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Abstract
This work proposes a multifidelity modeling approach to mitigate adverse characteristics of airfoil dynamic stall through 
aerodynamic shape optimization (ASO). Cokriging regression (CKR) is used to efficiently determine an optimum airfoil 
shape by combining data from high-fidelity (HF) and low-fidelity (LF) computational fluid dynamics simulations. The HF 
dynamic stall response is modeled using the unsteady Reynolds-averaged Navier–Stokes equations and Menter’s SST tur-
bulence model, whereas the LF model is developed by simplifying the HF model with a coarser discretization and relaxed 
convergence criteria. The CKR model, constructed using various infill criteria to model the objective and constraint func-
tions with six PARSEC parameters, is utilized to find the optimal design. The results show that the optimal shape from 
CKR delays the dynamic stall angle over 3° while reducing the peak values of the aerodynamic coefficients compared to 
the baseline airfoil (NACA 0012). Comparing the optimized shapes from the CKR and a HF Kriging regression (HF-KR) 
shows a similar delay in dynamic stall angle; however, the CKR optimum provides a better design for the current problem 
formulation while requiring 39% less computational time than the HF-KR approach. This work presents a new multifidelity 
modeling approach to saving the computational burden of dynamic stall mitigation through ASO. The approach used in this 
work is general and can be applied for other unsteady aerodynamic applications and optimization.

Keywords  Dynamic stall · Unsteady CFD · Surrogate modeling · Multifidelity modeling · Cokriging regression · Kriging 
regression

List of symbols
A	� Amplitude of oscillations, deg
as	� PARSEC surface coefficient
c	� Chord length
cl	� Sectional lift coefficient
cd	� Sectional drag coefficient
cm	� Sectional pitching moment coefficient
cdRE	� Richardson extrapolation estimate of average drag 

coefficient per cycle, d.c.
cderr	� Estimated error in average drag coefficient, (d.c.)
d.c.	� Drag counts, Δcd = 0.0001

dt	� Time-step, sec
f	� Scalar objective function

g	� Inequality constraint function
kr	� Reduced frequency
mmax	� Airfoil maximum camber
n	� Number of design variables
ns	� Number of design samples
nt	� Number of test data samples
PM	� Performance metric under consideration
RLE	� Airfoil leading edge radius
Re	� Reynolds number
toff 	� Airfoil trailing edge offset
tTE	� Airfoil trailing edge thickness
tmax	� Airfoil maximum thickness
U∞

	� Free-stream velocity, m/s
X	� Airfoil surface crest x-coordinate
xc	� Non-dimensional chordwise location
xtmax	� Non-dimensional chordwise location of tmax
xmmax

	� Non-dimensional chordwise location of mmax

y+	� Non-dimensionalized first layer cell thickness
Z	� Airfoil surface crest z-coordinate
Zxx	� Second-order derivative of airfoil surface
zs	� Z-coordinate of airfoil section

Responsible Editor: Lei Wang

 *	 Leifur Leifsson 
	 leifur@purdue.edu

1	 Department of Aerospace Engineering, Iowa State 
University, Ames 50011, Iowa, USA

2	 Purdue University, West Lafayette, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-023-03690-x&domain=pdf


	 V. Raul, L. Leifsson 

1 3

237  Page 2 of 21

x	� Vector of design variables
xlb	� Vector containing lower bounds on design variables
xub	� Vector containing upper bounds on design 

variables
�	� Angle of attack, deg
�ds	� Dynamic stall angle of attack, deg
Δ�	� Delay in dynamic stall angle, deg
�ms	� Moment stall angle of attack, deg
�TE	� Airfoil trailing edge wedge angle, deg
�	� Scalar hyperparameter
�	� Rotational rate, rad/s
�TE	� Airfoil trailing edge directional angle, deg
�	� Vector of Kriging hyperparameters

1  Introduction

An aerodynamic surface experiencing unsteady motion often 
shows a complex series of events that involves a dynamic 
delay of stall beyond static stall limits, followed by forma-
tion, convection, and shedding of the energetic leading edge 
vortex, typically described as dynamic stall (Carr 1988). 
These characteristics of dynamic stall distort the chord-
wise pressure distribution and produce transient forces and 
moments much larger than their static counterpart (McCros-
key et al. 1976). The dynamic stall phenomenon frequently 
appears on helicopter rotor blades (Harris and Pruyn 1968), 
rapidly maneuvering aircraft (Brandon 1991), wind turbines 
(Buchner et al. 2015), compressor blades (Carr et al. 1977), 
and bio-inspired micro-air vehicles (Ellington 1999). In 
many cases, the adverse loading generated by the occur-
rence of dynamic stall becomes the primary limiting fac-
tor in performance, structural strength, and fatigue life of 
the associated aerodynamic system (Carr 1988; Mani et al. 
2012). Thus, mitigating or eliminating dynamic stall over 
an aerodynamic surface is important for improving perfor-
mance of aerodynamic systems.

Aerodynamic shape optimization (ASO) provides a cost-
effective approach to passively mitigate or delay dynamic 
stall adverse effects with the utilization of computational 
fluid dynamics (CFD) for shape evaluation. Although com-
putational evaluation of dynamic stall is costly, surrogate-
based optimization (SBO) methods (Forrester et al. 2008) 
can provide an efficient solution for ASO. The current work 
proposes the utilization of multifidelity modeling (Peherstor-
fer et al. 2018; Giselle Fernández-Godino et al. 2019) for 
delaying and mitigating dynamic stall characteristics through 
ASO with efficient utilization of computational resources. 
In fact, current work presents one of the early applications 
of Cokriging regression (CKR) (Forrester et al. 2007; Kuya 
et al. 2011) multifidelity model with efficient adaptive sam-
pling strategies to solve complex unsteady dynamic stall 
mitigation problem. In particular, CKR is implemented to 

model the objective and constraint functions with respect 
to the airfoil shape parameters. The airfoil shape is param-
eterized using the PARSEC (Rogalsky and Derksen 2009) 
method. The error-based and expected improvement (EI) 
infill criteria are utilized to adaptively improve the involved 
models and efficiently determine optimum design that 
mitigates adverse effects of dynamic stall. Finally, the 
constructed surrogate models are utilized for optimization 
using the multi-start gradient-based method (Peri and Tinti 
2012). The optimum design and computational cost from 
the current approach are compared with the optimum design 
from a high-fidelity (HF) Kriging regression (KR) surrogate 
model used in the authors’ prior study (Raul and Leifsson 
2021). The results of this study provide a detailed analysis of 
baseline and optimum designs, and provide insight into the 
impact of airfoil shape on aerodynamic loads and dynamic 
stall mechanism. The presented approach is general and can 
be applied to other aerospace systems undergoing dynamic 
stall.

Next section presents background on the ASO and SBO 
approaches applied for dynamic stall mitigation studies and 
other simulation-based design problems. The following sec-
tion presents the SBO approach utilized in this study includ-
ing, optimum design problem formulation, design variables, 
optimization algorithm, surrogate modeling methods, and 
infill criteria. Then, the CFD model setup is described. The 
results of the optimization are presented following that. 
Lastly, the conclusion and suggestions for future work are 
provided.

2 � Background

Significant research has been conducted to understand 
the dynamic stall and its dependencies in the oscillating 
pitch cycle. It has long been noted that the dynamic stall 
is affected by the airfoil motion (Carr et al. 1977) param-
eters involving the mean angle, amplitude, and frequency of 
motion. Apart from the motion parameters, the dynamic stall 
is also affected by parameters describing the airfoil geometry 
and the operating conditions, such as the Reynolds number 
and Mach number (Carr et al. 1977; McCroskey et al. 1981). 
Considering the detrimental effects of dynamic stall, several 
studies have been conducted to mitigate or control dynamic 
stall via active–passive systems (Yu et al. 1995; Lee and 
Gerontakos 2006; Müller-Vahl et al. 2016; Niu et al. 2018; 
Chandrasekhara et al. 2004; De Giorgi et al. 2020; Zhu et al. 
2019).

Unlike active control systems, ASO may provide a cost-
effective approach for mitigating or delaying dynamic 
stall passively without the addition of mass or an auxiliary 
control system (Wang et al. 2015; Wang and Zhao 2018) 
and has been widely used for enhancing the performance 
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of steady-state problems (Mani et al. 2012). However, the 
application of ASO in a dynamic stall setting could get 
challenging particularly due to the repetitive evaluations 
of designs with a computationally costly CFD model, large 
number of design variables involved with shape parametriza-
tion, and gradient computations.

Gradient-based optimization (GBO) is widely used for 
ASO, utilizing gradient information to locate the local 
optimum design. Wang et al. (2015) and Wang and Zhao 
(2018) used sequential quadratic programming algorithm, a 
GBO method for alleviating dynamic stall characteristics of 
rotor airfoil. The adjoint method (Jameson 2003) is another 
approach used for dynamic stall mitigation with ASO (Wong 
et al. 2006; Nadarajah and Jameson 2007; Mani et al. 2012; 
Economon et al. 2013) and has shown promising results. The 
adjoint method is a state-of-art method that provides effi-
cient computation of gradients through adjoint sensitivities 
and is nearly independent of the number of the design vari-
ables (Laurenceau and Meaux 2008), which is particularly 
advantageous for solving high-dimensional optimization 
problems. However, the objective function acquired from 
computational simulations can be non-differentiable, discon-
tinuous, and inherently noisy, making sensitivity informa-
tion often inaccessible (Koziel and Yang 2011). In case of 
dynamic stall mitigation using adjoint method, the use of HF 
simulation model is necessary for accurate computation of 
sensitivities and to locate optimum design which could get 
computationally costly. Further, there is a possibility that the 
conventional adjoint method could fail on chaotic turbulent 
flow problems such as deep dynamic stall.

SBO (Forrester and Keane 2009; Koziel and Yang 2011) 
methods have been recognized as being critical in alleviat-
ing the computational burden of simulation-based design 
problems. In the SBO approach, a surrogate model of the 
objective function is constructed by sparsely sampling the 
design space with costly HF simulation. The fast to evalu-
ate surrogate is then used for optimization, either with local 
or global-search optimizers. Surrogate modeling methods 
consist of data-fit and multifidelity (Peherstorfer et al. 2018) 
methods. The data-fit methods use the available single-fidel-
ity data (typically HF) to fit a response surface to provide 
functional relationship between the input variables and out-
put quantities. Polynomial regression (Zhou et al. 2005), 
Kriging (Simpson et al. 2001), radial basis functions (For-
rester et al. 2008), polynomial chaos expansions (Blatman 
2009), and support vector regression (Forrester et al. 2008) 
are some of the widely used data-fit methods used for con-
struction of surrogate models.

In the past, Kriging has been widely used in the perfor-
mance improvement of rotorcraft and wind turbine airfoils. 
Kumar and Cesnik (2015) used Kriging with a camber 
deformation technique for reducing vibratory loads and 
performance improvement of the rotor in the presence of 

dynamic stall. Tang et al. (2017) used Kriging with EI 
for the performance improvement of a cycloidal rotor. Vu 
and Lee (2015) and Wang and Zhao (2020) used Kriging 
for ASO of rotor blades. Yamazaki and Arakawa (2016) 
utilized Kriging for improving VAWT rotor performance. 
Veerakumar et al. (2020) used Kriging with experimental 
wind tunnel evaluations to determine optimum operating 
parameters of DBD plasma actuator to suppress massive 
flow separation over a wind turbine airfoil. Recently, the 
authors investigated the use of KR with EI infill criteria 
for dynamic stall delay and mitigation over a VAWT airfoil 
(Raul and Leifsson 2021).

In the SBO approach, an accurate surrogate model is 
key to finding the global optimum design. Data-fit sur-
rogates generally require higher number of design evalu-
ations for an accurate model construction, thus increasing 
the computational cost of optimization. The multifidelity 
modeling could provide further computational cost saving 
by drawing information from models of multiple fideli-
ties with varying degrees of evaluation speed and accu-
racy. The multifidelity modeling methods combine data 
from time-consuming but accurate HF model and fast but 
less accurate low-fidelity (LF) model to create accurate 
HF approximations with better generalization capability 
compared to single-fidelity data-fit surrogates. In multi-
fidelity modeling, typically a greater quantity of LF data 
is coupled with a small amount of HF data that provides 
greater accuracy while drastically reducing computational 
cost (Forrester et al. 2008). Some of the widely used mul-
tifidelity techniques are Cokriging (Forrester et al. 2008), 
space mapping (Koziel et al. 2008; Leifsson and Koziel 
2015), and manifold mapping (Echeverría and Hemker 
2008; Echeverría 2007).

Forrester et al. (2007) developed the CKR method and 
applied it to the optimization of a generic transonic civil 
aircraft wing. Thelen et al. (2020a, b) used Cokriging and 
CKR for predicting aeroelastic flutter of airfoils and wings. 
Kuya et al. (2011) utilized CKR with experimental and com-
putational dataset for modeling an inverted wing with vortex 
generators in ground effect. Nagawkar et al. (2021) used 
manifold mapping for single- and multi-point design optimi-
zation of transonic airfoils. Koziel et al. (2008) used space 
mapping for design optimization and modeling of micro-
wave circuit. More recently, Bailly and Bailly (2019) applied 
Kriging and Cokriging with EI infill strategy for the design 
of rotor blade performance improvement in forward flight. 
They showed that Cokriging was able to provide more real-
istic results compared to Kriging with lower consumption of 
HF samples. However, the multifidelity modeling methods 
have received limited attention for ASO-based dynamic stall 
mitigation. In this work, CKR with error-based and EI infill 
criteria is applied for efficient ASO of airfoils at low Reyn-
olds and Mach numbers to mitigate dynamic stall.
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3 � Surrogate‑based shape optimization

This section presents the proposed ASO method for delaying 
dynamic stall with surrogate modeling. First, the optimum 
design problem formulation, design variables, and optimiza-
tion algorithm used in the current study are described. Finally, 
the surrogate modeling methods are described in detail along 
with the error-based and EI-based infill criteria.

3.1 � Optimum design problem formulation

Typically, the dynamic stall phenomenon is studied using a 
sinusoidally oscillating airfoil in free-stream flow. The oscil-
lating motion of an airfoil can be given as

where A, � and �m denote the pitching amplitude, the rota-
tional rate, and the mean angle of attack, respectively. 
Reduced frequency is another important parameter that 
affects the characteristics of dynamic stall and is defined as

where U∞
 is the free-stream speed and c is the airfoil chord 

length. For this study, a deep dynamic stall case from the 
experimental work conducted by Lee and Gerontakos (2004) 
is employed for the ASO application. The motion and flow 
parameters of the selected case are �m = 10 ° , A = 15 °, 
kr = 0.05 , � = 3.403 , and a Reynolds number Re = 135, 000.

The primary objective of this study is to determine the 
airfoil shape that delays the occurrence of the dynamic stall 
while mitigating the adverse dynamic loading of the airfoil. 
This objective can be achieved by delaying or eliminating the 
dynamic stall vortex (DSV) formation over the airfoil (suction 
side), which is predominantly responsible for sudden changes 
in the aerodynamic forces and moments. The DSV occurrence 
over an airfoil surface can be located by divergence in drag 
and pitching moments coefficients. Thus, the DSV formation 
can be delayed or eliminated by the following optimization 
problem formulation given as

where J(cd0) =
∑N

i=1
(cd0)i ,  J(cm0) =

∑N

i=1
�(cm0)i�, and 

x = [x1, x2, ..., xn]
T  is the design variable vector of n 

dimensions with xlb and xub as the lower and upper bounds 
of x , respectively. The subscript ‘0’ represents properties 

(1)�(t) =�m + A sin(�t),

(2)k
r
=

�c

2U∞

,

(3)min
x

f (x) =

�∑N

i=1
cdi(x)

J(cd0)

�
+

�∑N

i=1
�cmi

(x)�
J(cm0)

�

(4)s.t. g(x) = �ds0 + Δ� − �ds(x) ≤ 0

(5)�
lb

≤ � ≤ �
ub
,

of baseline airfoil shape (NACA 0012). The parameters 
cd(x) , cm(x) , and �ds(x) represent time variant drag coeffi-
cient, pitching moment coefficient, and dynamic stall angle 
of the airfoil shape, respectively. The parameter N denotes 
the number of time-steps in each pitching cycle and the 
magnitude of N depends on the simulation time-step and 
the total cycle time. The constraint function (4) forces the 
optimal design to delay the dynamic stall angle by Δ� over 
the baseline design ( �ds0 ), which is the minimum delay in 
dynamic stall angle expected from the optimum design. In 
this study, only the upstroke part of the pitching cycle is con-
sidered, where the formation of the DSV primarily affects 
the aerodynamic forces and moments, and to utilize minimal 
computational resources.

3.2 � Design variables

In this work, the PARSEC (Sobieczky 1999) airfoil param-
eterization method is used to define the airfoil shape. The 
PARSEC method parameterizes an airfoil by using a set of 
variables that have a specific meaning related to the air-
foil’s surface, such as the leading edge radius, the trailing 
edge wedge angle, and the thickness (Rogalsky and Derk-
sen 2009). Design variables with a specific meaning are 
desirable to designers for an improved understanding of 
dynamic stall characteristics and their dependence on the 
airfoil features.

PARSEC parameterizes an airfoil by its upper and lower 
surface curves given as Rogalsky and Derksen (2009); 
Sobieczky (1999)

where zU and zL are the height of upper and lower surface 
curves in z-coordinates, xc is the non-dimensional distance 
along chord, and aS

i
 are the coefficients to be determined. 

Figure 1 and Table 1 show the shape parameters used in 
PARSEC. A total of twelve parameters define the entire air-
foil shape, where each surface (upper and lower) is defined 

(6)zs =

6∑

i=0

as
i
x
i−

1

2

c , s = U,L

Fig. 1   PARSEC airfoil geometry parametrization
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using parameters shown in Table 1. The last four parameters 
shown in Table 1 are the common parameters between upper 
and lower airfoil surfaces. The PARSEC parameterization 
has twelve parameters in twelve equations that are solved to 
determine the coefficients aS

i
.

The predominant feature of dynamic stall is formation, 
growth, and convection of DSV that occurs on the suction 
side or upper surface of an airfoil. Mitigation of dynamic 
stall can be achieved by delaying or eliminating the forma-
tion of DSV. The DSV formation is affected by leading edge 
curvature (Yu et al. 1995; Müller-Vahl et al. 2016; Wang 
and Zhao 2020), pressure gradient on suction side (Chan-
drasekhara et al. 2004), airfoil thickness (Sharma and Visbal 
2019), and camber (Müller-Vahl et al. 2016). These factors 
can be effectively controlled by variation in airfoil upper sur-
face with minimal design parameters. Thus, in this work, the 
parameters that primarily affect the airfoil upper surface are 
considered. The upper and lower surface leading edge radius 
is represented by a single variable ( RLE = RU = RL ) to con-
sider the impact of leading edge radius on the dynamic stall 
characteristics. Additionally, the trailing edge offset ( toff  ) 
and trailing edge thickness ( tTE ) parameters are set to zero 
to keep the number of design variables that predominantly 
affect dynamic stall to a minimum and to reduce the com-
plexity during the meshing operations.

The conditions mentioned above reduce the twelve design 
variables to six design variables producing a unit length air-
foil with a sharp trailing edge. Here, the design variable 
vector is written as

where the bounds on the design variables are presented in 
Table 2. The variable bounds are selected to provide a large 
variation in airfoil shapes without producing atypical shapes.

3.3 � Optimization algorithm

The optimization algorithm presented in this study is an 
automated loop that sequentially improves the search of 

(7)x = [XU , ZU , ZxxU ,RLE, �TEU
, �TEU

]
T ,

global optimum using the multifidelity Cokriging surrogate 
model. In a multifidelity model, LF data are exploited to 
represent a global trend of a true function and provide a 
base for HF approximation (Kuya et al. 2011). Thus, the 
accuracy of the multifidelity surrogate model could highly 
depend on the global accuracy of the LF surrogate model 
(Kuya et al. 2011) which in turn depends on the LF sampling 
plan that is distributed in design space properly. Therefore, 
the proposed optimization algorithm is implemented in two 
parts. The purpose of the first part is to determine an appro-
priate LF sampling plan that captures the global trend (see 
Fig. 2). First, the LF Kriging regression (LF-KR) model is 
constructed and refined sequentially using an error-based 
infill (cf. Sect. 3.5) strategy. The error-based infill strategy 
is typically used to achieve globally accurate surrogate. This 
process determines the appropriate number of LF samples 
required for getting globally accurate LF surrogate. Once 
the appropriate number of LF samples is determined, initial 
CKR model is constructed with acquired LF samples (from 
the first part of algorithm) and initial HF samples. The CKR 

Table 1   Design variables in PARSEC airfoil parameterization

Design variable Description Units

X Surface crest x-coordinate –
Z Surface crest z-coordinate –
Zxx Second-order derivative at X, d

2z

dx2
|x=X –

RLE Leading edge radius –
�TE Trailing edge directional angle Deg
�TE TE wedge angle Deg
toff Trailing edge offset –
tTE Trailing edge thickness –

Table 2   Design variable bounds

Design variable Lower bound Upper bound Units

XU 0.2733 0.5011 –
ZU 0.054 0.09 –
ZxxU − 0.6726 − 0.4036 –
RLE 0.0104 0.0222 –
�TEU

− 11.7156 − 7.0294 Deg
�TEU

3.52818 5.8803 Deg

Fig. 2   A flowchart of the first part of optimization algorithm to deter-
mine an appropriate LF sampling plan that captures the global trend 
in the underlying function
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model is then further refined by using EI infill strategy (cf. 
Sect. 3.5). EI infill strategy is a balanced exploration–exploi-
tation strategy that is typically used to find global optimum 
efficiently. This two-step approach allows to efficiently build 
Cokriging surrogate.

A flowchart of the first part of algorithm to determine the 
LF sampling plan is shown in Fig. 2. The algorithm starts by 
sampling the design space using the Latin hypercube sam-
pling (LHS) (McKay et al. 2000) method. The samples Xc 
are generated such that Xe ⊂ Xc (cf. Sect. 3.3.1), where Xc 
and Xe are LF and HF sampling plans and subscripts ‘e’ and 
‘c’ denote expensive and cheap to evaluate models, respec-
tively. Next, the samples Xc are evaluated with the LF CFD 
model. The observations are then used to construct two sepa-
rate LF-KR models, one for the objective and another for the 
constraint function. The global accuracy of the LF-KR mod-
els is evaluated against the test data set using the NRMSE 
(normalized root mean square) metric. An error-based infill 
strategy is implemented on the objective function surrogate 
to determine the infill (cf. Sect. 3.5). Next, the infill point is 
evaluated with the LF CFD model and added to the initial 
sampling plan Xc . In every infill iteration, the LF-KR model 
is checked for saturation, i.e., when the global accuracy of 
the LF-KR surrogate will not improve with an additional 
infill point. Once the LF-KR model is saturated, the first 
part of the algorithm terminates to provide a sampling plan 
Xc holding infill as well as the initial samples and the corre-
sponding LF observations Yc that produces a globally accu-
rate LF surrogate model.

A second part of the algorithm to find the optimal design 
is shown in Fig. 3. The HF data are generated by evaluating 
the HF CFD model at Xe . The LF data Xc acquired from the 
first part along with HF data Xe are used to construct two 
separate CKR models, one for objective and the other for 
constraint function. The constructed CKR models are then 
used to solve the optimization problem (3, 4) considered 
in this study and acquire optimal design in every iteration. 
Next, the termination conditions are checked. If the required 
termination criteria are not satisfied, an infill point is deter-
mined using an EI-based infill strategy. The infill point is 
evaluated with LF and HF CFD models and added to their 
respective data sets. The above process continues until the 
convergence in maximum EI magnitude and consecutive 
optimal shapes are achieved. After the satisfaction of ter-
mination criteria, the final optimal design is evaluated with 
HF CFD model for further comparison with baseline design.

3.3.1 � Sampling plan

The surrogate model is data-driven and its accuracy depends 
on the appropriate sampling plan. It is important to capture 
the trend of the objective function over the entire design 
domain. In this study, the LHS method is used, which 

provides a good distribution of sample points over the entire 
design domain, ensuring the full range of the design vari-
ables is represented. The LHS method is used for generating 
training and testing data sets for this study. The training data 
sets satisfy the Xe ⊂ Xc condition. This condition is satis-
fied by generating two LHS plans. Both plans are combined 
to provide initial LF sampling plan Xc, whereas only one 
of the plans (typically of smaller size) is used as the HF 
sampling. For this study, the LHS plans are generated using 
the pyDOE2 python package (Sjögren and Svensson 2021).

Another critical part of the sampling plan is the selection 
of the number of samples. According to Gu and Yang (2006) 
and Shi et al. (2012), a number of samples equal to 3 times 
the number of design variables are needed at a minimum for 
the construction of a reasonably accurate surrogate model. 
For this study, the airfoil shape is represented by six design 
variables. Thus, to keep the number of HF evaluation to a 
minimum, approximately, 3 times the number of design vari-
ables is set as the number of HF samples, and the number of 
LF samples is set to be approximately 10 times the number 
of HF samples (Forrester et al. 2008).

3.4 � Surrogate modeling

Simulation-based engineering objective functions are, in 
general, inherently noisy. In the case of physical experi-
ments, the data used could involve noise from many fac-
tors beyond the control of experimentation. The computer 
experiments are deterministic, producing the same out-
put for the same input. However, computer experiments, 

Fig. 3   A flowchart of the second part of optimization algorithm to 
find the optimal design using Cokriging regression with EI-based 
infill
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such as CFD, that are based on the simulation of physi-
cal phenomena using iterative and discretized schemes 
may produce similar characteristics in data as physical 
experiments (Forrester et al. 2006). Identical computer 
experiments will produce the same results; however, the 
immediately adjacent inputs may produce entirely different 
results due to discretization error and rate of convergence, 
making results of computer experiments appear to contain 
noise (Forrester et al. 2006). The discretization error is 
mainly caused by finite changes in mesh due to small geo-
metric changes, whereas convergence impacts data noise 
if the simulations for different inputs converged at differ-
ent rates. Thus, functions formulated from computational 
simulations, such as CFD, could also exhibit noise. Addi-
tional, in case of dynamic stall simulation, the objective 
function value may get affected by the chaotic nature of 
deep dynamics of stall adding noise into objective and 
constraint functions. In the current study, the objective 
and constraint function is expected to exhibit noise. If such 
data are not handled correctly during surrogate model con-
struction, it could lead to numerical instability and gen-
eration of pseudo optimums in the design space, prolong-
ing the global optimum search process. Thus, it is critical 
to use a surrogate that can handle noisy data to enable a 
robust estimation of the optimal design.

In this work, CKR (Forrester et al. 2007) is used to 
model the objective and constraint function over the 
entire design space. Cokriging (Forrester et al. 2007) is 
a multi-response extension of Kriging that combines data 
of different fidelities. The Cokriging description given 
here assumes two fidelity levels (Forrester et al. 2007, 
2008), the HF response ye at Xe = [x1

e
, x2

e
, ..., x

ne
e ]

T and the 
LF response yc at Xc = [x1

c
, x2

c
, ..., x

nc
c ]

T , where ( Xe ⊂ Xc ). 
The Cokriging model is constructed in two steps. First, 
a LF Kriging model ŷc(x) is fitted to the LF sample 
response yc where the first set of hyperparameters, �c , is 
obtained. Next, the difference Kriging model ŷd(x) is fit-
ted to yd = ye − 𝜌ŷc(Xe) at Xe to obtain the second set of 
hyperparameters, �d and � . The scaling hyperparameter � 
in the difference model scales the LF approximations to 
the HF response. All the hyperparameters are determined 
using the Maximum likelihood estimate function during 
the fitting process.

CKR is a version of Cokriging developed to filter noise 
from the HF and LF data sets. The noise filtering capa-
bility of CKR is obtained by introducing regression con-
stants in LF and difference Kriging models (Forrester et al. 
2007, 2006). These two additional hyperparameters are 
also tuned during the fitting process. The detailed expla-
nation of Kriging, Cokriging, and CKR can be found in 
Forrester et al. (2008, 2007); Raul and Leifsson (2021); 
Thelen et al. (2020a).

3.5 � Infill criteria

The surrogate model is constructed based on a limited 
observed response in a given design space, and it is only 
an approximation of the true function. The optimum design 
depends on the accuracy of the surrogate model. Therefore, 
it is desirable to improve the accuracy of the surrogate model 
with further evaluations (infill points), in addition to the ini-
tial sampling plan. A surrogate model can employ an infill 
strategy with pure exploration, pure exploitation, or a com-
bination of both (Thelen et al. 2020a). The pure exploration 
strategy is generally used to improve the global accuracy of 
the model, while pure exploitation is used to find optimum 
quickly by adding infill points near the current minima in 
every infill iteration. In case of pure exploitation, the global 
accuracy of the model may not improve as most of the infill 
samples are placed near the current optimum. A balanced 
exploitation and exploration infill strategy combines the 
favorable features of both by providing an improved global 
accuracy as well as the faster prediction of global optimum.

An error-based infill criterion is a pure exploration strat-
egy where a new infill point is added wherever the model 
uncertainty is largest. The Kriging-based surrogate model 
provides model uncertainty through estimation of mean 
square error (MSE) (Forrester et al. 2008, 2007). The infill 
point can be determined by maximizing the MSE function of 
the surrogate model with a global optimizer. For this study, a 
differential evolution optimizer is used for finding the infill 
point based on MSE.

An error-based infill strategy is used in this work to deter-
mine an appropriate number of LF samples by improving 
the global accuracy of the LF surrogate model. Typically, a 
stopping criterion based on the saturation of the surrogate 
model is used (Forrester et al. 2008) with error-based infill 
strategy, i.e., when any further addition of infill points does 
not improve the surrogate model. The determination of the 
saturation condition can be based on the NRMSE that pro-
vides a metric for quantifying global accuracy of the sur-
rogate model.

In this study, the global accuracy of the LF surrogate 
model is quantified by the NRMSE metric and it is defined 
as

where yi
t
 and ŷi

t
 represent the responses( f (x) or g(x) ) from the 

LF CFD model evaluation and LF-KR model prediction at 
the ith test sample, respectively. The nt represents the number 
of test data samples. The denominator of (8), (ymax − ymin)t , 
represents the difference between the maximum and mini-
mum responses from the test data samples that is separately 

(8)
NRMSE =

�
∑nt

i=1

(yit − ŷit)
2

nt

(ymax − ymin)t

,
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generated using the LHS sampling plan and evaluated using 
the LF CFD model. A total of 20 test data points are gener-
ated for validation of the LF-KR model.

If the NRMSE metric between successive surrogates 
plateaus, then it can be assumed that further addition of 
an error-based infill will not improve the model. In this 
study, a weighted moving average (WMA) of the NRMSE 
with a window size of five is used to determine when the 
LF surrogate model is saturated. The WMA computation 
used in this study is given as

where PMi is the performance metric used at the ith infill iter-
ation with weights [w1,w2, w3, w4, w5] = [5, 4, 3, 2, 1] . In this 
study, the modeling of a LF surrogate is considered to be sat-
urated if the difference between successive NRMSEWMA val-
ues is less than 10−5 i.e., NRMSE

(i)

WMA
− NRMSE

(i−1)

WMA
≤ 10−5.

EI (Forrester et al. 2008) is a well-known infill strategy 
that provides a balanced exploitation and exploration of 
the objective function and can be written as Forrester et al. 
(2008)

where Φ and � are the cumulative distribution function and 
the probability density function, respectively. The EI com-
putation can be implemented as Forrester et al. (2008)

where ‘erf’ is the error function defined as

The infill point for a trained surrogate model can be deter-
mined by maximizing the EI (11) using a global optimizer, 
such as differential evolution. Kriging and Cokriging can 
be directly used with EI for infill point determination as 
ŝ = 0 and E[I(xu)] = 0 at already sampled sites, which 
avoids resampling, thereby assuring global convergence of 
the infill process (Forrester et al. 2008). However, KR and 
CKR surrogate models should not be directly used with the 
EI approach due to the possibility of resampling at observed 
locations, as the error ŝ is always present in regression mod-
els, halting the convergence (Forrester et al. 2008, 2007). 
In such case, resampling is avoided by redefining the error 

(9)PMWMA =
PMi w1 + PMi−1 w2 + ... + PMi−5 w5

w1 + w2 + .. + w5

,

(10)

E[I(x)] =

{
(ymin − ŷ) Φ

(
ymin−ŷ

ŝ

)
+ ŝ 𝜙

(
ymin−ŷ

ŝ

)
when ŝ > 0

0 when ŝ = 0

(11)
E[I(x)] = (ymin − ŷ)

�
1

2
+

1

2
erf

�ymin − ŷ

ŝ
√
2

��

+ ŝ
1

2𝜋
exp

�
−(ymin − ŷ)2

ŝ

�
,

(12)erf (z) =
2

√
� ∫

z

0

e−t
2

dt.

estimation using re-interpolation (Forrester et al. 2008, 
2006, 2007) which reduces error at already sampled loca-
tions to zero ( ̂s = 0 ⇒ E[I(x)] = 0 ), allowing the EI-based 
infill criteria regain its global convergence property. In this 
work, EI-based infill is used with CKR model to efficiently 
locate global optimum.

Convergence of the EI-based infill approach is usually 
determined based on the magnitude of expected improve-
ment (Forrester et al. 2008). Typically, a very low value of 
E[I(x)] is selected as a stopping criteria indicating that the 
expectation of model improvement is low. However, care 
should be taken to make sure that the E[I(x)] values are 
consistently lower. For this study, WMA of the maximum 
EI magnitude, i.e., max(E[I(x)])WMA ≤ 10−4 , along with 
convergence in consecutive optimal designs, is used as the 
termination criteria of the EI-based infill process.

4 � Computational fluid dynamics modeling

This section presents the CFD setup used in the current 
study for dynamic stall evaluation of airfoil shapes. Initially, 
flow solver description and its setup is presented followed by 
the details of computational grid generation and the results 
of the grid and time independence studies are presented. 
Further, HF CFD model validation and the construction of 
low-fidelity model are described.

4.1 � Flow solver

In the current study, fluid flow simulations are performed 
with the Stanford University Unstructured ( SU2 ) (Pala-
cios et  al. 2013, 2014) an open-source CFD software. 
The dynamic stall simulation is performed by solving the 
unsteady compressible Reynolds-Averaged Navier–Stokes 
(RANS) equations with Menter’s shear stress transport 
(SST) (Menter 1994) turbulence model using an implicit 
solver. In the past, Menter’s SST model has shown an 
acceptable level of performance in dynamic stall simulations 
to capture the formation, convection, and shedding of DSV 
(Wang et al. 2010; Hand et al. 2017; Daróczy et al. 2015).

The dynamic stall simulation performed in this study uti-
lizes second-order dual-time stepping (Palacios et al. 2013) 
and rigid grid motion (Economon et al. 2013). The govern-
ing equations are discretized using a finite volume method 
with convective flux for the mean flow equations is computed 
using the Jameson-Schmidt-Turkel scheme, the turbulence 
working variables for Menter’s SST model are convected 
using a first-order scalar upwind method, and the viscous 
flux computations of the flow variable gradients are done 
with the Green-Gauss method, and the maximum Courant-
Friedrichs-Lewy number is selected as 4. For unsteady flow, 
SU2 suggests a second-order dual-time-stepping strategy to 
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achieve high-order accuracy in time (Palacios et al. 2013; 
Economon et al. 2016, 2013). In this method, the unsteady 
problem is converted into a series of steady problems at 
each physical time-step, which is then solved consecutively 
with steady-state convergence acceleration techniques. As 
a result, there are 2 time iterators. The inner (pseudo time) 
iterator and the outer (physical time) iterator. For this study, 
the inner iteration utilizes Euler implicit scheme (Palacios 
et al. 2013) with internal iterations set to 2,400 and outer 
iteration employs second-order BDF scheme. Further, the 
two-level multigrid W-cycle method is implemented for 
convergence acceleration. The Cauchy convergence criteria 
(Abbott 2001) are utilized on the drag computation with 
Cauchy-epsilon criteria of 10−6 over 100 iterations.

4.2 � Grid generation

In this study, computational grids are generated using the 
blockMesh utility offered by OpenFOAM (OpenFOAM 
2021) that generates meshes by decomposing the domain 
geometry in sets of three-dimensional hexahedral blocks. 
For the current dynamic stall simulation, a C-grid topol-
ogy is used with a radius of 55 chord lengths from the air-
foil leading edge and a downstream distance of 62 chord 
lengths. The mesh is highly refined near the airfoil surface 
with y+ ≤ 0.8 and the growth ratio of 1.05 normal to the 
airfoil surface. The mesh refinement with a low y+ value 
is necessary to capture the onset of dynamic stall vortex 
and complex flow physics generated during the dynamic 
stall cycle. The airfoil surface is modeled as a no-slip adi-
abatic wall, whereas the domain boundary is set as farfield 
boundary condition with Reynolds number of 135,000 and 
Mach number of 0.1. The pitching motion is generated with 
rigid grid motion, where mean angle of attack, amplitude, 
and rotation rate are selected based on selected test case 
(see Sect. 3.1). A similar grid topology is used to generate 

additional meshes to perform a grid convergence study, as 
discussed in the next section. The generated mesh using the 
blockMesh utility is converted to a SU2 compatible file for-
mat to use with SU2 solver. Figure 4 shows views of a coarse 
computational mesh used for the NACA 0012 airfoil.

4.3 � Grid and time independence studies

The grid and time independence study is conducted to pro-
vide an appropriate selection of spatial and temporal resolu-
tion for the unsteady simulation that accurately captures the 
dynamic stall characteristics and flow physics. The grid and 
time independence study is conducted in two steps. First, the 
spatial resolution of the grid is determined by performing a 
grid study with a steady-state simulation at a fixed angle of 
attack. The resulting grid is then used in unsteady simulation 
with a pitching cycle to identify an appropriate time-step. 
There is a possibility that the spatial resolution of the grid 
may not be adequate for an unsteady simulation. However, 
we have taken excessive care to refine the mesh near airfoil 
surface by keeping y+ ≤ 0.8 and the growth ratio of 1.05 
normal to the airfoil surface which provides sufficient reso-
lution for an unsteady simulation.

The grid study is performed on the baseline airfoil 
(NACA 0012) at Re = 135, 000 , angle of attack 4°, turbu-
lence intensity of 0.08% , and the Cauchy convergence cri-
teria set on the drag values (Cauchy-epsilon value of 10−6 ) 
with a RANS solver provided by SU2 . A total of five grids 
with ascending spatial resolution are generated by increasing 
the number of cells in normal, chordwise, and downstream 
directions, producing the finest grid of 720,000 cells and the 
coarsest grid of 157,250 cells as shown in Table 3. The three 
grids with the highest spatial resolutions show a minimal 
variation of Δcl ≤ 0.003 in their lift coefficients with drag 
coefficient varying within under 4 d.c. Further, the simula-
tion time for grid 3 is approximately one-third of the finest 

Fig. 4   Computational domain 
with a coarse C-grid around the 
baseline airfoil (NACA 0012) 
and a zoomed in view of the 
airfoil
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grid. Thus, grid 3 with 387,200 cells is selected for all HF 
investigations conducted in this study.

The selected spatial resolution from the grid study is used 
for determining the physical time-step for accurate unsteady 
simulation. The time study is done using the generalized 
Richardson extrapolation method (Roy 2003) on the average 
drag coefficient per oscillating cycle cdavg metric. The Rich-
ardson extrapolation provides an estimate of performance 
metric at higher order using the low-order data. Multiple 
unsteady simulations with descending time-steps are con-
ducted as shown in Table 4. These low-order values are used 
to provide Richardson extrapolation estimate cdRE of 2,108 
d.c. Table 4 shows the estimated error cderr from cdRE and the 
simulation time at respective time-steps (dt). A time-step of 
0.0015 sec is selected based on error cderr ≤ 5 d.c metric with 
a lowest possible simulation time.

4.4 � High‑fidelity CFD model validation

The current CFD setup with selected grid and time-step is 
validated against the experimental (Lee and Gerontakos 
2004) and Large eddy simulation (LES) results (Kim and 
Xie 2016) at a considered dynamic stall test case and is 
shown in Fig. 5. The LES results shown here are aver-
aged over three cycles, whereas the experimental results 

are averaged over hundred cycles. The CFD setup with 
the selected grid and time-step is considered as an HF 
simulation model to evaluate the dynamic stall response 
of airfoils. For the validation of the HF CFD model, the 
dynamic stall simulation at the considered test case is 
performed over 1.25 cycles where airfoil initially starts 
from a mean angle of attack (10°) and pitch in downstroke 
cycle. Once the airfoil reaches the lowest angle ( −5°), 
the data are collected for the next complete cycle. It is 
observed that the addition of the initial downstroke part of 
the cycle helps stabilize the flow from the abrupt change 
in rotational rate from zero to a finite value at the first 
time-step. Additionally, it is observed that after the ini-
tial quarter downstroke cycle, additional simulation over 
multiple pitching cycles produces a minimal variation in 
aerodynamic responses. Thus, for this study, all dynamic 
stall simulations are started with a quarter downstroke 
pitching cycle, and data are gathered for the remaining 
part of the pitching cycle. A detailed discussion on HF 
CFD model validation can be found in Raul and Leifsson 
(2021).

From Fig. 5, it is noted that the HF URANS model shows 
a reasonable agreement with LES model and shows a quali-
tative agreement with experimental results. The dynamic 
stall and moment stall location from these approaches are 
shown in Table 5. It is observed that the HF URANS model 
was able to capture global features of dynamic stall mecha-
nism such as the moment stall, generation, growth, convec-
tion and progression of the DSV, massive flow separation 
after DSV detachment, and finally the flow reattachment. 
The HF URANS model captures the moment stall (at 16.6°) 
and dynamic stall (at 19.2°) locations early in the oscilla-
tion cycle (Table 5) while over-predicting peak lift, drag, 
and pitching moment coefficient magnitudes (Fig. 5). The 
HF URANS model shows a good agreement with LES in 
the upstroke cycle (− 5° to 25°), whereas in the down-
stroke cycle (25° to − 5°), where massive flow separation is 
expected, the HF URANS model shows limited compliance 
with LES and experimental results.

Overall, from the validation process, it is observed that 
the LES model demonstrates much closer agreement with 
experimental results than the HF CFD model used in the 
current study, making it an ideal model to use in ASO for 
dynamic stall simulation. However, the computational 
cost of a single LES evaluation is substantially higher than 
URANS and using LES for optimization studies is currently 
impractical. Considering the requirement of multiple evalu-
ations in the optimization process currently URANS model 
provides a practical option for evaluating dynamic stall over 
airfoils and thus used in the current study. That said, with 
rapid developments in LES methodology and advance in 
computational power, LES simulations may become prac-
tical in future for optimization studies. In that case, LES 

Table 3   Grid convergence study on the baseline design

*Computed on a high-performance cluster with 64 processor cores. 
Wall-clock time

Grid Number of elements Lift Drag (d.c.) Simulation 
time* (min)

1  159,250 0.385 126.8 15
2  259,200 0.395 174.3 75
3  387,200 0.414 180.4 146
4  540,800 0.416 184.7 220
5  720,000 0.417 184.2 298

Table 4   Results of the time-step independence study with the base-
line airfoil NACA 0012

*Computed on a high-performance cluster with 112 processor cores. 
Wall-clock time

dt cdavg Simulation time* cderr =∣ cdavg − cdRE ∣

(sec) (d.c./cycle) (hrs/cycle) (d.c.)

 0.008 1,813 39 294.5
 0.004 2,019 51 88.4
 0.002 2,093 65 14.9
 0.0015 2,103 69 4.8
 0.0010 2,105 78 2.1



Multifidelity aerodynamic shape optimization for mitigating dynamic stall using Cokriging…

1 3

Page 11 of 21  237

can ideally be used in multifidelity methods as HF model 
and URANS as a LF model providing better alternatives in 
future design optimization studies.

4.5 � Low‑fidelity modeling

The LF model is an essential component of the multifi-
delity modeling method as the data obtained from the LF 
model are exploited to provide a global trend of the output 
response, which is then used to enhance the accuracy of 
HF approximation (Forrester et al. 2008; Kuya et al. 2011). 
The LF model estimates output response at a fraction of 
computational cost compared to the HF model but typically 
with lower accuracy. The LF model can be generated using 
various methods (Peherstorfer et al. 2018): (1) simplify-
ing physics-based mathematical model (e.g., Euler invis-
cid method as LF and RANS as HF model), (2) changing 
the discretization of the physics-based model (e.g., coarser 
grid approximation, early stopping criteria), and (3) using a 
mathematical model as the LF model and experimental data 
as the HF model. In fluid dynamics problems, a popular way 
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Fig. 5   A comparison of the time-dependent aerodynamic coeffi-
cients: a lift, b drag, c pitching moment, obtained from the URANS 
model (current work), LES model (Kim and Xie 2016), and experi-

ments (Lee and Gerontakos 2004) with oscillation cycle parameters 
� = 10

◦ + 15
◦sin(�t), kr = 0.05

Table 5   Comparison of the dynamic stall and moment stall loca-
tions acquired from the HF and LF models from current work along 
with LES and experimental results for oscillation cycle parameters 
� = 10

◦ + 15
◦
sin(�t), k

r
= 0.05

Models Moment stall (�ms) 
(deg)

Dynamic 
stall (�ds) 
(deg)

HF model (current work) 16.6 19.2
LF model (current work) 14.1 18.3
LES Kim and Xie (2016) 17.8 19.7
Experiments Lee and Geronta-

kos (2004)
17.5 21.1
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of generating the LF model is by varying the discretization 
of the HF model (Giselle Fernández-Godino et al. 2019).

For this study, the LF model is generated by simplify-
ing the HF CFD model by changing spatial and temporal 
discretization, and by selecting a convergence criteria such 
that the trend in the aerodynamic responses is preserved with 
the least possible computational time. In particular, the LF 
model is constructed with a grid with 157,000 cells, time-
step of 0.015 sec, internal iteration of 1,000, and selecting 
Cauchy convergence criteria on the drag to 10−3 over 100 
iterations. The constructed LF model reduces simulation 
time to approximately 1 h (wall-clock time) for a complete 
cycle with the baseline airfoil using 112 processor cores as 
the HF model.

Figure 6 shows the comparison of aerodynamic responses 
obtained from the LF model and HF model. Table 5 presents 
observed dynamic and moment stall angles for the HF and 

LF model. The result shows only the upstroke part of the 
cycle, where DSV formation primarily affects airfoil aero-
dynamic response. The LF model shows a moderate resem-
blance with the HF model, where the LF model produces a 
very similar aerodynamic response up to � = 10 °. The aero-
dynamic responses after � = 10 ° are significantly different 
due to coarse spatial and temporal resolution. However, the 
LF model response still shows a similar trend as the HF 
model response.

5 � Results

This section presents the results of the proposed optimiza-
tion approach for mitigating dynamic stall over an airfoil. 
In the first subsection, the surrogate model construction 
and infill details are described. The following subsection 
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Fig. 6   Comparison of the time-dependent aerodynamic coefficients 
acquired from the high and low-fidelity simulation models: a lift, b 
drag, c pitching moment, results of the NACA 0012 airfoil with oscil-

lation cycle parameters � = 10 + 15sin(�t), k = 0.05 (results are 
shown only for the upstroke part of the cycle)
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presents optimization results with CKR including the opti-
mum design details and its dynamic stall characteristics.

5.1 � Surrogate model construction

The proposed optimization algorithm is applied for mitigat-
ing dynamic stall over an airfoil. For this study, Δ� = 3° 
is selected in (4), which ensures that the optimum design 
produces at least 3° delay in dynamic stall angle over the 
baseline design.

The current optimization algorithm starts with generation 
of 20 HF samples and 220 LF samples using LHS method. 
The optimization algorithm has two parts: in the first part, 
the LF-KR model is generated with 220 LF samples and 
augmented sequentially with error-based infill strategy, until 
a saturated LF-KR model is produced. Two LF-KR models 
are developed, one for the objective function (LF-KR(f)) 
and another for the constraint function (LF-KR(g)). In every 
iteration, saturation condition of LF-KR(f) is checked using 
WMA of NRMSE metric as shown in Fig 7a. Figure 7b 
shows the NRMSE metric evolution of LF-KR(f) and LF-
KR(g) surrogate over the error-based infill process. The 
first part of the algorithm terminates when NRMSE metric 
of LF-KR(f) plateaus (i.e., LF-KR is saturated), which is 
determined when NRMSE

(i)

WMA
− NRMSE

(i−1)

WMA
≤ 10−5 . The 

error-based infill process adds 38 infill samples to the initial 
LF sampling plan, resulting in a total of 258 LF samples.

The first part of the algorithm aims to determine an 
appropriate LF sampling plan that captures the global trend 
in the objective function. In the second part of the optimi-
zation algorithm, 258 LF samples (obtained from the first 
part) and 20 HF samples are used to construct the initial 
CKR models for the HF objective function (CKR(f)) and 
the HF constraint function (CKR(g)). Further, the CKR 
models are refined using the EI-based infill approach on 
CKR(f) that provides balanced exploration–exploitation of 
the design space. In every iteration of the infill process, opti-
mal designs are located using the constructed CKR models. 
A multi-start gradient-based optimizer is used to discover 

optimal shape. In particular, the sequential least-square pro-
gramming algorithm offered by the SciPy (Virtanen et al. 
2019) python package is used with multi-start strategy of 
200 samples, which are generated using the LHS plan to 
determine the optimal designs. The best result is realized as 
the optimal design. The EI-based infill process terminates 
with max(E[I(x)])WMA ≤ 10−4 and the Euclidean distance 
between consecutive optimal designs ‖x(i)opt − x

(i−1)
opt ‖ ≤ 0.002 . 

The optimal design variables ( xopt ) are normalized using 
min-max normalization before calculating the Euclidean 
norm. Such stringent termination conditions ensure accu-
rate optimum with noisy data set. Figure 8a and b shows the 
progression of maximum EI magnitude and the Euclidean 
norm between consecutive optimal designs. The EI-based 
infill process terminates after adding 22 HF samples, making 
a total of 42 HF and 280 LF samples. Figure 8c and d shows 
the progression in optimal airfoil shapes and correspond-
ing objective function magnitude in every infill iteration. 
The optimal shapes are numbered based on the number of 
HF samples used to construct CKR models. The optimal 
design acquired with 42 HF and 280 LF samples is con-
sidered as optimum airfoil shape (opt-42 in Fig. 8c) in the 
current study.

5.2 � Optimal design

The grid and time independence study is performed on the 
optimum design to verify that the selected grid resolution 
and time-step size in HF CFD simulation model are still 
appropriate. A similar approach is taken as that for the base-
line design mentioned in Sect. 4.3. Table 6 shows the results 
of the grid study on the optimized airfoil. The three grids 
with the highest spatial resolution show a minor variation in 
aerodynamic coefficients, with lift coefficient variation being 
Δcl < 0.003 and drag coefficient variation under 4 d.c. Thus, 
considering the lowest simulation time requirement, the grid 
with 387,000 cells is still considered appropriate. Table 7 
shows the time study results with the computation of average 
drag coefficient per cycle ( cdavg ). Richardson’s extrapolation 

Fig. 7   Progression of the 
NRMSE metrics for the error-
based infill process of the 
LF-KR model construction: a 
NRMSE and WMA NRMSE of 
LF-KR(f), and b NRMSE met-
ric of LF-KR(f) and LF-KR(g)
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estimate of average drag coefficient per cycle is computed to 
be 1,703 d.c. The time-step of 0.0015 sec shows a reasonable 
agreement producing cderr ≤ 8 d.c . From grid and time inde-
pendence study of the optimal shape, the grid with 387,000 
cells and a time-step of 0.0015 sec are still considered an 
appropriate selection for producing accurate HF simulation 
results.

The optimum shape acquired with the CKR model is 
compared with the baseline design. Further, the optimum 
acquired from the current study is also compared with the 
optimal shape acquired from our previous study (Raul and 
Leifsson 2021), which uses KR model on HF data set for 
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Fig. 8   Progression of metrics for the EI-based infill process with the CKR model: a maximum EI magnitude, b the Euclidean distance between 
consecutive optimum designs c the optimum shapes, and d objective function magnitude of optimum design

Table 6   Grid convergence study of the optimum design at Re = 
135,000 and � = 4°

*Computed on a high-performance cluster with 112 processor cores. 
Wall-clock time

Grid Number of elements Lift Drag (d.c.) Simulation 
time* (min)

3  387,200 0.510 188 123
4  540,800 0.511 192 181
5  720,000 0.512 192 277

Table 7   Results of the time-step independence study with the opti-
mum design

*Computed on a high-performance cluster with 112 processor cores. 
Wall-clock time

dt cdavg Simulation time* cderr =∣ cdavg − cdRE ∣

(sec) (d.c./cycle) (hrs/cycle) (d.c.)

 0.004 1,722 45 19.4
 0.002 1,719 56 16.4
 0.0015 1,710 62 7.4
 0.0010 1,705 71 2.4
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the same problem formulation (Sect. 3.1) and it is denoted 
as ‘HF-KR’ model in this study. The HF-KR model is ini-
tialized with 60 HF samples generated with LHS plan and 
sequentially refined with EI-based infill approach and fixed 
budget of 20 infill samples.

Figure  9a shows the baseline and optimal designs 
obtained with the CKR and HF-KR models along with the 
region highlighting possible variations of airfoil shapes in 
the design space. In this study, optimum designs from the 
CKR and HF-KR models are denoted as Optimum-CKR and 
Optimum-HF-KR, respectively. The optimal shapes show 
significant variation from baseline with higher thickness, 
larger leading edge radius, and an aft camber than baseline. 
Table 8 presents the details of airfoil shapes for optimal 
and baseline designs. In particular, the optimal shapes from 
CKR and HF-KR models show a similar maximum thickness 
( tmax ), whereas the location of a maximum thickness ( xtmax ) is 
slightly different. The optimum-HF-KR shows higher maxi-
mum camber of 1.89% located at 62% of the chord. Similarly, 

the Optimum-CKR has maximum camber of 1.43% located 
at 51.4% of the chord. Interestingly, both optimum shapes 
show an aft camber between 50 and 65% of chord length.

The optimal shapes are evaluated with the HF CFD sim-
ulation model over the upstroke pitching cycle, and their 
respective aerodynamic performance is compared against 
baseline and is presented in Fig. 9. The lift polar plot of 
optimal designs (see Fig. 9b) clearly shows a delay in the 
dynamic stall when compared with the baseline design. 
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Fig. 9   Comparison of the shapes and aerodynamic loads of the baseline and optimum designs acquired from the HF-KR and CKR models: a air-
foil shapes, b lift coefficient, c drag coefficient, and d pitching moment coefficient

Table 8   Airfoil shape characteristics of the baseline and the optimum 
designs

Shape properties are represented as percentage of the chord length

Airfoil tmax xtmax mmax xmmax

Baseline 12 30 0 0
Optimum-HF-KR 14.6 35.3 1.89 62.0
Optimum-CKR 14.7 32.1 1.43 51.4
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Further, Fig. 9c and d shows the delay in the divergence of 
drag and pitching moment plots compared to baseline, which 
indicates the delay in the formation DSV. Table 9 provides 
essential details of dynamic stall characteristics for optimal 
and baseline designs along with their respective objective 
and constraint function values. Both the optimal designs 
delay the dynamic stall more than 3° as expected from prob-
lem formulation. The Optimum-HF-KR delays the dynamic 
stall to 22.5°, slightly higher than the Optimum-CKR. Both 
the optimal designs show similar characteristics of pitching 
moment polar plot and occurrence of moment stall (around 
21.4°). The moment stall is recognized by a sudden drop in 
pitching moment magnitudes from Fig. 9d. Both optimal 
designs show a gradual reduction in pitching moments near 
moment stall angle followed by a sudden drop in pitching 
moment magnitude, which is a very different behavior com-
pared to the baseline design. Further, peak magnitudes of 
lift, drag, and pitching moments are reduced for both optimal 
designs, with the Optimum-CKR showing the smallest peak 
magnitudes of aerodynamic coefficients.

Figure 10 presents streamlines and vorticity field around 
the baseline and optimal designs near the moment and 
dynamic stall angles for a better interpretation of results. 
It can be observed that near the baseline moment stall 
( � = 16.27 °) and near dynamic stall ( � = 18.91 °) angles, 
baseline airfoil shows a formation and growth of DSV 
(Fig. 10 Baseline a and b), whereas the optimized airfoils 
do not show the formation of DSV at these angles. Instead, 
the optimal designs show a propagation of trailing edge flow 
reversal toward a leading edge as highlighted by streamlines 
(Figs. 10 Optimum-CKR, Optimum-HF-KR a, b). After the 
angle of attack of 19.2°, DSV separates from the baseline 
airfoil surface, causing a massive flow separation followed 
by formation and shedding of secondary vortices (Fig. 10 
Baseline c and d). The trailing edge flow reversal continues 
to expand for the optimal designs until it reaches close to 
the leading edge. The DSV then forms, grows in size, and 
convects downstream (Fig. 10 Optimum-CKR, Optimum-
HF-KR c and d).

The details of the dynamic stall mechanism in the 
upstroke pitching cycle can be analyzed by plotting skin 
friction coefficient ( cf  ) and negative coefficient of pressure 
( −cp ) over the suction side of airfoils. Figure 11 shows −cp 
and cf  as a function of angle of attack and chord location. 
The events shown in Figs. 9 and 10 can be identified here. As 

the angle of attack increases, the suction peak near the lead-
ing edge increases, as seen from the hot-spots in Fig. 11a, 
c, and e. With the rise in suction peak, adverse pressure 
gradient increases, giving rise to the formation of separa-
tion bubble near the leading edge, seen by a scimitar-shaped 
blue region in Fig. 11b, d, and f. The baseline airfoil shows 
an early rise in suction peak and separation bubble forma-
tion at around � = 9 °, while this process is delayed in both 
optimal designs. This is due to the larger leading edge radius 
of optimum airfoils that alleviate the increase in adverse 
pressure gradient during airfoil pitch up motion (Sharma 
and Visbal 2019). With further increase in the angle of 
attack, the separation bubble grows in size and propagates 
upstream. During the upstroke motion, airfoil trailing edge 
flow reversal also shows interesting behavior. As upstroke 
motion continues, flow starts to separate near trailing edge 
and travel upstream toward leading edge (seen in Fig. 11b, 
d, and f by blue dashed arrow). The trailing edge flow rever-
sal is observed much early for optimal designs compared to 
baseline, mainly due to a higher thickness and aft camber. 
The Optimum-CKR shows a steady upstream movement 
of flow reversal point, whereas flow reversal moves gradu-
ally between 0° ≤ � ≤ 10 ° (Fig. 11d) and then swiftly for 
the Optimum-HF-KR. This characteristic of the Optimum-
HF-KR could be linked to the higher thickness and camber 
location on farther aft of an airfoil chord compared to the 
Optimum-CKR shape.

With further increase in the angle of attack, the formed 
separation bubble and flow reversal point move toward each 
other. The suction peak drop suddenly, followed by DSV 
formation, which occurs at around 15° for the baseline 
and around 20° for the optimal designs. On the baseline, 
DSV forms abruptly due to the bursting of the separation 
bubble, which can be classified as leading edge dynamic 
stall (Sharma and Visbal 2019). In case of optimal designs, 
DSV forms when trailing edge separation reaches separa-
tion bubble (Fig. 11d and f) and classified as trailing edge 
stall (Sharma and Visbal 2019). After the formation, DSV 
grows in size and travels downstream, which can be seen by 
the low pressure it generates over the airfoil surface (locus 
of hot-spots in −cp plots shown by black streak lines). It is 
observed that the DSV convects much faster over-optimized 
airfoils than the baseline (slope of black streak lines deter-
mines DSV speed of propagation). Additionally, it is also 
observed that DSV formed over optimal design leaves a 
weaker suction trail when compared to baseline, producing 
lower peak lift and pitching moment magnitudes in the case 
of the Optimum-CKR.

Overall, both optimal designs produce an almost similar 
delay in the dynamic stall angle compared to the baseline. 
Further, when objective and constraint function values are 
compared (Table 9), the Optimum-CKR shows a much lower 
objective function magnitude ( f (x) = 1.59 ) while closely 

Table 9   Characteristics of the baseline and optimal shapes

Airfoil �ds (deg) �ms (deg) clmax f (x) g(x)

Baseline (NACA 0012)  19.2  16.6 2.16 2 3
Optimum-HF-KR  22.5  21.5 1.84 1.78 − 0.37
Optimum-CKR  22.3 n21.4 1.67 1.59 − 0.11
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satisfying constraint ( g(x) = −0.11 ), thus producing the opti-
mum design for the current problem formulation.

Table 10 shows the computational cost associated with 
using HF-KR and CKR surrogate models for the current 
optimization problem. The major cost of computation comes 
from running CFD simulations, whereas cost of executing 
optimization algorithm is comparatively negligible. For this 
study, SuperMicro servers each with two 2.6 GHz 8-Core Intel 
Haswell processors (Intel E5-2640 v3) are used. In general, 
each HF CFD evaluation takes approximately 4,480 CPU 
hours (computed on high-performance cluster with processor 
cores), whereas each LF CFD evaluation takes approximately 
112 CPU hours (computed on high-performance cluster with 

112 processor cores). The entire optimization with the HF-KR 
model utilizes a total of 80 HF samples taking approximately 
358,400 CPU hours. Similarly, optimization with the CKR 
model takes 42 HF samples and 280 LF samples consuming 
approximately 219,520 CPU hours, producing almost 39% in 
computational cost-saving than HF-KR.

6 � Conclusion

This paper proposes the use of a multifidelity modeling tech-
nique to passively mitigate dynamic stall characteristics of 
an airfoil through aerodynamic shape optimization (ASO). 

Fig. 10   Vorticity contour plot of the baseline and optimum airfoil shapes from the CKR and HF-KR models at a � = 16.27 °, b � = 18.91 °, c 
� = 21.66 °, and d � = 22.56°
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Fig. 11   Contours of the negative pressure coefficient ( −cp ) and the skin friction coefficient ( cf  ) over the upper surface of the airfoils: the baseline 
(a, b), Optimum-HF-KR (c, d), and Optimum-CKR (e, f)
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In particular, the Cokriging regression (CKR) multifidel-
ity model, which can filter noisy data, is used along with 
an unsteady computational fluid dynamics (CFD) model 
to construct approximations of the objective and constraint 
functions in the ASO problem formulation. The CKR model 
is efficiently constructed with a conservative number of HF 
samples and a large number of low-fidelity samples and 
adaptively enhanced with infill strategies, keeping the over-
all computational cost low. The CKR model is utilized with 
a multi-start gradient optimizer to find the optimum airfoil 
shape.

The optimal airfoil shape found by the proposed approach 
has a larger leading edge radius, higher thickness, and an 
increased aft camber when compared to the baseline airfoil. 
Post-optimality analysis showed that the optimum design 
significantly delays the DSV formation with reduced peak 
lift, drag, and pitching moment magnitudes. Further, it was 
observed that the DSV formation over the optimized shape 
produces a much weaker suction trail and convects faster 
downstream when compared to the baseline.

The performance of the optimized shape from the CKR 
model is also compared with the optimum design acquired 
using a high-fidelity Kriging regression (HF-KR) model. 
Overall, both optimum designs produce a similar delay in 
the dynamic stall angle; however, when the objective and 
constraint function magnitudes are compared, the optimum 
from the CKR model provides a better design for the current 
problem formulation. Further, the multifidelity CKR model 
requires roughly 39% less time to obtain the optimum design 
compared to a single-fidelity surrogate using the HF-KR 
model.

The proposed multifidelity modeling approach using 
CKR and infill criteria has been demonstrated to efficiently 
yield optimal airfoil shapes for dynamic stall mitigation 
at a low computational cost. Although the approach was 
applied to a general airfoil under the dynamic stall, the pro-
posed approach can be extended to other aerospace systems, 
including helicopter rotors, aircraft, unmanned air vehi-
cles, wind turbines, and compressor blades. The proposed 
approach will be applied to determine robust design under 
uncertainty of the airfoil oscillating motion parameters in 
future work. Such an investigation could lead to an improved 
understanding of the effect of uncertainty in the motion 

parameters on the airfoil dynamic stall and mitigation of its 
adverse characteristics.
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