , while first-order 

calibration requires that both f̂ (k)
(
x(k)

)
= fhi

(
x(k)

)
 and 

∇f̂ (k)
(
x(k)

)
= ∇fhi

(
x(k)

)
 , and so on for higher-order calibra-

tions. Comprehensive corrections encompass all other avail-
able correction schemes.

Alexandrov et al. (1998, 2001) showed that the TRMM 
strategy is provably convergent to a high-fidelity optimum 
as long as at least first-order calibrated models are used for 
each response function (the objective and each constraint). 
To that end, we consider the first-order additive calibration 
models:

calibrated about the reference point x(k) , where the correc-
tion term is defined as follows:

and we follow the convention that gradients are row vectors.
Next, we define the error between the high-fidelity model 

and the calibrated low-fidelity model as follows:

We take a Taylor series expansion of Eq. (4) about x(k) to 
estimate the error in the calibrated model at an arbitrary 
design vector x without needing to re-evaluate the high-
fidelity model. Considering the first-order calibration 
scheme given in Eqs. (1) and (3), we obtain the following 
second-order error estimate, which we distinguish from the 
exact error with a hat:

where �(k)

𝛥
= ∇2 f̂ (k)

(
x(k)

)
− ∇2fhi

(
x(k)

)
 , the difference in 

the Hessians of the calibrated low-fidelity and high-fidelity 
models.

For many engineering problems of interest, the Hessian 
matrices ∇2 f̂ (k)

(
x(k)

)
 and ∇2fhi

(
x(k)

)
 are not available, either 

due to excessive computational cost or storage requirements. 
To address this concern, one can approximate the Hessian 
difference using methods such as quasi-Newton approaches, 
or Arnoldi’s method, which uses matrix–vector products to 
construct a low-rank approximation of the target matrix. 

(2)f̂ (k)(x) = 𝛽(k)(x)flo(x),

(1)f̂ (k)(x) = flo(x) + 𝛾 (k)(x),

(3)
� (k)(x) = fhi

(
x(k)

)
− flo

(
x(k)

)

+
(
∇fhi

(
x(k)

)
− ∇flo

(
x(k)

))(
x − x(k)

)
,

(4)E(k)(x) = f̂ (k)(x) − fhi(x).

(5)Ê(k)(x) =
1

2

(
x − x(k)

)T
�
(k)

𝛥

(
x − x(k)

)
,
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When Hessian-vector products are not available explicitly, 
one can compute approximate Hessian-vector products by 
performing a directional finite-difference of the gradient.

2.1 � Characterizing the error constraints

Given the ultimate goal of using the error estimate given in 
Eq. (5) as a constraint in an optimization, it is important to 
be able to characterize how the error bounds will affect the 
optimization. We now describe the properties of the second-
order error estimate, and we propose modifications to ensure 
their suitability for use in an optimization.

The feasible region will take on different shapes depend-
ing on the definite-ness of �(k)

�
 . In the case of a positive or 

negative definite Hessian difference, the feasible region is 
bounded by an ellipsoid, as illustrated for a generic two-
dimensional second-order constraint in Fig. 1a. If the Hes-
sian difference is indefinite, the feasible region becomes 
unbounded, in the shape of a saddle. The interface between 
the feasible and infeasible regions is the hyperboloid, offset 
from the saddle point by the constraint tolerance, as illus-
trated in Fig. 1b. Finally, if the Hessian difference is sem-
idefinite, the feasible region is again unbounded, as illus-
trated in Fig. 1c.

While the unbounded constraints are not necessarily inac-
curate, they are based on local information and will likely 
become inaccurate as the size of the design step grows. Thus, 
we wish to bound the feasible region so that we may remain 
in the region where the error estimates are accurate. For the 
case of either negative- or positive-definite Hessian differ-
ences, there is no work to be done, as the feasible region is 
already bounded by an ellipsoid. To remedy the unbounded 
constraint for the case of indefinite and semidefinite Hessian 
differences, we find an upper bound on the absolute value 
of the error estimates and use that bound as our constraint.

We start by decomposing the symmetric Hessian differ-
ence into its spectral decomposition �(k)

�
= �Λ�T , where � 

holds the eigenvectors of �(k)

�
 and Λ is a diagonal matrix 

with the eigenvalues of �(k)

�
 as its diagonal entries. As Λ is a 

diagonal matrix, we can then simplify Eq. (5) to

where y(k) = �
T
(
x − x(k)

)
 , and the subscript i denotes an 

index into the matrix and vector. Next, we use the triangle 
inequality to bound the absolute value of the sum given in 
Eq. (6):

where we have omitted the redundant absolute value around 
the squared y(k)

i
 term. Finally, we can expand the bounded 

sum and reverse the previous steps to find

where |||�
(k)

�

||| indicates a modification to �(k)

�
 such that each 

eigenvalue has been replaced with its absolute value. Hence-
forth, we will use

to denote the estimated bound that we use in the model-
management framework.

This procedure works well to create bounded steps in the 
case of full-rank indefinite Hessian differences, as illustrated 
in Fig. 2a, which shows the modified error estimate for the 
same indefinite Hessian difference as shown in Fig. 1b. How-
ever, in the case of semidefinite or rank-deficient Hessian 

(6)Ê(k)(x) =
1

2

∑

i

Λi,i

(
y
(k)

i

)2

,

(7)
|||Ê

(k)(x)
||| =

|||||
1

2

∑

i

𝜆i

(
y
(k)

i

)2|||||
≤

1

2

∑

i

||𝜆i||
(
y
(k)

i

)2

,

(8)|||Ê
(k)(x)

||| ≤
1

2

(
x − x(k)

)T|||�
(k)

𝛥

|||
(
x − x(k)

)
,

(9)Ẽ(k)(x) =
1

2

(
x − x(k)

)T|||�
(k)

𝛥

|||
(
x − x(k)

)

(a) Definite Hessian difference (b) Indefinite Hessian difference (c) Semidefinite Hessian difference

Fig. 1   The second-order error constraints have an unbounded feasible region when the difference in the model’s Hessians is indefinite or sem-
idefinite
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differences, we can still end up with unbounded steps. To 
remedy this, we replace each zero eigenvalue of the Hes-
sian difference with the smallest non-zero eigenvalue. This 
ensures that a step in any direction is bounded and that we 
are not overly conservative with step bounds in directions 
where the Hessian difference is small. Error-estimate con-
straint contours based on the new bounds given in Eq. (9) 
are plotted in Fig. 2b for the same semidefinite Hessian dif-
ference shown in Fig. 1c.

An inherent assumption of our error-estimate model is 
that the quadratic error model is sufficiently accurate within 
the error bounds used during the optimization. If the model 
is highly nonlinear, or if the error bounds are too large, this 
assumption may be invalid, and the constraints may fail to 
properly globalize the optimization.

3 � Error‑estimate‑based model management

This section describes the details of the proposed multi-
fidelity error-estimate-based model management (E2M2 ) 
framework. Specifically, we describe the steps of the optimi-
zation algorithm and discuss the role of the error estimates 
as constraints in the optimization procedure.

We start by considering general, non-linearly constrained 
optimization problems of the form:

where fhi ∶ ℝ
n
→ ℝ is the high-fidelity objective func-

tion, ghi ∶ ℝ
n
→ ℝ

mg is the high-fidelity equality constraint 
function, and hhi ∶ ℝ

n
→ ℝ

mh is the high-fidelity inequality 
constraint function, and mg and mh represent the number of 
equality and inequality constraints, respectively.

(10)
minx fhi(x)

s.t. ghi(x) = 0

0 hhi(x) ≤ 0,

The proposed E 2M2 framework is an iterative procedure. 
We start with an initial design vector x(0) , optimality and 
feasibility tolerances �opt and �feas , and user-specified error 
bounds �abs and �rel for each response function.

At each iteration k , the low- and high-fidelity models and 
their gradients are evaluated at the current design vector x(k) . 
Then, using Eq. (3), calibration models are constructed for 
each response function. Next, for each response function, we 
use Eq. (9) to build the second-order error-estimate models. 
Then, we pose the error-constrained sub-problem as follows:

where the f̂ (k) , ĝ(k), and ĥ
(k)

 functions indicate the use of 
calibrated models as defined in Eq. (1).

As we want this model-management framework to be 
usable with off-the-shelf optimization algorithms, we can-
not solve Eq.  (11) as written, since there will likely be 
cases where the error constraints are incompatible with 
the “true” constraints, ĝ(k) and ĥ

(k)
 , creating an infeasible 

problem. While we could simply increase the error toler-
ances to the point where the constraints are feasible, that 
would defeat the purpose of bounding the steps based on 
the estimated error. Luckily, this is a known problem for 
trust-region methods (Nocedal and Wright 1999), and we 

(11)

min
x

f̂ (k)(x)

s.t. ĝ(k)(x) = 0

ĥ
(k)
(x) ≤ 0

Ẽ
(k)

f
≤ min

(
𝜏abs,f ,

|||fhi
(
x(k)

)|||𝜏rel,f
)

Ẽ
(k)

g,i
≤ min

(
𝜏abs,g,i,

|||ghi,i
(
x(k)

)|||𝜏rel,g,i
)
,

∀i = 1, 2,… ,mg

Ẽ
(k)

h,i
≤ min

(
𝜏abs,h,i,

|||hhi,i
(
x(k)

)|||𝜏rel,h,i
)
,

∀i = 1, 2,… ,mh,

Bound based
on Eq. (5)

(a) Bounded feasible region for an indefinite Hessian difference

Bound based on Eq. (5)

(b) Bounded feasible region for a semidefinite Hessian difference

Fig. 2   Redefining the second-order error estimates to use a full-rank positive-definite modification to the Hessian difference ensures that each 
error constraint results in a bounded feasible region, even for indefinite and semidefinite Hessian differences
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can rely on techniques developed for such methods. We take 
an approach based on the Sequential �1 Quadratic Program-
ming (S�1QP) method described in Chapter 18.5 of Nocedal 
and Wright (1999). We first move the calibrated constraints 
into the objective, as an �1 penalty term. Then, we reformu-
late the non-smooth �1 penalty term as an “elastic” program 
by introducing the slack variables v,w ∈ ℝ

mg , and t ∈ ℝ
mh . 

This results in the following sub-problem:

The constraints in the sub-problem defined in Problem (12) 
are always compatible (Nocedal and Wright 1999).

The penalty parameter � must be chosen carefully to bal-
ance the competing goals of improving the objective and 
ensuring feasibility. We base our scheme that updates � on 
Algorithm 18.5 given in Nocedal and Wright (1999) and 
describe it here. During each sub-problem iteration, after 
Problem (12) is solved, if the slack variables v , w , and t are 
all less than �feas , then � is deemed acceptable and will be 
used again in the next iteration. If, instead, the values of the 
slacks are non-zero, we may need to increase the value of 
the penalty. We define m(x) ∶ ℝ

n
→ ℝ

mg+mh as the constraint 
violation at the design specified by x . To determine how 
much to increase � , we solve another optimization problem 
that minimizes the �1 norm of m(x) . The solution to this 
optimization problem represents the maximum reduction in 
infeasibility that could be achieved inside the error-estimate 
bounds. If the maximum achievable reduction in infeasibility 
is at least 1% larger than the actual reduction in infeasibility, 
then we increase the penalty parameter by a factor of 1.5.

The values used for each error bound, � (k)
abs

 and � (k)
rel

 , are 
free to vary from each sub-optimization to the next as 
needed. We note, however, that we have not found constant 
maintenance of these bounds to be needed, compared to the 
updates needed to the trust radius in a trust-region-based 
optimization. As the error-estimate constraints are based 
on the estimated level of correlation between the low- and 

(12)

min
x,v,w,t

f̂ (k)(x) + 𝜇

(
mg∑

i

(
vi + wi

)
+

mh∑

i

ti

)

s.t. vi,wi ≥ 0, ∀i = 1, 2,… ,mg

ti ≥ 0, ∀i = 1, 2,… ,mh

ĝ
(k)

i
(x) = vi − wi, ∀i = 1, 2,… ,mg

ĥ
(k)

i
(x) ≤ ti, ∀i = 1, 2,… ,mh

Ẽ
(k)

f
≤ min

(
𝜏abs,f ,

|||fhi
(
x(k)

)|||𝜏rel,f
)

Ẽ
(k)

g,i
≤ min

(
𝜏abs,g,i,

|||ghi,i
(
x(k)

)|||𝜏rel,g,i
)
,

∀i = 1, 2,… ,mg

Ẽ
(k)

h,i
≤ min

(
𝜏abs,h,i,

|||hhi,i
(
x(k)

)|||𝜏rel,h,i
)
,

∀i = 1, 2,… ,mh.

high-fidelity models, the actual design variable bound can be 
thought of as sizing itself. Still, the development of a scheme 
to algorithmically vary these bounds is an avenue for future 
research and may yield additional efficiency gains as it could 
allow the optimization algorithm to further exploit trends 
in the low-fidelity model without being overly conserva-
tive. In the results presented in Sect. 4, we adopt a scheme 
such that the first iteration has � (0)

abs
= �

(0)

rel
= ∞ , allowing the 

low-fidelity trends to be fully explored by the sub-problem 
optimizer. We use the user-specified values for �abs and �rel 
at each subsequent iteration.

Once the optimization problem defined in Problem (12) is 
solved, the next iteration of the optimization scheme begins 
again with the calibration of the low-fidelity model at the 
previous sub-problem’s optimum. We use the high-fidelity 
optimality and feasibility to measure overall convergence. 
We need the values of the Lagrange multipliers to be able 
to compute optimality. If the multipliers are not provided 
by the sub-problem optimizer, as is the case for many off-
the-shelf optimizers, we estimate them by solving a least-
squares problem. As we know that the norm of the gradient 
of the sub-problem Lagrangian will be close to zero at the 
sub-problem optimum, we can estimate the values of the 
Lagrange multipliers �(k) at the k-th iteration by solving

where x∗ is the optimal solution to the k-th sub-problem, and 
�̂ is the Jacobian of the sub-problem’s active constraints. 
Once we have the (estimated) Lagrange multipliers, we com-
pute the high-fidelity optimality as follows:

We compute the high-fidelity feasibility as follows:

where again, m(x∗) computes the vector of constraint vio-
lations. The iterations terminate when the optimality and 
feasibility are below their user-specified tolerances. The 
optimization procedure is illustrated graphically in the flow 
chart in Fig. 3.

4 � Optimization examples

This section presents the results from numerical experiments 
that serve to validate the E 2M2 framework. The framework 
is first demonstrated on a one-dimensional analytical opti-
mization problem that illustrates how the algorithm works 
and how the quality of the low-fidelity model affects the 

(13)
�
(k) = argmin

�

=
‖‖‖∇x

L̂(x∗,�)
‖‖‖
2

2

=
‖‖‖∇f̂ (x

∗) − �̂
T
�
‖‖‖
2

2
,

(14)O = ‖‖∇xL(x
∗,�)‖‖∞ = ‖‖∇f (x

∗) − �
T
�
‖‖∞.

(15)F = ‖m(x∗)‖∞,
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optimization. We then compare the E 2M2 algorithm against 
state-of-the-art multi-fidelity optimization methods on a 
series of common analytical benchmark problems. Finally, 
we demonstrate it on a realistic electric-motor optimization 
problem.

We converge the multi-fidelity optimizations to a high-
fidelity optimality tolerance of 10−4 and a feasibility tol-
erance of 10−6 for all problems. We use SNOPT (Gill 
et al. 2002, 2005) version 7.7.1 with an optimality toler-
ance of 10−6 and a feasibility tolerance of 10−6 to solve 
each calibrated low-fidelity sub-optimization. We also 
use SNOPT with an optimality tolerance of 10−4 and a 

feasibility tolerance of 10−6 for the direct high-fidelity 
optimizations used for comparison. We interface with 
SNOPT using OpenMDAO (Gray et al. 2019) with the 
PyOptSparse (Wu et al. 2020) optimization driver.

4.1 � Forrester problem

We first present an application of the E 2M2 algorithm on 
a simple 1D analytical problem that demonstrates how the 
efficacy of the framework depends on the quality of the low-
fidelity model.

4.1.1 � Problem setup

We consider the simple 1D problem described by Forrester 
et al. (2007). Thus, the high-fidelity model is

We consider two different low-fidelity models to demon-
strate how the efficacy of the multi-fidelity optimization 
framework depends on the correlation between the low- and 
high-fidelity models. The first model, considered the “good” 
model, is given as follows:

while the “bad” low-fidelity model is given as follows:

The 1D low- and high-fidelity models are plotted in Fig. 4.

(16)fhi(x) = (6x − 2)2 sin (12x − 4), x ∈ [0, 1].

(17)flo,g(x) = 0.85fhi(x) + 5(x − 0.5) − 2, x ∈ [0, 1],

(18)flo,b(x) = 0.6fhi(x) + 10(x − 0.5) − 5, x ∈ [0, 1].

Optimization
converged

Initial design:
x(0), k = 0

Evaluate low- and high-fidelity
models and gradients at x(k)

Construct calibration and error
models with Eqs. (3) and (9)

Solve Problem (12)
to compute x(k+1)

Increase penalty
as needed

Compute high-fidelity optimality, O, and
feasibility, F , with Eqs. (14) and (15)

Is the low-fidelity
problem feasible?

No

No

Yes

k
=

k
+

1

YesO ≤ εopt
and

F ≤ εfeas?

Fig. 3   This flow chart illustrates the major components of the E 2M2 
optimization framework at a high level

0 1
x

−12
−9
−6
−3
0
3
6
9

12
15
18

flo,b(x)

flo,g(x)

fhi(x)

Fig. 4   The plot of the 1D models shows how the different low-fidelity 
models capture the trends of the high-fidelity model over the domain
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We wish to solve the bound-constrained minimization of 
Eq. (16), stated as follows:

with objective error bounds of �abs,f = ∞ and �rel,f = 0.1 
using the multi-fidelity optimization algorithm described in 
Sect. 3. Guidance for selecting values for �abs and �rel will be 
discussed shortly. We approximate the Hessian difference, 
needed to build the error estimates, using finite differences 
of the gradients. For a simple 1D example problem like this, 
we do not expect the multi-fidelity approach to significantly 
outperform a conventional optimizer such as SNOPT. Nev-
ertheless, this problem is useful to illustrate how the E 2M2 
algorithm progresses during an optimization and to highlight 
potential issues.

(19)min
x

fhi(x), s.t. 0 ≤ x ≤ 1,

4.1.2 � Multi‑fidelity optimization

We first consider the “good” low-fidelity model, given by 
Eq. (17), initialized at x(0) = 0.55 . The high-fidelity model 
fhi and the low-fidelity model calibrated about x(0) = 0.55 are 
plotted in Fig. 5a. The objective function history is plotted 
against each low-fidelity model evaluation used in the sub-
problem optimizations in Fig. 6a.

The optimization converged to the calibrated low-fidelity 
optimum given by x∗ = 0.7572 and fhi(x∗) = −6.0207 . The 
optimization evaluated the calibrated low-fidelity objective 
function and gradient 46 times. Additionally, it required 8 
high-fidelity function and gradient evaluations to calibrate 
the low-fidelity model, and 8 additional gradient evaluations 
to approximate the Hessian difference needed by the error 
estimates.

0.00 0.55 1.00
x

−9
−6
−3
0
3
6
9

12
15
18

f̂g(x)

fhi(x)

calibration point

(a) Good correlation

0.00 0.55 1.00
x

−9
−6
−3
0
3
6
9

12
15
18

f̂b(x)

fhi(x)

calibration point

(b) Poor correlation

Fig. 5   The calibrated 1D models illustrate the effect of calibrating the gradient in addition to the function value
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(|f
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)

f̂g(x)

(a) “Good” multi-fidelity optimization
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Low-Fidelity

Function Evaluations

f̂b(x)

(b) “Bad” multi-fidelity optimization

1 2 3 4 5 6 7 8 9 101112
High-Fidelity

Function Evaluations

fhi(x)

(c) Direct high-fidelity optimization

Fig. 6   The log difference between the true optimum and the objective function history clearly illustrates the convergence of the 1D multi-fidelity 
and direct high-fidelity optimizations. The vertical dashed lines in the multi-fidelity plots indicate when the low-fidelity model was re-calibrated
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Next, we consider the “bad” low-fidelity model given 
in Eq. (18), again started from x(0) = 0.55 . The high-fidel-
ity model fhi and the low-fidelity model calibrated about 
x(0) = 0.55 are plotted in Fig. 5b. The sub-optimization 
objective function history is plotted for each low-fidelity 
model evaluation in Fig. 6b.

This optimization converged to the calibrated low-fidel-
ity optimum given by x∗ = 0.7572 and fhi(x∗) = −6.0207 . 
The optimization evaluated the calibrated low-fidelity 
objective function and gradient 170 times. Additionally, 
it required 30 high-fidelity function and gradient evalua-
tions to calibrate the low-fidelity model, and 30 additional 
gradient evaluations to approximate the Hessian difference 
needed by the error estimates.

4.1.3 � Direct high‑fidelity optimization

For comparison, we perform a direct high-fidelity opti-
mization of Eq. (16). Again, starting from x(0) = 0.55 , the 
objective function history is plotted in Fig. 6c. This opti-
mization used 12 high-fidelity function and gradient evalu-
ations, and converged to x∗ = 0.7572 and fhi(x∗) = −6.0207. 

As illustrated by Fig. 6a and b, the behavior and effi-
cacy of the multi-fidelity optimization largely depends on 
the correlation between the low- and high-fidelity models. 
While the “good” low-fidelity model only took 8 high-
fidelity function and gradient evaluations, the “bad” model 
took 30 high-fidelity function and gradient evaluations, 
more than the stand-alone high-fidelity optimization. 
Thus, the true efficiency improvements realizable with the 
E 2M2 framework are problem specific, depending on the 
cost of the low-fidelity model relative to the high-fidelity 
model, and the quality with which the low-fidelity model 
approximates the high-fidelity model. However, the results 
presented in this test case suggest that the framework can 
produce optimized designs quite efficiently, provided that 
the low-fidelity model is relatively inexpensive and cap-
tures the high-fidelity model well.

4.2 � Benchmark problems

In this section, we investigate the impact of the chosen 
values for �abs and �rel . In addition, we compare the E 2M2 
framework to state-of-the-art multi-fidelity optimization 
approaches on a series of common analytical benchmark 
problems.

The first analytical problem we consider is the 1D 
“Double-well Potential” model described by Foumani 
et al. (2023). For this problem, the high-fidelity model is

and the low-fidelity model is given as follows:

The next problem we consider is the 8-D “Borehole” model 
described by Morris et al. (1993) that characterizes the flow 
of water through a borehole drilled between two aquifers. 
The high-fidelity model is given as

We use the low-fidelity model from Foumani et al. (2023), 
which for this problem is

The design variable descriptions and bounds are given in 
Table 1.

Finally, we consider the 10D “Wing” model described 
by Forrester et al. (2008) that computes a conceptual-level 
estimate for the weight of a small aircraft wing. The high-
fidelity model is given as follows:

Again, we use the low-fidelity model from Foumani et al. 
(2023), which for this problem is

(20)fhi(x) = 0.6x4 − 0.3x3 − 3x2 + 2x, x ∈ [−2.5, 3],

(21)flo(x) = 0.6x4 − 0.3x3 − 3x2 − 1.2x, x ∈ [−2.5, 3].

(22)

fhi
(
rw, r, Tu, Tl,Hu,Hl, L,Kw

)
=

2�Tu
(
Hu − Hl

)

log
(

r

rw

)(
1 +

2LTu

log
(

r

rw

)
r2
w
Kw

+
Tu

Tl

) .

(23)

flo
(
rw, r, Tu, Tl,Hu,Hl, L,Kw

)
=

2�Tu
(
1.05Hu − Hl

)

log
(

2r

rw

)(
1 +

3LTu

log
(

r

rw

)
r2
w
Kw

+
Tu

Tl

) .

(24)

fhi
(
Sw,Wfw,A,�, q, �, tc,Nz,Wdg,Wp

)
=

0.036S0.758
w

Wfw

(
A

cos2 �

)0.6

q0.006�0.04

(
100tc

cos�

)−0.3(
NzWdg

)0.49
+ SwWp.

Table 1   Borehole design variables

Variable Description

0.05 ≤ rw ≤ 0.15 Radius of borehole (m)

100 ≤ r ≤ 10, 000 Radius of influence (m)

100 ≤ Tu ≤ 12, 000 Transmissivity of upper aquifer (m2∕year)

990 ≤ Hu ≤ 1110 Potentiometric head of upper aquifer (m)

10 ≤ Tl ≤ 500 Transmissivity of lower aquifer (m2∕year)

700 ≤ Hl ≤ 820 Potentiometric head of lower aquifer (m)

1000 ≤ L ≤ 1000 Length of borehole (m)

6000 ≤ Kw ≤ 12, 000 Hydraulic conductivity of borehole (m∕year)
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The design variable descriptions and bounds are given in 
Table 2.

4.2.1 � Impact of �abs and �rel

We perform a series of optimizations of each of the analyti-
cal benchmark problems with the E 2M2 algorithm, sweeping 
over different values of �abs and �rel to assess their impact on 

(25)

flo
(
Sw,Wfw,A,�, q, �, tc,Nz,Wdg,Wp

)
=

0.036S0.9
w
Wfw

(
A

cos2 �

)0.6

q0.006�0.04

(
100tc

cos�

)−0.3(
NzWdg

)0.49
.

the performance of the optimization. We perform a “full-
factorial” sweep, using uniformly log-spaced values of �abs 
between 100 and 103 and of �rel between 10−2 and 101 . For 
each combination of �abs and �rel , we perform 10 optimiza-
tions, each started from a random initial design, and aver-
age the number of high-fidelity model evaluations required 
to obtain the optimum. The resulting heatmaps of average 
high-fidelity model evaluations are plotted in Fig. 7a–c 
for the Double-well Potential, Borehole, and Wing cases, 
respectively.

For the Double-well Potential model, we see that the 
optimizations took between one and two high-fidelity 
iterations to converge. This can be explained by observ-
ing that the difference between the low- and high-fidelity 
models [Eqs. (21) and (20)] is a linear term. Once the 
low-fidelity model has been calibrated, this linear term 
is corrected, and the calibrated model is identical to the 
high-fidelity model. Thus, the optimization performance 
depends solely on the size of the sub-optimizations’ fea-
sible space. We see that �abs has little impact, and that per-
formance is determined solely by �rel , with larger values 
being more performant. While the Borehole and Wing 
models are not so trivially calibrated, we do observe a 
similar trend that performance degrades at lower values of 
�abs . In all cases, we observe the general trend that larger 
values of �abs and �rel tend to result in the fewest number 
of high-fidelity model evaluations needed.

Table 2   Wing design variables

Variable Description

150 ≤ Sw ≤ 200 Wing area (ft2)
220 ≤ Wfw ≤ 300 Weight of fuel in the wing (lb)
6 ≤ A ≤ 10 Aspect ratio
−10 ≤ � ≤ 10 Quarter-chord sweep (deg)
16 ≤ q ≤ 45 Dynamic pressure at cruise (lb∕ft2)
0.5 ≤ � ≤ 1 Taper ratio
0.08 ≤ tc ≤ 0.18 Aerofoil thickness to chord ratio
2.5 ≤ Nz ≤ 6 Ultimate load factor
1700 ≤ Wdg ≤ 2500 Flight design gross weight (lb)
0.025 ≤ Wp ≤ 0.08 Paint weight (lb∕ft2)

100 101 102 103
τabs

10−2

10−1

100

101

τ r
el

1 1.25 1.5 1.75 2

(a) Double-well Potential

100 101 102 103
τabs

5 7.5 10 12.5 15

(b) Borehole

100 101 102 103
τabs

10 15 20 25 30

(c) Wing

Fig. 7   Heatmaps of the average number of high-fidelity model evaluations required during a multi-fidelity optimization with the E 2M2 frame-
work over a wide range of values for the parameters �abs and �rel
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4.2.2 � Comparison to the state‑of‑the‑art

We now compare the performance of the E 2M2 algorithm 
against a direct high-fidelity optimization and against exist-
ing state-of-the-art multi-fidelity optimization algorithms: 
the Multi-Fidelity Cost-Aware Bayesian Optimization 
(MFCABO) algorithm described by Foumani et al. (2023) 
and a TRMM implementation1. We use values of �abs = ∞ 
and �rel = 1.0 for all E 2M2 results.

For each benchmark problem, we run 20 optimizations, 
each started from a random initial design. We plot the objec-
tive function convergence history versus the cost of the opti-
mization for each of the 20 runs in Fig. 8a–c for the Double-
well Potential, Borehole, and Wing cases, respectively. For 
consistency, we measure optimization cost in the same man-
ner as Foumani et al. (2023); we treat the high-fidelity model 
as 1000 times more expensive than the low-fidelity model. 
We make the assumption that both the low- and high-fidelity 
models use differentiated forward analyses based on either 
the reverse mode of algorithmic differentiation or the adjoint 
method. Consequently, the cost of a gradient evaluation is 
on the order of the forward model evaluation (Griewank and 
Walther 2008). Thus, we treat the cost of a gradient evalua-
tion as the same as a model evaluation for both the low- and 
high-fidelity models.

Across all of the models, we see that the gradient-based 
optimization methods obtain a significantly more accu-
rate optimal value than the MFCABO method. For the 
Double-well Potential model specifically, all three of the 

gradient-based methods converge more quickly than the 
MFCABO method, in addition to converging to a more 
accurate optimal value. The E 2M2 algorithm is the most 
efficient, followed by TRMM, and finally the direct high-
fidelity optimization.

For the Borehole model, the direct high-fidelity optimiza-
tion is the most efficient method. This implies that the low-
fidelity model is particularly poor and is not worth using. 
This explains why the MFCABO method performs next-best 
(converging with less cost than both TRMM and E 2M2 ), as 
its acquisition function safeguards against biased low-fidel-
ity data (Foumani et al. 2023). However, despite MFCABO 
converging with less cost than TRMM and E 2M2 , the latter 
converge much more tightly, with the E 2M2 algorithm again 
beating TRMM.

Finally, for the Wing model, the E 2M2 algorithm is again 
the most efficient method, followed by TRMM and the 
direct high-fidelity optimization. We argue that the speedup 
observed with E 2M2 compared to TRMM is due to the ani-
sotropy in the feasible space defined by the error-estimate 
constraints; by allowing larger design steps in directions 
where the low-fidelity is estimated to be accurate, and by 
restricting the step size in directions where it is estimated to 
be inaccurate the E 2M2 algorithm is able to outperform the 
TRMM approach that uses an isotropic trust-region.

4.3 � Electric‑motor problem

This section presents the application of the E 2M2 framework 
on a realistic electric-motor optimization problem. We first 
describe the models used in the optimization and then pre-
sent the results of the optimization studies.
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Fig. 8   The log difference between the true optimum and the objective 
function history for the three benchmark models studied. The thick 
lines indicate the average behavior for each algorithm over the 20 

runs. Note that the units for cost are the number of equivalent high-
fidelity model evaluations

1  For all TRMM results, we use the trust-region update parameters 
c1 = 0.5 , c2 = 2.0 , r1 = 0.1 , r2 = 0.75 , �0 = 10 , and �∞ = 103�0 , as 
recommended by Alexandrov et al. (2001).
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4.3.1 � Motor parameterization

We demonstrate our multi-fidelity optimization framework 
by studying the commonly used three-phase radial-flux 
inrunner permanent magnet synchronous motor (PMSM). 
We characterize the geometry of the PMSM with the con-
tinuous parameters listed in Table 3 and illustrated in Fig. 9. 

Note that the stack length measures the “out-of-the-page” 
axial depth of the motor and is thus not shown in Fig. 9.

We define the PMSM by the set of parameters listed in 
Table 4 in addition to the geometric parameters listed in 
Table 3 and briefly describe them here. In a PMSM, a round 
wire with radius rs is wrapped around each stator tooth nt 
times for each of the motor’s electrical phases. Each of these 
wires has an alternating current (AC) with root-mean-
squared (RMS) value i flowing through it. The speed of the 
rotor rotation, given in rotations per minute (RPM), is 
directly related to the motor’s electrical frequency fe as 
S =

60

np
fe , where np is the number of magnetic poles on the 

rotor.
Moreover, the selection of several discrete parameters 

are required to close the design of a PMSM, which are also 
listed in Table 4. The number of magnetic poles and stator 
slots are two discrete parameters that can dramatically influ-
ence the optimal PMSM design. Further, material choices for 
each component can significantly impact the performance of 
a PMSM. As we are targeting gradient-based optimization 
for our multi-fidelity optimization framework, we cannot 
directly consider these discrete parameters in an optimiza-
tion. This is not a tremendous issue in practice, however, 
since electric-motor design theory guides such parameter 
selection (Hanselman 2003).

4.3.2 � Computational model

The following section describes the details of the computa-
tional model used for the electric-motor analysis. In particu-
lar, we explain the geometry representation, the equations 
governing the electromagnetic analysis, and the methodol-
ogy used to compute the outputs of interest. The section 
concludes with a brief discussion of the adjoint-based sen-
sitivity analysis.

Geometry representation We use the open-source Engi-
neering Sketch Pad (ESP) (Haimes and Dannenhoffer 2013) 
parametric CAD system to computationally represent the 
motor geometry in our model using the design parameters 
listed in Table 3. We use the EGADS Tessellator (Haimes 
and Drela 2012) through the CAPS (Haimes et al. 2016) 
interface to generate the finite-element mesh on the ESP 
CAD model needed by the electromagnetic analysis. 
Finally, we use the EGADS tesselation APIs (Haimes and 
Drela 2012) to explicitly map the geometric design param-
eters to the mesh node coordinates of the a priori generated 
finite-element mesh. We use xh to denote the mesh node 
coordinates.

Electromagnetic field model We use the magneto-
static approximation of Maxwell’s equations to model the 

wt

ds

ttt

tm

rro

rri

rsi

rso

Fig. 9   Diagram showing how geometric design parameters define the 
geometry for the PMSM of interest

Table 3   Continuous motor 
geometric design parameters 
and their physical descriptions

Parameter Description

ls Stack length
ds Slot depth
tm Magnet thickness
rri Rotor inner radius
rro Rotor outer radius
rsi Stator inner radius
rso Stator outer radius
wt Tooth width
ttt Tooth tip thickness

Table 4   Remaining motor design parameters and their physical 
descriptions

Parameter Description Classification

rs Strand radius Continuous
i RMS current Continuous
S Rotor RPM Continuous
nt Number of winding turns Discrete
np Number of magnetic poles Discrete
ns Number of stator slots Discrete
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electromagnetic field inside the PMSM, given in differential 
form as

where H is the magnetic field intensity, Jsrc is the applied 
current density, B is the magnetic flux density, and �E is 
the computational domain of the electromagnetic analysis. 
Here we take �E to be a two-dimensional cross-section of 
the motor. Equations (26) and (27) are known as Ampère’s 
circuital law, and Gauss’s law for magnetism, respectively. 
Boundary conditions are required for Eqs. (26) and (27) to 
define a well-posed boundary value problem; these will be 
discussed shortly.

The magnetic field intensity, H , and the magnetic flux 
density, B , are related through the following constitutive 
equation:

where �(B) is the reluctivity, and M is the magnetic source 
created by permanent magnets. In general, �(B) is a material-
dependant nonlinear function of the magnetic flux density. 
We discuss the implementation details of our reluctivity 
model in Appendix.

We use the magnetic vector potential A , which satisfies

to ensure that ∇ ⋅ B = ∇ ⋅ ∇ × A = 0 is satisfied by construc-
tion. Equation (29) is insufficient to define A uniquely, as the 
gradient of any scalar function may be added to A without 
changing B . To address this, we impose the Coulomb gauge 
condition ∇ ⋅ A = 0 on A.

Using this gauge condition, the magnetic vector potential 
from Eq. (29), the constitutive relationship Eq. (28), and by 
restricting the B field to be two-dimensional, Eq. (26) can be 
re-written as the following nonlinear scalar diffusion equa-
tion for the z-component of A:

Here, Jsrcz is a piecewise-continuous source holding the cur-
rent density in each of the phases of the motor. We imple-
ment the Dirichlet condition Az = 0 along the entire bound-
ary of �E to make Eq. (30) well posed. This is equivalent 
to enforcing B ⋅ n = 0 on the entire boundary of �E ; that is, 
there is no flux fringing along the boundary.

We discretize Eq. (30) with the finite-element method 
by leveraging the Modular Finite Element Methods 
(MFEM) (Kolev 2020; Anderson et al. 2021) library. This 
results in the following algebraic form for the analysis:

(26)∇ ×H = Jsrc, ∀ x ∈ �E,

(27)∇ ⋅ B = 0, ∀ x ∈ �
E
,

(28)H = �(B)(B −M),

(29)B = ∇ × A,

(30)−∇ ⋅
(
�∇Az

)
− [∇ × (�M)]z − Jsrcz

= 0,∀ x ∈ �
E
.

where Ah is the vector of finite-element degrees of freedom 
and xh is the vector of mesh node coordinates. The vector 
J ∈ ℝ

p holds the z-axis-aligned current density Jsrcz for each 
of the p phases in the motor. To capture the behavior of the 
motor at different points in time, we solve Eq. (31) multiple 
times at different rotor positions. This will be discussed in 
more detail shortly.

We solve Eq. (31) using Newton’s method with abso-
lute and relative convergence tolerances of 10−6 . We use 
a backtracking line search during Newton iterations that 
minimizes an interpolated quadratic or cubic approxima-
tion to ‖RA‖2 to ensure that ‖RA‖2 decreases with each 
step [see, for example, Chapter 4.3.3 of Martins and Ning 
(2021)]. Each Newton update is computed using the pre-
conditioned conjugate gradient (PCG) method with an 
algebraic multigrid (AMG) preconditioner from the hypre 
library (Falgout and Yang 2002; Henson and Yang 2002). 
We use absolute and relative tolerances of 10−12 to measure 
convergence while solving the linear Newton updates and 
use default settings for the AMG preconditioner in hypre 
version 2.25.0.

Electromagnetic outputs Once Eq. (31) has been solved, 
we can compute the torque created by the motor and the 
various loss terms that result in reduced motor efficiency. 
We compute the torque on the rotor created by the mag-
netic field using Coulomb’s virtual work method (Cou-
lomb 1983; Coulomb and Meunier 1984). We calculate 
losses caused by direct-current (DC) and alternating-
current (AC) flowing in the motor’s windings, which are 
known as copper losses, and losses caused by hysteresis 
and eddy-current effects in the motor’s magnetic steel, 
which are known as core losses.

To calculate the DC losses, we first compute the length 
of the conductor windings lw in the motor as

where ns is the number of stator slots, wt is the width of a 
stator tooth, rsi is the stator inner radius, ds is the slot depth, 
and ttt is the tooth tip thickness. The first term of the length 
calculation accounts for wrapping a conductor around each 
tooth nt times, while the second accounts for the length of 
the end windings connecting each group of teeth. Then, we 
calculate the DC resistance RDC of the windings as

where � = 58.14 × 106
1

�m
 is the electrical conductivity of 

the copper windings, and rs is the radius of the conductor 

(31)RA = RA(A
h, xh, J) = 0,

(32)lw = 2nsnt

⎛
⎜
⎜
⎜
⎝

ls + �

⎛
⎜
⎜
⎜
⎝

wt

2
+

�

�
2rsi + ds + ttt

�

4ns

⎞
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎠

+

�

�
2rsi + ds + ttt

�

2
,

(33)RDC =
lw

��r2
s

,
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winding. With the DC resistance computed, we calculate 
the DC power loss as

where i is the RMS value of the AC current in the conductor.
The remaining loss terms that we incorporate in the 

electric-motor model are the result of time-dependent phe-
nomena. As our underlying physical model is based on a 
static approximation of Maxwell’s equations, we cannot 
model these terms directly. Instead, we rely on a combina-
tion of analytical and empirical relations to model these 
losses.

We use a hybrid method to calculate the AC losses that 
is based on the method presented by Fatemi et al. (2019). 
This hybrid approach uses the magnetic field computed 
from the finite-element analysis as part of an analytical 
equation for the AC loss in a single conductor. The ana-
lytical AC losses induced in a single round conductor in 
an externally oscillating magnetic field can be estimated 
as (Sullivan 2001)

where l is the conductor length exposed to the oscillating 
magnetic field, r is the conductor radius, � is the electri-
cal conductivity, � is the frequency of oscillation, and Bpk 
is the peak value of the magnitude of the oscillating mag-
netic flux density. When applying Eq. (35) to a motor, we 
take l to be the stack length ls , r to be the strand radius rs , 
� = 58.14 × 106

1

�m
 to be the electrical conductivity of cop-

per, and � to be the angular electrical frequency, related to 
the motor’s RPM S as � =

�

30
npS.

Equation (35) requires the peak (maximum in time) value 
of the oscillating magnetic flux density field. Therefore, we 
use multiple solutions of Eq. (31) at different rotor positions 
to capture the behavior of the magnetic field in time. Using 
these multiple field solutions, we use the discrete induced-
exponential smooth max function from Kennedy and Hicken 
(2015) to calculate an estimate for the peak (in time) mag-
netic flux density field at each point in space.2 Finally, with 
this peak magnetic flux density field, we integrate Eq. (35) 
over the winding area and scale by the total number of wire 
strands to calculate the final AC loss estimate.

We use the empirically derived Steinmetz equation (1892) 
to compute the core losses in the motor’s components. For 
each component in the motor, the core losses are given as

(34)PDC = i2RDC,

(35)PACstrand
= l

�r4�
(
�Bpk

)2

8
,

(36)PC = Ksf
�
e
B
�

pk
m,

where fe is the electrical excitation frequency, Bpk is the peak 
value of the magnitude of the magnetic flux density in the 
component, m is the mass of the component, and the coef-
ficient Ks and exponents � and � are empirically fit material-
dependent parameters. For the results presented in this work, 
we use the values Ks = 0.0044 , � = 1.286 , and � = 1.76835 . 
We use the same procedure described in the AC loss calcula-
tion to calculate the Bpk field in the stator and rotor. Once the 
Bpk field is obtained, we estimate its spatial maximum value 
across a component using the induced-exponential smooth 
max function presented in Kennedy and Hicken (2015).

Analytical derivatives We supply the optimizer with ana-
lytical derivatives, where possible, to improve the compu-
tational efficiency of the optimization. We use algorithmic 
differentiation to compute the partial derivatives of all of 
the electromagnetic outputs. Then, we use a combination of 
algorithmic differentiation and the adjoint method to com-
pute derivatives of the implicit state calculation. Unfortu-
nately, we are unable to compute exact analytical deriva-
tives of the geometry representation, so we rely on forward 
finite differences with step size � = 10−6 to compute partial 
derivatives through the ESP CAD system. Once we have 
computed the partial derivatives for each component of the 
analysis, we rely on OpenMDAO (Gray et al. 2019) to solve 
for the required total derivatives using the unified deriva-
tives equations (UDE) (Martins and Hwang 2013; Hwang 
and Martins 2018).

4.3.3 � Problem setup

In this section, we describe the problem we will use to dem-
onstrate the E 2M2 framework on a realistic electric-motor 
optimization problem. The objective of the optimization is to 
maximize the efficiency of an electric motor by varying the 
motor geometry, input current, and winding strand radius, 
subject to output power and geometric constraints. Table 5 
provides a summary of the optimization problem statement. 
We use the Symmetric Rank 1 quasi-Newton update for-
mula [see, for example, Chapter 6.2 of Nocedal and Wright 
(1999)] to approximate the Hessian differences needed by 
the error estimates. The quasi-Newton updates are computed 
during the model calibration process.

We use a coarse mesh finite element analysis with linear 
Lagrange basis functions for the low-fidelity model, and a 
fine mesh model with quadratic Lagrange basis functions for 
the high-fidelity model. The low-fidelity model has a total 
of 17,716 finite-element degrees of freedom and takes 
approximately 15 s to evaluate the model and 20 s to com-
pute its gradient. The high-fidelity model has a total of 
1,193,920 finite-element degrees of freedom and takes 
approximately 15 min to evaluate and an additional 5 min to 
compute its gradient. Note that for the low-fidelity model, 
the gradient computation time is dominated by the cost of 2  Specifically, at each finite-element degree of freedom.
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finite-differencing the ESP CAD system, while for the high-
fidelity analysis, the adjoint solves dominate. We compute 
the Bpk field needed for the AC and core loss computations 
by evaluating Eq. (31) at two different rotor positions for the 
low-fidelity analysis, and four rotor positions for the high-

fidelity analysis, corresponding to �e =
(
0,

�

2

)T

 , and 

�e =
(
0,

�

4
,
�

2
,
3�

4

)T

 for the low- and high-fidelity analyses 
respectively.

We start each electric-motor optimization from a feasible 
but non-optimal design, with geometry and magnetic flux 
density field illustrated in Fig. 10a. The initial design vari-
ables and outputs are listed in Table 6, and the remaining 
fixed parameters are listed in Table 7.

4.3.4 � Multi‑fidelity optimization

We first consider the multi-fidelity electric-motor optimiza-
tion where the output power and efficiency are calibrated. 
We start the optimization from the feasible design with 
design variables given in Table 6, and use error bounds of 
�abs,� = ∞ , �rel,� = 0.1 , �abs,Pout

= ∞ , and �rel,Pout
= 0.1 for the 

efficiency and output power, respectively. The optimiza-
tion procedure raised the motor’s efficiency from the initial 
91.45% to the optimized value of 98.26% . The history of 
the motor efficiency at each low-fidelity model evaluation 
is plotted in Fig. 11a.

The multi-fidelity optimization converged to the optimal 
design vector given in Table 6, with the optimized geometry 

Table 5   Electric-motor 
optimization problem statement

Function/variable Description

Maximize � Motor efficiency

With respect to 0 mm < ls Stack length
1 mm ≤ ds Slot depth
1 mm ≤ tm ≤ 5 mm Magnet thickness

rri Rotor inner radius
rro Rotor outer radius
rsi Stator inner radius

100.0 mm ≤ rso Stator outer radius
2.5 mm ≤ wt Tooth width
0.75 mm ≤ ttt Tooth tip thickness
0.1 mm ≤ rs ≤ 0.32 mm Strand radius
0 A < i Strand RMS current

Subject to Pout = 13 kW Output power
i

�r2
s

≥ 10
A

mm2
Strand current density

try ≡ rro − rri ≥ 1 mm Rotor yoke thickness
tsy ≡ rso − rsi − ds ≥ 1 mm Stator yoke thickness
tg ≡ rsi − rro − tm = 1 mm Air-gap thickness

(a) Feasible initial design (b) Multi-fidelity optimized design (c) Direct high-fidelity optimized design

Fig. 10   The magnitude of the magnetic flux density in the different motor geometries. Note that while only a quarter of the geometry is shown, 
the full motor was simulated
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shown in Fig. 10b. Note that Fig. 10 shows each motor 
geometry at the same scale, illustrating that the optimized 
motors are physically smaller than the initial design. The 
procedure evaluated the calibrated low-fidelity model and 

its gradient 617 times. Further, it required 14 high-fidelity 
model and gradient evaluations to calibrate the low-fidelity 
model. The SR1 Hessian difference updates were computed 
with the already computed gradients, requiring no additional 
cost. In total, the multi-fidelity electric-motor optimization 
took 12 h and 21 min.

4.3.5 � Direct high‑fidelity optimization

Finally, for comparison, we perform a direct optimization 
of the high-fidelity model. Starting from the initial design 
shown in Fig. 10a, the optimization raised the motor’s effi-
ciency from the initial value of 91.45% to the optimized 

Table 6   Electric-motor design 
vectors and outputs for the 
initial design, as well as the 
multi-fidelity and direct high-
fidelity optimized designs

Initial value Multi-fidelity High-fidelity

� 91.4511 % 98.2624 % 98.2624 %

ls 12.2862 mm 12.9020 mm 12.9086 mm
ds 28.5715 mm 12.1054 mm 12.0896 mm
tm 1.5006 mm 5.0 mm 5.0 mm
rri 99.5549 mm 71.1470 mm 71.1746 mm
rro 106.8851 mm 77.9643 mm 77.9934 mm
rsi 107.8851 mm 78.9643 mm 78.9934 mm
rso 141.0950 mm 100.0 mm 100.0 mm
wt 5.5316 mm 6.5331 mm 6.5397 mm
ttt 0.8212 mm 5.5133 mm 5.4966 mm
rs 0.2425 mm 0.1 mm 0.1 mm
i 2.0755 A 0.3142 A 0.3142 A

Pout 13.0000 kW 13.0000 kW 13.0000 kW
i

�r2
s

11.2323 A

mm2
10.0 A

mm2
10.0 A

mm2

try 5.8296 mm 1.8174 mm 1.8189 mm
tsy 3.8172 mm 3.4169 mm 3.4204 mm
tg 1.0 mm 1.0 mm 1.0 mm

Table 7   Electric-motor 
optimization fixed parameters

Parameter Value

nt 840
S 6000 RPM
np 20
ns 24

1 100 200 300 400 500 671
Low-Fidelity

Function Evaluations

88%

90%

92%

94%

96%

98%

100%

η

(a) Multi-fidelity optimization

1 10 20 30 40 50 60 70 80 90 102
High-Fidelity

Function Evaluations

88%

90%

92%

94%

96%

98%

100%

η

(b) Direct high-fidelity optimization

Fig. 11   The objective function history illustrated the convergence of the multi-fidelity and direct high-fidelity electric-motor optimizations. The 
vertical dashed lines in the multi-fidelity optimization plot indicate when the low-fidelity model was re-calibrated
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value of 98.26% . The objective function history is plotted 
in Fig. 11b. This direct high-fidelity optimization used 102 
high-fidelity model and gradient evaluations and took 28 h 
and 4 min to complete. The final optimized geometry is 
illustrated in Fig. 10c, and the optimized design variables 
are given in Table 6.

The results from the multi-fidelity electric-motor 
optimization show that the proposed method can be sig-
nificantly more efficient than a stand-alone high-fidelity 
optimization. The multi-fidelity optimization was able to 
compute the same high-fidelity optimized design in less 
than half the time compared to the direct high-fidelity 
optimization. This gain in optimization efficiency is 
largely due to the ability of the first-order calibrated low-
fidelity model to accurately capture the physics of the 
high-fidelity model, at a fraction of its cost.

5 � Conclusions

This paper has presented a novel multi-fidelity model-
management framework based on error estimates between 
the calibrated low- and high-fidelity models. This frame-
work uses a specified error tolerance between the low- 
and high-fidelity models to globalize the optimization, 
avoiding the need for a practitioner to specify non-intu-
itive parameters as needed by the commonly employed 
multi-fidelity trust-region methods. Additionally, due to 
the anisotropy introduced by defining the trust region in 
terms of the estimated low-fidelity error, the framework 
is able to take larger design steps in directions where the 
calibrated model is estimated to be accurate, and smaller 
steps in directions where it is estimated to be less accu-
rate, ultimately leading to a speedup compared to classi-
cal TRMM-based methods.

We have compared our proposed error-estimate-based 
multi-fidelity optimization framework to state-of-the-art 
algorithms and found it to perform favorably on a series 
of benchmark problems. The results presented here show 
that the proposed E 2M2 framework can quite efficiently 
produce high-fidelity optima provided the low-fidelity 
model accurately correlates with the high-fidelity model. 
However, should the low-fidelity model not accurately 
capture the trends of the high-fidelity model, the pre-
sented framework can be less efficient than a direct 
high-fidelity optimization. A limitation of our proposed 
method is that it cannot directly optimize over discrete 
inputs; a limitation shared by all gradient-based optimi-
zation algorithms. However, for problems with mixed 
continuous-discrete variables, the efficiency afforded by 
the E 2M2 algorithm when optimizing over the continuous 
variables should enable an efficient optimization over the 

discrete parameters, using e.g., a “Branch and Bound”-
type algorithm [see, for example, Chapter 8 of Martins 
and Ning (2021)].

There is further potential to improve the E 2M2 algo-
rithm and make it even more performant. Linearizing the 
error-estimate constraints would reduce the computational 
cost associated with solving the low-fidelity sub-optimi-
zations, and further enable the application to large-scale 
problems. Additionally, an extension to the framework to 
recursively apply the E 2M2 algorithm to solve the low-
fidelity sub-optimizations would allow the consideration 
of arbitrary levels of fidelity and likely provide further 
acceleration. We plan to investigate these avenues in future 
work.

Appendix: Reluctivity model

We model the reluctivity, �(B) , as a piecewise-continuous 
function where each sub-function of � is based on the 
material it is in. We use constant values for the reluctivity 
in the motor’s air-gap, magnets and windings. For the air-
gap and motor windings, this function takes the value of 
the reluctivity of free space �0 =

1

�0

=
1

4�×10−7
 . For the mag-

nets, we use the constant value �mag =
1

�r�0

 , where �r is the 
magnet’s relative permeability, a material-dependent value 
listed in a material data-sheets. We take �r = 1.04 for the 
Nd2Fe14B magnets considered in this work.

Table 8   Control points and knot 
vector for the cubic B-spline 
fit used in the Hiperco 50 
reluctivity calculation

Control points Knots

5.5286 0.0
5.4645 0.0
4.5597 0.0
4.2891 0.0
3.8445 0.1479
4.2880 0.5757
4.9505 0.9924
11.9364 1.4090
11.9738 1.8257
12.6554 2.2424
12.8097 2.6590
13.3347 3.0757
13.5871 3.4924
13.5871 3.9114
13.5871 8.0039

10.0
10.0
10.0
10.0
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The reluctivity of the magnetic steel used in the motor’s 
stator and rotor is a nonlinear function of the magnetic flux 
density. We use the model given as follows:

where f (‖B‖) is a cubic B-spline that represents the log-
transformed reluctivity as a function of the magnitude of 
the magnetic flux density. The B-spline knot vector and 
control points are found by minimizing the least-squares 
error between the spline and discrete B-� data points. The 
control points and knot vector for the Hiperco 50 magnetic 
steel used for the results presented in this work are listed in 
Table 8.
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