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Abstract
Time-dependent reliability analysis (TRA) has attracted widespread attention due to its viability in evaluating the reliability 
of structures during the entire service life. However, TRA for complicated structures often leads to extremely high compu-
tational cost. To alleviate computational burden, this study develops a most probable point (MPP)-oriented Kriging model 
combined with the importance sampling (MPP-KIS) method for TRA. The strategy is that a comprehensive Kriging modeling 
method based on MPP is developed to construct the surrogate models for instantaneous performance functions discretized 
from the time-dependent reliability problem. A new learning function and a precise stopping criterion that take into account 
of the accuracy of the Kriging around MPP are contrived for updating the surrogate models. An adaptive screening strategy 
is introduced to identify the safe time trajectories to spare calculating the responses. The importance sampling method is 
integrated with the adaptive screening strategy for efficient computation of the time-dependent probability of failure. Two 
numerical examples and two engineering cases are exemplified to demonstrate the effectiveness and proficiency of the pro-
posed method. The results show that the proposed MPP-KIS method achieves reliable results with substantially improved 
computational efficiency.

Keywords Time-dependent reliability analysis · Surrogate model · Active learning · Importance sampling · Most probable 
point

1 Introduction

Reliability analysis is a viable measure for estimating the 
reliability of a structure subject to uncertainties (Song et al. 
2023), which can be classified into two categories: static 
uncertainties and dynamic uncertainties. Accordingly, 
reliability analyses can be divided into three types: time-
independent reliability analysis, time-dependent reliability 
analysis (TRA), and time- and space-dependent reliability 
analysis. The former type of methods, like first-order reli-
ability method (FORM) (Yang et al. 2020) and second-order 

reliability method (SORM) (Gong and Frangopol 2019; Wu 
et al. 2020a), assume that uncertainties are independent of 
time (Jiang et al. 2021), neglecting sources of time-depend-
ent uncertainties, such as degradation of material proper-
ties, stochastic operating conditions, and dynamic load-
ings, resulting in unreliable predictions (Yang et al. 2022b). 
Differing from conventional time-independent reliability 
analysis, TRA estimates the probability that a structure, 
subject to time-dependent uncertainties, will operate reli-
ably throughout its service life, which exhibits more practi-
cality for engineering problems (Zhao et al. 2022a, 2022b). 
Besides, time- and space-dependent reliability analyses are 
also developed recently to address problems pertaining to 
stochastic processes, random fields, and tempo-spatial vari-
ables (Wu and Du 2023).

On the other hand, time-dependent reliability analysis 
is usually computationally intensive due to the involve-
ment of time-dependent factors, such as time param-
eter and stochastic processes (Hu and Du 2013a; Zhou 
et al. 2022). To efficiently address the problem of high 
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computational intensity for time-dependent reliability 
problems, researchers have developed various methods in 
recent years, which can be divided into three categories: 
outcrossing rate methods (Jiang et al. 2017), stochastic 
process discretization-based methods (Zhang et al. 2021a), 
and surrogate model-based methods (Li and Wang 2020). 
For the outcrossing rate methods, outcrossing rate refers 
to mean of the performance function outcrossing from the 
reliable state to the failure state per time unit (Wang et al. 
2020). TRA problems are processed by integrating the out-
crossing rate under assumption of independent outcrossing 
events (Jiang et al. 2017). Rice’s first-passage formula laid 
the foundation for the outcrossing rate methods, but its 
application is usually hindered by the relevant intricate 
computations (Rice 1945). Subsequently, PHI2 method 
was developed in response to the complexity in calculating 
the outcrossing rate (Andrieu-Renaud et al. 2004). How-
ever, the computational result by this method is usually not 
stable due to its sensitivity to the different time step size 
in the finite difference (Wang et al. 2016). PHI2 + method 
was then proposed to simplify the evaluation process and 
improve the stability of PHI2 method, which yields an 
analytical expression (Sudret 2008). Unfortunately, these 
methods may lead to considerable errors when attend-
ing time-dependent reliability problems that outcrossing 
events in different instances are highly correlated (Jiang 
et al. 2018). To make amendment, the joint crossing rate 
was employed to process the strongly correlated outcross-
ing events by Hu and Du (2013b). Although the perfor-
mance of outcrossing rate methods has been improved 
significantly in recent years, proficiently deriving the 
outcrossing rate for problems with complex mathematical 
properties remains a challenge (Zhang et al. 2023).

To this gap, a number of stochastic process discretization-
based methods have been developed to circumvent calculat-
ing the outcrossing rate. This new type of approach discre-
tizes time-dependent performance functions into a series of 
instantaneous performance functions and operates analyses 
on each instantaneous performance function. Then, the 
series system probability of failure can be calculated utiliz-
ing the correlation between the instantaneous performance 
functions. A TRA method based on stochastic process dis-
cretization (TRPD) was developed by Jiang et al. (2014). 
TRPD method first transformed a TRA problem into a series 
of time-independent reliability problems at discretized time 
nodes. The reliability indexes of all time-independent per-
formance functions were then calculated by FORM, which 
were further utilized to calculate the serial system reliability 
based on multivariate normal distribution. Improved TRPD 
(iTRPD) method was also proposed to further simplify the 
solution procedure and enhance the efficiency of comput-
ing for TRPD method (Jiang et al. 2018). Since these meth-
ods need to search MPP of each instantaneous performance 

function, they still ensue remarkably high computational 
expense when discretized number of the time interval is 
large.

To improve computational efficiency, surrogate models 
are applied to address TRA problems, which have attracted 
much attention for their superior computational efficiency 
without compromise of accuracy. The basic idea of surrogate 
model-based methods is replacing the limit state function 
(LSF) with a surrogate model, such as Kriging model (Hu 
and Du 2015), response surface (Chen et al. 2022; Gavin and 
Yau 2008; Roussouly et al. 2013), neural network (Zhang 
et al. 2022), and support vector machine (Pan and Dias 2017; 
Rocco and Moreno 2002; Shi et al. 2020). Kriging model is 
widely adopted as it predicts not only the response but also 
the variance of the unknown points (Hu and Mahadevan 
2016). Generally, TRA methods based on Kriging model can 
be categorized as extreme response Kriging model-based 
methods, global response Kriging model-based methods 
(Liu et al. 2022), and MPP-informed Kriging model-based 
methods. Extreme response Kriging model-based methods 
build Kriging for the extreme value of LSF and transforms 
the time-dependent reliability problem into static problems 
(Yu and Li 2021). Since these methods should search the 
extreme value of LSF over the specified time domain, it usu-
ally incurs a double-loop procedure, in which extreme time 
is identified by performing global optimization in the inner 
loop, and Kriging model of extreme response is established 
in the outer loop (Ji et al. 2023). It thus ensues very high 
computational cost (Song et al. 2022). To prevent the inef-
ficiency of double-loop method, the global response Krig-
ing model-based methods have been brought up in recent 
years (Zhao et al. 2022c). Specifically, a single-loop Krig-
ing modeling method was proposed by Hu and Mahadevan 
(2016), which significantly reduced computational cost of 
TRA. Wang and Chen (2017) developed an adaptive extreme 
response surface (AERS) method through improving the 
update procedure of Kriging model. A Kriging modeling 
method on the basis of failure-pursuing for identification of 
the most useful samples was proposed by Jiang et al. (2019) 
for efficient implementation of TRA. Furthermore, Jiang 
et al. (2020) developed an efficient TRA method in terms of 
misclassification probability of Kriging model. Song et al. 
(2022) investigated the correlation between discrete points 
on both the same and different time trajectories and intro-
duced an adaptive Kriging method via variance reduction of 
predictions to improve the modeling efficiency of Kriging.

Recently, researchers have developed MPP-informed 
Kriging model-based methods to improve the accuracy 
and efficiency of TRA. In these methods, the MPP infor-
mation is utilized to construct the Kriging model, which is 
then employed directly or indirectly to calculate the time-
dependent probability of failure. It should be noted that this 
type of method is also related to other types of methods, 
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such as TRA methods based on stochastic process discre-
tization and TRA methods based on extreme response Krig-
ing model. Specifically, an approximating MPP trajectory 
(AMPPT) method was presented by Zhang et al. (2021b) 
to improve the efficiency of TRA. In AMPPT, the Kriging 
model is established to estimate MPP trajectory in U-space. 
The time-dependent reliability is then computed based on 
estimated MPP trajectory. Since AMPPT circumvents evalu-
ations of MPPs at all discretized time points with the help 
of the Kriging model, the efficiency of computing is signifi-
cantly improved. Further advance was the Kriging-assisted 
TRPD method (K-TRPD), which used Kriging model to 
predict MPP trajectories for TRPD method at discretized 
time points, thus reducing the number of function calls for 
MPP evaluation (Zhang et al. 2021a). It is worth noting that 
the above two methods are essentially based on the combi-
nation of FORM and Kriging models to approximate MPP 
trajectories, where FORM actually participates in TRA and 
will have a significant impact on the results of TRA. It is 
generally understood that FORM has low computational 
accuracy and inadequate robustness when dealing with 
highly nonlinear performance functions (Meng et al. 2023; 
Yang et al. 2020). Therefore, the above two methods may 
result in significant computational errors of TRA or even 
nonconvergence. To avoid this deficiency of the abovemen-
tioned methods that use the Kriging model to approximate 
MPP trajectories, Yu and Li (2021) recently proposed an 
extreme response Kriging model-based method combining 
with Monte Carlo Simulation (MCS) for efficient implemen-
tation of TRA, where MPP information is only used as the 
sampling center in each iteration and does not participate in 
the calculation of reliability. Specifically, MPP information 
from the Kriging model is firstly determined as the sampling 
center to generate candidate samples, based on which the 
extreme values are evaluated. The Kriging model is then 
updated using a novel probabilistic model leaning function. 
Subsequently, MCS is used to calculate the time-dependent 
reliability. It should be emphasized that this method updates 
the Kriging model by adding many sample points at a time 
node instead of just one sample point without considering 
the variance information of the Kriging model, which may 
miss important sample points with high uncertainty. As 
a result, this may ensure inability to improve accuracy of 
the Kriging model to the greatest extent, thereby rendering 
the learning process inefficient. In addition, MCS method 
must extract a large number of samples to obtain conver-
gent results, which occupies a large amount of computing 
memory, leading to low efficiency (Wu et al. 2020b).

From the above analysis, although advances in MPP-
informed Kriging model-based TRA methods have been 
made, it remains a challenge to improve the computa-
tional accuracy and efficiency of Kriging model for TRA. 
To improve computational efficiency for TRA, this study 

develops an MPP-oriented Kriging model combined with the 
importance sampling (MPP-KIS) method. The advantages 
of current MPP-KIS are reflected in three aspects. Firstly, 
a new learning function is contrived to refine the Kriging 
models based on the approximate MPPs until a straightfor-
ward and effective stopping criterion is met. The constructed 
Kriging models can well fit the limit state functions near true 
MPPs as guided by updating procedure. A note of atten-
tion is that the acquisition of the approximate MPP does not 
require any computational cost since it is derived from Krig-
ing model rather than the true limit state function. Secondly, 
an adaptive screening strategy is introduced to enhance the 
computational efficiency by the constructed β-surface that 
distinguishes safety sample points in the sample pool into 
two categories: inside and outside the β-surface, where the 
computations of the limit state function values at some sam-
ple trajectories inside the β-surface can be circumvented. 
Finally, to further enhance the computational efficiency of 
MCS method for reliability analysis and take full advantage 
of the derived information of MPP, the adaptive screening 
strategy is integrated with importance sampling (IS) method 
to estimate time-dependent probability of failure.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the fundamental concepts of Kriging model 
and time-dependent reliability analysis. Section 3 elaborates 
the proposed MPP-KIS method. Four examples are exempli-
fied to demonstrate the proposed method in Sect. 4. Con-
cluding remarks are drawn in Sect. 5.

2  Kriging model and time‑dependent 
reliability analysis

2.1  Kriging surrogate modeling method

As a robust interpolation measure, Kriging model is com-
prised of a regression model and a stochastic process. It 
is usually adopted in TRA due to its exceptional fitting 
and predictive abilities for attending nonlinear functions 
(Yang et  al. 2022a; Zafar et  al. 2020). Given n sample 
points �old =

{
�1, �2,… , �n,

}
 and associated responses 

�old =
{
y1, y2,… , yn,

}
 , Kriging model can predict the 

response for the unknown point �new (Guo et al. 2020):

where � =
[
�1, �2,… , �k

]T is the vector of regression coef-
ficients; �(�) =

[
f1(�),… , fk(�)

]T stands for the vector of 
base functions; Z(�) symbolizes a stationary Gaussian pro-
cess representing the variance predicted by the regression 
model. The mean of Z(�) is zero, and its covariance can be 
expressed as

(1)gK
(
�new

)
= �T�

(
�new

)
+ Z

(
�new

)
,
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where �2
Z
 represents the variance of Z(�) ; R�

(
�i, �j

)
 is the 

correlation function of Z(�) with θ as the parameter. In this 
study, Gaussian kernel function is identified as the correla-
tion function:

where �l(l = 1, 2,… , d) is correlation parameter; d is the 
dimensionality of input samples x. Maximum likelihood 
estimation method is utilized to estimate the correlation 
parameter:

where �R is the correlation coefficient matrix and can be 
expressed as

Via generalized least squares method, coefficients of regres-
sion β and variance �2

Z
 can be obtained by

Kriging model can be formulated for the performance func-
tion once all the coefficients have been acquired. The time-
dependent probability of failure can be efficiently calculated 
employing constructed Kriging model. In this study, the Tool-
box DACE (Lophaven et al. 2002) is utilized for the construc-
tion of Kriging model and employed to compute the responses.

2.2  Basic concept of time‑dependent reliability 
analysis

In TRA problem, reliability is the probability that an engi-
neering structure will operate reliably over the specified time 
interval, which can be represented by the probability that LSF 
is higher than zero throughout that time interval (Yang et al. 
2024). The time-dependent reliability and probability of failure 
within the time interval 

[
ts, te

]
 are calculated by (Li and Wang 

2022)

(2)Cov
(
Z
(
�i
)
, Z

(
�j
))

= �2
Z
R�

(
�i, �j

)
, �i, �j ∈ �old,

(3)R�

(
�i, �j

)
=

d∏
l=1

exp

(
−�l

|||xi,l − xj,l
|||
2
)
,

(4)�̂ = argmin
�

(||�R
||
1

n 𝜎2
Z

)
,

(5)�R(i, j) = R�

(
�i, �j

)
.

(6)�̂ =

(
�
(
�old

)T
�−1

R
�
(
�old

))−1

�
(
�old

)T
�−1

R
�old

(7)�̂�2
Z
=

1

n

(
�old − �

(
�old

)
�̂
)T

�−1
R

(
�old − �

(
�old

)
�̂
)
.

(8)Ps

(
ts, te

)
= Pr

{
g(�,�(t), t) > 0,∀t ∈

[
ts, te

]}

(9)Pf

(
ts, te

)
= Pr

{
g(�,�(t), t) ≤ 0,∃t ∈

[
ts, te

]}
,

where g(�,�(t), t) represents the time-dependent perfor-
mance funtion; X denotes the vector composed of random 
variables; �(t) indicates the vector consisting of stochastic 
processes; t is time parameter. Figure 1 shows the time-
dependent probability of failure by TRA and instantaneous 
probability of failure by time-independent reliability analy-
sis. From Fig. 1, the time-dependent probability of failure is 
the accumulation of the instantaneous ones.

2.3  Extreme value‑based method

The extreme value-based method is an essential class of 
methods with respect to extreme value of the LSF for com-
puting probability of failure. The extreme value is derived 
by minimizing the performance function within the specified 
time interval 

[
ts, te

]
 (Wang and Chen 2017):

To demonstrate the relatability between time-dependent 
probability of failure and the extreme value, Fig. 2 shows the 
realizations of a time-dependent performance function (Jiang 
et al. 2020). From Fig. 2, the extreme value of the i-th realiza-
tion is less than zero, which implies that this realization fails. 
Thus, it is feasible to judge if the structure fails by the extreme 
value of realization. The probability for the occurrence of fail-
ure events can be determined by the extreme value:

For most TRA problems, performance functions are usu-
ally nonlinear and implicit. It is not straightforward to derive 
analytical solutions for Eqs. (8–11). Consequently, MCS 

(10)gmin = min
t∈[ts,te]

g(�,�(t), t).

(11)

Pf

(
ts, te

)
= Pr

{
gmin ≤ 0

}
= Pr

{
min

t∈[ts,te]
g(�,�(t), t) ≤ 0

}
.

Fig. 1  Time-dependent and instantaneous probability of failure
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method is commonly adopted to estimate the probability of 
failure. However, this simulation scheme ensues significant 
computational cost due to the discretization of time interval 
and the expansion of stochastic processes (Song et al. 2022). 
To perform time-dependent reliability analysis efficiently, 
Kriging model gK of LSF is utilized for employing MCS, and 
Eq. (11) can be further calculated through (Jiang et al. 2020)

where �input denotes input variables of LSF except for the 
time parameter; It is time-dependent indicator function for 
�

(m)

input
:

3  The proposed MPP‑KIS method

In this section, the MPP-oriented Kriging modeling method 
combined with the importance sampling method, abbrevi-
ated as MPP-KIS, is proposed for solving TRA problems. 
The method is composed of three parts: (1) expansion opti-
mal linear estimation of stochastic processes; (2) MPP-ori-
ented Kriging modeling method; (3) importance sampling 
method integrating adaptive screening strategy.

3.1  Expansion optimal linear estimation 
for stochastic process

To transform performance function g(�,�(t), t) in Eq. (9) 
into a series of instantaneous ones, Ny-dimensional 

(12)Pf

(
ts, te

)
≈

1

NMCS

NMCS∑
m=1

It

(
�

(m)

input

)
,

(13)It

�
�

(m)

input

�
=

⎧⎪⎨⎪⎩

1, min
t∈[ts,te]

gK

�
�

(m)

input
, t
�
≤ 0

0, otherwise

stochastic process vector �(t) should be discretized 
first. To this end, 

[
ts, te

]
 is uniformly discretized into 

�d =
[
t
1
, t
2
,… , t

d

]
 for discretizing the stochastic process. 

Subsequently, �(t) is expanded at Nt interested time points 
�u =

[
t1, t2,… , tNt

]
 by expansion optimal linear estimation 

(EOLE) (Andrieu-Renaud et al. 2004):

where �k(t) is the mean function of Yk(t) ; �k(t) is the stand-
ard deviation function; r is the number of truncation terms; 
� =

[
Yk
(
t
1

)
, Yk

(
t
2

)
,… , Yk

(
t
d

)]T is the discretized stochastic 
process at �d ; �k =

[
�k
1
, �k

2
,… , �k

r

]T is a group of independent 
variables standard normally distributed; �Yk(t)�

(
ti
)
 is the cor-

relation coefficient of Yk
(
ti
)
 and � ; �j and �j are the solutions 

of the characteristic equation:

where ��� can be derived by

As EOLE is truncated after the r term, its variance error 
can be estimated by

According to Eq. (17), the number of truncation terms r 
is directly related to the accuracy of EOLE. Too few trun-
cation terms will lead to an excessive error in results of 
EOLE, where significant errors in the variance of stochastic 
processes exhibit. This further ensues error in the probabil-
ity of failure due to the insufficient precision of input sam-
ples. Consequently, the number of truncated terms r should 
be specified for a low variance error of EOLE. In this study, 
r is set appropriately to maintain a variance error of less 
than 0.03 to balance accuracy against efficiency. Taking 
r = 8 as an example, results for a stochastic process with 
mean μ, variance σ2, and correlation coefficient function 
�
(
x1, x2

)
= exp

(
−
((
x1 − x2

)
∕0.876

)2) are plotted in Fig. 3.

3.2  MPP‑oriented Kriging modeling method

After discretizing the random process, Nt instantaneous 
performance functions g

(
�, �, ti

)
 
(
i = 1, 2,… ,Nt

)
 are 

obtained, of which Kriging models will be established by 
MPP-oriented Kriging modeling method proposed in this 
subsection. An active learning function and a stopping 

(14)
Ŷk
(

ti
)

=�k
(

ti
)

+ �k
(

ti
)

r
∑

j=1

�kj
√

�j
�T

j �Yk(t)�
(

ti
)

,

i = 1, 2,… ,Nt, k = 1, 2,… ,Ny,

(15)����j = �j�j,

(16)��� =
{
�Yk

(
tm, tn

)|tm, tn ∈ �d
}
.

(17)Errk
(
ti
)
= 1 −

r∑
j=1

1

�j

[
�T

j
�Yk(t)�

(
ti
)]2

, i = 1, 2,… ,Nt

Fig. 2  g(�,�(t), t) vs. time
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criterion are developed for training Kriging based on MPP 
information efficiently. The specific construction pro-
cess of Kriging model for the i-th performance function 
g
(
�, �, ti

)
 is outlined as follows.

3.2.1  Construction of initial Kriging model

To start with, Rosenblatt transformation, an extensively used 
technique for transforming random variables into independ-
ent standard normal variables based on the information of 
probability distribution, is applied for the conversion of input 
variables X into standard normal space (Yu et al. 2022). For 
simplicity of presentation, g

(
�, �, ti

)
 is rewritten as g

(
�, ti

)
 , 

in which Z represents all the input variables. A training sam-
ple pool is then built to construct Kriging model for g

(
�, ti

)
 . 

Considering that the initial training sample pool should exhibit 
a high level of uniformity and randomness, Latin Hypercube 
sampling (LHS) method is employed herein to construct initial 
training sample pool:

After the calculation of response values for the initial 
training sample pool, the initial Kriging model of g

(
�, ti

)
 is 

ultimately constructed by Eq. (1) as

(18)

⎡⎢⎢⎢⎢⎣

�(1) �(1) tt1
�(2) �(2) tt2
⋮ ⋮ ⋮

�(n) �(n) ttn

⎤
⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎣

�(1) �(1) tt1
�(2) �(2) tt2
⋮ ⋮ ⋮

�(n) �(n) ttn

⎤
⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎣

�(1) tt1
�(2) tt2
⋮ ⋮

�(n) ttn

⎤⎥⎥⎥⎥⎦

(19)Mi(�) = g
(
�, ti

)
.

3.2.2  Update strategy for initial Kriging model

When the initial Kriging model is in place, the update strategy 
of Kriging will be initiated. The improvement of the accuracy 
of Kriging is highly dependent on the information of sample 
points in the training sample pool, which will be obstructed 
if the range of the training sample pool is too extensive (Yu 
et al. 2022). To prevent this, the active learning sampling area 
is constrained by the proposed update strategy via updating 
the sampling center based on the location of MPP obtained 
approximately by Kriging models and reducing the sampling 
radius during the training process. Therefore, the accuracy of 
Kriging around MPP can be substantially improved, and the 
stability of active learning is ensured. The proposed update 
strategy is elaborated in the following steps:

First, iHL-RF algorithm (Zhang and Kiureghian 1995) 
with high robustness is used to locate MPP �∗ by solving 
the following problem iteratively,

in which the procedure of the k-th iteration can be repre-
sented by

where �k denotes the random variable at the k-th iterative 
step; �k is the search direction and calculated by

(20)

⎧⎪⎨⎪⎩

find ∶ �∗

min ∶ ��∗�
subject to ∶ Mi(�

∗) = 0

(21)�k+1 = �k + ��k,

(22)�k =

(
∇Mi

(
�k

))T
�k −Mi

(
�k

)
(
∇Mi

(
�k

))T
∇Mi

(
�k

) ∇Mi

(
�k

)
− �k,

(a) Realizations of the stochastic process (b) Variance error of the stochastic process 

Fig. 3  Result and error of EOLE
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where α is the iterative step length and can be selected by 
minimizing the merit function:

where c is the constant. In this paper, c is set as

After solving Eq. (20), MPP �∗ will be obtained and uti-
lized to determine a new sampling region. It should be noted 
that a new sampling region should determine center and 
radius of sampling. Herein, the obtained MPP �∗ is selected 
as the sampling center, and the sampling radius is proposed as

where p denotes the number of training times; λ represents 
the adjusting parameter in a range from 1 to 10 that controls 
the degree of reduction in the sampling range. Figure 4 illus-
trates the relationship between the radius r and the number 
of training times p for different adjusting parameters λ. From 
Fig. 4, radius r varies quickly when the adjusting parameter λ 
is close to 1 and decreases slowly if λ is too high. To achieve 
the dynamic balance of radius reduction as much as possible, 
λ = 2 is selected as an adjusting parameter in this study.

After obtaining the new sampling region with MPP �∗ as 
center and r as radius, the candidate sample set �c is gener-
ated by LHS. A new learning function is then contrived to 
select new sample point x from candidate sample set �c . To 
better balance Kriging model’s error estimation of prediction 
value and the impact on the accuracy of model near MPP 
for a new point, the proposed learning function is defined as

where δ is utilized for the penalty effect, which is generally 
specified as a considerably high value. Herein, δ = 500 is 
adopted in this study. σ is the standard deviation of Kriging 
predictor. Using Eq. (26), Kriging model can be updated 
iteratively until the set stopping criterion is satisfied.

3.2.3  Stopping criterion

The stopping criterion is an indispensable link in the 
update process of Kriging model, and a proper stopping 
criterion can strike well trade-off for computational effi-
ciency and accuracy. Herein, the relative error of MPP 

(23)

⎧
⎪⎨⎪⎩

m(�) =
1

2
‖�‖ + c��Mi(�)

��
c >

‖�‖
��∇Mi(�)

��
,

(24)c =
‖�‖

��∇Mi(�)
��
+ 0.5

(25)r =
1

�p
,

(26)�new = argmin
�∈�c

{
1 + exp (�|� − �∗|)

�(�)

}
,

information over two successive iterations is considered 
as a stopping criterion for Kriging model. The stopping 
criterion can be specified as

where �∗
n
 and �∗

o
 denote MPP obtained in the current and the 

previous iterations according to the established Kriging model, 
respectively; �M represents convergence tolerance, which is a 
positive number, generally taken as 1 × 10−2 or lower.

After the stopping criterion is satisfied, Kriging mod-
els Mi(�) 

(
i = 1, 2,… ,Nt

)
 and corresponding MPPs �(i)

MPP(
i = 1, 2,… ,Nt

)
 can be obtained.

3.3  Importance sampling method integrating 
adaptive screening strategy

To improve the efficiency of MCS method for reliability 
analysis, this subsection combines the importance sampling 
method with an adaptive screening strategy to perform TRA 
on the basis of the above-constructed Kriging models.

3.3.1  Adaptive screening strategy

As illustrated in Fig. 5, the sphere, which is centered at the 
origin of the ordinates with the reliability index as the radius, 
is tangent to the LSF. It is denoted as β-surface, by which the 
random space is divided into the failure and safe regions. It is 
understood that the sample points interior to β-surface are safe 
points whose responses of performance function are higher 
than 0. Therefore, the values of failure indicator function can 
be determined without calculating response values of these 
points. Accordingly, the adaptive screening strategy can be put 

(27)� = ||�∗

n
− �∗

o

|| ≤ �
M
.

Fig. 4  Relationship between radius and number of iterations for dif-
ferent parameters
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forward as follows: (1) before calculating the values of failure 
indicator function, β-surface is constructed with center at the 
origin of the ordinates and the distance from MPP to that ori-
gin as radius; (2) sample points are checked whether they fall 
within β-surface. If they fall inside, they are identified as safe 
sample points, of which calculation of the function response 
is spared. Based on the above two steps, the computational 
efficiency will be further improved. It is worth mentioning 
that β-surface is straightforward to be built in view of the fact 
that MPPs have been derived during the update process of 
Kriging model.

3.3.2  Importance sampling method integrating adaptive 
screening strategy

In this subsection, the previously proposed adaptive 
screening strategy is integrated into the importance sam-
pling method to circumvent computing response values 
of samples interior to β-surface. The steps are specified 
as follows:

(1) To construct the importance density function for IS 
method and β-surface for the adaptive screening strategy, the 
multivariate normal probability density function, which is 
denoted as h(�) , is taken as the importance density function. 
The mean can be calculated by

(28)

� =
{

�uni
MPP

|

|

|

�uni
MPP(j) = �(i)

MPP(j), i = argmin
i

(

|

|

|

�(i)
MPP(j)

|

|

|

)

, j = 1, 2,… , d
}

,

where d is the dimension of MPPs. The covariance matrix 
of the multivariate normal probability density is

where r ranges from 1 to 2; I is the d-dimensional unit 
matrix. After obtaining h(�) , β-surface is constructed with 
the origin of the ordinates as the center, and its radius is

(2) LHS method is employed to generate NIS d-dimen-
sional sample points �IS =

[
�
(1)

IS
,�

(2)

IS
,… ,�

(NIS)
IS

]
 according 

to the importance density function. The probability density 
and importance probability density of the k-th sample �(k)

IS
 

can then be obtained by

where �(x) is probability density function of the variable that 
standard normally distributed.

(3) For the k-th sample �(k)

IS
 , as described in Sub-

Sect. 3.3.1, if |||�
(k)

IS

||| ≤ r� , the sample point is identified as 

(29)� = r�,

(30)r� =
‖‖‖�

uni
MPP

‖‖‖.

(31)f
(
�
(k)

IS

)
=

d∏
j=1

�

(
�
(k)

IS
(j)

)

(32)

h
�
�
(k)

IS

�
=

1√
���(2�)d

exp

�
−
1

2

�
�
(k)

IS
− �

�T

�−1
�
�
(k)

IS
− �

��
,

Fig. 5  Schematic for β-surface 
and samples in standard normal 
space

Safe region

Failure region
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interior to β-surface, its failure indicator function value is 0. 
Otherwise, I(k)t  can be determined by

The probability of failure can then be obtained by

3.4  Implementation procedure

Figure 6 shows the flowchart for the proposed MPP-KIS 
method, and its specific implementation steps are exposited 
in Table 1.

4  Examples and discussions

In this section, four examples are employed to validate effec-
tiveness and proficiency of MPP-KIS. The first example is a 
typical mathematical example; the second is a simply sup-
ported beam; the third is RV reducer, which is an engineer-
ing case for TRA; the last is an engineering case of flexible 
wheel of the harmonic reducer for TRA, of which perfor-
mance function is implicit. The proposed MPP-KIS method 
is compared with PHI2 + (Andrieu-Renaud et al. 2004), 
iTRPD (Jiang et al. 2018), SEVM (Meng et al. 2021), and 
AERS (Wang and Chen 2016). To render fair comparison, 
all the aforementioned methods adopt the same number of 
time discretization for all examples, and  106 samples are 
taken at every time instants for MCS to guarantee accuracy. 
The time-dependent probability of failure approximated by 
MCS is considered as caliber, and the relative error is cal-
culated through (Song et al. 2022)

where E� represents the relative error of calculation results; 
Pf  denotes the estimated probability of failure; PMCS

f
 is the 

computational result by MCS.

4.1  A mathematical example

The first example is a popular benchmark problem that 
includes a stochastic process, a set of random variables, and 

(33)I
(k)
t = It

�
�
(k)

IS

�
=

⎧
⎪⎨⎪⎩

1, min
i=1,2,…,Nt

Mi

�
�
(k)

IS

�
≤ 0

0, otherwise

(34)Pf =
1

NIS

NIS∑
k=1

I
(k)
t

f
(
�
(k)

IS

)

h
(
�
(k)

IS

) .

(35)E� =
Pf − PMCS

f

PMCS
f

,

time parameter t. The LSF of this problem is (Meng et al. 
2021)

where � =
[
x1, x2

]T is a vector of random variables follow-
ing distribution of N

(
3.5, 0.252

)
 ; Y(t) is a stationary Gauss-

ian process with a mean of 0 and variance of 1; time param-
eter t ranges from 0 to 1.

4.1.1  Effects of adjusting parameter and stopping criterion

To investigate the impacts of the adjusting parameter λ and 
the stopping criterion �M on the performance of the proposed 
MPP-KIS method, parametric studies with regard to these two 
parameters are performed in this example. In these parametric 
studies, λ ranges from 1.2 to 10 and �M varies from 10−4 to 
10−1 . The corresponding variations of probability of failure 
and number of functional evaluations (NOFE) are presented 
in Fig. 7. From Fig. 7a, the computational results of MPP-
KIS approach closely to the results of MCS for the cases, 
where � ∈ {1.2, 2} and �M ∈

{
10−4, 10−3, 10−2

}
 , while the 

results by MPP-KIS with � ∈ {6, 10} or �M = 10−1 exhibit a 
significant error. This is because larger λ ensues more rapid 
reduction of the sampling radius, leading the new points 
selected by the learning function too closer to the MPP, 
which further negates the prediction accuracy of the Kriging 
model. Besides, the accuracy of the Kriging model cannot be 
guaranteed if the stopping criterion is too loose. As shown in 
Fig. 7b, MPP-KIS with a higher adjusting parameter λ or a 
higher stopping criterion �M can incur lower computational 
cost. Based on the above analysis, an optimal balance between 
accuracy and efficiency can be achieved by utilizing � = 2 and 
�M = 10−2 , which are also used in other examples.

4.1.2  Comparison with other methods

The time interval [0, 1] is equally discretized into 21 time 
nodes in this example. Note that AERS and the proposed 
method ensue 6 NOFE for the construction of each ini-
tial  instantaneous Kriging model. The computational 
results by different methods are given in Table 2, in which 
time interval, NOFE, and relative error are included. From 
Table 2, the computational results by MPP-KIS, with a 
relative error less than 1%, approach more closely to coun-
terparts of MCS than those by other methods. It indicates 
that MPP-KIS exhibits the highest computational accuracy 
compared to other methods. On the other hand, NOFE of 
MPP-KIS is as low as 251, which is the least among all the 
methods, implying the highest computational efficiency.

To demonstrate more directly the performance of the 
proposed MPP-KIS method in this example, Fig. 8 plots the 

(36)g(�, Y(t), t) = x2
1
x2 − 5x1(1 + Y(t))t +

(
x2 + 1

)
t2 − 20,
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Fig. 6  Flowchart for proposed MPP-KIS method
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probability of failure throughout the time interval. From Fig. 8, 
curve of probability of failure by MPP-KIS is the closest to 
that of MCS method. Besides, probability of failure curve 
for PHI2 + method gradually deviates from that of MCS as 
the time interval expands. Furthermore, Fig. 9a depicts some 
parts of realizations of the LSF, and Fig. 9b shows the approxi-
mated extreme value distributions for MCS, SEVM, AERS, 
and MPP-KIS, which are obtained by kernel density estima-
tion with Scott’s Rule. Since only the exact tails with extreme 
values less than zero are of concern when determining the 
probability of failure, it is of no avail that extreme value distri-
butions of SEVM, AERS, and MPP-KIS are absolutely con-
sistent with that of MCS throughout the entire time interval. 

To further demonstrate superior model accuracy of Krig-
ing model constructed by MPP-KIS, Table 3 compares MPP 

of the performance function by iHL-RF algorithm as the 
true value and MPP by the proposed method as the pre-
dicted value. In Table 3, the numbers outside and inside the 
parentheses represent values of MPP and the relative error, 
respectively. From Table 3, MPP by MPP-KIS is close to 
the true value at all the discrete time nodes. The maximum 
prediction error of MPP-KIS is less than 1.5%, indicating 
smooth convergence of the proposed method.

4.2  A simply supported beam

TRA with stochastic process load and random variables 
is implemented for a simply supported beam. As shown 
in Fig. 10, the initial rectangular cross-sectional area and 

Table 1  Implementation 
procedure for MPP-KIS method

Step MPP-KIS

1 Discretize the time interval 
[
ts, te

]
 into Nt time points; apply Eq. (14) to expand the input 

stochastic processes and transform the input variables by Rosenblatt transformation
2 Generate initial training points using LHS and calculate their responses, which are denoted

as �train

3 Construct Nt Kriging models Mi = g
(
�, ti

)
 
(
i = 1, 2,… ,Nt

)
 with �train

4 For each Kriging model Mi = g
(
�, ti

)
 
(
i = 1, 2,… ,Nt

)
5  Set p = 0

6  While � ≤ �M

7  Use iHL-RF to solve MPP �∗ for the current Kriging model Mi

8  Calculate the sampling radius r by Eq. (25)
9  Generate the candidate sample set �C using LHS with �∗ and r
10  Select a new training point �new from �C using Eq. (26), update the training set �train

11  Construct Kriging model Mi with the updated training sample set �train  
12   If p = 0

13    � = 100

14   Else
15    Calculate ε using Eq. (27)
16   End if
17  p = p + 1

18  End while
19 End
20 Construct the importance density function h(�) using Eqs. (28) and (29)
21 Build the adaptive β-surface using Eq. (30)
22 Generate NIS d-dimensional sample points �IS according to h(�)
23 For each point �(k)

IS

 
(
k = 1, 2,… ,NIS

)
24  If |||�

(k)

IS

||| ≤ r�

25 I
(k)
t = 0

26  Else
27

  Calculate 
f
(
�
(k)

IS

)
 and 

h
(
�
(k)

IS

)
 by Eqs. (31) and (32)

28   Determine I(k)t  by Eq. (33)
29  End if
30  End
31  Calculate the probability of failure by Eq. (34)
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length of the simple supported beam are A0 = b0 × h0 and 
L = 5 m, respectively. The entire rectangular section of this 
simply supported beam undergoes isotropic surface corro-
sion. Hence, the time-variable area is expressed as

(37)A(t) = b(t) × h(t),

where b(t) = b0 − dc(t) and h(t) = h0 − dc(t) are the time-
variable width and length of the corroded cross-section, 
respectively, in which dc(t) = �t represents the corrosion 
rate and � is the corrosion coefficient of 0.036 mm/year.

The simply supported beam is subjected to a dynamic 
load F(t) in the middle and a uniformly distributed load 
p = 78500b0h0(N/m) over the entire beam. The beam mate-
rial yield strength is denoted as �z . The structure will fail 
when the beam bending moment exceeds its ultimate bend-
ing moment. Therefore, the LSF of the simply supported 
beam can be presented as (Guo et al. 2023)

where F(t) is the dynamic load modeled by a random pro-
cess; �z , b0 , h0 are random parameters. Table 4 shows the 
stats for the uncertain parameters in the simply supported 
beam.

In this example, the concerned time interval is [0, 10] 
and is equally discretized into 61 and 21 time nodes for 
MCS and other methods, respectively. AERS and the pro-
posed method require NOFE of 6 to construct the initial 

(38)g(�,F(t), t) =
F(t)L

4
+

78500b0h0L
2

8
−

b(t)h(t)2�z

4
,

(a) The variation of probablity of failure (b) The variation of NOFE

Fig. 7  Reliability analysis results of MPP-KIS with different adjusting parameters and stopping criterion

Table 2  Time-dependent probability of failure for example 1

Time interval MCS PHI2 + iTRPD SEVM AERS MPP-KIS

[0, 0.4] 0.0303 0.0224 (26.07%) 0.0282 (6.93%) 0.0267 (11.88%) 0.0323 (6.60%) 0.0290 (4.29%)
[0, 0.6] 0.1209 0.0884 (26.88%) 0.1183 (2.15%) 0.1195 (1.16%) 0.1201 (0.66%) 0.1203 (0.53%)
[0, 0.8] 0.2215 0.1740 (21.44%) 0.2154 (2.75%) 0.2243 (1.26%) 0.2224 (0.41%) 0.2209 (0.25%)
[0, 1.0] 0.3079 0.2543 (17.41%) 0.3046 (1.07%) 0.3049 (0.97%) 0.3119 (1.30%) 0.3098 (0.62%)
NOFE 21 ×  106 530 544 318 1031 251

Fig. 8  Time-dependent probability of failure for example 1
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Kriging model. Table 5 lists the computational results by 
all the methods, which includes time interval, NOFE, and 
relative error. It can be observed that the computational 

results by all methods except PHI2 + are close to those 
of MCS. The reliability analysis results by PHI2 + devi-
ate slightly from that of MCS. In terms of computational 

(a) Time-dependent performance function (b) Extreme value distribution

Fig. 9  Time-dependent performance function and extreme value distribution of example 1

Table 3  Comparison of true 
MPP and MPP by proposed 
method

Time x
1

x
2

True value Predicted value (%) True value Predicted value (%)

0  − 3.8305  − 3.8512 (0.54)  − 1.4939  − 1.4725 (1.43)
0.2  − 2.2528  − 2.2528 (0.02)  − 1.2091  − 1.2093 (0.01)
0.4  − 0.9679  − 0.9757 (0.23)  − 0.6199  − 0.6192 (0.12)
0.6  − 0.4458  − 0.4454 (0.08)  − 0.3100  − 0.3101 (0.04)
0.8  − 0.2248  − 0.2250 (0.11)  − 0.1663  − 0.1669 (0.36)
1  − 0.1277  − 0.1278 (0.04)  − 0.1007  − 0.1008 (0.15)

Table 4  Stats for uncertain 
parameters in simply supported 
beam

Variables Distribution Mean Std Autocorrelation function

�z (MPa) Lognormal 220 22 –
b0 (m) Lognormal 0.2 0.01 –
h0 (m) Lognormal 0.04 0.004 –
F(t) (N) Gaussian process 7000 700 �(Δt) = exp

(
−(Δt∕12)2

)

(a) Corroded simply supported beam (b) Rectangular cross-section of beam

Fig. 10  Corroded simply supported beam
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accuracy, the relative error of the proposed MPP-KIS 
method is as low as 1.38%, which is lower than those of 
PHI2 + , iTRPD, and AERS, but slightly higher than that 
of SEVM. On the other hand, MPP-KIS incurs as low as 
335 NOFE, which is far below those for other methods. It 

implies that MPP-KIS exhibits the highest computational 
efficiency without compromise of accuracy.

To more directly demonstrate the advantages of the 
proposed MPP-KIS method, Fig. 11 depicts the curves of 
probability of failure over the entire time interval for all 
methods. From Fig. 11, the probability of failure curve for 
MPP-KIS is basically consistent with that of MCS over 
the entire time interval, while curves of other methods are 
slightly disparate from that of MCS. Figure 12a presents a 
number of realizations of the LSF, and Fig. 12b shows the 
approximated extreme value distributions of four methods, 
including SEVM, AERS, MPP-KIS, and MCS. It should be 
mentioned that only the accuracy of tails that the extreme 
value is less than zero are of interest for calculating prob-
ability of failure. From Fig. 12b, the extreme value distribu-
tions of four methods are different from each other, but the 
tails of AERS, MPP-KIS, and SEVM are basically similar 
to that of MCS method. 

To further demonstrate superior model accuracy of Krig-
ing model constructed by MPP-KIS, Table 6 compares MPP 
of the performance function by iHL-RF algorithm as the 
true value and MPP by the proposed method as the pre-
dicted value. In Table 6, the numbers outside and inside the 

Table 5  Time-dependent probability of failure for example 2

Time interval MCS PHI2 + iTRPD SEVM AERS MPP-KIS

[0, 2] 0.0196 0.0175 (10.62%) 0.0190 (2.96%) 0.0192 (1.94%) 0.0204 (4.19%) 0.0198 (1.12%)
[0, 4] 0.0212 0.0201 (5.37%) 0.0211 (0.75%) 0.0210 (1.04%) 0.0229 (7.96%) 0.0213 (0.38%)
[0, 6] 0.0234 0.0229 (2.05%) 0.0230 (1.67%) 0.0230 (1.63%) 0.0238 (1.80%) 0.0230 (1.54%)
[0, 8] 0.0255 0.0259 (1.53%) 0.0251 (1.69%) 0.0252 (1.25%) 0.0265 (3.64%) 0.0255 (0.07%)
[0, 10] 0.0276 0.0292 (5.87%) 0.0272 (1.55%) 0.0275 (0.29%) 0.0283 (2.72%) 0.0272 (1.38%)
NOFE 61 ×  106 904 2800 728 1182 335

Fig. 11  Time-dependent probability of failure for example 2

(a) Time-dependent performance function (b) Extreme value distribution

Fig. 12  Time-dependent performance function and extreme value distribution of example 2
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parentheses represent values of MPP and the relative error, 
respectively. From Table 6, MPP by MPP-KIS is close to 
the true value at all the discrete time nodes. The maximum 
prediction error of MPP-KIS is as low as 1.3%, indicating 
smooth convergence of the proposed method.

4.3  RV reducer

Rotary Vector (RV) reducer is a two-stage cycloid-enclosed 
planetary gear transmission. As shown in Fig.  13, RV 
reducer consists of a planetary wheel reducer and a cycloid 

pinion reducer, which includes an input shaft, planetary gear, 
crankshaft, cycloid gear, pinion, pinion housing, roller bear-
ing, washer, needle roller bearing, and angular contact ball 
bearing. RV reducer is characterized by small size, light-
weight, and the high ability to achieve a wide range of trans-
mission ratios (Yang et al. 2021). It is widely used in vari-
ous industrial applications. However, due to the constantly 
changing external loads and the continuous degradation 
of material properties with time during the operation, it is 
susceptible to failure after long-term operation (Yang et al. 
2021). Therefore, this study conducts TRA for RV reducer.

Table 6  Comparison of true MPP and MPP by proposed method

Time b
0

h
0

�
z

True value Predicted value (%) True value Predicted value (%) True value Predicted value (%)

0  − 0.3948  − 0.3958 (0.25)  − 1.7115  − 1.7123 (0.05)  − 0.9234  − 0.9330 (1.04)
2  − 0.3911  − 0.3901 (0.26)  − 1.6985  − 1.6966 (0.11)  − 0.9147  − 0.9124 (0.25)
4  − 0.3874  − 0.3848 (0.70)  − 1.6856  − 1.6810 (0.27)  − 0.9061  − 0.9051 (0.11)
6  − 0.3838  − 0.3795 (1.12)  − 1.6726  − 1.6700 (0.16)  − 0.8975  − 0.8887 (0.98)
8  − 0.3801  − 0.3782 (0.52)  − 1.6596  − 1.6486 (0.66)  − 0.8889  − 0.8838 (0.58)
10  − 0.3768  − 0.3719 (1.30)  − 1.6477  − 1.6379 (0.59)  − 0.8810  − 0.8797 (0.15)

Fig. 13  Diagram for components and assembly of RV reducer (Yang et al. 2021)
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4.3.1  Planetary gear

During operation, RV reducer transmits torque to the plan-
etary gear through a motor. The following equation defines 
the torque output of the motor T0,

where n designates the motor rotation speed; P denotes the 
output power of the motor. Since the output power P varies 
with time in practical engineering settings, it is processed 
as a Gaussian process. Given number of planet gears np and 
the unbalanced load coefficient kp , the torque T1 at the center 
axis of RV reducer can be derived as

Denoting the pitch circle diameter of planetary gear 
as d, the pitch circle circumferential force of the central 
wheel can be obtained as

According to the formula for tooth surface contacting 
fatigue strength of cylindrical helical gear, the calculated 
tooth surface contacting stress of the planetary gear can 
be calculated by

where ZH is the factor of nodal area; ZE is the elastic coef-
ficient; Z� is the factor of contact ratio; Z� is the coefficient 
of helical angle; �d = b∕d is the tooth width coefficient; b 
is the tooth width; u is the transmission ratio; KH the is load 
coefficient, which can be written as

where KA is the usage coefficient; KV is the coefficient of 
dynamic load; KH� is the coefficient of load distribution 
between teeth; KH� is the coefficient of longitudinal load 
distribution.

The allowable tooth surface contact stress of the planetary 
gear is obtained by

where ZNT is the calculated life coefficient of gear’s contact 
strength, reflecting the load-carrying capacity of the gear in 
finite life; ZR is the tooth surface roughness factor, represent-
ing the influence of the gear’s surface roughness; ZV is the 
speed factor, indicating the influence of the circumferential 

(39)T0 = 9550
P

n
,

(40)T1 =
T0

np
kp.

(41)Ft = 2
T

D
= 2000

T1

d
.

(42)�H = ZHZEZ�Z�

√
KHFt

�dd
2
1

u + 1

u
,

(43)KH = KAKVKH�KH� ,

(44)�H lim j = �H limZNTZLZVZRZWZX ,

linear speed of the gear nodes; ZW is the work hardening 
factor; ZL is the lubrication factor, representing the influence 
of the lubricant viscosity; ZX is the size factor for contact 
stress calculation, representing the influence of the dimen-
sional parameters of the gear teeth on allowable contact 
stress; �H lim represents the limit of tooth surface contacting 
fatigue strength of test gear, which decreases with time and 
is given by

where �0
H lim

 is initial limit of contact fatigue strength.
Based on the stress–strength interference model, the LSF 

of planetary wheel tooth surface contact fatigue failure can be 
defined according to Eqs. (44–45):

where the input power P is a Gaussian process with mean 
0.4 kW, standard deviation 0.08kW, and autocorrelation 
coefficient function �P

(
t1, t2

)
= exp

[
−
((
t1 − t2

)
∕l
)2] , where 

l = 6. The stats for the normal random variables and con-
stants are shown in Tables 7 and 8 (Qian et al. 2020). 

In this example, the interested time interval of is [0, 10] 
in year, which is equally discretized into 61 and 21 time 
instants for MCS and other methods, respectively. AERS 
and the proposed method adopt NOFE of 19 for the con-
struction of each initial instantaneous Kriging model. The 
computational results by various methods are given in 
Table 9, in which the time interval, NOFE, and relative error 
are included. From Table 9, the relative error of computa-
tional results by the proposed MPP-KIS method is as low as 
1.17%, which is less than those of other methods except for 
iTRPD. Although MPP-KIS method exhibits lower accuracy 
than iTRPD, its computational efficiency is the highest of 
all methods. Especially, it yields 73.5% reduction in NOFE 
compared to iTRPD, indicating a remarkably higher com-
putational efficiency.

(45)�H lim = �0
H lim

e−0.002t,

(46)

G =�H lim j − �H = �H limZNZRZVZWZLZX

− ZHZEZ�Z�

√

1.91 × 107kpP
d2bnpn

u + 1
u

KAKVKH�KH� ,

Table 7  Stats for random parameters of example 3.1

Variables Mean Std Variables Mean Std

ZNT 1.50 0.06 n (r/min) 405.00 45.00
ZR 0.97 0.0194 KA 1.50 0.15
ZV 0.98 0.0196 �0

H lim
 (MPa) 980.00 30.00

ZW 1.00 0.02 ZE 189.80 0.03
ZL 0.96 0.0192 KH� 1.20 0.06
KV 1.04 0.0312 b (mm) 7.00 0.07
d (mm) 24.00 0.24 KH� 1.017 0.03
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To demonstrate more directly the performance of the 
proposed MPP-KIS method, Fig.  14 depicts curves of 
probability of failure overall time interval. According 
to Fig. 14, the curves of probability of failure for all the 
methods except for PHI2 + are close to that of MCS. The 
proposed MPP-KIS method exhibits the highest computa-
tional accuracy among all these methods, which proves the 
superiority of the proposed MPP-KIS method.

4.3.2  Cycloid gear

In operation, the maximum contact strength at the tooth 
surface of RV reducer cycloid can be expressed as

where �H0 is the initial contact strength; KA = 1.5 is the ser-
vice factor; KV is the factor of dynamic load; KH is the coef-
ficient of load share between teeth. Considering that some 
errors are not straightforward to be assessed, the calculated 
coefficient K is introduced to rectify the maximum tooth 
surface contact strength of the cycloid gear:

The contacting fatigue strength of the cycloid wheel can 
be obtained by

where ZN is the life factor for the contact strength calcula-
tions; ZL is the lubricant factor; ZV is the speed factor; ZR 
is the roughness factor; ZW is the working harden factor; 

(47)�H = �H0

√
KAKVKH ,

(48)�H = �H0

√
KKAKVKH .

(49)�H lim s = �H limZNZLZVZRZWZX ,

ZX = 1 is the dimensional factor; �H lim is the contact fatigue 
limit of the test gear, which decreases with time:

where �0
H lim

 is the limit of initial contact fatigue of the gear.
Based on the stress–strength interference model and Eqs. 

(48) and (49), the LSF for cycloid gear contact fatigue fail-
ure is expressed as

Stats for the distribution of normal variables in Eq. (51) 
are shown in Table 10 (Qian et al. 2020).

In this example, the interested time interval is [0, 10] 
in year, which is equally discretized into 61 and 21 time 
instants for MCS and other methods, respectively. It should 
be noted that AERS and the proposed MPP-KIS method 
adopt NOFE of 11 for the construction of each initial instan-
taneous Kriging model. Table 11 lists the calculation results 
by different methods, where time interval, NOFE, and rela-
tive error are included. According to Table 11, the relative 

error of computational results by the proposed MPP-KIS 

(50)�H lim = �0
H lim

e−0.003t,

(51)
G = �

H lim s
− �

H
= �

H limZNZLZVZRZWZX − �
H0

√
KK

A
K
V
K
H
.

Table 8  Constant parameters of example 3.1

Symbol Value Symbol Value

ZX 1.00 Kp 1.15
ZH 2.14 np 2.00
Z� 0.80 u 2.00
Z� 0.99 l 6.00

Table 9  Time-dependent probability of failure for example 3.1

Time interval MCS PHI2 + iTRPD SEVM AERS MPP-KIS

[0, 2] 0.0019 0.0017 (12.44%) 0.0019 (2.97%) 0.0020 (3.39%) 0.0021 (12.96%) 0.0019 (2.94%)
[0, 4] 0.0026 0.0022 (11.81%) 0.0026 (0.69%) 0.0026 (2.28%) 0.0027 (5.97%) 0.0026 (0.44%)
[0, 6] 0.0032 0.0029 (8.65%) 0.0032 (2.26%) 0.0033 (5.05%) 0.0038 (20.56%) 0.0033 (4.60%)
[0, 8] 0.0040 0.0036 (8.91%) 0.0040 (1.16%) 0.0040 (2.27%) 0.0041 (4.09%) 0.0040 (0.08%)
[0, 10] 0.0048 0.0044 (8.47%) 0.0048 (0.64%) 0.0047 (1.25%) 0.0049 (2.57%) 0.0047 (1.17%)
NOFE 61 ×  106 1600 3600 1502 1968 953

Fig. 14  Time-dependent probability of failure for example 3.1
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method is the lowest of 1.66% among all the methods. In 
contrast, the computational results by iTRPD exhibit the 
highest relative error. In terms of computational efficiency, 
the proposed MPP-KIS method ensues NOFE of 731, which 
is less than those for PHI2 + , SEVM, AERS, and iTRPD to 
register the most superior computational efficiency.

To further demonstrate the superior performance of Krig-
ing model constructed by the proposed MPP-KIS method, 
Fig. 15 shows the probability of failure curves in the overall 
time interval. According to Fig. 15, the curves by MPP-
KIS and SEVM are similar to the result by MCS, while the 
curves by iTRPD, AERS, and PHI2 + deviate slightly from 
that of MCS.

4.4  Flexible wheel case

The flexible wheel is a core transmission component of the 
harmonic reducer, which is one of precision reducers exten-
sively utilized in industrial robots. It features the advantages 
of small volume, light weight, and superior transmission 
accuracy, etc. As shown in Fig. 16, the harmonic reducer is 
comprised of a rigid wheel, a flexible wheel, and a wave gen-
erator. The harmonic reducer incurs elastic deformation of 
the flexible wheel, as depicted in Fig. 17(b), by continuously 
rotating the wave generator, yielding a continuous cycle of 
engagement, meshing, disengaging, and separating between 
the flexible wheel and the rigid wheel via transmitting force 
and torque. Thus, the flexible wheel plays a pivotal role in 
the working process of the harmonic reducer.

Figure  17(a) illustrates the structure of the f lex-
ible wheel, and Table 12 tabulates the detailed relatable 

parameters. During operation, the influence of uncertainty 
factors negates the reliability of the flexible wheel to lead 
to premature failure. As the core driving component of the 
harmonic reducer, the flexible wheel’s reliability is closely 
related to that of the reducer, both of which govern the 
operational reliability and service life of industrial robots. 
Therefore, it is a prerequisite to evaluate the impact of 
uncertainty factors on the reliability of the flexible wheel. 
This example considers uncertain factors, such as material 
properties and dynamic loads, to conduct TRA with regard 
to the maximum equivalent stress of the flexible wheel.

Figure 18 shows the equivalent stress analysis results of 
the flexible wheel connecting with the rigid wheel. FEM 
for the flexible wheel consists of 244,149 hexahedron 
elements and 1,013,081 nodes. The failure event can be 
defined as the maximum equivalent stress of the flexible 
wheel exceeding the allowable material strength. Accord-
ingly, the LSF of the flexible wheel is constructed based 
on the stress–strength interference model:

(52)G(t) = R − S(�,Y(t)),

Table 10  Stats for random parameters of example 3.2

Variables Mean Std Variables Mean Std

ZN 1.40 0.07 K 1.00 0.13
ZL 0.97 0.0243 KV 1.04 0.0416
ZV 0.96 0.0192 KH 1.20 0.06
ZR 0.95 0.019 �0

H lim
 (MPa) 1650.00 50.00

ZW 1.00 0.02 �H0 (MPa) 938.70 75.00

Table 11  Time-dependent probability of failure for example 3.2

Time interval MCS
(×  10−2)

PHI2 + 
(×  10−2)

iTRPD
(×  10−2)

SEVM
(×  10−2)

AERS
(×  10−2)

MPP-KIS
(×  10−2)

[0, 2] 0.0101 0.0099 (1.69%) 0.0110 (8.74%) 0.0103 (1.98%) 0.0096 (4.95%) 0.0102 (1.41%)
[0, 4] 0.0125 0.0120 (3.66%) 0.0134 (7.22%) 0.0125 (0.32%) 0.0126 (1.12%) 0.0124 (0.61%)
[0, 6] 0.0152 0.0140 (7.89%) 0.0162 (6.65%) 0.0145 (4.61%) 0.0176 (15.79%) 0.0151 (0.81%)
[0, 8] 0.0185 0.0175 (5.48%) 0.0196 (6.07%) 0.0186 (0.54%) 0.0200 (8.11%) 0.0186 (0.54%)
[0, 10] 0.0219 0.0211 (3.84%) 0.0237 (8.18%) 0.0210 (4.11%) 0.0230 (5.02%) 0.0223 (1.66%)
NOFE 61 ×  106 1380 2800 972 1276 731

Fig. 15  Time-dependent probability of failure for example 3.2
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where R represents the material strength for the flexible 
wheel of the harmonic reducer; S(�,Y(t)) stands for the 
maximum equivalent stress that the flexible wheel is sub-
jected to during operation. For parameterization, S(�,Y(t)) 
is exported as a functional mock-up unit (FMU) file by finite 
element analysis software and used for reliability analysis. 
The expression of S can be written as

where X1 , X2 , X3 , X4 denote tooth width, wall thickness, 
outside corner radius of bucket bottom, and interior corner 
radius of bucket bottom, respectively; Y(t) is the stochas-
tic input torque of harmonic reducer. The stats for relatable 
parameters are listed in Table 13. 

(53)S(�,Y(t)) = S
(
X1,X2,X3,X4, Y(t)

)
,

The time interval under consideration in this example is 
[0, 10] in month. The reliability analysis results including 
time interval, NOFE, and relative error are listed in Table 14. 
It should be noted that analytical methods, such as PHI2 + , 
SEVM, and iTRPD, cannot process this example because 
the LSF is implicit. From Table 14, relative error of the pro-
posed MPP-KIS method is as low as 1.31%, which implies 
that the computational results of MPP-KIS are highly con-
sistent with those by MCS. NOFE of MPP-KIS is as low 
as 507, which exhibits 34.8% reduction compared to that 
of AERS, demonstrating remarkably superior accuracy and 
efficiency of MPP-KIS.

5  Conclusions

A most important point (MPP)-oriented Kriging model com-
bined with the importance sampling (MPP-KIS) method is 
proposed to solve time-dependent reliability (TRA) prob-
lems. In this MPP-KIS method, surrogate models of TRA 
problems with high accuracy around MPP are established 

Fig. 16  3D model of harmonic reducer

Table 12  Structural parameters of flexible wheel

Parameter name Symbol unit Value

Number of flexible gear teeth z1 – 120
Internal diameter d1 mm 60.00
Modulus M mm 0.52
Flexible wheel length L mm 30.50
Gear ring wall thickness s1 mm 0.75
Thickness of cylinder s2 mm 0.42
Thickness of flange s3 mm 2.60
Outside diameter of flange d2 mm 40.00
Reference circle diameter d mm 62.40

(a) Side-view schematic for flexible wheel 
structure

(b) Cross-sectional schematic for flexible wheel 
before and after deformation

Fig. 17  Schematic for flexible wheel structure before and after deformation



 Y. Zhao et al.6 Page 20 of 22

by the MPP-oriented Kriging modeling method, including 
the adaptive sampling radius formula, the learning function 
using approximate MPP information, and a simple and effec-
tive stopping criterion. In addition, the adaptive screening 
strategy is introduced into the importance sampling method 
to efficiently compute the time-dependent failure of prob-
ability through applying the results from the training proce-
dure of Kriging model.

Four examples with varying complexity are employed to 
demonstrate performance of the proposed MPP-KIS method. 
It is shown that the proposed MPP-KIS method is more 

efficient without compromise of the solution accuracy com-
pared to other prevailing methods when dealing with explicit 
and implicit time-dependent reliability problems. The estab-
lished Kriging model exhibits high accuracy around its MPP, 
which smoothly converges toward the real performance 
function during the training procedure. This renders MPP-
KIS a stable convergence ability. The importance sampling 
integrating with the adaptive screening strategy possesses 
good compatibility with the proposed surrogate modeling 
method, all of which are based on MPP.

Fig. 18  FEM equivalent stress 
analysis results for flexible 
wheel

Table 13  Stats for flexible 
wheel structural parameters

Variable Distribution Mean Std Autocorrelation func-
tion

R (MPa) Normal 579 46.32 –
X1 (mm) Normal 0.4200 0.0126 –
X2 (mm) Normal 10.5000 0.3150 –
X3 (mm) Normal 1.8000 0.0540 –
X4 (mm) Normal 1.5000 0.0450 –
Y(t) (N) Gaussian process 250 5 exp

(
−
((
t1 − t2

)
∕4

)2)

Table 14  Time-dependent probability of failure for example 4

Time interval [0, 2] [0, 4] [0, 6] [0, 8] [0, 10] NOFE

MCS 0.0258 0.0268 0.0277 0.0286 0.0292 61 ×  106

AERS 0.0274 (6.12%) 0.0286 (6.87%) 0.0287 (3.61%) 0.0294 (2.80%) 0.0301 (3.15%) 777
MPP-KIS 0.0260 (0.53%) 0.0273 (1.89%) 0.0280 (1.01%) 0.0291 (1.58%) 0.0296 (1.31%) 507
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On a whole, the proposed method can accurately and effi-
ciently evaluate the time-dependent probability of failure. 
However, the computational efficiency will be negated if 
the time intervals are excessively discretized. In our future 
research, the proposed method will be expanded into the 
time-dependent hybrid reliability analysis to attend differ-
ent sources of uncertainties. The authors will also devote to 
its application for time-dependent reliability-based design 
optimization problems considering multiple constraint 
functions.
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