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Abstract
This paper presents an end-to-end framework for robust structure/control optimization of an industrial benchmark. When
dealing with space structures, a reduction of the spacecraft mass is paramount to minimize the mission cost and maximize the
propellant availability. However, a lighter design comes with a bigger structural flexibility and the resulting impact on control
performance. Two optimization architectures (distributed andmonolithic) are proposed in order to face this issue. In particular
the Linear Fractional Transformation (LFT) framework is exploited to formally set the two optimization problems by including
parametric uncertainties. Large sets of uncertainties have to be indeed taken into account in spacecraft control design due
to the impossibility to completely validate structural models in micro-gravity conditions with on-ground experiments and
to the evolution of spacecraft dynamics during the mission (structure degradation and fuel consumption). In particular the
Two-Input Two-Output Port (TITOP) multi-body approach is used to build the flexible dynamics in a minimal LFT form.
The two proposed optimization algorithms are detailed and their performance are compared on an ESA future exploration
mission, the ENVISION benchmark. With both approaches, an important reduction of the mass is obtained by coping with
the mission’s control performance/stability requirements and a large set of uncertainties.
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1 Introduction

The widespread approach for multi-disciplinary optimiza-
tion (MDO) problems adopted in the space industry generally
follows a sequential logic by neglecting the interconnection
among different disciplines. However, since the optimiza-
tion objectives in the different fields are often conflicting,
this methodology can fail to find global optimal solutions.
By restricting the analysis to just structure and control fields,
the common hierarchy is to preliminarily define the struc-
ture by optimizing the physical design parameters and then
leave the floor to the control optimization. This process can
be iterated several times before a converging solution is
found and control performance is met. Especially for large
flexible structures, the minimization of the structural mass
corresponds in fact to an increase in spacecraft flexibil-
ity, by bringing natural modes to lower frequencies where
the interaction with the Attitude and Orbit Control System
(AOCS) can be critical, especially in the presence of system
uncertainties (Falcoz et al. 2013). Modern MDO techniques
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nowadays represents a tool to enhance the optimization task
by integrating in a unique process all the objectives and con-
straints coming from each field. Two kinds of architectures
can be distinguished in the MDO framework: monolithic
and distributed (Martins and Lambe 2013). In a monolithic
approach, a single optimization problem is solved, while in
a distributed architecture the same problem is partitioned
into multiple subproblems containing smaller subsets of the
variables and constraints.monolithic architectures have been
proven to be more efficient (Fathy et al. 2001; Reyer et al.
2001), than classical sequential strategies (Chen and Cheng
2006; Li et al. 2001), especially when bidirectional coupling
exists between the two sub-problems (control and structure),
for instance, when each of the two objectives depends on
some common variables and parameters of each sub-problem
(Frischknecht et al. 2011).

In literature, several examples are found where con-
trol/structure co-design is implemented in a monolithic
architecture. Zhao et al. (2009) presented a control-structural
design optimization for vibration of piezoelectric intelligent
truss structures. Allison et al. (2014) extended the direct
transcription method, which transforms infinite-dimensional
control design problems into finite-dimensional nonlinear
programming problems, for co-design using a new auto-
motive active suspension design example. Maraniello and
Palacios (2016) presented an optimal vibration control and
co-design strategy for very flexible actuated structures.
A standard quasi-Newton method, the Sequential Least
SQuares Programming (SLSQP) optimization algorithm has
beenused to solve both the nonlinear optimal control problem
and the co-designoptimization.The implementation ismono-
lithic and uses finite differences for the gradient evaluation.
Feng et al. (2014) presented amulti-objective design for flex-
ible spacecraft using amultiobjective evolutionary algorithm
based on decomposition (MOEA/D) to reduce the total mass
and optimize the control performance of a flexible space-
craft. In Alavi et al. (2021) a Variable Neighborhood Search
(VNS) metaheuristic method is developed to both minimize
the structural mass and controlled system energy of a seis-
mic civil structure. In He et al. (2023) Genetic Algorithm
is used to optimize a passive-active-combined suspension
design. However, in all these works the uncertainties of the
system are not taken into account.

As suggested in the conclusions of Herber and Allison
(2018), where differentmonolithic and distributed co-design
problems are examined, an important contribution to this
research field would be in the inclusion of uncertainties
into the MDO process. This inclusion would increase the
use of MDO in real engineering problems. In this direction,
Azad and Herber (2023) recently published an overview on
different uncertain control co-design (UCCD) problem for-
mulations. In this paper they recall the principal theories
(stochastic programming, robust optimization and fuzzy pro-

gramming) in which a UCCD formulation is adopted “to
meet the ever-increasing demands on performance, robust-
ness, and reliability of real-world dynamic systems”.

The development in last decade of structuredH∞ control
synthesis (Gahinet and Apkarian 2011) opened the possibil-
ity to robust optimal co-design of structured controllers and
tunable physical parameters. Linear Fractional Transforma-
tion (LFT) formalism allows in fact to embed in the dynamic
model tunable physical parameters treated as parametric
uncertainties, by interconnection of a known fixed dynamics
put in a linear time-invariant (LTI) plant and a perturba-
tion matrix containing all uncertain and varying parameters.
The reader is invited to refer to Zhou and Doyle (1998) for
an extended overview on LFT formalism and robust con-
trol theory. In addition, thanks to these techniques, particular
properties can be imposed to the controller, as internal sta-
bility or performance respecting a frequency template, in the
face of all the parametric uncertainties of the plant. This
point is particularly important for aerospace applications
where requirements are generally highly demanding and
structural uncertainty, coming for example from an imperfect
manufacturing or assembling, cannot be neglected. Alazard
et al. (2013) demonstrated how this multi-model method-
ology implemented in H∞ framework can be enlarged to
include integrated design between certain tunable parameters
of the controlled system and the stabilized structured con-
troller. This approach has been used by Perez et al. (2015) to
optimize the structure of a deployable boom from TARANIS
microsatellite, while meeting some control requirements.

There exists as well in literature a large class of problems
where coupling between structure and control is considered
unidirectional (Frischknecht et al. 2011). This means that
the objective function Js(ys) of the structural sub-problem
depends only on the structural design parameters ys while
the control criterion Jc(ys, yc) depends on both structural
(ys) and control (yc) design parameters, so that the system
design objective becomes (Frischknecht et al. 2011):

J = ws Js(ys) + wc Jc(ys, yc), (1)

where ws and wc are ponderation weights. A partition of
the structure and controller design variables is desirable for
practical implementation when the impact of the controller
variables on the structural objective is relatively small or
computational means are not available to treat simultane-
ously control and structure variables in the objective function
(Frischknecht et al. 2011). A strategy in the latter case sug-
gested by Fathy et al. (2001) and Reyer et al. (2001) is to
solve the system-level problem as a nested optimization one,
where the system solution is found with respect to ys, with
the optimal yc computed as function of ys by solving the
inner optimal controller problem first. This nested problem
formulation is distinguished from the simultaneous one in
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Eq. (1):

Jn = ws Js(ys) + wc J
n
c (y∗

c (ys)) (2)

For this kind of problem, a distributed optimization architec-
ture is then more appropriate. There are several works in the
literature, where nested optimization is used. Chilan et al.
(2017) proposed a strain-actuated solar array concept that
enables attitude slewing maneuvers and precision pointing
stares for image acquisition, whilst simultaneously suppress-
ing structural vibrations. Zheng et al. (2021) proposed a two
layers integrated design optimization of actuator layout and
structural ply parameters for the dynamic shape control of
piezoelectric laminated curved shell structures.

Two other examples in literature of distributed con-
trol/structure optimization were provided by the BIOMASS
test case (Falcoz et al. 2013; Toglia et al. 2013). In both
works, a Genetic Algorithm was used to solve the global
optimization problem and robust control techniques were
applied for the nested control optimization problem. In the
first work, limitations were encountered in the robust synthe-
sis by considering the set of parametric uncertainties and an
approximated dynamical uncertainty was instead used for
the control synthesis and analysis. A conservative design
is generally issued from this procedure and a small reduc-
tion of the spacecraft mass was finally obtained. Similar
performance is obtained in Toglia et al. (2013), where the
controller synthesis does not take into account uncertainties
and a formal μ-analysis (Zhou and Doyle 1998) is run at
each nested iteration in order to validate its robustness. The
inconvenience in this approach is twofold: the computational
time to run a μ-analysis is high, especially in the presence
of highly repeated parametric uncertainties (no information
on the time performance is provided in the article); not con-
sidering uncertainties directly in the controller synthesis can
invalidate a large number of controllers.

The present study proposes a comparative studyof a robust
monolithic and distributed optimization architectures on an
industrial benchmark, the ENVISION spacecraft. In partic-
ular, the problem formulation in the multi-body Two-Input
Two-Output Ports (TITOP) modeling approach introduced
by Alazard et al. (2015) allows the authors to easily define
an MDO problem by including all possible system uncer-
tainties from the very beginning of the spacecraft design.
In this way, not only is a structure/control co-design pos-
sible, but system performance is robustly guaranteed. The
novelty of the proposed approach with respect to previous
works consists in fully exploiting the potentialities offered
by the modern structured robust control synthesis (Apkarian
et al. 2007) and the LFT formulation offered by the TITOP
approach to deal with a huge number of parametric uncer-
tainties and provide two optimization processes to cope with
benchmarks of industrial complexity. The use of robust con-

trol synthesis, not relying on μ-based algorithm as in Falcoz
et al. (2013), furthermore allows the authors to overcome the
limitation imposed by the number (and occurrences) of the
uncertain parameters on the computational time and speed up
the control synthesis. A formal controller validation is then
run only ones at the end of the optimization process. A further
contribution of this paper with respect to the the state-of-the-
art consists in providing a general LFT formulation to define
both a monolithic and distributed co-optimization problem
and compare them on the same industrial benchmark.

The final aim of this paper is, in fact, to contribute to the
evolution of industrial practice in robust control/structure co-
design, by proposing a unified and generic approach based on
a well-posed modeling problem that integrates both design
parameters andparametric uncertainties in a unique represen-
tation. The advantage offered by this framework is twofold:
to shortcut the unnecessary iterations among different fields
of expertise and to speed up the validation and verification
process by directly producing a robust preliminary design.

The workflow generally followed in the industry can be
summarized as follows:: the optimization of structures and
control laws is separately done by two different entities
which rarely interact by exchanging information in the same
nomenclature conventions. Structural models provided by
the structure department to the AOCS team are generally
very preliminary and an important uncertainty margin has
to be taken into account in the control synthesis in order to
cover possible evolution of the structural design till its final
version. Rarely the optimized design of the structure archi-
tecture is updated to reinitialize the control synthesis and
analysis process for cost/time reasons. This brings then to
conservative control designs that could result in sub-optimal
solutions. This problem becomes more and more important
if very fine pointing accuracy is demanded. In the alterna-
tive process proposed in this study complex parameterized
FEM models are considered in the control problem from the
beginning of the design. A parallel optimization (monolithic
or distributed) of structures and control laws is performed.
Moreover the use of the LFT framework allows the introduc-
tion of uncertainties in the model used for control synthesis
such that the final controller already robustly copewith them.
This methodology thus also optimizes the number of con-
trol syntheses generally done in common industrial practice,
which are often based on the nominal mechanical model
and some worst-cases (WC) dictated by experience. The
V&V process could finally benefit of the proposed approach
since powerful tool for uncertain closed-loop analysis are
nowadays available. These methods, as μ-analysis, can ana-
lytically prove the design robustness and detect very rare
worst-case that could escape to Monte Carlo sample-based
simulation approach.

After recalling the principles of the multi-body TITOP
modeling approach in Sect. 2.1 and showing how to build the
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Fig. 1 i th flexible appendage sub-structured body (top) and equivalent
TITOP model (bottom)

uncertain plant of the ENVISION study case, the formulation
of the robust control problem is presented in Sect. 3. Section4
details the proposed distributed andmonolithic optimization
algorithms and Sect. 5 presents the achieved results by com-
paring the two approaches and providing formal validation
of the synthesized controllers. Section6 finally summarized
all paper’s contributions.

2 Parametric multi-bodymodeling

When dealing with robust optimization of control and struc-
tural parameters of complex systems, a rigorous modeling
framework able to take into account both optimization vari-
ables and system uncertainties is paramount. In the following
sections the TITOP approach is presented with its direct
application to the study case.

2.1 Two-Input Two-Output Port Theory

Let’s consider the generic flexible appendage Li in Fig. 1
linked to a parent substructure Li−1 at point P and to a child
substructure Li+1 at point C . Moreover let us define the ref-
erence frame R0 = (P, x0, y0, z0) centered in node P of Li

in equilibrium condition. In the model of the appendage Li ,
clamped-free boundary conditions are considered: the joint
at point P is rigid and statically determinate, with the parent
bodyLi−1 imposing amotion onLi , while pointC is internal
and unconstrained, and the action of Li+1 is by means of a
transmitted effort.

The TITOP model MLi
PC(s) is a linear state-space model

with 12 inputs (6 for each of the two input ports):

1. The 6 components inR0 of the wrenchWLi+1/Li ,C com-
posed of the three-components force vector FC and the

three-components torque vector TC applied by Li+1 to
Li at the free node C ;

2. The 6 components in R0 of the acceleration vector üP
composed of the three-components linear acceleration
vector aP and the three-components angular acceleration
vector ω̇P at the clamped node P;

and 12 outputs (6 for each of the two output ports):

1. The 6 components inR0 of the acceleration vector üC at
the free node C ;

2. The 6 components in R0 of the wrench WLi /Li−1,P

applied by Li to the parent structure Li−1 at the clamped
node P .

The TITOP model MLi
P,C (s) displayed in Fig. 1 (right)

includes in a minimal state-space model the direct dynamic
model (transfer from acceleration twist to wrench) at point
P and the inverse dynamic model (transfer from wrench to
acceleration twist) at point C .

This model, conceived with the clamped-free condition,
is useful to study any other kind of boundary configuration
as proven by Chebbi et al. (2017) thanks to the invertibility
of all of its 12 input–output channels.

The TITOP model MLi
P,C (s) can be then obtained ana-

lytically for simple geometries like beams (Chebbi et al.
2017) and mechanisms (Sanfedino et al. 2022) or numeri-
cally by Finite Element Model (FEM) analysis (Sanfedino
et al. 2018). In the latter case, by considering the gener-
alized modal coordinates η of the classical Craig-Bampton
approach, the state-space representation ofMLi

P,C (s) is given
by:

⎡
⎢⎢⎣

η̇

η̈

üC
WLi /Li−1,P

⎤
⎥⎥⎦ =

[
A B
C D

]
⎡
⎢⎢⎣

η

η̇

WLi+1/Li ,C

üP

⎤
⎥⎥⎦ , (3)

where

A =
[
0Ni×Ni INi

−k −c

]
, B =

[
0Ni×6 0Ni×6

�T
C −LP

]
,

C =
[−�Ck −�Cc
LT
Pk LT

Pc

]
,

D =
[

�C�T
C (τCP − �CLP )

(τCP − �CLP )T LT
PLP − Mrr

]
.

• k = diag(ω2
k ): is the diagonal matrix of the square value

of the retained Nω frequencies of the flexible modes ωk ,
with k ∈ 1 . . . Nω;

• c = diag(2ζkωk): damping matrix, where ζk is the modal
damping factor associated to mode ωk ;
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• LP: matrix of the participation factors w.r.t. P;
• �C: projections of the flexible mode shapes on C ;
• Mrr = Mr − LT

PLP: residual mass, obtained from the
rigid body mass matrixMr ;

• τCP describes the rigid kinematic model between the
DOFs of the generic internal node C and the junction
DOFs of the node P . For a clamped (in P) - free (in C)
flexible structure:

τCP =
[
I3 ∗−→CP
03 I3

]
, (4)

where ∗−→CP is the skew-symmetricmatrix associatedwith
the vector from C to P of the flexible appendage in the
undeformed configuration.

All the parameters needed to build the model (3) can be
recovered by running a modal analysis with a commercial
software like MSC NASTRAN. A particularity of TITOP
models is to have access to each structural parameter in an
analytical way and have the possibility to easily assign it
an uncertainty. In this way the model can be straightfor-
ward put in a generalized LFT form, directly exploitable
for modern robust control synthesis/analysis techniques. If
in fact we consider for instance that now in model (3) at
each modal frequency ωk is associated a parametric uncer-
tainty δωk ∈ [−1, 1] such that the uncertain frequency is
now expressed as ω̃k = ωk (1 + δωk), the corresponding
TITOP model MLi

P,C (s,�) (with � = diag(δωk)) can be
represented by the block diagram as in Fig. 2 (left side) with
a minimal number of repetitions of the uncertainties. Note
that parameters to be optimized can be isolated in the same
way.

In the same figure the equivalent LFT model is shown
on the right side, where the uncertain blocks can be isolated
with respect to the nominal plants thanks to the exogenous
inputs w and outputs z, obtained by opening MLi

P,C (s,�)

respectively in the points marked in red and blue in Fig. 2
(left).

The TITOP approach was finally extended to multiple
ports in case several child structures are connected to the
i th flexible sub-structure (Sanfedino et al. 2018).

2.2 Spacecraft assembly

Once a TITOP model is obtained for each sub-structure of a
multi-body system, the assembly is easily done by connect-
ing the ports corresponding to the connection points among
the sub-elements. Let’s consider the ENVISION spacecraft
depicted in Fig. 3. It is constituted by a rigid central body B,
two solar arraysS1 andS2, a SubsurfaceRadar System (SRS)
composed of two flexible beamsQ1 andQ2, and a Synthetic

Aperture Radar (SAR) V . In Fig. 3 it can be noticed that the
central body reference frame is centered in its center of mass
(CoM) B, while all appendages have their body framedefined
in correspondence of their attachment nodes.

The assembled model of the whole spacecraft in TITOP
framework is shown inFig. 4.Note that each sub-components
has its corresponding LFT block connected to the other block
throw wrench of forces/torques and linear/angular accelera-
tions. In particular:

• the central bodyB is modeled as aMulti-Port Rigid Body
inwhich all inputs are thewrenches applied to all connec-
tion points by the appendages and the resultant wrench
of the external perturbation forces/torques

[
Wext,B,B

]
RB

applied to its CoM B. See Sanfedino (2019) for more
details on this model;

• the two solar panels, the two beams constituting the SRS
antenna and the SAR antenna are modeled as generic
flexible structures built from NASTRAN FEM analysis
as discussed in Sect. 2.1.

Note that in Fig. 4 the dynamicalmodels of the appendages
are connected to the main body structure through the rotation
matrices P×2

a(0)/b that express the wrench vectors expressed
in the body frame of appendage A into the body frame of
the main body B. The transpose of these matrices allows
projecting the acceleration vectors instead. Since the solar
arrays are not fixed on the ENVISION platform, the rota-
tion matrices R×2(θSA, ys•), dependent on the solar array
configuration angle θSA around the rotation axis ys• , take
int account the presence of a Solar Array Drive Mechanism
(SADM) and can be easily expressed in a LFT way as shown
in Dubanchet (2016), where the considered uncertain param-
eter is σ4 = tan(θSA/4), such that �σ4 = σ4I8. Finally
all other uncertain blocks �• take into account all possi-
ble uncertainties and optimization parameters associated to
each substructure.

The main advantages of having the system expressed in
TITOP framework are listed below:

• physical understanding is conserved at sub-component
level;

• parametric uncertainty canbe considered at sub-component
level;

• redesign of sub-component in preliminary design phase
is easy;

• adaptability to a user-friendly Matlab/Simulink toolbox.
The Satellite Dynamics Toolbox library (SDTlib) allows
to easily model dynamical space systems in TITOP
approach (Alazard and Sanfedino 2020).

The assembled TITOP model is validated with an equiva-
lent model built in Simscape, where Reduced Order Flexible
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Fig. 2 Uncertain TITOP model of a generic flexible structure based on FEMmodal analysis (left) and its equivalent LFT form (right). (Color figure
online)

Fig. 3 ENVISION spacecraft: definition of geometry and reference frames
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Fig. 4 Assembled dynamics of the ENVISION spacecraft in TITOP
framework

Solid (ROFS) blocks are used for all flexible appendages. In
order to correctly parameterize the constitutive mass, stiff-
ness and damping matrices directly for a NASTRAN FEM
analysis, the approach presented in Alazard et al. (2023) is
used. Note that the number of flexible modes considered for
each flexible appendage is 10 in order to have a satisfactory
modal effective mass fraction and not an excessive number
of states at the same time. A comparison of the 3 × 3 trans-
fer functions

[
Wext/B,B

]
RB

(4 : 6) → [ẍB]RB (4 : 6) from
the three external torques applied at point B to the three
angular accelerations experienced by point B, is shown in
Fig. 5. Notice as SDTlib and Simscape models are close and
their difference is several orders of magnitude smaller than

their absolute values. This comparison is based on the same
nominal configuration of the ENVISION plant, where all
parametric variation are fixed to a particular value.

The introduction of uncertainties in TITOP formalism
thenmakes SDTlibmodel directly exploitable for robust con-
trol synthesis/analysis and monolithic optimization.

2.2.1 Open-loop parametric analysis

An advantage of having an LFT model is that a large family
of possible plants is available in a continuous way in a unique
representation. In this way, it is possible to see, for instance,
which parameters will impact the mass the most. By consid-
ering the ranges of the optimization parameters in Table 2
for the ENVISION benchmark, the potential gain in space-
craft overall mass after optimization is shown in Fig. 6. We
notice, in particular, as the thickness of the composite sand-
wiches constituting the solar panels (tcP and tsP ) and the SAR
antenna (tcV ) are the most sizing. In the context of co-design
of structure and control architecture it is also important to see
the impact of the design parameters on the system flexibil-
ity. Some natural modes can in fact interact with the control
bandwidth by causing a significant degradation of the control
stability/performance. Figure7 shows the singular values of
the transfer function

[
Wext/B,B

]
RB

→ [ẍB]RB when one
optimization parameter varies in its admissible range and all
other optimization parameters impacting the mass are fixed
to their maximum value. When not varying, the panel aspect
ratio and the yoke length ratio are equal to unity and the
Yoke Young Modulus takes its minimum value. Note that
the situation in which all parameters are fixed is marked in
magenta and no uncertainty is considered in this analysis.
Only themost impacting parameters provoking a shift of nor-
mal modes is depicted in Fig. 7: i.e. a reduction of the SRS
outer radius RSRS or the side lengths (BY and DY) of the
Yoke section make the first modes shift to lower frequencies.

Another phenomenon captured by the TITOPmodeling is
the shift of natural modes caused by the rotation of the two
solar arrays. Figure8 shows for instance the evolution of the
frequency of the 6th and 8th mode when both BY and θSA
vary.

2.2.2 Modeling uncertainty for distributed andmonolithic
optimization

When dealing with distributed optimization, the decoupling
between the global structural problem from the nested control
optimization, shown in Eq. (2), requires that the optimization
structural variables ys are fixed during control synthesis. For
this reason, in the distributed optimization the overall uncer-
tain block �SC , obtained by putting the model depicted in
Fig. 4 in the generalized LFT form, contains only the set of
real uncertainties listed in Table 1. When a monolithic opti-
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Fig. 5 Comparison of SDT and Simscape models of the transfer function
[
Wext/B,B

]
RB

(4 : 6) → [ẍB ]RB (4 : 6)

Fig. 6 Potential mass saving (in kg) obtained by optimization of the
ENVISION design parameters

mization routine is chosen instead, an uncertain block �SC
containing the optimization variable is considered as well.
In the monolithic approach in fact, as shown in Sect. 3, the
non-smooth optimization routine used for robust control syn-
thesis (Apkarian et al. 2007) is able to provide the optimized
control and structural parameters at the same time by coping
with all considered system uncertainties. The two different
LFT models are shown in Fig. 9.

An important task to be accomplished before running a
monolithic optimization is to correctly model the uncertain

block �SC . The major difficulty in this task is to keep the
number of uncertainty repetitions as small as possible in order
to not run into numerical problem when the robust control
synthesis is tackled. When using a complex FEMmodel, this
number can grow very fast with the number of the nodes in
the mesh. For this reason, only four optimization parame-
ters are selected in the list in Table 2, mostly impacting the
overall mass and the shift of the first modes to lower fre-
quencies: panel skin tsP and core thickness tcP , SRS section
outer radius RSRS and the SAR core thickness tcV . The way
adopted in this work to face this problem is to get a mul-
tivariate polynomial approximation �SC by using a set of
samples and solving a classical Linear Least-Squares prob-
lem as proposed by Poussot-Vassal and Roos (2012). The
algorithm available in the lsapprox routine of the APRICOT
library Roos et al. (2014) is used to get an approximation
of the delta-blocks for the matrices Mrr , Lp and diag(ωk)

in Fig. 2. A limited number of models is needed to generate
a very precise approximation (order of magnitude of maxi-
mum relative error equal to 10−2): 100 different NASTRAN
models are generated with random values of tsP and tcP in
their ranges and by including the four corner scenarios, 10
NASTRAN models are obtained for the SRS beam anten-
nas by linearly spanning RSRS and 10 different NASTRAN
models of the SAR antenna are finally generated by linearly
spanning tcV . Once assembled, the �SC block contains the
following number of occurrences: 220 for tsP , 248 for tcP ,
64 for RSRS and 116 for tcV . Figure10 shows the singular
values of the final LFT model of the ENVISION spacecraft
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Fig. 7 Evolution of the singular values of the transfer function
[
Wext/B,B

]
RB

→ [ẍB ]RB with variation of the optimization parameters

Fig. 8 Evolution of 6th and 8th mode frequencies with variation of BY
and θSA

used for monolithic optimization by taking into account all
uncertainties and optimization parameters.

3 Robust attitude control

The objective of this section is to present the general con-
trol architecture of the ENVISION Attitude Control System

Table 1 Parametric uncertainties of the ENVISION spacecraft

Parameter Description Occurrence Uncertainty

mB Mass B 3 ±15%

IBxx Inertia x-axis B 1 ±15%

IByy Inertia y-axis B 1 ±15%

IBzz Inertia z-axis B 1 ±15%

ω
S•
1 1st mode S• 4 ±25%

ω
S•
2 2nd mode S• 4 ±25%

ωV
1 1st mode V 2 ±25%

ωV
2 2nd mode V 2 ±25%

σ4 Configuration S• 32 [−1 1]

Fig. 9 LFT model of the ENVISION spacecraft used for distributed
(left) and monolithic (right) optimization

(ACS). The requirements considered for this design take into
account the needed resolution for the multispectral imag-
ing cameras, the authority of the reaction wheel system and
the expectedmulti-input multi-output (MIMO) stabilitymar-
gins.

We consider the robust design of a 3-axis structured
MIMO attitude control law to meet:

123



247 Page 10 of 22 F. Sanfedino et al.

Table 2 Optimization structural parameters

Parameter Symbol Unit Min value Max value Distributed opt Monolithic opt

Yoke Young modulus EY Pa 1.1 × 1011 1.23 × 1011 1.121 × 1011 (1.165 × 1011)

Yoke density ρY kg/m3 2.18 × 103 4.5 × 103 4.186 × 103 (3.340 × 103)

Yoke section length BY m 1.5 × 10−2 5 × 10−2 1.544 × 10−2 (3.25 × 10−2)

Yoke section height DY m 1.5 × 10−2 5 × 10−2 1.502 × 10−2 (3.25 × 10−2)

Yoke section thickness tY m 1 × 10−3 2 × 10−3 1.017 × 10−3 (1.5 × 10−3)

Panel skin thickness tsP m 2 × 10−4 4 × 10−4 2.042 × 10−4 2 × 10−4

Panel core thickness tcP m 1 × 10−2 3.5 × 10−2 1.322 × 10−2 1 × 10−2

Yoke length ratio LRY − 0.42 1 1 (0.71)

Panel aspect ratio ARP − 3/4 4/3 1.237 (25/24)

SRS section outer radius RSRS m 1.25 × 10−2 2 × 10−2 1.25 × 10−2 1.25 × 10−2

SRS section thickness tSRS m 3.8 × 10−4 6 × 10−4 4.959 × 10−4 (4.9 × 10−4)

SAR core thickness tcV m 5 × 10−4 1.5 × 10−3 5.178 × 10−4 1.5 × 10−3

For the monolithic optimization the values in brackets correspond to the set of fixed parameters

Fig. 10 LFT model of the ENVISION plant by considering all uncertainties and optimization parameters for monolithic optimization

• (Req1) the absolute pointing requirement, defined by
the 3× 1 vector of Absolute Performance Error (APE =
[0.08 0.2 0.08]T×10−3 rad), in spite of low frequency
orbital disturbances dominated by the gravity gradient
torque (characterized by the 3 × 1 upper bound on the
magnitude Text = [1.9 1.9 1.9]T × 10−3 Nm),

• (Req2) the relative pointing requirement, defined by
the 3 × 1 vector of Relative Performance Error (RPE
= [0.5 0.5 0.5]T × 10−3 rad) to be kept for a time
window 	tRPE = 15 s,

• (Req3) the maximum command requirement, defined
by the 3 × 1 vector of maximum control torque (ū =
[0.215 0.215 0.215]T Nm),

• (Req4) stability margins characterized by an upper
bound γ on the H∞-norm of the input sensitivity func-
tion,

while minimizing the variance of the APE and RPE in
response to the star sensor and gyro noises character-
ized by their Power Spectral Density (PSD), respectively
PSDSST = (3.5 × 10−5)2I3 rad2 s and PSDGYRO = (1.4 ×
10−6)2I3 rad2/s (assumed to be equal for the 3 components).

The value γ = 1.5 ensures on each of the 3 axes:

• a disk margin > 1/γ = 0.667,
• a gain margin >

γ
γ−1 = 3 (9.542 dB),
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Fig. 11 Attitude control system architecture

• a phase margin > 2 arcsin 1
2γ = 38.9◦.

The requirementsReq1,Req2 and Req3must bemet for
any values of the uncertainmechanical parameters regrouped
in the block �SC .

By referring to Fig. 11, the models of the avionics com-
ponents are:

• A reaction wheel system modeled as a second order
dynamics with cut-off natural frequency of 100π rad/s
and damping factor 0.7:

RW(s) = (100π)2

s2 + 140πs + (100π)2
I3 (5)

• A gyro sensor modeled as a first-order dynamics with
cut-off frequency 200π rad/s:

GYRO(s) = 200π

s + 200π
I3 (6)

• A star sensor modeled as a first-order dynamics with cut-
off frequency 16π rad/s:

SST(s) = 16π

s + 16π
I3 (7)

• A loop delaymodeled as a 2nd order Pade approximation
with time delay Td = 0.0625 s:

DELAY(s) = T 2
d s

2 − 6Tds + 12

T 2
d s

2 + 6Tds + 12
I3 (8)

A gyro-stellar observer O(s) is used to filter the gyro and
the star sensor measurements. Its state-space realization is
given by:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋO =
[−0.1131 −1
0.003948 0

]
xO +

[
0.1131 1

−0.00394 0

] [
ωSC
m

�SC
m

]

[
ω̂
SC

�̂
SC

]
=

[
1 0

−0.1131 −1

]
xO +

[
0 0

0.1131 1

] [
ωSC
m

�SC
m

] (9)

with xO the observer state vector.
The closed-loopgeneralizedplantP(s,�SC,�SC,KACS(s))

used for the robust control synthesis is shown in Fig. 11. Note
that for distributed optimization the block�SC has not to be
taken into account.

The following weighting filters are used to normalize
the inputs and outputs: Wext = Text, WSST

n =
√
PSDSST,

WGYRO
n =

√
PSDGYRO,WAPE = (diag(APE))−1,WRPE =

(diag(RPE))−1 	tRPEs(	tRPEs+
√
12)

	t2RPE s2+6	tRPEs+12
and WS = 1

γ
I3.

Finally the block KACS(s) represents the structured 3× 6
attitude controller to be synthesized. The chosen structure
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Fig. 12 Structured controller KACS(s)

is is shown in Fig. 12. It is a decentralized proportional-
derivative controller (the gains Ki

p and Ki
v , i = x, y, z)

The set of the 6 controller tunable parameters (Ki
p, wi

and Ki
v , i = x, y, z) are roughly initialized assuming a rigid

3-axis decoupled spacecraft and in order to:

• reject a constant orbital disturbance Text with a steady
state pointing error �SC lower than the APE(i) require-
ment on each axis i = x, y, z,

• tune the 2nd order closed-loop dynamics of each axis
with a damping ratio ξ = 0.7 and a given frequency
bandwidth ωi (ωi = 0.06 rad/s, i = x, y, z).

Indeed, under these assumptions, the open-loop model
between the control torque and the pointing error is equal
to 1

JSC
B s2

, where the nominal 3 × 3 inertia JSCB on the whole

spacecraft at point B can be computed from the DC gain of

the nominal model
[MSC

B

]−1
RB

(s):

JSCB =
[[

MSC
B

]−1

RB
(0)

]−1

(4 : 6; 4 : 6) (10)

Then the tuning:

Ki
p = JSCB (i, i) ωr2

i

K i
v = 2 ξ JSCB (i, i) ωr

i

(11)

with ωr
i required bandwidth on i th axis (i = 1, 2, 3), ensures

the needed closed-loop dynamics and a disturbance rejection

function expressed as:

�SC(i)

Text(i)
(s) = 1

JSCB (i, i)

1

s2 + 2 ξ ωr
i s + ωr2

i

(12)

Thus the required bandwidthωr
i tomeet the absolute pointing

error requirement in steady state (�SC(i) ≤ APE(i)) is:

ωr
i ≥

√
Text(i)

JSCB (i, i)APE(i)
(13)

This initial tuning, based on simplified assumptions is
useful to initialize the non-convex optimization control prob-
lem. A robust controller is in fact synthesized thanks to the
systune routine available in MATLAB, based on the non-
convex optimization algorithm proposed by Apkarian et al.
(2015).

For the control synthesis two cases have to be distin-
guished according to the type of optimization architecture.

3.1 Distributed optimization

In the case of distributed optimization all structural optimiza-
tion parameters are fixed for each control synthesis. In that
case the nestedmixedH2/H∞ control optimization problem
is directly formulated from the objective (Eq. (14)) and the
constraints (Eq. (15)) defined in Sect. 3. The objective is in
fact tominimize theH2-norm (or the variance) of the transfer
from all measurements noises to the pointing requirements
for the worst-case uncertainty configuration by coping with
a set of hard constraints, expressed in terms of H∞-norm.

3.2 Monolithic optimization

In the case a monolithic optimization architecture is cho-
sen, the non-convex control synthesis algorithm can handle
both control and structure optimization at the same time. In
this case the hard constraints (17) are exactly the same as in
the distributed optimization. However the multi-objectives
problem shown in Eq. (16) (where σ̄ (•) represents the upper
bound singular value) has to be solved instead.

Note that the second objective (where the notation of the
projections in body frame has been omitted for better clarity),
translates the minimization of the overall spacecraft nom-

inal mass. The transfer function
[[MSC

B

]−1
Wext/B,B(1)→ẍB (1)

(jω,�SC,�SC)
]−1

for ω ∈ [0, 0.0001] represents in fact

the DC gain (or the low frequency response) of the inverted
transfer from the force to acceleration along the x-axis, that
is the nominal mass of the overall spacecraft.
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(I) Nested Control Optimization for distributed Optimization Architecture:

Jc1 = min
KACS

max
�SC

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
P[

ñGYRO

ñSST

]
→

⎡
⎣�̃

SC
APE

�̃
SC
RPE

⎤
⎦
(s,�SC,KACS)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

≤ 1 (14)

such that:

Jc2 = max
�SC

∣∣∣
∣∣∣P

T̃ext→�̃
SC
APE

(s,�SC,KACS)

∣∣∣
∣∣∣
∞

≤ 1 (Req1)

Jc3 = max
�SC

∣∣∣
∣∣∣P

T̃ext→�̃
SC
RPE

(s,�SC,KACS)

∣∣∣
∣∣∣
∞

≤ 1 (Req2)

Jc4 = max
�SC

∣∣∣
∣∣∣PT̃ext→ũ(s,�

SC,KACS)

∣∣∣
∣∣∣∞ ≤ 1 (Req3)

Jc5 = max
�SC

∣∣∣
∣∣∣PT̃ext→T̃(s,�SC,KACS)

∣∣∣
∣∣∣∞ ≤ 1 (Req4)

(15)

(II) Control/Structure Co-Optimization for monolithic Optimization Architecture:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

min
KACS,�SC

max
�SC

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
P[

ñGYRO

ñSST

]
→

⎡
⎣�̃

SC
APE

�̃
SC
RPE

⎤
⎦
(s,�SC,�SC,KACS)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
2

≤ 1

min
KACS,�SC

max
�SC

σ̄

([[MSC
B

]−1
Wext/B,B(1)→ẍB (1) (jω,�SC,�SC)

]−1
)

, ∀ω ∈ [0, 0.0001]

(16)

such that:

max
�SC

∣∣∣
∣∣∣P

T̃ext→�̃
SC
APE

(s,�SC,�SC,KACS)

∣∣∣
∣∣∣
∞

≤ 1 (Req1)

max
�SC

∣∣∣
∣∣∣P

T̃ext→�̃
SC
RPE

(s,�SC,�SC,KACS)

∣∣∣
∣∣∣
∞

≤ 1 (Req2)

max
�SC

∣∣∣
∣∣∣PT̃ext→ũ(s,�

SC,�SC,KACS)

∣∣∣
∣∣∣∞ ≤ 1 (Req3)

max
�SC

∣∣∣
∣∣∣PT̃ext→T̃(s,�SC,�SC,KACS)

∣∣∣
∣∣∣∞ ≤ 1 (Req4)

(17)

4 Optimizationmethods

In this section the distributed and monolithic optimization
algorithms used in this study are detailed.

4.1 Distributed architecture

In a distributed optimization architecture, a global opti-
mization algorithm generates at each iteration i a set of
Ns sub-iterations and corresponding Ns vectors of struc-
tural optimization parameters χ i,s , with s = 1, . . . , Ns. At
each sub-iteration s, a nested control optimization is solved
as shown in Eq. (2), where here ys = χ i,s . The popula-
tion χ i+1,s (with s = 1, . . . , Ns) of the next iteration is
then chosen in the imposed ranges rχ of each optimiza-
tion parameter with a ratio based on the evaluation of the
Ns objective functions J s obtained at the previous iteration.
The global optimization algorithm finally provides the best

particle χ̂ after some stopping criteria are reached. In this
study the chosen global optimization algorithm is the Particle
Swarm Optimization (PSO) (Kennedy and Eberhart 1995),
implemented in theMATLABGlobal Optimization Toolbox.
The full distributed optimization routine proposed in this
study is synthesized in Algorithm 1. Note that for each sub-
iteration a child BDF NASTRAN file (BDF_C) is written
from a parent one (BDF_P) for each flexible sub-structure
A j . NASTRAN is then called from MATLAB to analyse
the sub-structure and produce the corresponding f06 result
file, that is then used in SDTlib to build the corresponding

TITOPmodel
[
MA j

A j

]
RA j

(s,�A j ). Before proceedingwith

the nested optimization, a structural constraint has to be ver-
ified for the ENVISION benchmark. For structural safety of
the solar panel in stowed configuration during the launch, the
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Fig. 13 Launch constraint: computation of λ factor

following empirical hard constraint is introduced:

ωSTO = λ

√
RPEPh

3
sP

12β(1 − νP)2
[rad/s] (18)

where RP is the panel’s secondmoment of area, EP is the skin
Young’s Modulus, hsP is the total honeycomb skin thickness
and νP is the Poisson’s ratio. Note that the expression to
compute the second moment of area is;

RP = 12IP
h3sP

(19)

where IP =
(
tcP
2 + hsP

4

)2
. The parameter β is computed as:

β = ρs + ρc

lPwP
(20)

where ρs and ρc are respectively the mass per unit of area of
the panel’s skin and the core, lP is the length andwP thewidth
of each panel. Finally parameter λ is a function of the panel
aspect ratio ARP = lP/wP as shown in Fig. 13. To conclude,
ωSTO is a function of three optimization parameters (tsP , tcP
and ARP), the other ones being constant.

The constraint to be satisfied is then ωSTO > ωL , where
ωL = 76π rad/s. In case this test is not passed then a large
value is assigned to the objective function of the current
swarm sub-iteration: J s = 10, in order to penalize the selec-
tion of this solution. If the launch constraint is satisfied, then
the TITOP model of the entire spacecraft is computed with
SDTlib and the nominal mass m can be recovered. With the
structural optimization parameters fixed, a control optimiza-
tion is now possible by solving problem (14) constrained by
(15)with systune. Theglobal optimizationoptimization func-
tion of the current swarm sub-iteration can then be computed
as:

J s = m

m̄
+

5∑
j=1

Jc j (21)

where m̄ is the maximum expected spacecraft overall mass,
obtained by imposing the maximum value of each structural

parameter impacting themass. Finally the PSOwill terminate
when a maximum number of iterations Ni is reached.

Algorithm 1 Distributed Optimization

Inputs: rχ ,BDF_P, ωL , Ni , Ns,�
SC

1: Initialize i , Ĵ
2: while i �= Ni do
3: Create χ i,s , with s = 1, . . . , Ns
4: for each s do
5: for each flexible structure A j do
6: Create BDF_C
7: Run NASTRAN analysis with χ i,s

8: Compute
[
MA j

A j

]
RA j

(s,�A j )

9: end for
10: Compute ωs

STO
11: if ωs

STO ≤ ωL then
12: J s ← 10
13: else if ωs

STO > ωL then

14: Compute
[MSC

B

]−1
RB

(s,�SC)

15: m ← [MSC
B

]−1
Wext/B,B(1)→ẍB (1) (0)

16: Initialize KACS 
 See Eq. (11)
17: Solve (14) subject to (15)
18: J s ← m

m̄ + ∑5
j=1 Jc j

19: if J s < Ĵ then
20: Ĵ ← J s

21: χ̂ ← χ i,s

22: K̂ACS ← K̂s
ACS

23: end if
24: end if
25: i ← i + 1
26: end for
27: end while
28: return χ̂ , K̂ACS

4.2 Monolithic architecture

In the monolithic optimization architecture, the control opti-
mization routine handles the structure optimization as well
as already shown in Sect. 3. Algorithm 2 lists the main steps.

Algorithm 2Monolithic Optimization

Inputs: rχ ,�SC

1: Initialize �SC 
 See Section 2.2.2
2: Compute

[MSC
B

]−1
RB

(s,�SC,�SC)

3: Initialize KACS 
 See Eq. (11)
4: Solve (16) subject to (17)

5: Compute χ̂ from �̂
SC

6: return χ̂ , K̂ACS
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Fig. 14 Evolution of the objective function along the PSO iterations.
(Color figure online)

5 Results

For the distributed optimization of the ENVISION bench-
mark the 12 structural optimization parameters in Table 2 are
considered.After a trial and error process themaximumnum-
ber of PSO iterations and sub-iterations have been fixed to
Ni = 20 and Ns = 20 respectively as compromise between
computational time and convergence to the optimal solution.
Figure14 shows the evolution of the objective function Ĵ
along the iterations, with quantiles (blue boxes) of the swarm
particles having passed the launch constraint test. The dis-
persion of the particles reduces along the iterations by giving
an indication on the convergence to the optimal solution.

Figure 15 shows the evolution of the singular values for
all particle swarm iterations. Notice as the optimal solution
attracts all modes’ resonances to lower frequencies by mak-
ing the spacecraft lighter and more flexible.

A detail of the evolution of each optimization parameter
is provided in Fig. 16.

Fig. 15 Singular values of all swarm particles along the optimization iterations

Fig. 16 Evolution of the optimal structure parameters along the PSO iterations: average value among particle swarms of the same iteration (left)
and best particle (right)
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Table 3 General performance of distributed and monolithic optimiza-
tion

Distributed Monolithic

Opt. total time (h) 12.33 0.4072

Opt. SC total mass (kg) 1253.86 1258.166

Total mass reduction (kg) 55.94 51.63

% opt. total mass 4.27% 3.94%

Opt. max control perf 0.7208 1.0011

Table 4 Optimized control performance with distributed and mono-
lithic optimization

Cont. req. Distributed Monolithic

APE 0.7208 (μ̄	 =0.7353) 1.0011 (μ̄	 =1.00051)

RPE 0.0583 0.1016

Command 0.0122 0.0157

Sensitivity 0.7208 (μ̄	 =0.7530) 1.0011 (μ̄	 =1.01)

Noise variance 0.0469 0.0521

For themonolithic optimization, four optimization param-
eters are chosen (tsP , tcP , RSRS and tcV) as already mentioned
in Sect. 2.2.2. All the other parameters are fixed to their mean
value in order to respect the launch constraint. This constraint
cannot in fact easily be included in the monolithic approach
as in the distributed one.

The optimal mechanical parameters obtained with both
distributed andmonolithic optimization are shown inTable 2.
We notice as parameters mostly impacting the mass (Fig. 16)
tend to reach their minimum value except for the SAR core
thickness, that surprisingly reaches its maximum value in
the monolithic optimization. This result can be interpreted
with the fact that the monolithic optimization is based on a
non-smooth gradient based optimization, that could fall into
a local minimum. However, the advantage of using a mono-
lithic optimization is the needed computational time with
respect to the distributed architecture as shown in Table 3.
The optimization total time for the distributed architecture
is 12.33h versus ≈ 0.4h needed for the monolithic one. It
has to be said that for the monolithic architecture a previ-
ous initialization of �SC (step 1 in Algorithm 2) is not here
taken into account. This time depends on the number ofNAS-
TRAN analyses to be run to have the initial set of samples
to be interpolated with APRICOT. This operation is gener-
ally really fast and for the present application stayed smaller
than ≈ 0.5 hours. Finally, the APRICOT generation of �SC
took just 6.335 s. Notice that both optimizations have been
run on a Windows 7, 64 bits, Intel(R) Core(TM) i7-4810MQ
CPU @ 2.80GHz, RAM 16 Go. The huge difference in the
optimization time between monolithic and distributed archi-
tecture is due to the robust control synthesis step. Even if in

Table 5 Optimal control parameters obtained with distributed and
monolithic optimization

Distributed Monolithic

K x
p 35.0764 (8.6952) 35.2731 (8.8499)

K x
v 335.2577 (202.8248) 201.3181 (206.4978)

K y
p 13.9779 (6.1029) 14.8800 (6.2416)

K y
v 280.8861 (142.4001) 162.0921 (145.6371)

K z
p 35.008 (10.5454) 35.2562 (10.7226)

K z
v 404.4305 (246.0605) 227.9570 (250.1946)

Values in brackets are the initial guess obtained with Eq. (11)

themonolithic architecture the set of considered uncertainties
is bigger (to take into account the optimization parameters
in �SC) than in the distributed architecture, the synthesis is
run ones. In the distributed architecture, a new control syn-
thesis is conversely run at each swarm iteration. Even if the
achieved optimized mass is similar with the two approaches,
ifwith adistributed architecture a big number of optimization
parameters can be considered (with a consequent lower com-
putational time), with themonolithic optimization a small set
of mechanical parameters can be used. This number is in fact
limited as seen in the previous sections by the complexity
of the interpolated LFT, that can contain a huge number of
uncertain repeated parameters, which can make the robust
control optimization infeasible. In this study four parameters
out of twelve have been chosen based on their impact on the
overall spacecraft mass. This choice on the other hand con-
straints the achievable control performance, that is driven by
other parameters as discussed in Sect. 5.1.

As shown inTable 3, the achievedmass reduction is almost
the same with the two approaches. Notice that the nominal
mass of the central body corresponds to 1173kg, that means
that the actual percentage of saved mass with respect to the
potential reducible mass (of the flexible appendages) corre-
sponds indeed to 69.18% and 63.85%, for the distributed and
monolithic optimization respectively. Concerning the control
performance with the distributed architecture, the maximum
control index (max

j
Jc j = 0.7208 < 1 with j = 1, . . . , 5)

shows that control performance is largely satisfied. Formono-
lithic architecture, this index is slightly greater than unity,
while acceptable by keeping in mind that a large uncertainty
level has been considered (see Table 1). Details regarding
each achieved control index are is provided in Table 4. From
this table, the APE and Sensitivity indexes result to be the
most critical to be satisfied.

Table 5 finally provides the optimal control gains obtained
with both optimization approaches.

A deeper analysis is proposed in Sect. 5.1 to better inter-
pret physically the achieved results by using the outcomes of
the distributed optimization.
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Fig. 17 Pareto fronts for the distributed optimization: control versus structure performance indexes. The green bullet represents the best particle.
(Color figure online)

5.1 Further analysis with distributed optimization

The concurrent character of the proposed structure/control
optimization is shown in the Pareto fronts of Fig. 17. An
excessive reduction of the spacecraft mass (with all structural
parameters converging to theirminimumvalues) corresponds
both to a degradation of the pointing performance (APEchan-
nel) and stability (Sensitivity channel). The optimal solution
(green bullet) represents the compromise between these com-
peting objectives. In particular an excessive reduction of the
Yoke length ratio LRY corresponds to a loss of the spacecraft
stability. This point is further discussed in the following para-
graphs.

The impact of each structural optimization parameter on
both structural and control optimization indexes can be high-
lighted by plotting the evolution of the particle swarms along
the PSO iterations as done in Figs. 18 and 19 respectively.
The linear dispersion of particles according to a variation of
tcP confirms the importance of this parameter for a reduction
of the spacecraftmass.A similar behavior,while lessmarked,
can be noticed for tsP and tcV , as expected. Another obser-
vation is that a square-like configuration of the solar panels
is preferred to a rectangular one since particles with extreme
values of ARP are discarded since the launch constraint is
not satisfied.

According to control performance, Fig. 19 reveals the key
structural parameters having the most important impact. As
already shown in Table 4, APE and Sensitivity indexes are

Fig. 18 Mass optimization cost function versus structure optimization
parameters
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Fig. 19 Control optimization cost function versus structure optimiza-
tion parameters

the ones driving the overall control performance. They get
the same value in the vast majority of cases according to the
gradient-based algorithm implemented in the systune routine.
By looking at the dispersion of particles along the iterations,
a clear dependence (linear) of control performance is noticed
when Yoke’s section dimensions (mostly BY and DY) vary.
In particular a degradation is experiencedwhen bigger values
of BY and DY are used.

In order to better analyze this impact on the control per-
formance, a further analysis is performed: worst-case (WC)
APE andSensitivity performance are checkedwhen one opti-
mization parameter is left varying by keeping all the others
equal to the values corresponding to the optimal solution.
In order to speed up the computation, a formal μ-analysis
is not applied for this analysis and systune is used to obtain
the worst-case peak gain of the demanded transfer functions
(APE and Sensitivity channels). The research of the worst-
case configuration in systune is in fact based on a heuristic
search and not a μ-based one (see Apkarian et al. (2015)
for more details). For this reason a formal validation of the
synthesized controller through a μ-analysis is proposed in
Sect. 5.2. Since here the objective is to show the overall trend
of the control performance with a variation of the structural
parameters around the optimal configuration, an estimation
of the WC is sufficient. The WC analysis is then turned into

a parametric robust control design problem: the upper bound
p̄WC of the peak gain pWC of the analyzed transfer function
is considered as a decision variable and the objective is to
minimize p̄WC whilst meeting the constraint:

max
�SC∈D

�SC

∣∣∣∣∣

∣∣∣∣∣
H(s,�SC)

p̄WC

∣∣∣∣∣

∣∣∣∣∣∞
≤ 1 (22)

where H(s,�SC) is the transfer function to be checked and
D�SC is a subset of the parametric domain in which the para-
metric uncertainties �SC can vary. This subset is chosen by
systune as said before. By running this analysis, the results
are provided in Fig. 20. A first observation is that a variation
of all parameters around the optimal solution does not criti-
cally affect the APE performance since the WC stays below
unity. However, a degradation of the pointing performance is
experienced with growing values of tcP , tsP , LRY and ARP.
More critical is the impact of a variation of the parameters on
the spacecraft stability (Sensitivity channel). An increase of
one of the dimension of the Yoke’s section (DY) around the
optimal solution corresponds in fact to a fast degradation of
the stability margins. This phenomenon is better highlighted
in Fig. 21, where the singular values of the worst-case Sen-
sitivity channel are plotted with a variation of DY around
the optimal solution. An amplification of a flexible mode is
experienced with growing values of DY and a maximum loss
of ≈ 20% of stability performance is reached. This analysis
explains also the worst control performance obtained with
the monolithic approach since an average values is chosen
for DY.

In Fig. 20 it is also interesting to notice that a reduction of
the Yoke length ratio LRY corresponds to a degradation of
the spacecraft stability. This phenomenon explains the Pareto
front behavior discussed at the beginning of this section.

5.2 Controller formal validation

In order to certify the synthesized controllers both for
distributed and monolithic optimization it is necessary to
rigorously validate the worst-case control performance. As
already mentioned, systune routine is based on a heuristic
search of the worst-case configurations. Formal validation
with the computation of the structured singular value μ	 is
thus needed (Zhou and Doyle 1998). The uncertain param-
eter σ4 related to the solar panel geometrical configuration
is repeated 32 times in the uncertain block �SC by lead-
ing to unacceptable computational time using the standard
worst-case analysis tools. This problem is circumvented by
sampling σ4 on a grid of Nτ = 50 points regularly distributed
in [0, 1]. This subset has been chosen to account for the sym-
metric configuration of the model in the θSA ∈ [0, 180]◦ and
θSA ∈ [−180, 0]◦ intervals.
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Fig. 20 Sensitivity of the worst-case peak gain for APE and Sensitivity
channel around the optimal solution

Fig. 21 Estimation of WC Sensitivity control performance with varia-
tion of DY in the optimal distributed design

The computation of μ	 lower and upper bounds is per-
formed thanks to the wcgain routine in MATLAB Robust
Control Toolbox. The worst-case parametric configuration is
associated to the lower boundμ

	
. The upper bound μ̄	 com-

putation provides the conservatism in the estimation of the
true value of μ	. Note that this analysis is only performed
for the two most critical control performance, the APE and
Sensitivity (see Table 4):

μAPE
	 = max

�SC

∣∣∣
∣∣∣P

T̃ext→�̃
SC
APE

(s,�SC,KACS)

∣∣∣
∣∣∣
∞

μ
Sensitivity
	 = max

�SC

∣∣∣
∣∣∣PT̃ext→T̃(s,�SC,KACS)

∣∣∣
∣∣∣∞

(23)

Figures 22 and 23 show the results of this analysis for the
distributed and monolithic architectures respectively. Note
that for this validation the optimal parameters obtained with
the monolithic approach are used to generate a new dynami-
cal model directly with NASTRAN in order to avoid the use
of the model based on the fitted block �SC .

One can check that the gaps between the upper and the
lower bounds of μ	 are tight by showing that the WC per-
formance is accurately evaluated and very close to the value
provided by systune. In the same figure the WC combination
of parameters corresponding to the overall worst-case μ	

is provided as well. For both optimization architectures, the
largest degradation is obtained for the minimal value of the
central body inertia, that can be physically explained with a
consequent bigger contribution of the flexible structural parts
to the spacecraft dynamics.

5.3 Lesson learned

This section is intended to provide some feedback on the
practical use of the two optimization architectures proposed
in this work. When a fast solution is needed and the set
of design parameters can be reduced to few, a monolithic
architecture has to be preferred. This is especially valid
for missions where the control problem is not extremely
challenging, as in the proposed benchmark. However, when
pointing requirements become tighter as for telescope Sci-
encemissions, a greater number of degrees of freedomwould
offer more flexibility to reach the expected level of perfor-
mance. For a similar mass reduction, with the distributed
architecture, almost 30% was gained on the control perfor-
mance of the ENVISION benchmark with respect to the
monolithic optimization. Moreover, the distributed archi-
tecture allows the integration of a larger type of structural
constraints than the monolithic one, by keeping a direct
connection with the FEM solver. Structural constraints, like
maximum strength tolerated by the structure, can easily be
included as it was shown in this paper with the launch con-
straint. The price to pay is nevertheless an increase in the
computational time. This computational cost could benefit
of parallel computing, for which Algorithm 1 is easily adapt-
able.

6 Conclusion

In this work, an end-to-end methodology was presented for
robust design of structure/control co-optimization problems.
Both a distributed and a monolithic optimization archi-
tectures were proposed and applied to a scientific ESA
spacecraft benchmark. It was shown how the TITOP model-
ing approach is well suited to take into account all parametric
uncertainties and optimization variable in a unique LFT
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Fig. 22 Worst-case analysis of control performance for distributed optimization

Fig. 23 Worst-case analysis of control performance for monolithic optimization
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model, that can be used to obtain a robust optimal solution in
a straightforward way. Moreover, the LFT framework is use-
ful for final validation of the achieved control performances.
With both the distributed and monolithic architecture an
important reduction of the spacecraft mass is achieved by
meeting the mission control performance. This point demon-
strated the importance of treating the problemof structure and
control optimization in the same framework and avoid the
sequential approach traditionally employed in the industrial
context. The methodology proposed in this paper contributes
in fact to reduce the design iterations between the structure
and control departments and enhance the optimization per-
formance. The gain in the efficiency of the design process
benefits of the LFT formalism as well. Inclusion of uncer-
tainties in the modeling step allows to directly obtain robust
control solutions by limiting the tuning iterations to satisfy
all critical configurations and speed up the validation pro-
cess by formally detecting possible worst-case with the help
of μ-analysis. The limits of both optimization architectures
was also discussed: when using a distributed architecture a
longer computational time is the price to pay for including
a bigger set of optimization parameters with respect to the
monolithic architecture. The LFT complexity drives in fact
the maximum number of optimization variables in themono-
lithic approach. As seen for the ENVISION benchmark, this
parameters’ selection brought, as compromise, to a worse
control performance, by reaching the same mass reduction
as for the distributed optimization. It was also shown that,
with the distributed approach, it is possible to introduce
exogenous structural constraints (like the launch constraint
in this work), which relies on further structural analysis at
each iteration. The distributed approach also makes a deeper
physical understanding of the achieved results possible by
giving access to the evolution of the structural parameters
during the optimization iterations.
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