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Abstract
For the multi-failure-mode system with multi-dimensional distribution parameter, estimating system failure probability 
function (SFPF) is essential to grasp the influence of the distribution parameter on system failure probability and decouple 
the reliability-based design optimization model constrained by system failure probability. However, there is still a significant 
challenge in efficiently estimating the SFPF at present. Therefore, an efficient and universal algorithm is proposed in this paper 
for estimating the SFPF. In the proposed algorithm, a unified sampling probability density function, which is independent 
with the distribution parameter, is originally constructed by the integration operation over the concerned design domain of the 
distribution parameter, on which a single-loop numerical simulation can be formulated to simultaneously estimate the SFPF 
at arbitrary realization of multi-dimensional distribution parameter. Since the single-loop method is used to replace the direct 
double-loop one in the proposed algorithm, the computational efficiency is greatly improved in estimating the SFPF. Addi-
tionally, the proposed algorithm has no restriction on the dimensionality and the concerned design domain of the distribution 
parameter, and an adaptive Kriging model of the system performance function is embedded to help the proposed algorithm 
further improve the computational efficiency. A new adaptive learning strategy, which considers the possible correlations 
among the multi-failure-mode Kriging models, is presented using the probability of the multi-failure-mode Kriging model 
misjudging the candidate sample state. The superiority of the proposed algorithm in terms of single-loop numerical simula-
tion and the new learning strategy over the existing methods is fully demonstrated by numerical and engineering examples.

Keywords Multi-failure-mode system · Failure probability function · Sampling probability density function · Single-loop 
numerical simulation · Adaptive Kriging model

1 Introduction

Random uncertainties (Xu et al. 2018; Vishwanathan and 
Vio 2019) are prevalent in practical engineering structural 
systems. Due to some uncontrolled incidental factors dur-
ing processing and manufacturing, structure sizes and mate-
rial properties possess uncertainty. Similarly, the working 
environment and the loads applied on the structure may 
be also random, since they cannot be strictly controlled. 

Under the condition of these random input factors (denoted 
by vector X ), the performance function of the structure is 
also random and its safety degree can be characterized by 
failure probability. In the reliability-based design optimiza-
tion (RBDO) (Enevoldsen and Sorensen 1994; Ghazaan and 
Saadatmand 2022) constrained by failure probability, the 
distribution parameter vector � of the random input vector 
X may be designed in the concerned design domain 

[
�
L
,�

U
]
 , 

where �L and �U are, respectively, the concerned lower and 
upper bound vector of the distribution parameter vector � . 
In this case, the failure probability is a function of � , and 
it is defined as the failure probability function (FPF) and 
denoted as Pf (�) (Feng et al. 2019; Zhang et al. 2022). The 
corresponding mathematical model of RBDO is generally 
formulated as follows:
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where W(�) is the generalized cost function and P∗
f
 is the 

required target failure probability. In the model of the RBDO 
with the failure probability constraint of Pf (�) ≤ P∗

f
 , if the 

FPF Pf (�) is obtained before executing RBDO, the coupling 
between the search of the optimal distribution parameters 
and the estimation of failure probability constraint can be 
directly removed, and the RBDO is spontaneously decoupled 
into an ordinary deterministic design optimization. What’s 
more, estimating the FPF is essential for understanding the 
effect of � on the failure probability Pf  (Yuan et al. 2021). 
Currently, the algorithms for estimating the FPF of the sin-
gle-failure-mode structure were well investigated, but there 
still lacks efficient algorithm for estimating the multi-failure-
mode system FPF (SFPF) with multi-dimensional distribu-
tion parameter. The existing algorithms mainly focus on 
estimating the system failure probability, and the SFPF 
requires obtaining the failure probabilities corresponding to 
some discrete realizations of distribution parameter vector. 
If these algorithms for estimating the system failure proba-
bility are simply applied to estimate the SFPF, the efficiency 
of the algorithm may be very low due to the repeated system 
failure probability analysis at different realizations of � . In 
practical engineering, the multi-failure-mode system is com-
moner than the single-failure-mode one. Therefore, this 
paper devotes to the efficient algorithm for estimating the 
SFPF with multi-dimensional distribution parameter.

At present, the methods for estimating the FPF of a 
single-failure-mode structure can be classified into two cat-
egories, i.e., the distribution parameter discretization-based 
double-loop method and the Bayes formula-based single-
loop method. The distribution parameter discretization-
based double-loop method requires estimating the failure 
probabilities corresponding to some discrete realizations of 
distribution parameter, on which different interpolation tech-
niques are used to obtain the FPF. Jensen (2005) and Gasser 
and Schuëller (1997) used linear and quadratic functions of 
the distribution parameter vector � , respectively, to locally 
approximate the logarithmic function ln

[
Pf (�)

]
 of Pf (�) , but 

both methods require numerous reliability analysis in dif-
ferent realizations of � , which may result in unaffordable 
computational cost for complicated engineering problems. 
Hence, to reduce the computational burden of estimating the 
FPF, Au (2004) proposed a single-loop method to estimate 
the FPF based on Bayes inference. In this method, the distri-
bution parameter vector � is extended into random variable 
vector in the concerned design domain 

[
�
L
,�

U
]
 and then the 

(1)

Find �

min
�

W(�)

s.t.

{
Pf (�) ≤ P∗

f

�
L ≤ � ≤ �

U

Bayes formula is used to convert the FPF into the estimation 
of two parts, i.e., the augmented failure probability and the 
conditional probability density function (PDF) of the distri-
bution parameter on the failure domain. Based on the con-
version, the failure probability at arbitrary realizations of the 
distribution parameter vector can be obtained by once aug-
mented failure probability analysis. On basis of the failure 
sample information produced in estimating the augmented 
failure probability, the conditional PDF of the distribution 
parameter vector can be obtained by means of histogram 
approach (Au 2004) or the first-order maximum entropy 
method (Ching and Hsieh 2007). Usually, the existing PDF 
fitting methods are mainly applicable to the one-dimensional 
or two-dimensional variables, but the precision of the meth-
ods to fit the PDF of multi-dimensional variables needs to 
be improved. To avoid estimating the conditional PDF of the 
Bayes formula-based method for the FPF, Feng et al. (2019) 
introduced the differential region to approximate the reali-
zation of the distribution parameter vector and replaced the 
conditional PDF estimation with the conditional probability 
one. Yuan et al. (2021) derived the conditional PDF into the 
conditional expectation on the failure domain with the PDF 
of random input vector as the weight. Yuan et al. (2023) 
introduced a new sample regeneration algorithm to generate 
the required failure samples of distribution parameter vector 
without extra performance function evaluations.

The efficient and direct algorithm for estimating the SFPF 
of multi-failure-mode structure system is seldom studied in 
the literature, but the multi-failure-mode structure system is 
very common, thus it is highly desirable to investigate effi-
cient method for estimating the SFPF. Although the Bayes 
formula-based single-loop method for estimating the FPF 
of a single-failure-mode structure can be extended to esti-
mate the SFPF, there exist some difficulties for accurately 
fitting the conditional PDF of multi-dimensional distribution 
parameter. In this paper, an efficient algorithm for estimating 
the SFPF is proposed from the perspective of the single-loop 
numerical simulation. The basic idea of the proposed algo-
rithm is to construct a unified sampling PDF independent of 
distribution parameter vector. Then by extracting one group 
sample of the unified sampling PDF, the system failure prob-
ability can be simultaneously estimated corresponding to 
arbitrary realizations of the multi-dimensional distribution 
parameter in the concerned design domain. In the proposed 
single-loop numerical simulation, the first issue to be solved 
is constructing the unified sampling PDF and extracting its 
samples. About the unified sampling PDF, this paper con-
structs it by integrating the PDF f

X
(x|�) of X at � with an 

assigned prior PDF of � over its concerned design domain [
�
L
,�

U
]
 as weight. About the samples of the unified sam-

pling PDF, they are extracted by the combination sampling 
method (Butler 1956; Au 2004; Sheldon 2007). After the 
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proposed algorithm solves the construction of the unified 
sampling PDF and the extraction of its samples, the next 
issue is how to efficiently identify the system states of the 
extracted samples to estimate the SFPF (the safe state of a 
sample corresponds to the system performance function is 
greater than zero, while the failure state of a sample cor-
responds to the system performance function is less than or 
equal to zero). Obviously, it is inefficient to identify the state 
of the samples by directly evaluating the multi-failure-mode 
system performance function, while replacing the system 
performance function with an adaptive Kriging model is a 
popular way to efficiently identify the system state of the 
extracted samples and estimate the SFPF.

As a typical continuous interpolation iteration method, the 
Kriging model (Echard et al. 2011; Yuan et al. 2020; Ma et al. 
2022) has been widely used in estimating the failure prob-
ability of the single-failure-mode and the multi-failure-mode 
structure with the complex implicit performance functions. 
Among them, the efficient global reliability analysis (abbrevi-
ated as EGRA) (Bichon et al. 2008) and the adaptive Kriging 
model combined with Monte Carlo simulation (abbreviated 
as AK-MCS) (Echard et al. 2011) are two representative Krig-
ing model-based methods in estimating component reliabil-
ity analysis. The basic idea of EGRA and AK-MCS can be 
described as follows: the Kriging model of the performance 
function is constructed and adaptively updated in the candi-
date sample pool of the numerical simulation until the Krig-
ing model is convergent. The convergent Kriging model can 
replace the real performance function to identify the state of 
the samples in the candidate sample pool and further estimate 
the failure probability. Therefore, both of them are able to esti-
mate the failure probability with high efficiency and accuracy.

For system reliability analysis, EGRA-SYS (Bichon et al. 
2011) and AK-SYS (Fauriat and Gayton 2014), which are 
modified versions of EGRA and AK-MCS, are two mature 
methods. The EGRA-SYS and AK-SYS method update the 
Kriging model by three strategies, where the third strategy 
of EGRA-SYS and AK-SYS (denoted as EGRA-SYS3 and 
AK-SYS3, respectively) may be most efficient. However, 
the study by (Yun et al. 2019) shows that EGRA-SYS3 and 
AK-SYS3 are less fault tolerant and the low prediction accu-
racy of the Kriging model in the previous step is possible 
to lead to the wrong system failure probability estimation in 
AK-SYS3. To address the shortcoming of the EGRA-SYS3 
and AK-SYS3, Yun et al. (2019) referred to the concept of 
the single-loop Kriging model method for time-dependent 
reliability analysis and proposed a new AK-SYSi learning 
strategy for multi-failure-mode system reliability analysis. 
AK-SYSi establishes the most easily identifiable model 
criterion to select the training point. Compared with AK-
SYS3, AK-SYSi has high fault tolerance, and the accuracy 
of AK-SYSi is not affected by the accuracy of the initial 
and pre-convergent Kriging model of single-failure-mode 

performance function. It is worth pointing out that both AK-
SYS3 and AK-SYSi do not take into account the correlations 
of individual mode when selecting training points. And they 
do not accurately analyze the system state misclassification 
probability resulted from the Gaussian distribution property 
of the Kriging model, which may lead to a negative effect on 
the computational efficiency for analyzing the multi-failure-
mode system reliability.

Therefore, Jiang et al. (2020) derived the system state mis-
classification probability of each sample by multiplication 
operations based on probability of wrong sign prediction of 
each Kriging model. Yang et al. (2022) also derived the sys-
tem state misclassification probability accurately and chose 
the ratio between system reliability and predicted system fail-
ure probability as the convergence criterion. Both of these are 
based on the assumption that the Kriging models of the multi-
failure-mode performance functions are mutually independent. 
However, it is worth pointing out that the multi-failure-mode 
Kriging models are often correlated due to the identical inputs 
or training points, thus the computational efficiency may be 
affected by the assumption of the independent Kriging models 
of the multi-failure-mode performance functions. In order to 
improve the computational efficiency of the misclassification 
probability-guided training point selection strategy as much as 
possible, this paper tries to derive the misclassification prob-
ability by taking the correlations of the multi-failure-mode 
Kriging models into consideration. In view of the difficulty to 
quantify correlations among the multi-failure-mode Kriging 
models, this paper considers two extreme cases, i.e., mutually 
independent and perfectly correlated cases, of the correlations 
among the multi-failure-mode Kriging models, on which the 
cumulative distribution function (CDF) of the system Krig-
ing model, and the system state misclassification probability 
can be accurately derived corresponding to these two extreme 
cases. Since the actual correlations of the multi-failure-mode 
Kriging models are unknown quantitatively, the average sys-
tem state misclassification probability of two extreme cases is 
employed to guide the selection of the training point. Based on 
the derived system state misclassification probability-guided 
training point selection strategy, this paper also establishes the 
selection strategy of updating mode and corresponding con-
vergence criterion for adaptive learning.

In summary, the motivation of the paper includes three 
aspects shown as follows:

(1) For common structure system with multi-failure-mode, 
estimating the SFPF is important for grasping the effect 
of distribution parameter vector on system safety and 
decoupling the RBDO constrained by system failure 
probability. Therefore, it is necessary to research the 
efficient algorithm for estimating the SFPF.

(2) At present, direct algorithm based on double-loop numer-
ical simulation is general for estimating the SFPF. In this 
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double-loop structure algorithm for estimating the SFPF, 
the system failure probability needs to be repeatedly esti-
mated at different realizations of distribution parameter 
vector. Obviously, this repeated estimation may lead to 
loss of the efficiency for estimating the SFPF.

(3) The effective way of improving efficiency of estimating 
the SFPF is designing a single-loop numerical simula-
tion to replace the double-loop one for estimating the 
SFPF. Therefore, this paper devotes to the single-loop 
algorithm for estimating the SFPF. In the proposed 
single-loop algorithm, not only the unified sampling 
PDF is constructed to eliminate the double-loop struc-
ture, but also an adaptive learning strategy of Kriging 
model is researched to further improve the efficiency 
of estimating the SFPF.

The rest of the paper is organized as follows. Section 2 
briefly describes the definition of the SFPF and presents 
the basic principle of the single-loop numerical simulation 
method as well as its basic implementation steps for esti-
mating the SFPF. Section 3 combines AK-SYS3 and AK-
SYSi with the single-loop numerical simulation to form the 
single-loop-AK-SYS3 (abbreviated as SL-AK-SYS3) and 
single-loop-AK-SYSi (abbreviated as SL-AK-SYSi) algo-
rithms for estimating the SFPF. By taking the correlations 
of the multi-failure-mode Kriging models into considera-
tion, Sect. 4 establishes a novel adaptive Kriging model-
based system reliability method denoted as AK-SYSc, on 
which AK-SYSc is combined with the single-loop numerical 
simulation to form the single-loop-AK-SYSc (abbreviated as 
SL-AK-SYSc) algorithm for estimating the SFPF. In Sect. 4, 
the CDF of the system Kriging model is accurately derived 
corresponding to two cases, i.e., the mutually independent 
and perfectly correlated multi-failure-mode Kriging models. 
The system state misclassification probability is represented 
by the average of those corresponding to two extreme cases 
of the correlations, and it is used to guide the selection of the 
training point in SL-AK-SYSc for estimating the SFPF. Sec-
tion 4 also gives the selection strategy of the updating mode 
and corresponding convergence criterion in SL-AK-SYSc for 
estimating the SFPF. Section 5 presents the example valida-
tion, and Sect. 6 concludes the whole paper.

2  Single‑loop numerical simulation 
algorithm

2.1  The concept of the SFPF

For a system with m failure modes, the performance function 
of each mode is denoted by Yj = gj(X)(j = 1, 2,… ,m) , where 
X =

(
X1,X2,… ,Xn

)
 is an n-dimensional random input vec-

tor. The failure domain Fj =
{
x|gj(x) ≤ 0

}
 of j-th failure 

mode is defined by gj(x) . The most basic connection of 
multi-failure-mode system includes series and parallel. 

Accordingly, the SFPF Ps
f
(�) of a multi-failure-mode system 

can be defined as follows:

where f
X
(x|�) is the PDF of X given � and IFs

(x) is 
the indicator function of the system failure domain 
Fs =

{
x|gs(x) ≤ 0

}
 defined by the system performance 

function gs(x),

where Fs =

{
x|

m

min
j=1

gj(x) ≤ 0

}
 for series system and 

Fs =

{
x|

m
max
j=1

gj(x) ≤ 0

}
 for parallel system.

2.2  Fundamentals of the single‑loop numerical 
simulation algorithm

In the direct double-loop numerical simulation for estimat-
ing the SFPF Ps

f
(�) with � ∈

[
�
L
,�

U
]
 , the concerned  

design domain 
[
�
L
,�

U
]
 is firstly discretized as a set of  

fixed realizations �i(i = 1, 2,… ,N) . For each realization 
�i(i = 1, 2,… ,N) , generate the N1-size sample pool 

�
(i)
x =

{
x
(i)

1
, x

(i)

2
,… , x

(i)

N1

}T

 according to f
X

(
x|�i

)
 . Then, the 

system failure probability Ps
f

(
�i

)
 at each realization �i should 

be estimated one by one, on which the whole SFPF Ps
f
(�) 

under 
[
�
L
,�

U
]
 can be obtained by interpolating the sample 

pairs 
(
�i,P

s
f

(
�i

))
(i = 1, 2,… ,N) . Then the number of the 

total performance function evaluations is NDL
T

= N ∗ N1.
Different from the double-loop numerical simulation, 

where N repeated numerical simulations are needed to esti-
mate Ps

f

(
�i

)
 at �i(i = 1, 2,… ,N) , the single-loop numerical 

simulation needs only once numerical simulation to estimate 
Ps
f

(
�i

)
 at arbitrary realizations �i ∈

[
�
L
,�

U
]
 . Using integral 

operation over the concerned design domain 
[
�
L
,�

U
]
 of the 

distribution parameter vector � , the single-loop numerical 
simulation method firstly constructs a unified sampling PDF 
f̃
X
(x) as shown in Eq. (4),

where �
�(�) is the assigned prior PDF of the distribution 

parameter vector � in the concerned design domain 
[
�
L
,�

U
]
.

From Eq. (4), it can be seen that f̃
X
(x) is independent of � , 

and the samples of f̃
X
(x) can be extracted by the combination 

(2)Ps
f
(�) = ∫Fs

f
X
(x|�)dx = ∫ IFs

(x)f
X
(x|�)dx

(3)IFs
(x) =

{
0 x ∉ Fs

1 x ∈ Fs

(4)f̃
X
(x) = ∫

�
U

�
L

f
X
(x|�)𝜑�(�)d�
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sampling method (Butler 1956; Au 2004; Sheldon 2007). 
The advantage of constructing f̃

X
(x) is that the samples of 

f̃
X
(x) can be shared simultaneously to estimate the failure 

probabilities of distribution parameter vector at its arbitrary 
realizations in the concerned design domain.

By substituting the unified sampling PDF f̃
X
(x) in Eq. (4) 

into Eq. (2), the SFPF Ps
f
(�) can be converted into the math-

ematical expectation in Eq. (5) with PDF f̃
X
(x) as the weight, 

and the mathematical expectation in Eq. (5) can be estimated 
by the sample mean denoted as P̂s

f
(�) in Eq. (6) after the 

samples of f̃
X
(x) are extracted.

where E[∙] is the expectation operator.

In Eq. (6), 
{
x1, x2,… , xN

}T is an N-size candidate sam-
ple pool of f̃

X
(x) . After an N

�
-size candidate sample pool 

�
f̃

�
=
{
�1,�2,… ,�N

�

}T of �
�(�) is extracted, f̃

X

(
xi

)
 at xi in 

Eq. (6) can be estimated by Eq. (7) based on Eq. (4).

Obviously, the estimation of Eq. (7) does not involve the 
system performance function evaluation. And the proposed 
single-loop numerical simulation algorithm has no restric-
tion on the dimensionality of the distribution parameter 
vector � , and it is suitable for the SFPF estimation for the 
system with multi-dimensional distribution parameter.

2.3  The detailed steps of the single‑loop numerical 
simulation algorithm

Based on the basic principles of the above subsection, the 
detailed steps of the single-loop numerical simulation algo-
rithm for estimating the SFPF can be listed as follows.

Step 1: Generate an N-size candidate sample pool 
�
x
=
{
x1, x2,… , xN

}T of f̃
X
(x) . The samples of f̃

X
(x) 

in Eq. (4) can be obtained by the combination sampling 
method (Butler 1956; Au 2004; Sheldon 2007). In the com-
bination sampling method, an N-size candidate sample 
pool �

�
=
{
�1,�2,… ,�N

}T of � is firstly extracted by the 

(5)
Ps
f
(�) = ∫ IFs

(x)f
X
(x|�)dx = ∫

IFs
(x)f

X
(x|�)

f̃
X
(x)

f̃
X
(x)dx

= E

[
IFs

(x)f
X
(x|�)

f̃
X
(x)

]

(6)P̂s
f
(�) =

1

N

N∑

i=1

IFs

(
xi

)
f
X

(
xi|�

)

f̃
X

(
xi

)

(7)f̃
X

(
xi

)
=

1

N
�

N
�∑

k=1

f
X

(
xi|�k

)

prior PDF �
�(�) in the concerned design domain 

[
�
L
,�

U
]
 . 

Generally, since �
�(�) is assigned as the uniform PDF in [

�
L
,�

U
]
 , extracting sample of �

�(�) is very easy. For each 
�i ∈ �

�(i = 1, 2,… ,N) , a sample xi(i = 1, 2,… ,N) is 
extracted from f

X

(
x|�i

)
 and then the N-size candidate sam-

ple pool �
x
=
{
x1, x2,… , xN

}T of f̃
X
(x) can be obtained.

Step 2: Estimate the SFPF by Eq. (6) and the extracted �
x
 

of f̃
X
(x) in Step 1. In Eq. (6), the system failure domain indi-

cator function IFs

(
xi

)
 defined in Eq. (3) can be estimated by 

evaluating the performance function gj
(
xi

)
(j = 1, 2,… ,m) 

at xi(i = 1, 2,… ,N) and f̃
X

(
xi

)
 can be estimated by Eq. (7) 

through �f̃
�
.

From the above detailed steps for estimating the SFPF, it 
can be seen that the candidate sample pool �

x
 extracted from 

f̃
X
(x) can be shared to estimate the system failure probability 

at the arbitrary realizations of the distribution parameter vec-
tor and the strategy of sharing sample information avoids the 
huge computational cost of the direct double-loop analysis, 
where the distribution parameters need to be scattered and 
the system failure probability need to be estimated repeat-
edly at each scattered distribution parameter realization and 
the number of the total performance function evaluations is 
NSL
T

= N in the single-loop numerical simulation. The main 
computational cost for estimating P̂s

f
(�) by Eq. (6) is in eval-

uating the multi-failure-mode performance functions to esti-
mate the system failure domain indicator function 
IFs

(
xi

)(
xi ∈ �

x

)
 . In case of small SFPF P̂s

f
(�) of the engi-

neering application with implicit performance function, it 
still requires a large candidate sample pool to obtain a con-
vergent P̂s

f
(�) , and this computational cost is usually unaf-

fordable. For solving this issue, the Kriging models of the 
multi-failure-mode performance functions are embedded 
into the single-loop numerical simulation, so as to reduce 
the required computational cost of estimating the SFPF 
P̂s
f
(�) with � ∈

[
�
L
,�

U
]
.

3  Single‑loop numerical simulation 
algorithm combined with AK‑SYS3 
and AK‑SYSi

In the single-loop numerical simulation algorithm for esti-
mating the SFPF, the most time-consuming part is to esti-
mate the system failure domain indicator function IFs

(
xi

)
 at 

xi ∈ �
x
(i = 1, 2,… ,N) . A more efficient way to address the 

time-consuming issue is to initially construct and adaptively 
update the Kriging models of the multi-failure-mode perfor-
mance functions in �

x
 and then the convergent Kriging mod-

els are used to replace the performance functions to accu-
rately and efficiently estimate IFs

(
xi

)
 at xi ∈ �

x
 . Since the 

number of training points to obtain the convergent Kriging 
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models is usually much smaller than that of candidate sam-
ples, combining the Kriging model with the single-loop 
numerical simulation method can significantly improve the 
efficiency of estimating the SFPF. In the following part, the 
existing AK-SYS3 and AK-SYSi, two Kriging model-based 
system reliability analysis methods for the multi-failure-
mode structure, are combined with the single-loop numeri-
cal simulation to form the SL-AK-SYS3 and SL-AK-SYSi, 
respectively, for estimating the SFPF, in which the Kriging 
models are trained in �

x
 extracted from f̃

X
(x) in Eq. (4).

3.1  SL‑AK‑SYS3

SL-AK-SYS3 is the abbreviation of the algorithm combining 
the single-loop numerical simulation method with the AK-
SYS3 for estimating the SFPF. In the first step of SL-AK-
SYS3, the initial training point set is first selected in �

x
 for 

constructing the Kriging model ĝj(x) of multi-failure-mode 
performance function gj(x)(j = 1, 2,… ,m) . Then Eq. (8) is 
used to identify the extreme value mode indicator p(x) cor-
responding to x ∈ �

x
 by the mean 𝜇ĝj

(x) of Kriging predic-
tion ĝj(x)(j = 1, 2,… ,m).

Based on p(x) in Eq. (8), the representative U learning 
function UAK - SYS3

(x) for x ∈ �
x
 can be given as follows:

In the second step of SL-AK-SYS3 updating the Krig-
ing model, the new training point xu is selected by Eq. (10) 
based on the U learning function UAK - SYS3

(x) in Eq. (9),

and the mode indicator pu that needs to be updated corre-
sponding to xu is identified by Eq. (11),

where p(xu) is determined by Eq. (8).
The SL-AK-SYS3 algorithm only adds xu to the training 

set of the pu-th mode at each updating from the second step 
onward and this updating of the Kriging model ĝpu(x) for the 
pu-th mode continues until UAK - SYS3

(xu) ≥ 2.

(8)p(x) =

⎧
⎪
⎨
⎪
⎩

arg
m

min
j=1

𝜇ĝj
(x) for series system

arg
m

max
j=1

𝜇ĝj
(x) for parallel system

(9)UAK - SYS3
(x) =

|||𝜇ĝp(x)
(x)

|||
𝜎ĝp(x) (x)

(10)x
u = argmin

x∈�
x

UAK - SYS3
(x)

(11)pu = p(xu)

3.2  SL‑AK‑SYSi

Due to the possible convergence error problem of AK-
SYS3, Yun et al. (2019) proposed an AK-SYSi learning 
strategy for the multi-failure-mode system reliability 
analysis. In this paper, AK-SYSi is combined with the 
single-loop numerical simulation method to form the SL-
AK-SYSi algorithm for efficiently estimating the SFPF. 
SL-AK-SYSi iteratively updates the Kriging model in a 
similar way as SL-AK-SYS3, except that it uses the repre-
sentative U learning function UAK - SYSi(x) in Eq. (12) for 
selecting new training points xu,

where � = {1, 2,… ,m} is the indicator set of all modes and 
�∗ is the mode indicator set in which Kriging prediction mean 
can identify the state of the multi-failure-mode system at x , 
for both series and parallel systems, �∗ is shown as follows,

SL-AK-SYSi uses UAK - SYSi(x) to select the new train-
ing point xu by Eq. (14), and the mode indicator pu to be 
updated is selected by Eq. (15).

The convergence criterion of the SL-AK-SYSi learning 
strategy is UAK - SYSi(x

u) ≥ 2 , which is also similar to that 
of the SL-AK-SYS3. In Ref. (Yun et al. 2019), compared 
with SL-AK-SYS3, SL-AK-SYSi is more fault tolerant. 
However, both methods do not consider the effect of the 
correlations among the Kriging models of the multi-fail-
ure-mode performance functions when constructing the 
learning function for selecting the new training points, 
which may potentially lose the efficiency of the algorithm. 
Therefore, the next section proposes a more efficient learn-
ing strategy and convergence criterion for estimating the 
SFPF, in which the correlations of the multi-failure-mode 
Kriging models are considered.

(12)UAK - SYSi(x) =

⎧
⎪
⎨
⎪
⎩

min
j∈�

���𝜇ĝj
(x)

���
𝜎ĝj

(x)
�∗ = �

max
j∈�∗

���𝜇ĝj
(x)

���
𝜎ĝj

(x)
�∗ ≠ �

(13)�∗ =

⎧
⎪
⎨
⎪
⎩

�
j�𝜇ĝj

(x) < 0, j ∈ �
�

for series system

�
j�𝜇ĝj

(x) > 0, j ∈ �
�

for parallel system

(14)x
u = argmin

x∈�
x

UAK - SYSi(x)

(15)pu =

⎧
⎪
⎨
⎪
⎩

argmin
j∈�

UAK - SYSi(x
u) �∗ = �

argmax
j∈�∗

UAK - SYSi(x
u) �∗ ≠ �
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4  The proposed SL‑AK‑SYSc algorithm

Since the correlations of the Kriging models for all failure 
modes are difficult to quantify, both AK-SYS3 and AK-
SYSi learning strategies select the new training points 
from the perspective of the extreme value, which may lead 
to a conservative selection of the new training points and 
a possible loss of the algorithm efficiency. For this reason, 
this paper defines system misclassification event, and this 
event means that the system Kriging prediction sign is 
different from the system Kriging prediction mean sign. 
Then, the probability of the system state misclassification 
is derived to guide updating the Kriging models, which 
is similar to the principle of the single-failure-mode U 
learning function. To analytically derive the system state 
misclassification probability, the CDFs of the system Krig-
ing prediction are firstly derived using the distribution 
characteristic of the multi-failure-mode Kriging models 
in two cases of mutual independence and perfect correla-
tion, on which it can analytically derive the system state 
misclassification probabilities, respectively, corresponding 
to two cases. From the perspective of the average value 
of the misclassification probabilities corresponding to the 
mutual independence and perfect correlation, the training 
point selection strategy is constructed, and the correspond-
ing adaptive learning convergence criterion is also given.

In the following, in order to obtain the system state 
misclassification probability, the CDFs of the system Krig-
ing prediction are firstly derived in the cases of mutual 
independence and perfect correlation for series and paral-
lel system. After the strategy of selecting the new training 
point and updating mode is established, this paper derives 
an upper bound on the expected relative error of the repre-
sentative failure probability obtained by the system Krig-
ing prediction and that by the system Kriging prediction 
mean, and this upper bound is employed to construct the 
corresponding convergence criterion for adaptive learning. 
Finally, the specific steps are given for the implementation 
of the SL-AK-SYSc algorithm in the section.

4.1  Training point selection strategy

For series and parallel systems, the system Kriging pre-
diction ĝs(x) is related to the single-failure-mode Kriging 
prediction ĝj(x)(j = 1, 2,… ,m) as follows:

(16)ĝs(x) =

⎧
⎪
⎨
⎪
⎩

m

min
j=1

ĝj(x) for series system

m
max
j=1

ĝj(x) for parallel system

Since ĝj(x) follows the Gaussian distribution with mean 
𝜇ĝj

(x) and variance 𝜎2
ĝj
(x) , i.e., ĝj(x) ∼ N

(
𝜇ĝj

(x), 𝜎2
ĝj
(x)

)
 , the 

CDF Fĝs
(x, t) of the system Kriging prediction ĝs(x) can be 

derived as follows:

where Prob{∙} is the probability operator.
For the series system with m Kriging models ĝj(x) of the 

m u l t i - fa i l u r e - m o d e  p e r fo r m a n c e  f u n c t i o n s 
gj(x)(j = 1, 2,… ,m) , the CDF FI

ĝs
(x, t) of ĝs(x) in case of 

mutually independent ĝj(x)(j = 1, 2,… ,m) and the CDF 
FC
ĝs
(x, t) of ĝs(x) in case of fully correlated ĝj(x)(j = 1, 2,… ,m) 

can be derived, respectively, as follows according to the first-
order bound theory (Ditlevsen 1979; Deb et al. 2009).

where Φ(∙) denotes the standard normal CDF.
Similarly, for the parallel system with m Kriging models 

ĝj(x) of the multi-failure-mode performance functions 
gj(x)(j = 1, 2,… ,m) , the CDF FI

ĝs
(x, t) of ĝs(x) in case of 

mutually independent ĝj(x)(j = 1, 2,… ,m) and the CDF 
FC
ĝs
(x, t) of ĝs(x) in case of fully correlated ĝj(x)(j = 1, 2,… ,m) 

can be, respectively, derived as follows:

Due to the randomness of the system Krig-
ing prediction ĝs(x) , the misclassification event may 
occur, and the misclassification event is denoted as 
{E} =

{
sign

(
ĝs(x)

) ≠ sign
(
𝜇ĝs

(x)
)}

 with the sign denoted 
by sign

(
ĝs(x)

)
 of ĝs(x) different from sign

(
𝜇ĝs

(x)
)
 of the 

(17)

Fĝs
(x, t) = Prob

�
ĝs(x) ≤ t

�
=

⎧
⎪
⎨
⎪
⎩

Prob

�
m

min
j=1

ĝj(x) ≤ t

�
for series system

Prob

�
m

max
j=1

ĝj(x) ≤ t

�
for parallel system

(18)

FI
ĝs
(x, t) = Prob

{
ĝs(x) ≤ t

}
= Prob

{
m

min
j=1

ĝj(x) ≤ t

}

= 1 − Prob

{
m

min
j=1

ĝj(x) > t

}

= 1 −

m∏

j=1

Prob
{
ĝj(x) > t

}
= 1 −

m∏

j=1

Φ

(
𝜇ĝj

(x) − t

𝜎ĝj (x)

)

(19)

FC
ĝs
(x, t) =

m
max
j=1

Prob
{
ĝj(x) ≤ t

}
=

m
max
j=1

Φ

(
t − 𝜇ĝj

(x)

𝜎ĝj (x)

)

(20)

FI
ĝs
(x, t) = Prob

{
ĝs(x) ≤ t

}
= Prob

{
m

max
j=1

ĝj(x) ≤ t

}

=

m∏

j=1

Φ

(
t − 𝜇ĝj

(x)

𝜎ĝj (x)

)

(21)

FC
ĝs
(x, t) =

m

min
j=1

Prob
{
ĝj(x) ≤ t

}
=

m

min
j=1

Φ

(
t − 𝜇ĝj

(x)

𝜎ĝj(x)

)
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system Kriging prediction mean 𝜇ĝs
(x) . Record the probabil-

ity of E as Pe(x) = Prob{E} , and Pe(x) can be referred to as 
the misclassification probability of the system Kriging pre-
diction. Since the Kriging model-based reliability analysis 
uses the Kriging prediction mean replacing the performance 
function, the larger Pe(x) means a higher probability of ĝs(x) 
misclassifying the system state at x . Thus, Pe(x) can be used 
to select the new training point for maximally improving the 
accuracy of ĝs(x) predicting the system state. From the CDFs 
of ĝs(x) derived above in two cases of the mutual independ-
ence and full correlation, the misclassification probability 
denoted as PI

e
(x) in case of the mutual independence and 

that denoted as PC
e
(x) in case of the full correlation can be 

derived, respectively, as follows:

In this paper, the average system state misclassification 
probability in two cases at x ∈ �

x
 is taken as the representa-

tive misclassification probability Pe(x) , i.e.,

(22)PI
e
(x) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 − FI
ĝs
(x, t) =

m∏
j=1

Φ

�
𝜇ĝj

(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

min
j=1

𝜇ĝj
(x) ≤ 0

FI
ĝs
(x, t) = 1 −

m∏
j=1

Φ

�
𝜇ĝj

(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

min
j=1

𝜇ĝj
(x) > 0

1 − FI
ĝs
(x, t) = 1 −

m∏
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

max
j=1

𝜇ĝj
(x) ≤ 0

FI
ĝs
(x, t) =

m∏
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

max
j=1

𝜇ĝj
(x) > 0

for series system

for parallel system

(23)PC
e
(x) =

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

1 − FC
ĝs
(x, t) = 1 −

m
max
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

min
j=1

𝜇ĝj
(x) ≤ 0

FC
ĝs
(x, t) =

m
max
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

min
j=1

𝜇ĝj
(x) > 0

1 − FC
ĝs
(x, t) = 1 −

m

min
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

max
j=1

𝜇ĝj
(x) ≤ 0

FC
ĝs
(x, t) =

m

min
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

max
j=1

𝜇ĝj
(x) > 0

for series system

for parallel system

(24)Pe(x) =

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

1

2
−

1

2

m
max
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
+

1

2

m∏
j=1

Φ

�
𝜇ĝj

(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

min
j=1

𝜇ĝj
(x) ≤ 0

1

2
−

1

2

m∏
j=1

Φ

�
𝜇ĝj

(x)

𝜎ĝj
(x)

�
+

1

2

m
max
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

min
j=1

𝜇ĝj
(x) > 0

1 −
1

2

m∏
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
−

1

2

m

min
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

max
j=1

𝜇ĝj
(x) ≤ 0

1

2

m

min
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
+

1

2

m∏
j=1

Φ

�
−

𝜇ĝj
(x)

𝜎ĝj
(x)

�
𝜇ĝs

(x) =
m

max
j=1

𝜇ĝj
(x) > 0

for series system

for parallel system

Obviously, the candidate sample x ∈ �
x
 with the largest 

Pe(x) should be added to the training set to minimize the sys-
tem state misclassification probability of ĝs(x) . Simultaneously 
considering the PDF f

X
(x) of the candidate sample, the training 

point xu is selected by the following Eq. (25) in the proposed 
SL-AK-SYSc,

and the updating mode indicator pu is selected by the least 
easily recognizable mode for the corresponding xu , i.e.,

(25)x
u = argmax

x∈�
x

Pe(x)fX(x)
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4.2  Convergence criterion for adaptive learning

It can employ the maximum misclassification probability 
max
x∈�

x

Pe(x) of x ∈ �
x
 less than a given threshold as the con-

vergence criterion, but it may be conservative and computa-
tionally expensive as the traditional U learning strategy. To 
avoid this conservation, the convergence of the SL-AK-SYSc 
algorithm is evaluated by the relative error 𝜀 =

|||P̂
s
f
− P

s

f

|||∕P
s

f
 , 

where P̂s
f
 means the representative system failure probability 

estimated by the system Kriging prediction ĝs(x) and P
s

f
 

means the representative system failure probability esti-
mated by the system Kriging prediction mean 𝜇ĝs

(x) . P̂s
f
 and 

P
s

f
 are named as the representative failure probabilities as the 

PDF for estimating P̂s
f
 and P

s

f
 is the constructed f̃

X
(x) . Since 

P̂s
f
 is a function of the random variable ĝs(x) , P̂s

f
 and � are 

both random variables. Convergence can be assessed by the 
expectation E(�) of � , and E(�) can be derived as follows:

where ÎFs
(x) and IFs

(x) are the system failure domain indica-
tor functions estimated by ĝs(x) and 𝜇ĝs

(x) , respectively, i.e.,

In order to obtain E|||ÎFs
(x) − IFs

(x)
||| in Eq. (27), the sta-

tistical law of |||ÎFs
(x) − IFs

(x)
||| needs to be analyzed. From 

Eq. (28) and Eq. (29), it is known that |||ÎFs
(x) − IFs

(x)
||| is a 

discrete random variable with two values shown in 
Eq. (30).

D u e  t o  Prob
{
sign

(
ĝs(x)

) ≠ sign
(
𝜇ĝs

(x)
)}

= Pe(x)  , 
E
|||ÎFs

(x) − IFs
(x)

||| can be obtained as follows:

(26)pu = arg
m

min
j=1

Uĝj
(xu) = arg

m

min
j=1

|||𝜇ĝj
(xu)

|||
𝜎ĝj(x

u)

(27)E(𝜀) = E
||||

(
P̂s
f
− P

s

f

)
∕P

s

f

||||
=

1

P
s

f

E
||||�

[
ÎFs

(x) − IFs
(x)

]
f̃
X
(x)dx

||||
≤ 1

P
s

f
� E

|||ÎFs
(x) − IFs

(x)
|||f̃X(x)dx

(28)ÎFs
(x) =

{
1 ĝs(x) ≤ 0

0 ĝs(x) > 0

(29)IFs
(x) =

{
1 𝜇ĝs

(x) ≤ 0

0 𝜇ĝs
(x) > 0

(30)|||ÎFs
(x) − IFs

(x)
||| =

{
0 sign

(
ĝs(x)

)
= sign

(
𝜇ĝs

(x)
)

1 sign
(
ĝs(x)

) ≠ sign
(
𝜇ĝs

(x)
)

(31)
E
|||ÎFs

(x) − IFs
(x)

||| = 1 × Pe(x) + 0 ×
[
1 − Pe(x)

]
= Pe(x)

Substituting Eq. (31) into Eq. (27), Eq. (32) can be 
obtained

where Eu(�) represents the upper bound of the expected rela-
tive error between P̂s

f
 and P

s

f
 . If Eu(�) is less than a given 

threshold �∗ , i.e.,Eu(�) ≤ �∗ , it can end the adaptive updat-
ing, and the SL-AK-SYSc is converged.

4.3  The detailed steps of SL‑AK‑SYSc algorithm

According to the basic principle demonstrated in sub-
Sects. 4.1 and 4.2, the detailed steps of the proposed SL-AK-
SYSc algorithm can be listed as follows, and the flowchart 
and the Pseudo-code of the SL-AK-SYSc are shown in Fig. 1 
and Table 1, respectively.

Step 1: Generate an N-size candidate sample pool 
�
x
=
{
x1, x2,… , xN

}T from f̃
X
(x) . The samples of f̃

X
(x) 

in Eq.  (4) can be extracted by the combination sam-
pling method, in which an N-size candidate sample pool 
�
�
=
{
�1,�2,… ,�N

}T is firstly extracted from the assigned 

prior PDF �
�(�) of � and for each �i ∈ �

�
 , one sample 

xi with respect to �i is generated by f
X

(
x|�i

)
 . Finally, 

xi(i = 1, 2,… ,N) corresponding to �i(i = 1, 2,… ,N) forms 
the candidate sample pool �

x
 of f̃

X
(x).

Step 2: Construct the initial Kriging models ĝj(x)  
for all multi-failure-mode performance functions 
gj(x)(j = 1, 2,… ,m) .  Randomly select an N1-size  
sample from �

x
 to form an initial training sample  

set Xt
j
=

{
x
t
1
, xt

2
,… , xt

N1

}T

 with N1 ≪ N  , and evaluate 

gj
(
x
t
k

)(
j = 1, 2,… ,m;k = 1, 2,… ,N1

)
 t o  f o r m 

�t
j
=

{
gj
(
x
t
1

)
, gj

(
x
t
2

)
,… , gj

(
x
t
N1

)}T

 . By using of Xt
j
 and �t

j
 , 

the initial Kriging models ĝj(x)(j = 1, 2,… ,m) can be con-
structed for all multi-failure-mode performance functions.

Step 3: Estimate the U learning function Uĝj
(x) shown in 

Eq. (33), the system state misclassification probability Pe(x) 
in Eq. (24), and the representative failure probability P

s

f
 in 

Eq. (34).

(32)E(�) ≤ 1

P
s

f
� Pe(x)fX(x)dx = Eu(�)

(33)Uĝj

(
xi

)
=

|||𝜇ĝj

(
xi

)|||
𝜎ĝj

(
xi

) (j = 1, 2,… ,m;i = 1, 2,… ,N)
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where N𝜇ĝs
≤0 indicates the number of samples falling in the 

system failure domain 
{
�gs

(x) ≤ 0
}
 based on the current sys-

tem Kriging prediction mean �gs
(x).

Step 4: Judge the convergence of the algorithm. If 
1

N

N∑
i=1

Pe

�
xi

�
∕P

s

f
≤ �∗ ( �∗ = 0.01 is the threshold value chosen 

in this paper) holds, turn to Step 6. If 1
N

N∑
i=1

Pe

�
xi

�
∕P

s

f
> 𝜉∗ , 

select the new training point xu by Eq. (35) and the updated 
mode indicator pu by Eq. (36), respectively.

Step 5: Update the Kriging model ĝpu(x) of the pu-th 
mode. Update Xt

pu
= X

t
pu
∪ x

u and �t
pu
= �t

pu
∪ gpu(x

u) . After 
reconstructing ĝpu(x) by the updated Xt

pu
 and �t

pu
 , return to 

Step 3.

(34)P
s

f
=

N𝜇ĝs
≤0

N

(35)x
u = argmax

xi∈�x

Pe

(
xi

)
f̃
X

(
xi

)

(36)pu = arg
m

min
j=1

Uĝj
(xu)

Step 6: Estimate the SFPF P̂s
f
(�) by Eq. (6).

5  Examples

In this section, the SFPF of different multi-failure-mode 
systems is estimated to verify the efficiency, accuracy, and 
applicability of the proposed algorithms. The results of 
the Double Loop Monte Carlo Simulation (abbreviated 
as DLMCS) are used as the reference solution, while the 
accuracy of SLMCS, SL-AK-SYS3, SL-AK-SYSi, and SL-
AK-SYSc are compared based on the reference solution 
obtained by DLMCS. The first example is a three-failure-
mode parallel system (Yun et al. 2019) with two-dimen-
sional random input vector. This example is used to verify 
the accuracy and efficiency of the algorithm in the simple 
numerical example with two cases, i.e., the distribution 
other than normal distribution and the correlation between 
the random input variables. The second example is a vehi-
cle side impact problem (Youn et al. 2004; Yang et al. 
2022), which is a series system with eleven-dimensional 
random input vector and ten failure modes. This example 
illustrates the applicability of the proposed algorithm to 

Fig. 1  The flowchart of the 
proposed SL-AK-SYSc
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estimate the SFPF of the multi-failure-mode system with 
multi-dimensional distribution parameter. The third one is 
a single-beam wing structure model (Ajanas et al. 2021) 
with seven-dimensional random input vector and two fail-
ure modes, which aims at verifying the applicability of the 
proposed algorithm to practical engineering problems with 
implicit performance functions. To avoid the effect of ran-
domness in the results of single run and to ensure fairness 
in the comparison of the various algorithms, the results of 
three compared methods are the average value of 20 runs.

5.1  Example 1 A three‑failure‑mode parallel system

A parallel system has three failure modes, and this example 
is used to verify the accuracy and efficiency of the algorithm 
in the simple numerical example with two cases. The cor-
responding performance functions and the system failure 
domain Fs are, respectively, listed as follows,

(37)
g1(X) =

(
4 − 2.1X2

1
+ X4

1
∕3

)
X2
1
+ X1X2 +

(
−4 + 4X2

2

)
X2
2
+ 0.8

(38)

g2(X) = 100
(
4 − 2.1X2

1
+ X4

1
∕3

)
X2

1
+ 100X1X2

+ 100
(
−4 + 4X2

2

)
X2

2
+ 60

The Weibull distribution is considered in case (1) where 
X1 and X2 are mutually independent variables. The distribu-
tion parameters of X1 and X2 in case (1) of example 5.1 are 
listed in Table 2.

Case (1) supposes the scale parameter of X1 as the con-
cerned distribution parameter, i.e., �1 = �X1

∈ [0.5, 1.5] . The 
design domain of the concerned distribution parameter is 
uniformly scattered into 10 discrete points. The two-dimen-
sional curves of the SFPF Ps

f

(
�1
)
 obtained by the various 

methods are shown in Fig. 2. The size of candidate sample 
pool and the number of the performance function evalua-
tions for each method in case (1) are shown in Table 3, 

(39)

g3(X) = 500
(
4 − 2.1X2

1
+ X4

1
∕3

)
X2

1
+ 500X1X2

+ 500
(
−4 + 4X2

2

)
X2

2
+ 60

(40)Fs =
{
g1(x) ≤ 0 ∩ g2(x) ≤ 0 ∩ g3(x) ≤ 0

}

Table 1  The Pseudo-code of 
the proposed SL-AK-SYSc for 
estimating the SFPF

1 Construct an N-size candidate sampling pool  �
x
=
{
x1, x2,… , xN

}T by f̃
X
(x)

2
Randomly select N1-size sample set 

X
t
j
=

{
x
t
1
, xt

2
,… , xt

N1

}T

 from �
x
 and evaluate the

system responses to form 
�t
j
=

{
gj
(
x
t
1

)
, gj

(
x
t
2

)
,… , gj

(
x
t
N1

)}T

(j = 1, 2,… ,m)

3 For i = 1:Np ( Np is the maximum of iterations)
4 Construct the Kriging models ĝj(x) by Xt

j
 and �t

j
(j = 1, 2,… ,m)

5 Estimate the U learning function Uĝj
(x) , the system state misclassification

probability Pe(x) , and the representative failure probability P
s

f

6

If 
1

N

N∑
i=1

Pe

�
xi

�
∕P

s

f
≤ �∗

7 Break
8 else
9 Select the new training point xu = argmax

xi∈�x

Pe

(
xi

)
f̃
X

(
xi

)

10
Select the updated mode indicator 

pu = arg
m

min
j=1

Uĝj
(xu)

11 Let Xt
pu
= X

t
pu
∪ x

u and �t
pu
= �t

pu
∪ gpu (x

u)

12 End If
13 i = i + 1

14 End For
15

Compute the estimation P̂s
f
(�) of Ps

f
(�) as 

P̂s
f
(�) =

1

N

N∑
i=1

IFs

�
xi

�
f
X

�
xi��

�
∕f̃

X

�
xi

�

16 Output P̂s
f
(�)

Table 2  The distribution parameters of the input variables in case (1) 
of example 5.1

Input vari-
able Xi

Distribution Scale parameter �Xi
Shape parameter 
�Xi

X1 Weibull 1 1

X2 Weibull 1 1
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where Ncall represents the number of the performance func-
tion evaluations.

The correlation between the random input variables is 
considered in case (2) of example 5.1, where X1 and X2 are 
correlated. The correlation coefficient �X1X2

 between X1 and 
X2 is 0.4. The distribution parameters of X1 and X2 in case 
(2) of example 5.1 are listed in Table 4.

Case (2) supposes the mean �X1
 of X1 and the standard 

deviation �X2
 of X2 as the concerned parameters, i.e., 

� =
{
�1, �2

}T
=
{
�X1

,�X2

}T , where �1 = �X1
∈ [0.5, 0.7] , 

�2 = �X2
∈ [−0.4, 0] . The design domains of the concerned 

distribution parameters are uniformly scattered into 10 dis-
crete points, respectively. The three-dimensional curves of 
the SFPF Ps

f

(
�1, �2

)
 varying with 

(
�1, �2

)
 are shown in Fig. 3. 

However, as the three-dimensional curves of Ps
f

(
�1, �2

)
 vary-

ing with 
(
�1, �2

)
 do not facilitate comparison of the accuracy, 

the two-dimensional curves of Ps
f

(
�1, �2 = �∗

2

)
 and 

Ps
f

(
�2, �1 = �∗

1

)
 are shown in Fig. 4. The size of candidate 

sample pool and Ncall of the parallel system for each method 
in case (2) of example 5.1 are shown in Table 5.

From the curves of the SFPF of the three-failure-mode 
parallel system in example 5.1, it can be seen that the SFPF 
obtained by the SL-AK-SYSc method has a very tiny error 
compared with that obtained by the DLMCS. From the num-
ber of the performance function evaluations, SL-AK-SYSc 
method is significantly less than SL-AK-SYS3 and SL-AK-
SYSi under the acceptable accuracy. The result of this exam-
ple shows that adaptive learning strategy with considering 
the possible correlations of the multi-failure-mode Kriging 
models is more efficient than that without considering the 
correlations, which indicates that the proposed algorithm is 
suitable for the cases of the distribution other than normal 
distribution and the correlation between the random input 
variables.

5.2  Example 2 A vehicle side impact problem

The vehicle side impact model in Fig. 5 is adapted from 
Refs. (Youn et al. 2004; Yang et al. 2022) and it is a series 
system with eleven-dimensional input vector and ten failure 
modes. Three cases are considered in this example to verify 
the efficiency and accuracy of the proposed algorithm for a 
large number of failure modes, input variables, and distribu-
tion parameters. In this problem, failure modes based on the 
safety regulation of the vehicle side impact are considered: 
the abdomen load ( AL ); the pubic symphysis force ( F ); the 
rib deflections at upper, middle, and lower locations ( RBu , 
RBm , RBl ); the viscous criteria at upper, middle, and lower 
locations ( VCu , VCm , VCl ); and the velocities at the B-pillar 
( VB ) and door ( VD).

The failure domain Fs of the vehicle side impact problem 
is formulated as

The ten performance functions are defined as follows:
(41)

Fs =
{
(AL(x) > 1.0kN) ∪ (F(x) > 4.2kN) ∪

(
RBu(x) > 32.0mm

)
∪
(
RBm(x) > 32.0mm

)
∪

(
RBl(x) > 32.0mm

)
∪
(
VCu(x) > 0.32m/s

)
∪
(
VCm(x) > 0.32m/s

)
∪

(
VCl(x) > 0.32m/s

)
∪
(
VB(x) > 9.9m/s

)
∪

(
VD(x) > 16.69m/s

)}
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1θ

(
)

1

s fP
θ
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c

DLMCS
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SL-AK-SYS

SL-AK-SYSi

SL-AK-SYS

Fig. 2  The two-dimensional curves of Ps
f

(
�1
)
 varying with �1 of 

example 5.1

Table 3  The size of candidate sample pool and Ncall in case (1) of 
example 5.1

Methods Size of candidate sample pool Ncall

DLMCS 10 × 105 = 106 3 × 106

SLMCS 105 3 × 105

SL-AK-SYS3 105 88.45

SL-AK-SYSi 105 80.85

SL-AK-SYSc 105 62.00

Table 4  The distribution parameters of the input variables in case (2) 
of example 5.1

Input variable 
Xi

Distribution Mean �Xi
Standard 
deviation 
�Xi

X1 Normal 0.6 0.5

X2 Normal −0.2 0.4
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(42)AL(X) = 1.16 − 0.3717X2X4 − 0.00931X2X10 − 0.484X3X9 + 0.01343X6X10

(43)F(X) = 4.72 − 0.5X4 − 0.19X2X3 − 0.0122X4X10 + 0.009325X6X10 + 0.000191X2
11

(44)RBu(X) = 28.98 + 3.818X3 − 4.2X1X2 + 0.0207X5X10 + 6.63X6X9 − 7.7X7X8 + 0.32X9X10

(45)

RBm(X) = 33.86 + 2.95X3 + 0.1792X10

− 5.057X1X2 − 11X2X8 − 0.0215X5X10

− 9.98X7X8 + 22X8X9

(46)RBl(X) = 46.36 − 9.9X2 − 12.9X1X8 + 0.1107X3X10

Fig. 3  The three-dimensional 
curves of Ps

f

(
�1, �2

)
 varying 

with �1 and �2 of example 5.1

(a) DLMCS                            (b) SLMCS

(c) SL-AK-SYS 3                                    (d) SL-AK-SYSi

(e) SL-AK-SYSc
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(47)

VCu(X) = 0.261 − 0.0159X1X2 − 0.188X1X8 − 0.019X2X7

+ 0.0144X3X5 + 0.0008757X5X10

(48)

VCm(X) = 0.214 + 0.00817X5 − 0.131X1X8 − 0.0704X1X9 + 0.03099X2X6 − 0.018X2X7

+0.0208X3X8 + 0.121X3X9 − 0.00364X5X6 + 0.0007715X5X10

−0.0005354X6X10 + 0.00121X8X11

(49)

VCl(X) = 0.74 − 0.61X2 − 0.163X3X8 + 0.001232X3X10

− 0.166X7X9 + 0.227X2

2

(50)

V
B
(X) = 10.58 − 0.674X1X2 − 1.95X2X8 + 0.02054X3X10

− 0.0198X4X10 + 0.028X6X10

(51)

V
D
(X) = 16.45 − 0.489X3X7 − 0.843X5X6 + 0.0432X9X10

− 0.0556X9X11 − 0.000786X
2

11

Fig. 4  The two-dimensional 
curves of Ps

f

(
�1, �2

)
 varying 

with �1 or �2 of example 5.1
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Table 5  The size of candidate sample pool and Ncall in case (2) of 
example 5.1

Methods Size of candidate sample pool Ncall

DLMCS 10 × 10 × 5 × 104 = 5 × 106 1.5 × 107

SLMCS 2 × 105 6 × 105

SL-AK-SYS3 2 × 105 96.00

SL-AK-SYSi 2 × 105 81.90

SL-AK-SYSc 2 × 105 68.40
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where  t he  e leven-d imens iona l  inpu t  vec to r 
X =

{
X1,X2,… ,X11

}
 is mutually independent. The descrip-

tion, distribution, mean, and standard deviation of the 
eleven-dimensional input vector X are listed in Table 6.

Case (1) supposes the mean �X1
 of X1 as the concerned 

distribution parameter, i.e., �1 = �X1
∈ [0.6, 1.2] . The design 

domain of the concerned distribution parameter is uniformly 
scattered into 10 discrete points. The two-dimensional 
curves of the SFPF Ps

f

(
�1
)
 obtained by the various methods 

are shown in Fig. 6. The size of candidate sample pool and 
the number of the performance function evaluation for each 
method in case (1) are shown in Table 7.

Case (2) supposes the mean �X1
 of X1 and the standard 

deviation �X2
 of X2 as the concerned distribution parameters, 

i.e., � =
{
�1, �2

}T
=
{
�
X1
, �

X2

}T , where �1 = �X1
∈ [0.6, 1.2], 

�2 = �X2
∈ [0.02, 0.04] . The design domains of the con-

cerned distribution parameters are uniformly scattered into 
10 discrete points, respectively. The three-dimensional 
curves of the SFPF Ps

f

(
�1, �2

)
 varying with 

(
�1, �2

)
 are 

Fig. 5  The illustration of the vehicle side impact model (Youn et al. 
2004)

Table 6  The distribution 
parameters of the input 
variables in example 5.2

Input variable
Xi

Description Distribution Mean
�Xi

Standard 
deviation
�Xi

Thickness (unit: mm)
 X1 B-pillar inner Lognormal 0.900 0.030

 X2 B-pillar reinforcement Lognormal 1.410 0.030

 X3 Floor side inner Lognormal 0.800 0.030

 X4 Cross member Lognormal 1.395 0.030

 X5 Door beam Lognormal 0.875 0.030

 X6 Door belt line Lognormal 1.200 0.030

 X7 Roof rail Lognormal 0.500 0.030

Material properties (Unit: GPa)
 X8 B-pillar inner Normal 0.345 0.006

 X9 Floor side inner Normal 0.192 0.006

Impact position (Unit: mm)
 X10 Barrier height Normal 0 10

 X11 Barrier hitting position Normal 0 10
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1θ

(
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1
fP
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Fig. 6  The two-dimensional curves of Ps
f

(
�1
)
 varying with �1 of 

example 5.2

Table 7  The size of candidate sample pool and Ncall in case (1) of 
example 5.2

Method Size of candidate 
sample pool

Ncall

DLMCS 10 × 5 × 104 = 5 × 105 10 × 5 × 105 = 5 × 106

SLMCS 105 10 × 105 = 106

SL-AK-SYS3 105 405.20

SL-AK-SYSi 105 387.45

SL-AK-SYSc 105 293.10
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shown in Fig. 7. Since the three-dimensional curves of 
Ps
f

(
�1, �2

)
 varying with 

(
�1, �2

)
 do not facilitate comparison 

of the accuracy, the two-dimensional curves of 
Ps
f

(
�1, �2 = �∗

2

)
 and Ps

f

(
�2, �1 = �∗

1

)
 are shown in Fig. 8.

The size of candidate sample pool and Ncall of each 
method in case (2) are shown in Table 8.

Case (3) supposes the mean vector 
{
�X1

,�X7
,�X8

}
 of {

X1,X7,X8

}
 and the standard deviation vector 

{
�X2

, �X10

}
 of {

X2,X10

}
 as the concerned distribution parameters, i.e., 

� =
{
�1, �2, �3, �4, �5

}T
=
{
�X1

, �X2
,�X7

,�X8
, �X10

}T , where 
�1 = �X1

∈ [0.6, 1.2] , �2 = �X2
∈ [0.02, 0.04] , �3 = �

X7
∈

[0.35, 0.65] , �4 = �X8
∈ [0.30, 0.39] , and �5 = �X10

∈ [8, 12] . 
The design domains of the concerned distribution 

parameters are uniformly scattered into 10 discrete points, 
respectively. Whereas, it is not possible to visualize the six-
d imens iona l  cu r ves  o f  Ps

f
(�)  va r y ing  w i t h 

� =
{
�1, �2,… , �5

}T . In order to visually compare the  
accuracy of each method, the two-dimensional curves  
of the SFPF Ps

f

(
�i,�

∗

−i

)
 varying with �i are shown in Fig. 9, 

where �∗

−i
 is the fixed value of the remaining four-dimen-

sional distribution parameters after removing the i-th distri-
bution parameter, i.e., �∗

−i
=
{
�∗
1
,… , �∗

i−1
, �∗

i+1
,… , �∗

5

}T . 
The fixed value of the distribution parameters �∗ in  
Fig. 9 is taken as the median of its concerned domain, i.e., 
�
∗ = {0.9, 0.03, 0.5, 0.345, 10}

T . The size of candidate 

Fig. 7  The three-dimensional 
curves of Ps

f

(
�1, �2

)
 varying 

with �1 and �2 of example 5.2
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sample pool and the number of the performance function 
evaluation for each method in case (3) are shown in Table 9.

From the curves of the SFPF of the vehicle side impact 
system in example 5.2, it can be concluded that the pro-
posed algorithm is suitable for universal situation, which 

can include multi-failure-mode, multi-input dimension, 
and multi-distribution parameter. The Kriging model-based 
methods require far fewer performance function evaluations 
than those of double-loop numerical simulation and single-
loop numerical simulation methods. In contrast to SL-AK-
SYS3 and SL-AK-SYSi, the SL-AK-SYSc method has the 
fewest performance function evaluations under the accept-
able accuracy, which indicates that considering the possible 
correlation among the multi-failure-mode Kriging models is 
effective in improving computational efficiency.

5.3  Example 3 A single‑beam wing structure

The wing structure, one of the important components of the 
aircraft structure, is the main provider of the lift during the 
flight mission, and it is also the main bearer of the bending 

Fig. 8  The two-dimensional 
curves of Ps

f

(
�1, �2

)
 varying 

with �1 or �2 of example 5.2
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Table 8  The size of candidate sample pool and Ncall in case (2) of 
example 5.2

Methods Size of candidate sample pool Ncall

DLMCS 10 × 10 × 5 × 104 = 5 × 106 10 × 5 × 106 = 5 × 107

SLMCS 4 × 105 10 × 4 × 105 = 4 × 106

SL-AK-SYS3 4 × 105 561.35

SL-AK-SYSi 4 × 105 530.60

SL-AK-SYSc 4 × 105 326.20
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moment. Therefore, it is essential to analyze the reliability of 
the wing structure. The single-beam wing structure (Ajanas 
et al. 2021), a relatively common wing structure, is a series 

system with seven-dimensional input vector and two failure 
modes. This example is aimed at verifying the applicabil-
ity of the proposed algorithm to the practical engineering 
problems with the implicit performance functions. The wing 
structure model is simplified to facilitate the calculation. 
The single-beam wing structure has 17 ribs, 3 sets of spars, 
and 1 wing beam. The main load-bearing structures in the 
wing are the wing beam, the wing ribs, the spars, and the 
skin. The wing span is 4.02 m and the wing chord length is 
1.00 m. In the finite element model of the wing structure, 
the wing ribs are made of 2A12 Aluminum Alloy, the wing 
beams and spars are made of 2A16 Aluminum Alloy, and 
the skin is made of 7075 Aluminum Alloy. The components 
of the single-beam wing structure are shown in Fig. 10, and 

Fig. 9  The two-dimensional 
curves of Ps

f
(�) varying with �i 

of example 5.2
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Table 9  The size of candidate sample pool and Ncall in case (3) of 
example 5.2

Methods Size of candidate sam-
ple pool

Ncall

DLMCS 105 × 5 × 104 = 5 × 109 10 × 5 × 109 = 5 × 1010

SLMCS 106 10 × 106 = 107

SL-AK-SYS3 106 715.60

SL-AK-SYSi 106 684.00

SL-AK-SYSc 106 427.85



A novel single‑loop simulation algorithm combined with adaptive Kriging model for estimating… Page 19 of 23 15

the distribution parameters of the input variables are shown 
in Table 10.

During the flight status, the boundary condition of the 
wing structure is set as the fixed support of the wing root 
and the applied load is simplified to the pressure difference 
between upper and lower wing surfaces shown in Fig. 11. 
The finite element calculation results are shown in Fig. 12 
and Fig. 13, respectively, when all the input variables take 
their means.

Two main failure modes of the wing structure are con-
sidered in this example. The first one is that the stress at 
arbitrary position in the wing ribs exceeds the maximum 
permissible stress �∗ . Therefore, the performance function 
g1(X) of the first failure mode is constructed by the maxi-
mum permissible stress �∗ and the actual maximum stress 
�max(X) as shown in the following equation.

Fig. 10  The components of the 
single-beam wing structure Wing skin

Wing rib
Wing beam

Wing spar

Table 10  The distribution 
parameters of the input 
variables in example 5.3

* Where Cov is an abbreviated coefficient of variation

Input variables Description Symbol Xi Distribution Mean
�Xi

Cov
cov

(
Xi

)

E1(MPa) Elasticity modulus of 2A12 X1 Normal 70000 0.02

E2(MPa) Elasticity modulus of 2A16 X2 Normal 67700 0.02

E3(MPa) Elasticity modulus of 7075 X3 Normal 74000 0.02

�1 Poisson’s ratio of 2A12 X4 Normal 0.33 0.03

�2 Poisson’s ratio of 2A16 X5 Normal 0.33 0.03

�3 Poisson’s ratio of 7075 X6 Normal 0.33 0.03

F(Pa) Applied load X7 Normal 3200 0.05

Fig. 11  The applied load and the boundary condition of the single-
beam wing structure

Fig. 12  The stress cloud result of the single-beam wing structure
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where the maximum permissible stress �∗ is 380MPa.
The second one is that the maximum node displacement 

in the wing structure exceeds the permissible value Δ∗ . The 
performance function g2(X) of the second failure mode is 
constructed by the permissible displacement value Δ∗ and 
the actual maximum displacement Δmax(X) as shown in the 
following equation.

where the permissible displacement value Δ∗ is 280mm.
Two cases of the single-beam wing structure are used 

to verify the applicability of the proposed algorithm to the 
engineering problems of the implicit performance functions.

Case (1) supposes the mean of X7 as the concerned  
distribution parameter, i.e., �1 = �X7

∈ [3100, 3300] Pa.  
The variation domain of the concerned distribution  
parameter is uniformly scattered into 10 discrete points.  

(52)g1(X) = �∗ − �max

(
X1,X2,X3,X4,X5,X6,X7

)

(53)g2(X) = Δ∗ − Δmax

(
X1,X2,X3,X4,X5,X6,X7

)

The two-dimensional curves of the SFPF Ps
f

(
�1
)
 obtained by 

the various methods are shown in Fig. 14. The size of can-
didate sample pool and Ncall of each method is shown in 
Table 11.

Case (2) supposes the mean vector 
{
�X1

,�X7

}
 of X1 and 

X7 as the concerned distribution parameters, i.e., 
� =

{
�1, �2

}T
=
{
�X1

,�X7

}T , where �1 = �
X1

∈ [68000, 72000] 
MPa and �2 = �X7

∈ [3100, 3300] Pa. The variation domains 
of the concerned distribution parameters are uniformly scat-
tered into 10 discrete points, respectively. The three-dimen-
sional curves of the SFPF Ps

f

(
�1, �2

)
 varying with 

(
�1, �2

)
 are 

shown in Fig. 15.
Since the three-dimensional curves of Ps

f

(
�1, �2

)
 varying 

with 
(
�1, �2

)
 do not facilitate comparison of the accuracy, the 

two-dimensional  cur ves  of  Ps
f

(
�1, �2 = �∗

2

)
 and 

Ps
f

(
�2, �1 = �∗

1

)
 are shown in Fig. 16. The size of candidate 

sample pool and Ncall of each method in case (2) are shown 
in Table 12.

From the curves of the SFPF of the single-beam wing 
structure in example 5.3, it can be seen that the system fail-
ure probability increases with the mean of the applied load 
F and decreases with the mean of the elasticity modulus E1 
of the wing ribs. This is due to the fact that the stress and 
node displacement at the wing ribs increase with the mean 
of the applied load F , and the system failure probability 
increases with the increase of the stress and displacement. 
The stress and node displacement at the wing ribs decrease 
with the mean of the elasticity modulus E1 of the wing ribs, 
and the system failure probability decreases with the 
decrease in stress and displacement. The relationship 
between material elasticity modulus mean �X1

 and system 
failure probability Ps

f
 can not only show the effect of �X1

 on 
the system failure probability Ps

f
 but also help decoupling 

the RBDO of the wing structure, while the relationship 
between the applied load mean �X7

 and system failure prob-
ability Ps

f
 indicates the safety level of the wing structure 

under given �X7
.

According to the number of the performance function 
evaluations, it is obvious that the SL-AK-SYSc method 
has significantly fewer performance function evaluations 
than those of the SL-AK-SYS3 and the SL-AK-SYSi with 
acceptable accuracy. Thus, it can be concluded that the 

Fig. 13  The displacement cloud result of the single-beam wing struc-
ture
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Fig. 14  The two-dimensional curves of Ps
f

(
�1
)
 varying with �1 of 

example 5.3

Table 11  The size of candidate sample pool and Ncall in case (1) of 
example 5.3

Methods Size of candidate sample pool Ncall

SL-AK-SYS3 106 258.55

SL-AK-SYSi 106 241.00

SL-AK-SYSc 106 175.10
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SL-AK-SYSc algorithm can effectively improve the compu-
tational efficiency of estimating the SFPF, especially for the 
engineering problem of the implicit performance functions.

6  Conclusion

In order to accurately and efficiently estimate the system 
failure probability function (SFPF) of the multi-failure-mode 
system with multi-dimensional distribution parameter, this 
paper first constructs a single-loop numerical simulation 
method (SL) for estimating the SFPF and then the adaptive 
Kriging model is embedded into the single-loop numerical 
simulation method for SFPF. In the proposed SL combining 
with the AK-based method for SFPF, an innovative approach 
for selecting new training points and updating mode indi-
cator are proposed by considering the possible correlation 
among the multi-failure-mode Kriging models, and the cor-
responding adaptive learning convergence criterion is also 
established. The following conclusions are drawn from the 
principles of the proposed algorithms and the analysis of 
three presented examples.

(1) The samples extracted by the single-loop numerical 
simulation method can be shared simultaneously to 
estimate the system failure probability at the arbitrary 
realizations of all distribution parameters in their con-
cerned design domains. Comparing with the double-
loop numerical simulation method, the proposed sin-
gle-loop numerical simulation method can significantly 
reduce the computational cost of estimating the SFPF 
due to the sample information sharing strategy.

(2) Compared with the SL-AK-SYS3 and SL-AK-SYSi, the 
SL-AK-SYSc algorithm, which considers the possible 
correlations among multi-failure-mode Kriging mod-
els, is more efficient for estimating the SFPF.

(3) For small failure probabilities ( 10−4 or even smaller) in 
practical engineering problems, the proposed SL-AK-
SYSc algorithm still requires a large number of samples 
to obtain the convergent results, and the large candidate 
sample pool will directly lead to slow updating of the 
adaptive Kriging model, which affects the computa-
tional efficiency. In future research, we will consider 
reducing the size of the candidate sample pool to fur-
ther improve the efficiency of estimating the SFPF.

Fig. 15  The three-dimensional 
curves of Ps

f

(
�1, �2

)
 varying 

with �1 and �2 of example 5.3
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tary material available at https:// doi. org/ 10. 1007/ s00158- 023- 03725-3.
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Fig. 16  The two-dimensional 
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Table 12  The size of candidate sample pool and Ncall in case (2) of 
example 5.3

Methods Size of candidate sample pool Ncall

SL-AK-SYS3 1.5 × 106 357.30

SL-AK-SYSi 1.5 × 106 332.95

SL-AK-SYSc 1.5 × 106 197.60
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