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Abstract
The use of node coordinates as design variables in shape optimization offers a larger design space than computer-aided 
design (CAD)-based shape parameterizations. It also allows for the optimization of legacy designs, i.e., a finite element mesh 
from an existing design can be readily optimized to meet new performance requirements without involving a CAD model. 
However, it is well known that the node coordinate parameterization method is fraught with numerical difficulties, which 
makes it impractical to use. This has led to several of “parameter-free” shape optimization methods that seek the advantages 
and avoid the pitfalls of the naïve node coordinate parameterization method. These methods come in two main varieties: 
sensitivity filtering (or gradient smoothing) and consistent filtering. The latter is analogous to the density filter method used 
in topology optimization (TO). Herein, we use the PDE filter from TO and energy-based filters to implement consistent 
shape optimization filtering schemes easily and efficiently. Numerical experiments demonstrate that consistent methods are 
more robust than sensitivity filtering methods.

Keywords  Shape optimization · Node coordinate parameterization · Consistent filtering

1  Introduction

Shape optimization morphs material boundaries to achieve 
optimal design performance. When compared to topology 
optimization, shape optimization exhibits less design free-
dom; however, it provides an explicit boundary/interface 
description. Thus, when simulations involve boundary or 
interface-dominant physics, e.g., stress computations for 
optimization metrics or solid–fluid interaction, shape opti-
mization is often advantageous. Further, shape optimization 
results are easily communicated to manufacturing processes 
due to the explicit boundary and interface representations.

Shape optimization poses two key challenges. First, a 
parameterization must be defined that allows design flex-
ibility while maintaining adequate design control. Unfortu-
nately, these two desires are often contradictory. Second, a 

conforming mesh of each iterate design must be generated 
for use in the finite element simulation. The difficulty of 
mesh generation depends on the complexity of the param-
eterization. To ease this process, we combine the param-
eterization with the finite element mesh. Namely, we use the 
mesh nodal coordinates as the optimization variables. Users 
only generate a mesh via their favorite preprocessor for the 
initial design. Thereafter, the optimizer controls the mesh 
updates. This “parameter-free” approach reduces design 
limitations imposed by restrictive parameterizations.

To motivate our work, we optimize the shape of a hole in 
a biaxially loaded plate to minimize the compliance subject 
to a maximum volume constraint  Fig. 1.1 In our so-called 
parameterized optimization, we require the hole to be an 
ellipse and optimize the lengths of the axes, Fig. 2. The com-
pliance of the optimized design is 79% of the initial design’s 
compliance. The analytical solution, assuming the plate is 
infinite, is an ellipse with 2:1 axes ratio, so our design with 
1.81 axes ratio is nearly optimal. Nonetheless, to improve the 
design, we no longer restrict it to the 2 parameter elliptical 
hole optimization. Rather, an “independent node” optimi-
zation is performed in which all of the finite element node 
coordinates (except those that would affect the plate’s outer 
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boundary) serve as design parameters. However, as seen in 
Fig. 2, after 3 iterations, the mesh gets tangled so the opti-
mization is terminated. This is expected since the compli-
ance and volume are insensitive to internal node movements 
and hence the optimizer only moves the boundary nodes. To 
resolve this mesh tangling deficiency, various “parameter-
free” shape optimization methods have been proposed; we 
propose yet another.

We aim to develop a parameter-free shape optimization 
method that uses readily available nonlinear programming 
(NLP) solvers, e.g., IPOPT (Wächter and Biegler 2006) 
and fmincon (Matlab 2017). In this way, we can readily 
accommodate an arbitrary number of constraints, verify 
the Karush-Kuhn-Tucker (KKT) optimality conditions, and 
avoid writing-specialized NLP solvers. We seek a robust 
method that does not require extensive parameter tuning 
when solving a range of optimization problems. Finally, we 
aim to develop an efficient method that converges rapidly 
and utilizes high-performance computing (HPC).

To achieve our parameter-free shape optimization goals, 
we mimic the implicit PDE density filter developed by 
Lazarov and Sigmund (2011) from topology optimization. 
The use of a consistent sensitivity analysis, i.e., we filter 
nodal coordinates and their sensitivities, provides robust 
convergence during the design optimization.

We aim to optimize the shape of three-dimensional 
continuum structures using the finite element method, and 
hence, we do not review literature that concerns optimization 
of plate and shell structures and isogeometric analysis.2 Not-
withstanding this omission, the shape optimization literature 
is vast, please refer to Samareh (2001); Martinelli and Jame-
son (2012); Upadhyay et al. (2021) for thorough reviews 
of the subject. Our discussion focuses on parameter-free 
methods. The use of node coordinates as design variables 
in shape optimization has the advantage of offering a large 
design space and eliminating the reliance on computer-aided 
design (CAD)-based shape parameterizations (Braibant and 
Fleury 1984; Chen and Tortorelli 1997) that are trouble-
some for industrially relevant optimization problems. This is 
because industrially relevant CAD models are created using 
numerous boolean, blending, rounding, and trimming opera-
tions. In the optimization, finite element meshes must be 
created from the CAD models and derivatives of the node 
coordinates with respect to the optimization parameters, 
e.g., select dimensions must be computed. While this task 
is easily accomplished for the simple optimization problem 
illustrated in Figs. 1 and 2, it is often extremely challenging 
for industrially relevant problems. CAD models associated 
with legacy designs may also be unavailable. However, if 
finite element models for such designs are available, they 
can be shape optimized via the parameter-free method to 
meet new design specifications. That said, the node coordi-
nate parameterizations may lead to an ill-posed optimization 
problems (Chenais 1975; Bängtsson et al. 2003; Moham-
madi and Pironneau 2004; Harbrecht 2008; Mohammadi 
and Pironneau 2008), but most definitely, it is well known 
that naively using the node coordinates as design variables 
produces designs with tangled meshes which are artifacts of 

Fig. 1   Plate with hole (left), 
symmetry domain with biaxial 
loading boundary conditions 
(center) and design boundary 
conditions (right)

Fig. 2   Finite element meshes for optimized plate with hole

2  The reason being that plate/shell studies and isogeometric-based 
formulations are less susceptible to the mesh distortion problems that 
plague the shape optimization of continuum bodies modeled with the 
finite element (or similar) method.
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the finite element discretization (Braibant and Fleury 1984; 
Le et al. 2011), cf. the simple example above.

We compute the derivatives of the optimization cost and 
constraint functions using the adjoint method. The deriva-
tives can be expressed as a combination of volumetric and 
surface integrals in the so-called domain method or solely 
with surface integrals in the so-called boundary method. 
Sensitivities computed via the “domain” method agree, 
within machine precision, to those computed via finite dif-
ference approximations (Choi and Seong 1986; Yang and 
Botkin 1987) because the differentiate-then-discretize and 
discretize-then-differentiate operations commute (Yang 
and Botkin 1987; Berggren 2010). However, sensitivities 
computed via the boundary method are error prone due to 
a lack of continuity in the gradient computations across the 
inter element boundaries (Berggren 2010). Fortunately, 
these errors diminish with mesh refinement and may also 
be reduced by using nonconventional C1 interpolation.

Gradient smoothing is analogous to sensitivity filtering 
in topology optimization (Sigmund 1997) where it is well 
known that the filtered sensitivities are inconsistent with the 
NLP solver and hence the NLP convergence suffers (Matsu-
mori et al. 2017). Two types of shape optimization gradient 
smoothing methods exist, explicit and implicit. The explicit 
approach uses a convolution filter, much like how Sigmund 
(1997) computes a “smooth” gradient from the “raw” gra-
dient, e.g. (Stück and Rung 2011; Gerzen et al. 2012). In 
the implicit approach, a careful distinction is made between 
the derivative and the gradient, e.g., Pironneau (1984). We 
generally compute the derivative via adjoint methods as 
described below. But, the gradient, not the derivative, is 
often required by popular NLP algorithms, e.g., the method 
of steepest descent. The gradient belongs to an inner prod-
uct space, and hence, it depends on the definition of the 
inner product. This is the impetus of the H1 smoothing 
methods (Pironneau 1984; Jameson 2004; Gournay 2006; 
Nonogawa et al. 2020; Azegami 2021; Allaire et al. 2021) 
which roughly project the derivative onto the chosen inner 
product space. The projected gradient requires the solution 
of a PDE and hence the “implicit” filter terminology.

The traction method presented by Shimoda et al. (1997) 
can be viewed as a gradient smoothing method in which the 
H1 inner product is replaced with the energy inner prod-
uct from linear isotropic elasticity. The method applies the 
shape derivative as a traction to compute the smoothed gra-
dient and hence its name. In another variant, Azegami and 
Takeuchi (2006) treat the shape derivative as an “ambient” 
displacement in a Robin-like boundary condition to obtain 
additional smoothness of the gradient. This latter approach 
is more closely related to the H1 smoothing methods. Riehl 
and Steinmann (2014) extend the traction method by incor-
porating an adaptive mesh refinement step to ensure suitable 
meshes and accurate simulations.

As noted by Schwedes et al. (2017), the inconsistency 
introduced by only filtering the sensitivity in the implicit 
methods can be resolved by incorporating the chosen inner 
product into the NLP solver. Unfortunately, this is seldom 
the case as most NLP libraries work in ℝn rather than the 
underlying function space in which the optimization prob-
lem is naturally formulated, e.g., H1 . Perhaps this is why 
most of the shape optimization methods cited above do not 
use popular NLP libraries; rather, they rely on augmented 
Lagrangian methods that incorporate a single constraint 
combined with inefficient steepest descent methods (Gour-
nay 2006; Nonogawa et al. 2020; Ertl et al. 2019). Nonethe-
less, gradient smoothing algorithms prove effective as seen 
below and demonstrated by Ertl et al. (2019).

Riehl et al. (2014) and Bletzinger (2014) provide efforts 
to maintain consistency in the optimization formulation. 
Therein explicit filters are used to compute the gradient 
from the derivative and its transpose is used to smooth the 
design update. This is akin to the density filter (Bruns and 
Tortorelli 2001) from topology optimization where the ele-
ment volume fraction vector � is optimized, but the filtered 
element volume fraction vector �̃ = F � obtained from the 
filter matrix F is used to define the design over which the 
response is computed. Sensitivities ��∕��̃ of the cost and 
constraint functions �̃(�̃) are computed via adjoint methods 
and the chain-rule is used to evaluate the sensitivities that 
are input to the NLP algorithm ��∕�� = F

T ��̃∕��̃ . Here, 
the smoothed and unsmoothed element volume fraction vec-
tors �̃ and � are replaced by the smoothed and unsmoothed 
nodal coordinate vectors X̃ and X ; however, an inconsist-
ency arises that does not appear in topology optimization. 
Namely, in the work by Riehl et al. (2014) and Bletzinger 
(2014), the mesh over which F is computed is defined by 
the smoothed node coordinate vector X̃ , which contin-
ues to evolve during the optimization and consequently F 
changes during the optimization. This observation has led 
to the development of adaptive filter schemes, Antonau et al. 
(2022).3

In the end, it is difficult to know precisely what optimi-
zation problem is solved. Notably, the filter is recomputed 
at each optimization iteration using the configuration cor-
responding to the previous design iterate and hence the 
optimized design depends on the “trajectory” of the NLP 
algorithm. One cannot obtain KKT conditions to a prede-
fined optimization problem, without taking this “trajectory” 
into account.

In the natural design variable method, Belegundu and 
Rajan (1988) apply “design loads” Pd to the initial design 
and use separate “shape morphing” analyses to deform the 

3  This publication also provides an excellent overview of the so-
called vertex morphing methods.
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initial design configuration Ω0 into the optimized configura-
tion Ω . The load Pd serves as the design variable vector in 
the optimization, Weeber et al. (1992); Tortorelli (1993). 
The initial design with node coordinate vector X0 is morphed 
into the optimized structure with node coordinate vector 
X = X0 + D . Here, D is the solution to the discretized shape 
morphing elasticity equation Kd D = Pd . Mimicking the sen-
sitivity filtering discussion above, we have D = K

−1
d

Pd and 
��∕�P = K

−T
d

��̃∕�X , i.e., K−1
d

 plays the role of the filter 
matrix F . This consistent method has a well-defined opti-
mization problem that quickly converges.

The “fictitious energy method” is similar the natural 
design variable method; however, Scherer et al. (2010) use 
prescribed displacements rather than loads to morph the 
initial design into the optimized design. Mesh quality is 
ensured by using a “special” nonlinear, isotropic, hyperelas-
tic material that is unaffected by rigid motions and dilations/
contractions in the morphing analysis. In this way, rigid 
motions and dilations/contractions of elements are allowed 
whereas shear and unequal triaxial extensions/compressions 
of the elements are minimized. To further limit mesh distor-
tion, an additional constraint on the total strain energy of the 
morphing deformation is imposed.

The explicit consistent filtering approach to shape opti-
mization (Le et al. 2011) can be viewed as the shape opti-
mization equivalent of the popular density-based topology 
optimization method (Bruns and Tortorelli 2001). The latter 
uses a consistent filter to formulate as well-posed optimi-
zation problem and hasten convergence of the NLP algo-
rithm. Herein, we build upon the work of Le et al. (2011) 
by replacing the explicit filter with various implicit filters, 
another idea borrowed from topology optimization (Lazarov 
and Sigmund 2011) and used by Matsumori et al. (2017) 
in their shape optimization study. These implicit filters are 
more suitable to HPC and, in our opinion, easier to imple-
ment, although they require the solutions of additional 
PDEs. Indeed, the solvers are implemented using efficient 
numerical techniques leveraging scalable parallel computer 
architectures. On the other hand, the explicit filters require 
interprocessor communication to evaluate the filter convolu-
tion integrals and HPC libraries that support such computa-
tions are not generally available. A comparison of consist-
ent explicit and implicit filters is presented by Najian and 
Bletzinger (2023).

Our approach is very similar to the H1 filter approach 
described by Matsumori et al. (2017); however, we do not 
constrain a mesh quality energy or limit the extent of the 
filter to the boundary region. Similarities also exist between 
our approach and that presented by Liatsikouras et al. (2022).

Therein the coordinates of duplicate “handle nodes” on 
the boundary serve as the design parameters. The initial 
mesh is morphed into the optimized design by minimizing 

the morphing strain energy subject to the constraint that 
the “follower” surface nodes are close to the handle nodes. 
Because the constraint is enforced via the penalty method, 
the design smoothness can be controlled by varying the 
penalty value. To a lesser extent, our approach is simi-
lar to the fictitious energy approach (Scherer et al. 2010); 
however, we replace their morphing displacement bound-
ary conditions with Robin boundary conditions so we are 
able to filter all of the node coordinate updates, i.e., both 
in the domain’s interior and on its boundary and we do not 
constrain the fictitious energy. Tikhonov regularization is 
used by Bängtsson et al. (2003) to obtain a smooth bound-
ary; the idea is motivated by Gunzburger et al. (2000). 
Their approach requires the solution of an ODE (for their 
two-dimensional study) to map the optimization’s jagged 
boundary to a smooth boundary over which the optimi-
zation cost and constraint functions are computed. Inte-
rior nodes are relocated by solving an elasticity problem 
as done in the fictitious energy approach (Scherer et al. 
2010); however, their problem is linear so the mesh motion 
is more limited. Gradients of the cost and constraint func-
tions are computed in a consistent manner using a combi-
nation of direct and adjoint methods. Their thorough study 
compares many different problem formulations.

We experiment with different filters based on the vec-
tor Helmholtz PDE used by Matsumori et al. (2017), a 
nonlinear filter based on the fictitious energy approach 
of Scherer et al. (2010), and a linearized version of this 
nonlinear filter. To solve the optimization problems, we 
use popular NLP libraries IPOPT (Wächter and Biegler 
2006) and fmincon (Matlab 2017) to leverage their effi-
cient algorithms and their abilities to incorporate numer-
ous constraints and compute KKT optimality conditions. 
Some of our computations utilize the MFEM library 
(Anderson et al. 2021), and hence, we can readily invoke 
parallelism and employ a wide variety of discretizations, 
e.g., high-order polynomials. Derivatives for the algo-
rithms are computed consistently via adjoint methods and 
accurately using domain, rather than boundary, sensitivity 
integrations. Summarizing the salient features in our work, 
we highlight 

1.	 Domain shape derivative computations,
2.	 Consistency with the NLP algorithm,
3.	 PDE and energy-based filters,
4.	 Multiple filter functions,
5.	 Use of popular NLP libraries.

We compare our consistent approaches to the fictitious 
energy approach of Scherer et al. (2010) and the gradient 
smoothing approaches of Allaire et al. (2021) and Azegami 
(2021). These three methods are also integrated with the 
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popular NLP libraries and utilize the accurate domain shape 
derivative computations.

2 � Independent node coordinate 
formulation

In the independent node coordinate formulation, the node 
coordinates contained in X that define the physical domain 
Ω serve as the design variable. A linear elastic finite ele-
ment analysis is performed over Ω to compute the physi-
cal displacement field u . The cost and constraint functions 
�i, i = 0, 1, 2,⋯ and their shape sensitivities D�i∕DX are 
then evaluated. The values of the coordinates X , cost and 
constraint functions �i , and sensitivities D�i∕DX are input to 
the NLP algorithm to update the coordinates X ← X + ΔX . 
Iterations continue until convergence, or more likely until 
the appearance of a tangled mesh which causes the algo-
rithm to crash.

In the finite element analysis, we find the physical dis-
placement u ∈ H(up) that satisfies the linear elastic residual 
equation

for all w ∈ H(0) . In the above ℂ is the elasticity tensor which 
exhibits the usual symmetries, b is the prescribed body force 
per unit volume. �Ω is the boundary of Ω with outward unit 
normal vector n ; it is divided into three complementary 
regions Au , At , and Ap over which the displacement up , trac-
tion tp , and normal pressure p are prescribed. Finally, a is 
the bilinear form, � is the load linear form, and the space of 
admissible functions is

Without loss of generality, we assume up = 0 henceforth.
Upon evaluating the displacement field, we compute the 

optimization cost and constraint functions �i

where x denotes the location of material particles in Ω and 
Λ , � , and � are generic functions that can be used to com-
pute, e.g., the volume of Ω by equating Λ = 1 , � = 0 , and 
� = 0 or compliance by equating Λ = ∇u ⋅ ℂ[∇u] , � = 0 , 

(1)

0 = r(u,w)

= ∫Ω

∇w ⋅ ℂ[∇u] dv − ∫Ω

w ⋅ b dv

− ∫At

w ⋅ t
n da − ∫Ap

w ⋅ pn da

= a(u,w) − 𝓁(w)

(2)H(up) = {u ∈ H1 ∶ u = u
p ∀ x ∈ Au}.

(3)
�i(x) = ∫Ω

Λ(∇u, u, x) dv + ∫At

�(u, x) da

+ ∫Ap

�(u, x) ⋅ n da

and � = 0 . The shape sensitivity of the above is evaluated 
using the adjoint method (Haug and Choi 1986). Details of 
the sensitivity analysis and finite element discretization are 
provided in Appendix.

In practice, many of the node coordinates are not moved 
during the optimization. To illustrate this, we optimize the 
shape of a hole in the center of a homogeneous isotropic 
2 × 2 square plate that is subjected to biaxial traction, Fig. 1. 
To facilitate the plane stress analysis, we utilize domain 
symmetry whence the optimized hole geometry is neces-
sarily symmetric with respect to reflections about the e1 and 
e2 axes. Since we are only optimizing the hole shape, the 
node coordinates are constrained such that the nodes on the 
vertical edges cannot move in the e1 direction and the nodes 
on the horizontal edges cannot move in the e2 direction.

One iteration for the independent node coordinate opti-
mization algorithm is partially summarized in Algorithm 1. 
For each iteration of the optimization, we have a design Ω 
defined by the node coordinates X over which we compute 
the �i and their derivatives D�i∕DX . The optimizer updates 
the design, i.e., X ← X + ΔX , whereafter another iteration 
commences if the convergence criterion has not been satis-
fied. Unfortunately, this independent node coordinate formu-
lation invariably produces tangled meshes which cause the 
optimization to prematurely crash, Fig. 2.

2.1 � Gradient smoothing algorithm

The gradient smoothing formulation is similar to the inde-
pendent node coordinate formulation as we are given a body 
with material points identified by their positions x in the 
initial design configuration Ω0 and x ← x + �x in the opti-
mized design configuration Ω . The mesh tangling incurred 

Algorithm  1 Independent node coordinate iteration,Appendix  1 for 
the discretization
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by the independent node coordinate formulation is resolved 
using numerous variants of explicit (Stück and Rung 2011) 
or implicit (Pironneau 1984; Jameson 2004; Gournay 2006; 
Scherer et al. 2010; Allaire et al. 2021; Müller et al. 2021; 
Welker 2021) gradient smoothing algorithms. Mimicking 
the sensitivity filter in topology optimization (Sigmund 
1997), the explicit method computes a smooth shape sen-
sitivity by filtering the raw gradient, i.e., shape sensitivity. 
Implicit smoothing uses the Riesz representation theorem to 
relate the derivative �� to the gradient grad� . In ℝn , under 
the standard Euclidean inner product, there is no difference 
in the representation of the derivative and the gradient. 
Thus, when the design, i.e., the node coordinate vector X , 
is viewed as an element of ℝn , the design derivative and 
gradient are (numerically) interchangeable. However, this 
is no longer the case when one views the design as an ele-
ment of a function space H , which is the case if we use 
a perturbation Δx ∈ H to deform the current design into 
the next design iterate, i.e., points originally located at x 
in the current design are displaced to locations x = x + Δx 
in the next design iterate. Assuming the inner product on 
H is not the Euclidean inner product, the shape deriva-
tive is no longer (numerically) interchangeable with the 
gradient. Instead, assuming it exists, the derivative at Ω , 
��(x;⋅) ∈ Lin(H → ℝ) , is a linear operator from H into ℝ 
and hence by the Riesz representation theorem there exists 
a unique grad�(x) ∈ H such that ��(x, �x) = a(grad�(x), �x) 
for all �x ∈ H . In this equality a(⋅, ⋅) is the inner product for 
H and this is where things get murky as there are multiple 
choices for the space H and inner product a(⋅, ⋅) . For exam-
ple if we choose H = L2 and the standard inner product

we obtain the “rough” gradient grad�(x) via

4 However, if we choose H = H1 and the nonstandard inner 
product

with 𝛾 > 0 , we obtain the “smooth” gradient g̃rad�(x) via

(4)a(u,w) = ∫Ω

u ⋅ w dv

(5)a(grad�(x), �x) = ∫Ω

grad�(x) ⋅ �x dv = ��(x;�x)

(6)ã(u,w) = ∫Ω

(∇u ⋅ � ∇w + u ⋅ w) dv

In the above, we emphasize that g̃rad�(x) is a vector field in 
H1 and ∇g̃rad�(x) is the spatial derivative of this field.

To see why we refer to grad�(x) and g̃rad�(x) as the rough 
and smooth gradients, consider the following minimization 
problem

where grad� ∈ L2 is the known rough gradient and we have 
dropped the arguments for conciseness. Solving the above 
via the penalty method results in the unconstrained problem

where 𝛾 > 0 is the penalty parameter. The stationary condi-
tion of (9) requires g̃rad�(x) ∈ H1 to satisfy

for all w ∈ H1 . Larger values of � increase the enforcement 
of the ∫

Ω0
|∇g̃rad�(x)|2 dv = 0 constraint, i.e., lessen the spa-

tial variations in g̃rad�(x) . An excellent tutorial on the need 
for using g̃rad�(x) rather than grad�(x) appears in Jameson 
(2004).

The H1 smoothing algorithm uses the smooth gradient 
g̃rad�(x) to compute the design updates �x . Smoother gra-
dients result in smoother updates and hence less mesh tan-
gling. Setting � = 1 we see that ã reduces to the standard 
inner product for H1 and hence the H1 terminology.

We finish the derivation with the imposition of the 
“boundary conditions.” To fix the location of portions of 
the boundary �Ω during the shape optimization, we replace 
H1 in (10) with

in which Af ⊂ 𝜕Ω0 are the surface regions which are fixed 
in the e direction during the optimization. E.g. in the Fig. 1 
example u ⋅ e2 = 0 on the horizontal edges and u ⋅ e1 = 0 
on the vertical edges. Telling the nonlinear programming 

(7)

ã(g̃rad�(x), �x) = ∫Ω

(
∇g̃rad�(x) ⋅ � ∇�x+

g̃rad�(x) ⋅ �x
)
dv

= ��(x;�x)

(8)

min
g̃rad�∈H1 ∫Ω

|g̃rad� − grad�|2 dv

such that ∫Ω0

|∇g̃rad�|2 dv = 0

(9)

min
g̃rad�(x)∈H1 ∫Ω

|g̃rad�(x) − grad�(x)|2 dv+

� ∫Ω0

|∇g̃rad�(x)|2 dv

(10)ã(g̃rad�(x),w) = a(grad�(x),w) = ��(x;w)

(11)H1
0
= {u ∈ H1|u ⋅ e = 0 on Af }

4  We emphasize above that both grad�(x) ∈ H 
and �x ∈ H are functions of position, i.e., 
a(grad�(x), �x) = ∫

Ω
grad�(x)(y) ⋅ �x(y) dvy = ��(x;�x).
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algorithm that g̃rad�(x) ⋅ e = 0 on Af  ensures that these 
surfaces remain unchanged in these directions during the 
optimization.

The H1 smoothing algorithm is analogous to the PDE 
filter in topology optimization (Lazarov and Sigmund 
2011). However, it is not performed in a consistent manner, 
and hence, it is also analogous to the sensitivity filtering 
approach in topology optimization (Sigmund 1997).5 As 
such, the optimization algorithm may converge slowly or 
not at all.

We note that the traction method (Shimoda et al. 1997) is 
a variant of the H1 smoothing algorithm in which the elastic-
ity bilinear form a of (1) replaces ã of (6), i.e., we use the 
energy inner product. As such, “infinitesimal rigid motions” 
characterized by skew ∇g̃rad�(x) are not penalized, as these 
do not adversely affect mesh quality. Multiple variants of the 
traction method are described by Azegami (2021).

The H1 smoothing algorithm is only a slight modification 
to the independent node coordinate formulation. For each 
iteration of the optimization, we are given the node coordi-
nates X whereupon we complete Algorithm 2 to compute the 
Θi and their H1 smoothed gradients G̃radΘi . The optimizer 
processes these quantities and either updates the design, i.e., 
X ← X + ΔX or declares convergence.

2.2 � Fictitious energy formulation

In the fictitious energy formulation of Scherer et al. (2010), 
an initial design Ω0 is deformed into the optimized design Ω 
such that points located at x0 in the initial design Ω0 are dis-
placed to the locations x = x0 + d in the optimized design. 
As such, the design displacement field d serves as the con-
trol in the optimization. To be clear, d is only optimized on 
the boundary �Ω0⧵A

f  where Af  is defined in the discussion 
surrounding (11). For the Fig. 1 example, dp = d ⋅ e1 and 
dp = d ⋅ e2 are optimized over the circular arc, dp = d ⋅ e1 
is optimized over the horizontal edges and dp = d ⋅ e2 is 
optimized over the vertical edges. Over the remainder of 
the boundary Af  , d ⋅ e = 0 . To obtain the displacement d 
on the interior Ω0 , a “fictitious” nonlinear elasticity analy-
sis is performed. The analysis assumes an isotropic hyper-
elastic material that is unaffected by rigid deformations and 
dilations/contractions.

The morphing analysis finds the d that solves the mini-
mization problem

where Ψf  is the fictitious energy density defined in Appendix 
3, Fd = I + ∇d is the fictitious deformation gradient,

is the space of admissible fictitious displacements, and dp is 
the prescribed displacement that is optimized. Stationarity 
of (12) requires d ∈ Hf (d

p) to satisfy the residual equation

for all w ∈ Hf (0) where Pf = �Ψf∕�Fd is the fictitious First 
Piola-Kirchhoff stress. In the finite element method, we 
express d = d

0 + d
p where d0 ∈ Hf (0) and dp ∈ Hf (d

p) is 
a known extension function that satisfies the prescribed dis-
placement boundary condition. In this way, we solve (12) by 
finding the d0 ∈ Hf (0) that satisfies

for all w ∈ Hf (0) . We then trivially compute d = d
0 + d

p . 
The solution of the above residual equation for d0 is obtained 
via Newton’s method, Appendix 3 for details.

(12)min
d∈Hf (d

p)∫Ω0

Ψf (Fd) dv

(13)
Hf (d

p) = {d ∈ H1| d ⋅ e = 0 on Af and

d ⋅ e = dp on �Ω0 ⧵ A
f }

(14)rf (d,w) = ∫Ω0

∇w ⋅ Pf dv = 0

(15)rf (d
0,w, dp) = ∫Ω0

∇w ⋅
�Ψf

�Fd

dv = 0

Algorithm  2 H1 smoothing algorithm iteration,Appendix  2 for the 
discretization

5  The lack of consistency in ℝn means D�∕DX ≠ g̃rad� which “con-
fuses” optimization algorithms developed in ℝn.
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As an added measure to prevent severe mesh distortion 
during the shape optimization, the fictitious energy approach 
places a constraint on the total fictitious energy, i.e.,

where Ψf  is the maximum permissible total fictitious energy. 
The above is enforced in addition to the �i(dp) ≤ 0 and 
i = 1, 2,⋯ constraints.

The fictitious energy approach is a consistent approach; 
thereby, it exhibits faster convergence verses the H1 smooth-
ing formulation. However, the consistency comes with a 
price with regard to the sensitivity analysis as two adjoint 
analyses are now required to evaluate the sensitivity of each 
cost and constraint function with respect the boundary dis-
placement dp , Appendix 3 for details.

In each iteration of the fictitious energy formula-
tion, we are given the initial node coordinates X0 and the 
node design displacement vector Dp whereupon we com-
plete Algorithm 3 to compute the Θi and their derivatives 
DΘi∕DD

p, i = f , 0, 1, 2,⋯ . The optimizer subsequently 
uses these quantities to either update the design, i.e., 
D

p
← D

p + ΔDp or declare the convergence.

2.3 � Consistent filtering formulation

The consistent filtering formulation is similar to the fictitious 
energy formulations as we again deform an initial design 
Ω0 into the optimized design Ω and the design displacement 
field d controls the design. Here, however, points at loca-
tions x0 in the initial design Ω0 are displaced to locations 
x = x0 + d̃ in the optimized design Ω , where d̃ is the filtered 
version of d . The method is analogous to PDE sensitivity 
filtering in topology optimization (Lazarov and Sigmund 
2011). As such, it eliminates the inconsistency of the H1 
smoothing formulation and filters the boundary updates 
which the fictitious energy formulation does not.

To obtain the filtered design in our “PDE filter” variant, 
we find d̃ ∈ Hc such that

for all w ∈ Hc where

(16)�f (d
p) = �Ω0

Ψf (Fd) dv − Ψf ≤ 0

(17)

0 = rc(d̃,w, d)

= ∫Ω0

(
∇w ⋅ � ∇d̃ + w ⋅ d̃

)
dv

− ∫Ω0

w ⋅ d dv

= ac(d̃,w) − 𝓁c(w, d)

(11).
Similar to the H1 smoothing discussion, to obtain physical 

insight into the filter, we consider the minimization problem

and solve it via the penalty method, i.e., we solve

(18)Hc = {d̃ ∈ H1| d̃ ⋅ e = 0 on Af }

(19)

min
d̃∈Hc

∫Ω0

|d̃ − d|2 dv

such that ∫Ω0

|∇d̃|2 dv = 0

Algorithm 3 Fictitious energy formulation, Appendix 3 for the dis-
cretization
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. The stationarity condition of (20) requires d̃ ∈ Hc to satisfy 
(17) for all w ∈ Hc . In this way, d̃ is “close” to d , but |∇d̃| 
will be “small,” i.e., d̃ is the smoothed version of d . The 
smoothness of d̃ increases with increasing � because the 
enforcement of the ∫

Ω0
|∇d̃|2 dv = 0 constraint increases 

with increasing � . Our filter is very similar to that used by 
Matsumori et  al. (2017); however, they only integrate 
|d̃ − d|2 over regions that are close to the boundary �Ω0 so 
the interior nodes are less constrained, which is most likely 
fine.

A comparison of the filtering approaches is worthy of 
discussion. The fictitious energy residual Eq. (15) for d0 and 
consistent filter residual Eq. (17) for d̃ are solved over the 
initial design configuration Ω0 whereas the H1 smoothing 
Eq. (10) for g̃rad�i is solved over the current design configu-
ration Ω . One difference between the fictitious energy and 
consistent approaches lies in the definitions of the spaces of 
the admissible displacements Hf  and Hc , (13) and (18). In 
the fictitious energy method, d = dp e is prescribed by the 
optimizer over �Ω0�A

f  whereas in the consistent approach, 
d̃ is not prescribed over this surface. Because of this, no 
smoothing is performed on this boundary in the fictitious 
energy method. Another difference between these methods 
is that the fictitious energy method requires the solution of 
a nonlinear PDE; albeit in the second variant of our consist-
ent approach described next, we must also solve a nonlinear 
PDE.

The ∇w ⋅ � ∇d̃ term in (17) penalizes |∇d̃| . As such, rigid 
transformations or dilations/contractions are penalized even 
though they do not adversely affect mesh quality. Motivated 
by this observation and by Scherer et al. (2010), in our sec-
ond variant “energy filter” approach, we solve a nonlinear 
P D E  b y  r e p l a c i n g  ∫

Ω0
∇w ⋅ � ∇d̃ dv  w i t h 

∫
Ω0

∇w ⋅ � �Ψf (F̃d)∕�F̃d dv where F̃d = I + ∇d̃ . This has the 
effect of weakly enforcing the constraint ∫

Ω0
Ψf (F̃d) dv = 0 

rather than ∫
Ω0

|∇d̃|2 dv = 0 . And in our third variant, the 
“linearized energy filter,” we alternatively penalize the lin-
ear ized energy by replacing ∫

Ω0
|∇d̃|2 dv  wi th 

1∕2 ∫
Ω0

∇d̃ ⋅�f [∇d̃] dv = 0 where �f = �2Ψf (I)∕�F̃
2

d
 pro-

vides the linearized energy, Appendix 3 for details.
In these consistent approaches, we maintain a clear dis-

tinction between the filtered field d̃ that is used to define Ω 
and the design displacement field d that we optimize. So 
like the fictitious energy approach, this has ramification in 

(20)

min
d̃∈Hc

∫Ω0

|d̃ − d|2 dv

+ � ∫Ω0

|∇d̃|2 dv

the sensitivity analysis, namely we again have to solve two 
adjoint problems, Appendix 4 for details.

In each iteration of the consistent PDE filtering formula-
tion, we are given the initial node coordinates X0 and the 
design displacement D whereupon we complete Algorithm 4 
to compute the Θi and their derivatives DΘi∕DD. The opti-
mizer subsequently uses these quantities to either update 
the design, i.e., D ← D + ΔD or declare the  convergence.

As expected, filtering d reduces numerical anomalies 
due to the discretization and hastens convergence of the 
optimization problem by reducing the effective design 
space. Indeed, the many design parameters in d are “mol-
lified” into a fewer number of influential parameters. To 
see this, we use the spectral decomposition theorem to 
express6 �T (Kc +Mc)� = diag

(
�1, �2,⋯

)
 where (�i,�i) 

are the eigenpairs of Kc +Mc that are arranged such that 
�i ≤ �i+1 , and the eigenvectors are mass normalized such 
that �T

i
Mc �j = �ij and � =

[
�1 �2 ⋯

]
 . In this way, with 

D̃ = � D̃
∗
 and D = �D

∗ , we have

Algorithm 4 Consistent filtering formulation, Appendix 4 for the dis-
cretization

6  Appendix 4 for details of this discretization.
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We see that the “modes” associated with the smaller eigen-
values contribute more to D̃ than those associated with the 
larger eigenvalues. And the mode shapes associated with 
smaller eigenvalues are smoother than those associated with 
larger eigenvalues. Hence, D̃ is smoother than D , i.e., by 
replacing D with D̃ , we have mollified the space of possible 
design configurations Ω.

3 � Filter comparison

To illustrate the parameter-free methods described in 
Sect. 2, we return to the problem discussed in Sect. 1 
and optimize the shape of a hole in a plane stress plate, 
initially a circle with radius r = 1∕(2

√
�) , to minimize 

the compliance (or maximum stress) subject to a con-
straint that the area be less than A = 0.75V  where A is the 
area of the plate without the hole, Fig. 1. The 2 × 2 plate 
is comprised of an isotropic linear elastic material with 
Young’s modulus E = 10.0 and Poisson ratio � = 0.3 and 
subjected to a biaxial tensile load with prescribed trac-
tion tp = 2 e1 and tp = e2 over the vertical and horizontal 
boundaries. Quarter symmetry is utilized to reduce the 
computational burden. For the H1 and traction methods 
with Δx = d , and consistent method, we solve

. And for the fictitious energy method, we solve

In our reduced space optimization, we use the adjoint 
sensitivity analyses to account for the implicit depend-
ence of the response, e.g., u with respect to the design. 
For the H1 , traction, and fictitious energy approaches, it is 
easy to place box constraints on the design because d and 
dp directly affect the shape as x = x0 + d ; for all of these 
cases d, d = ∓0.25 . On the other hand, in the consistent 

(21)D̃
∗
=

⎧
⎪⎨⎪⎩

1

�1
D∗

1
1

�2
D∗

2

⋮

⎫
⎪⎬⎪⎭

(22)

min
d∈HH

�0

such that �1 = �Ω

da − A = 0

d ≤ d ⋅ ei ≤ d for i = 1, 2

(23)

min
dp

�0

such that �1 = �Ω

da − A = 0

�f = �Ω0

Ψf (Ff ) da − Ψf ≤ 0

d ≤ dp ≤ d

approaches, x = x0 + d̃ where d̃ is implicitly defined by 
the design d . So while we do provide box constraints on d , 
their range is large in comparison with those in the other 
approaches. As a guide, we choose d, d ≈ ∓�i d̃ where d̃ 
is the bound we desire on d̃ and �i is the i − th smallest 
eigenvalue of Kc +Mc where i ≈ 4, 5, 6 . For all of these 
cases, d, d = ∓20 ≈ ∓0.25 ⋅ �4 = 18.25 . In all cases, these 
box constraints are necessary to obtain well-posed prob-
lems. Indeed, removing them could result in designs with 
fine scale shape oscillations in the continuum setting and 
tangled finite element meshes in the discrete setting. All 
of the above functions �i are scaled so that the sensitivi-
ties of each function has a unit norm for the initial design, 
e.g., |D�i∕DD| = 1 for D = 0 . An exception for this is the 
maximum energy constraint in the fictitious energy approach 
which is normalized for dp = 0.02 as D�f∕Ddp = 0 for 
dp = 0 . To keep things relatively equal, the H1 smooth-
ing and consistent PDE filter use � = 10 , the traction uses 
E = 10 and � = 0.3 ,and the fictitious energy and consistent 
approaches with the linearized energy function use � = 5 . 
On the other hand, the fictitious energy and consistent 
approaches with the nonlinear energy function use � = 1 . 
We conjecture that the lower � value is needed due to the 
stiffening effect of the nonlinear energy function Ψf  , i.e., a 
higher nonlinear energy is required to achieve the same level 
of mesh morphing as compared to the linearized energy. 
Loosely based on the Ψf = .006A = 0.0045 suggested by 
Scherer et al. (2010) (which does not include the � factor), 
we assign Ψf = � 0.030A = 0.1125 for the maximum energy 
for the fictitious energy method with the linearized energy. 
We decreased the maximum to Ψf = 4 � Ψf (0.02) = 0.0285 , 
i.e., 4 � times the “normalization” energy for the nonlinear 
energy case. The selection of these maximum energy bounds 
definitely requires some “experimentation.”

The optimization cost function �0 is either the compliance

or the p-norm aggregation of the von Mises stress �VM

in which p = 6 throughout Sect. 3. We use Θ and Υ to denote 
compliance and p-norm aggregation of the von Mises stress, 
respectively, throughout, and the superscript 0 to denote the 
metric value of the initial design; e.g., Θ0 refers to the com-
pliance of the initial design.

The interior-point method of Matlab’s fmincon with a 
limit of 100 function evaluations is used for the optimiza-
tions. The accuracies of the user supplied derivatives are 
verified for the fictitious energy and consistent approaches. 

(24)Θ = ∫Ω

∇u ⋅ ℂ[∇u] da

(25)Υ =

(
∫Ω

�p

VM
da

) 1

p
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None of the methods produce the expected elliptical hole 
with 2:1 axis ratio due to the finite domain size; however, 
they all tend in that direction.

3.1 � Compliance minimization

We first minimize the compliance �0 = Θ of (24). This is an 
easy problem so all of the methods should and do perform 
admirably. Results from the various algorithms are presented 
in Table 1.

The fictitious energy values for the optimized designs 
obtained via the linear and nonlinear energy functions 
are 0.117 and 0.0271; hence, the maximum energy con-
straints are, respectively, violated and relatively active. 
The nonlinear energies for the fictitious energy and con-
sistent approaches required some special care in that the 
Newton solver did not always converge. To resolve this, 
the load was incrementally applied over numerous load 
steps as needed; as such, the morphing analysis dominated 
the computational expense. Figure 3 illustrates the designs 
and their strain energy distributions. The contour plots 

qualitatively compare the methods with a consistent col-
oring scheme whereas the tables provide a quantitative 
comparison. The designs exhibit subtle differences which 
are seen through their energy distributions. The consist-
ent methods with linearized energy filter 1∕2 � ∇d ⋅�f [∇d] 
and nonlinear energy filter � Ψf  produce the best designs, 
although all of the designs are reasonable. The consist-
ent method with nonlinear energy filter � Ψf  produces the 
best mesh based on the “eyeball” norm. The inconsistent 
H1 and traction methods converge in the fewest number 
of iterations because the change in the design between 
iterations is too small, presumably because the optimizer 
gets “confused” by the inconsistent sensitivity analysis, as 
evidenced by greater compliance values. 

3.2 � Stress minimization

We next minimize the p-norm of the von Mises stress, i.e., in 
the optimization, we replace (24) with (25) so that �0 = Υ . 
This is a more difficult problem as we replace the compli-
ance which is a global quantity with an approximation of 
the maximum stress which is a local quantity. All of the 

Table 1   Compliance 
minimization results

Method Iteration Θ∕Θ0 Area Υ∕Υ0 KKT Axes ratio D
min

i
D

max

i

H
1 6/15 0.808 0.745 0.704 6.98 × 10−3 1.615 − 0.117 0.158

Traction 6/15 0.814 0.743 0.713 8.99 × 10−3 1.604 − 0.115 0.158
Fict. Energy � Ψ

f
44/98 0.796 0.750 0.696 8.99 × 10−4 1.640 − 0.120 0.163

Fict. Energy w/ lin � �
f

53/100 0.794 0.750 0.691 1.60 × 10−4 1.670 − 0.122 0.173
Consistent w/ PDE 99/100 0.791 0.750 0.678 4.14 × 10−3 1.778 − 19.8 20.0
Consistent w/ � Ψ

f
59/100 0.790 0.750 0.670 2.54 × 10−4 1.798 − 0.830 4.133

Consistent w/ lin � �
f

97/100 0.789 0.750 0.670 1.10 × 10−3 1.790 − 8.98 13.4

Fig. 3   Strain energy distributions of compliance optimized designs
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other parameters are the same as those described above. 
Results from the various algorithms are denoted in Table 2 
and Fig. 4. Descriptions of the table and figures are the same 
as those for the compliance minimization. The fictitious 
energy values for the optimized designs obtained via the 
linear and nonlinear energy functions are 0.115 and 0.0246; 
hence, the maximum energy constraints are again, respec-
tively, violated and relatively active. The design obtained by 
the fictitious energy method with nonlinear energy is quite 
good; however, its nonlinear morphing analysis dominates 
the computational cost. All of the designs obtained by the 
consistent methods appear to be reasonable. And again the 
consistent method with nonlinear energy filter � Ψf  produces 
the best mesh based on the “eyeball” norm. Anomalies exist 
in the designs obtained with the remaining methods. Param-
eter tuning could be used to improve these designs, but the 
point of this exercise is to find methods that are amenable 

to common nonlinear programming algorithms that do not 
require excessive parameter tuning. 

4 � Test problems

The advantages of consistent filtering methods were dem-
onstrated in Sect. 3. Here, we further showcase the three 
consistent filtering approaches when used to design both 
2D and 3D structures. Specifically, tradeoffs between ease 
of implementation, computational burden, and mesh qual-
ity are explored. A summary of relevant parameters used 
throughout this section is presented in Table 3. All results 
in this section used the MFEM library (Anderson et al. 
2021) to solve the PDEs and the IPOPT library (Wächter 
and Biegler 2006) to solve the optimization problems. The 
Livermore Design Optimization (LiDO) code was utilized to 
compute the required sensitivities, and the Targeted Matrix 

Fig. 4   Von Mises stress distributions of stress optimized designs

Table 2   Stress minimization 
results

Method Iteration Θ∕Θ0 Area Υ∕Υ0 KKT Axes ratio D
min

i
D

max

i

H
1 11/16 0.798 0.747 0.674 6.99 × 10−3 1.887 − 0.156 0.206

Traction 23/99 0.792 0.749 0.678 2.13 × 10−3 1.740 − 0.138 0.180
Fict. Energy � Ψ

f
42/100 0.810 0.748 0.713 6.73 × 10−3 1.510 − 0.116 0.138

Fict. Energy w/ lin � �
f

54/99 0.794 0.750 0.687 1.46 × 10−2 1.738 − 0.125 0.173
Consistent w/ PDE 99/100 0.790 0.750 0.670 2.02 × 10−2 1.821 − 19.6 19.9
Consistent w/ � Ψ

f
34/98 0.792 0.749 0.670 3.65 × 10−3 1.842 − 0.808 4.75

Consistent w/ lin � �
f

82/95 0.791 0.750 0.665 9.96 × 10−3 1.857 − 2.90 9.40
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Optimization Paradigm (TMOP) (Knupp 2012; Dobrev et al. 
2019; Barrera et al. 2022) is used to implement the consist-
ent nonlinear energy filter.7

4.1 � 2D plate design

To compare the filtering methods, we revisit the design of 
the plane stress plate, but under biaxial or shear loading and 
with an initially square 1 × 1 hole rather than a circular hole, 
Fig. 5. Morphing the square into the optimal circle (biaxial 
loading) or diamond (shear loading) is challenging since it 
requires a right angle to be morphed into an arc or straight 
line, respectively. All optimizations presented in this section 
solve the stress minimization problem of Equations (22) and 
(25). We chose to minimize the maximum stress since it is 
generally more challenging than compliance, which could 
hide deficiencies in the methods.

4.1.1 � Consistent method with the PDE filter

We first consider the consistent PDE filter, which has one 
parameter � that controls the tradeoff between how “smooth” 
the mesh is and how closely d̃ matches d , as well as a set 
of parameter bounds d, d . A smaller � requires smaller, i.e., 
more restrictive, parameter bounds to avoid mesh entan-
glement, while a larger � permits more liberal parameter 
bounds.

Figure 6 illustrates how � , d , and d affect the optimized 
design. The two optimal designs boast similar performance 
with Υ∕Υ0 values of 0.38 and 0.39. The first takeaway is 
that we can use values of � that are two orders of magnitude 
apart and obtain satisfactory results by tuning the d and d 
bounds. However, both of our optimized designs tend to 
“smash” elements along the symmetry planes, and further, 
this effect worsens for the larger value of � . The advantage 
of this approach is the smooth boundary, which comes at the 
expense of element quality. In Fig. 7, we present the optimal 
design for shear loading, using the same � = 10−1 value that 
produced the higher quality mesh under biaxial loading. We 
again see a smooth boundary but notice many highly dis-
torted elements near the symmetry planes. The stress con-
tour plots, which use consistent color schemes for each load 
case, are provided to qualitatively compare designs, whereas 
Tables 4 and 5 quantitatively compare them. 

To summarize, this PDE filter is simple to imple-
ment, especially for those familiar with the PDE filter 
from topology optimization. Indeed, repeated use of a 

Table 3   Parameters used throughout Sect. 4

Description Symbol Value

Young’s Modulus E 10
Poisson’s ratio � 0.3
p-norm exponent p 10
KKT tolerance �kkt 10−4

Fig. 5   2D plate test problem, design/analysis symmetry cell outlined 
by dashed line

Fig. 6   Design of 2D plate under biaxial loading with the PDE filter

7  In our implementation of TMOP (Barrera et al. 2022), their objec-
tive function of (8) F(x) =

∑
Et∈M ∫

Et �(T) dv + w�
∑

s∈S �
2(Xs) 

is minimized with respect to the node coordinates of the physical 
mesh X = X0 + D̃ . In this expression, the so-called target elements 
Et comprise all of the elements in the Ω0 mesh, � = Ψf  is the qual-
ity metric and T = F̃d . TMOP constrains the nodes on Af  such that 
X ⋅ e = X0 ⋅ e and weakly enforces the X̃ = X0 + D “constraint” via 
the penalty function �2(Xs) = |D̃s

− Ds|2 for all nodes s ∈ Ω0�A
f  

with the small penalty value w� = 1∕� . The TMOP metrics �2 and 
�303 Dobrev et al. (2019) equal Ψf  of (40) for 2 and 3 dimensions.
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scalar-valued PDE filter could be used to compute each 
component of d̃ , although a vector-valued implementation 
was used here. This method is computationally inexpen-
sive since it only requires linear PDE solves. Optimiza-
tions using this filter generally produce smooth boundaries 
at the expense of poor element quality and consequently 
reduced simulation accuracy.

4.1.2 � Consistent method with the linearized energy filter

The linearized energy filter promotes higher element qual-
ity than the PDE filter as seen in the designs for biaxial and 

shear loading illustrated in Fig. 8. Specifically, the elements 
are nearly squareshaped throughout the domain. Notably, 
the high mesh quality near the symmetry planes is in stark 
contrast to the results in Sect. 4.1.1; however, the tradeoff 
is that the optimizer struggles to remove the “corner” in the 
initial design’s square hole. Thus, the maximum von Mises 
ratios in Fig. 8 are slightly higher than their counterparts in 
Sect. 4.1.1, i.e., 0.40 and 0.36 for the designs in this section, 
compared with 0.38 and 0.34 for the designs in Sect. 4.1.1.

When compared to the PDE filter, we see that the lin-
earized energy filter ensures higher mesh quality at the 
expense of design freedom. It is also simple to implement, 

Table 4   Summary of 2D 
plate under biaxial loading 
optimization results

Filter Init fig Opt fig Elements Order Dof � d, d∓ Optimal Υ∕Υ0

PDE 6a 6b 1,728 1 3650 0.1 0.4 0.38
PDE 6a 6c 1,728 1 3650 10.0 25 0.39
Lin energy 6a 8a 1,728 1 3650 0.1 0.075 0.40
Nonlin energy 9a 9b 108 1 266 0.1 0.1 0.56
Nonlin energy 9c 9d 432 1 962 0.1 0.1 0.46
Nonlin energy 9e 9f 1,728 1 3650 0.1 0.1 0.39
Nonlin energy 9g 9h 6,912 1 14,210 0.1 0.1 0.32
Nonlin energy 11a 11b 108 1 266 0.1 0.1 0.56
Nonlin energy 11c 11d 108 2 962 0.1 0.1 0.42
Nonlin energy 11e 11f 108 3 2090 0.1 0.1 0.40

Table 5   Summary of 2D 
plate under shear loading 
optimization results

Filter Init fig Opt fig Elements Order Dof � d, d∓ Optimal Υ∕Υ0

PDE 7a 7b 1728 1 3650 0.1 0.4 0.34
Lin energy 7a 8b 1728 1 3650 0.1 0.075 0.36
Nonlin energy 10a 10b 108 1 266 0.1 0.1 0.50
Nonlin energy 10c 10d 432 1 962 0.1 0.1 0.41
Nonlin energy 10e 10f 1728 1 3650 0.1 0.1 0.34
Nonlin energy 10g 10h 6912 1 14,210 0.1 0.1 0.28
Nonlin energy 12a 12b 108 1 266 0.1 0.1 0.50
Nonlin energy 12c 12d 108 2 962 0.1 0.1 0.37
Nonlin energy 12e 12f 108 3 2090 0.1 0.1 0.35

Fig. 7   Design of 2D plate under shear loading with the PDE filter Fig. 8   Optimal 2D plate designs obtained via the linearized energy 
filter
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especially since a linear elasticity solver can be re-purposed 
for this filter with proper selection of the Lamé parameters, 
i.e., � = −

1

3
 and � =

1

2
 (see Appendix 3 for details), and the 

computational expense is therefore equivalent to a single 
linear elasticity PDE solve.

4.1.3 � Consistent method with the nonlinear energy filter

Finally, we consider the nonlinear energy filter (with quality 
metric �2 from Dobrev et al. (2019) which is the same as the 
Ψf  function of (40)). Although this filter is more computa-
tionally expensive, it proves to be more capable than the 
linear filters presented in Sects. 4.1.1 and 4.1.2. The robust-
ness of the formulation is demonstrated by the mesh refine-
ment study for the biaxial loaded design illustrated in Fig. 9. 
Indeed, the same parameters, � = 10−1, d, d ∓ 0.1 , were used 
to obtain each result, despite their differing element size. 
Additionally, we see very similar optimized designs, dem-
onstrating the mesh independence of this technique. Similar 
observations hold for the mesh refinement study performed 
on the shear loaded designs, Fig. 10. Notably, the same val-
ues of � , d , and d were used for both loadings, and again, 
we see consistent designs for the different mesh resolutions. 
When compared to the consistent PDE filter in Sect. 4.1.1, 
we notice higher element quality throughout Figs. 9 and 
10, and when compared to the linearized energy filter in 
Sect. 4.1.2, we notice a smoother boundary. The nonlinear 
energy filter produces the lowest maximum stress in the opti-
mal design when comparing equivalent meshes across the 
three consistent filters, as listed in Tables 4 and  5. Thus, the 
nonlinear filter exhibits the advantages of both linear filters, 
i.e., high mesh quality and smooth boundaries, at the cost of 
additional computational burden.

As an alternative to increasing the number of ele-
ments, i.e., h-refinement, simulation accuracy can also 
be improved by increasing the polynomial order of the 
mesh, i.e., p-refinement. Figures 11 and 12 present opti-
mal designs corresponding to linear, quadratic, and cubic 
elements. The p-refinement study used the same values 
of � , d , and d as the h-refinement study. The sharp cor-
ner is much improved when using quadratic elements, and 
nearly entirely removed when using cubic elements. Fur-
ther, the element quality is high throughout the domain. 
The designs obtained using the cubic meshes and the 
nonlinear energy filter appear to be the best when consid-
ering mesh quality, design performance, and number of 
degrees-of-freedom.

The consistent nonlinear energy filter can be summarized 
as an extremely effective, but computationally expensive 
alternative to the consistent linear filters. Indeed morphing 
computations may dominate the physics computations, espe-
cially if the latter are linear. Additionally, the implemen-
tation of a nonlinear filter is more difficult than the linear 

filters. However, the improved optimization performance 
may warrant the added effort. Further, the combination of 
a smooth boundary representation and high element qual-
ity throughout the domain, especially when using meshes 
with higher-order elements, is unmatched by the other tech-
niques. As design problems require more complex physics, 
the improved element quality obtained via the nonlinear 
energy filter may become even more important for accurate 
response predictions. Moreover, the computational cost will 

Fig. 9   Effect of h-refinement on the design of 2D plate under biaxial 
loading with the nonlinear energy filter. Left column is initial (init)
designs, and right column is optimized (opt) designs
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be less significant when compared to the cost of the complex 
nonlinear physics simulations.

4.2 � 3D dam design

We use the design of a 3D dam subject to a design-depend-
ent hydrostatic pressure load to further challenge the opti-
mization scheme. Indeed, the direction of the applied load 
changes as the mesh morphs. The problem is summarized 
in Fig. 13 by overlaying the pressure load and mechanical 

displacement boundary conditions on the mesh of the ini-
tial design. As pictured, we enforce homogeneous essential 
boundary conditions, i.e., u ⋅ n = 0 , on the surfaces with 
normals n = −e2 and n = ±e3 . We also enforce design con-
straints by fixing the normal displacement d ⋅ n = 0 over 
the surfaces with normals n = ±e2 and n = ±e3 . The initial 
design has dimensions [200, 700, 1200] in the e1 , e2 , and 
e3 directions, respectively. We consider both compliance 
and maximum stress minimization.

4.2.1 � Consistent method with the PDE filter

The PDE filter achieves satisfactory results for the 3D dam 
design problem. The minimum compliance design pictured 
in Fig. 14 has 50% of the initial design’s compliance. Ele-
ment quality is difficult to qualitatively compare for 3D 
structures, but we note that there are highly distorted ele-
ments near the bottom corners of the design.

Fig. 10   Effect of h-refinement on the design of 2D plate under shear 
loading with the nonlinear energy filter. Left column is initial (init)
designs, and right column is optimized (opt) designs

Fig. 11   Effect of p-refinement on the design of 2D plate under biaxial 
loading with the nonlinear energy filter. Left column is initial (init)
designs, and right column is optimized (opt) designs. p denotes the 
order of the solution basis functions
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A minimization of the maximum von Mises stress pro-
duces a design that resembles the compliance minimiza-
tion design. The initial and optimized von Mises stress dis-
tributions are presented in Figs. 15 and  16, respectively. 
The optimal design reduces the peak von Mises stress by 
nearly half; however, this filter provides the worst perfor-
mance of the three consistent filters, Table 7. Generally, 
the PDE filter is not able to displace the initial mesh as 
far as the energy-based filters before mesh entanglement 
occurs. Since this filter simply “smooths” the node coor-
dinates without regard for element quality, the elements 
become distorted quite easily and therefore the optimal 
performance is limited by how far the mesh is able to dis-
tort before it tangles.

Fig. 12   Effect of p-refinement on the design of 2D plate under shear 
loading with the nonlinear energy filter. Left column is initial (init)
designs, and right column is optimized (opt) designs. p denotes the 
order of the solution basis functions

Fig. 13   Dam design problem loads and boundary conditions applied 
to the initial design

Fig. 14   Compliance min. with the PDE filter

Fig. 15   Initial von Mises stress distribution

Fig. 16   Maximum von Mises stress minimization with the PDE filter
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4.2.2 � Consistent method with linearized energy

The linearized energy filter was effective in the dam 
optimization. An h-refinement study of the compliance 

minimization problem was performed to investigate the mesh 
independence of the shape optimization framework, Fig. 17. 
Two important behaviors were observed: the same filter and 
bound parameters were effective for all three meshes, and 
the same performance, i.e., Θ∕Θ0

0
= 0.42 was obtained for 

all three designs. The final mesh contained 1,904,163 design 
variables, demonstrating the scalability of the method to 
large design problems. The robustness provided by mesh-
independent filter parameters allows designers to tune opti-
mization parameters on coarser meshes before using them 
on refined meshes.

The linearized energy filter produced a design with less 
compliance than the PDE filter, Table 6. This trend was con-
sistent with the minimum von Mises stress designs. Inspec-
tion of Fig. 18 reveals a superior design to that in Fig. 16; 
the linearized energy filter allows the mesh to morph further 
while keeping elements from tangling and therefore allows 
the final design to mitigate stress more effectively.

The astute civil engineer might notice, however, that our 
optimal dams are to this point concave with respect to the 
hydrostatic pressure load, whereas real-world dams are often 
convex with respect to the water they are retaining. The main 
driver of this inconsistency is the von Mises stress metric, 
which assumes materials are equally strong in tension and 
compression. Thus, a better stress metric to design for is the 
Drucker-Prager criterion (Drucker and Prager 1952) since 

Fig. 17   Effect of h-refinement on compliance minimization with the 
linearized energy filter

Fig. 18   Maximum von Mises stress minimization with the linearized 
energy filter

Fig. 19   Initial Drucker-Prager stress distribution

Fig. 20   Maximum Drucker-Prager stress minimization with the lin-
earized energy filter
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most dams are made of concrete, which is strong in compres-
sion and weak in tension. If we assume that our constituent 
material is 10 times stronger in compression than in ten-
sion and use the Drucker-Prager stress criterion, we obtain 
the initial stress field pictured in Fig. 19. Designing for the 
Drucker-Prager criterion has a fascinating effect on the opti-
mal geometry; the top surface of the dam switches from 
concave to convex with respect to the hydrostatic pressure 
load, which is a trait of arch dams, and two reinforcement 
columns appear on the front face, which is a trait of buttress 
dams, Fig. 20. In summary, when we account for the type of 
materials typically used to build dams, the optimized design 
resembles dams seen in the real world.

4.2.3 � Consistent method with nonlinear energy

We attempted to use the nonlinear energy filter (with qual-
ity metric �303 from Dobrev et al. (2019) which equals Ψf  

from (40)) in the same manner as in Sect. 4.1. A value was 
selected for � and then the parameter bounds d, d were tuned 
accordingly. Through trial and error, it was determined that 
this technique was not effective when using the nonlinear 
energy filter for the 3D dam optimization problem. Spe-
cifically, the optimal dam design required a much larger 
mesh distortion than the optimal plate design, which caused 
convergence issues during the filtering operation. Thus, a 
slightly different technique was developed for this problem. 
Rather than selecting a large bound range [d, d] , we follow 
Scherer et al. (2010) and solve a series of optimizations with 
smaller ranges, wherein the initial design for each subse-
quent optimization was the optimized design from the previ-
ous optimization. In this way, the design was allowed to dis-
tort incrementally through many, more constrained, design 
problems. The key difference between solving the design 
problem in a single pass versus breaking it into numerous 
steps, as outlined here, is that the reference element is incre-
mentally updated in the latter technique which introduces 
inconsistencies with respect to the initial design optimiza-
tion problem.

Figure 21 depicts the optimized design for compliance 
minimization using the nonlinear energy filter. The final 
design is superior to those obtained with the linear filters, 
Table 6. Similarly, the best designs with respect to von 
Mises and Drucker-Prager metrics were obtained using 
the nonlinear energy filter with the incremental design 
process, Tables 7 and 8. The final designs are displayed in 
Figs. 22 and 23, for von Mises and Drucker-Prager met-
rics, respectively. The design stress field histories for the 
Drucker-Prager minimization are presented in Fig. 24 to 

Table 6   Summary of 3D dam 
compliance minimization 
results

Filter Init fig Opt fig Elements Order Dof � d, d∓ Optimal Θ∕Θ0

PDE 13 14 9520 1 33,495 105 700 0.50
Lin energy 13 17a, 17b 9520 1 33,495 105 1400 0.42
Lin energy n/a 17c, 17d 76,160 1 247,779 105 1400 0.42
Lin energy n/a 17e, 17f 609,280 1 1,904,163 105 1400 0.42
Nonlin energy 13 21 9520 1 33,495 105 14 × 50 0.39

Table 7   Summary of 3D dam 
von Mises stress optimization 
results

Filter Init fig Opt fig Elements Order Dof � d, d∓ Optimal Υ∕Υ0

PDE 15 16 9520 1 33,495 105 500 0.57
Lin energy 15 18 9520 1 33,495 105 1000 0.45
Nonlin energy 15 22 9520 1 33,495 105 13 × 50 0.37

Table 8   Summary of 3D 
dam Drucker-Prager stress 
optimization results

Filter Init fig Opt fig Elements Order Dof � d, d∓ Optimal Υ∕Υ0

Lin energy 19 20 9520 1 33,495 105 800 0.33
Nonlin energy 19 23 9520 1 33,495 105 13 × 50 0.19

Fig. 21   Compliance minimization with nonlinear energy filter
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demonstrate the sequential optimization process described 
above. We emphasize that although 14 optimizations were 
required to obtain optimal designs, each of the optimizations 
converged quickly due to the smaller range [d, d] . In fact, the 
total number of design iterations for all of the design steps 
combined was similar to that required for the single-pass 
optimizations in Sect. 4.2.2. That said, the overall compu-
tational cost remains higher for the nonlinear filter since 
each design iteration requires the solution of the nonlinear 
filter PDE.

Again, we emphasize the tradeoff between computa-
tional cost and optimization performance must be con-
sidered. For example, the design problems using the 
highly refined meshes in Figs. 17e and 17f would have an 
increased execution time, perhaps an order of magnitude 
more, if using the nonlinear energy filter compared to the 
linearized energy filter to obtain only marginal compli-
ance improvement, i.e., Θ∕Θ0 of 0.42 vs. 0.39. However, 
the design for Drucker-Prager stress using the nonlinear 
energy filter was significantly more effective than that 
obtained using the linear filter, i.e., Θ∕Θ0 of 0.33 vs. 0.19, 
possibly justifying the increased computational cost. 

Fig. 22   Maximum von Mises stress minimization with nonlinear 
energy filter

Fig. 23   Maximum Drucker-Prager stress minimization with nonlinear 
energy filter

Fig. 24   History of Drucker-Prager stress minimization designs with d, d ∓ 50
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5 � Conclusions

Shape optimization provides an attractive option over 
topology optimization, especially when the boundary 
phenomena dominate the design, e.g., in stress-based 
design. Shape optimizations typically use CAD-based 
parameterizations which move the positions of the finite 
elements through globally supported basis functions. 
This type of design description can be difficult to imple-
ment for industry applications and limits the design to 
these predefined parameterizations.

Independent node parameterization has been extensively 
used, but numerical difficulties, e.g., mesh entanglement, 
still pose a challenge. Significant progress has been made to 
alleviate this challenge and here we add to this body of work. 
Specifically, we demonstrate that consistent filtering, i.e., 
filtering both updated nodal positions and their sensitivities, 
is advantageous over filtering only sensitivities. We unify a 
technique for parameterizing locally supported finite element 
quantities, i.e., element “densities” in topology optimization 
and nodal coordinates in shape optimization, to minimize 
human intervention in the design process.

We demonstrate consistent filtering by designing a 2D 
plate under biaxial and shear loading and a 3D dam subject 
to a hydrostatic pressure load. We show that the consistent 
PDE, linearized energy, and nonlinear energy filters all pro-
duce satisfactory designs, although each has pros and cons 
relative to the others. In summary, the PDE filter maintains 
design regularity, is computationally inexpensive and simple 
to implement, but suffers from poor element quality. The 
linearized energy filter is computationally inexpensive and 
simple to implement and produces higher element quality at 
the expensive of less design freedom. Finally, the nonlinear 
energy filter exhibits superior performance by simultane-
ously ensuring design freedom and high element quality, but 
incurs a steep computational cost. The choice of an appro-
priate filter is therefore problem dependent; the tradeoff 
between design freedom, ease of implementation, and com-
putational cost must be analyzed on a case-by-case basis.

Appendix 1: Independent node coordinate 
derivations

The variation of � at x with respect to the shape perturba-
tion �x is expressed as the sum of an explicit variation ��E 
and implicit variation ��I , i.e., �� = ��E + ��I . The former 
is expressed

and the latter as

To obtain the above, we define the material derivative with 
respect the design velocity �x as 

⋆
u(x) = 𝛿u(x;𝛿x) + ∇u(x) 𝛿x ; 

it is implicitly defined by (1).8 We also use the commuter 

identity 
⋆

∇u = −∇u∇𝛿x + ∇
⋆
u.

In the adjoint sensitivity method, we annihilate the 
implicit variation ��I . To do this, we take the variation of 
the residual Eq. (1) and, as above, express it as the sum 
of an explicit variation �rE and implicit variation �rI , i.e., 
�r = �rE + �rI . The explicit and implicit variations are

and

(26)

𝛿𝜃E(x;𝛿x)

= ∫Ω

(
(−∇T

u
𝜕Λ
𝜕∇u

+ Λ I) ⋅ ∇𝛿x +
𝜕Λ
𝜕x

⋅ 𝛿x
)
dv

+ ∫At

(𝜕𝜏
𝜕x

⋅ 𝛿x + 𝜏 (I − n⊗ n) ⋅ ∇𝛿x
)
da

+ ∫Ap

((𝜕�
𝜕x

)T

n ⋅ 𝛿x

+((� ⋅ n) I − (n⊗ �)) ⋅ ∇𝛿x) da

(27)
𝛿𝜃I(x;

⋆
u) = ∫Ω

( 𝜕Λ
𝜕∇u

⋅ ∇
⋆
u +

𝜕Λ
𝜕u

⋅
⋆
u

)
dv

+ ∫At

⋆
u ⋅

𝜕𝜏
𝜕u

da + ∫Ap

⋆
u ⋅

(𝜕�
𝜕u

)T

n da

(28)

𝛿rE(u,w, x;𝛿x) =

∫Ω

((
−∇T

wℂ[∇u] − ∇T
uℂ[∇w]

+(∇w ⋅ ℂ[∇u] − w ⋅ b) I) ⋅ ∇𝛿x

+

((
𝜕ℂ[∇u]

𝜕x

)T

[∇w] −
(𝜕b
𝜕x

)T

w

)
⋅ 𝛿x

)
dv

− ∫At

((𝜕tp
𝜕x

)T

w ⋅ 𝛿x

+(w ⋅ t
p) (I − n⊗ n) ⋅ ∇𝛿x ) da

− ∫Ap

((
𝜕p

𝜕x
⊗ w

)
n ⋅ 𝛿x + p ((w ⋅ n)I

−(n⊗ w)) ⋅ ∇𝛿x) da
8  In the material derivative context, 

⋆
u(x, t) = 𝜕u(x, t)∕𝜕t + ∇u(x, t) v(t) 

where v is the design velocity field and t is the pseudo time. The 
�u(x, t)∕�t term accounts for the change in u due to the shape per-
turbation for a fixed location in space x whereas the ∇u(x, t) v(t) term 
accounts for the movement of the material point.
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Now we subtract the zero �r = �rE + �rI = 0 from 
�� = ��E + ��I and rearrange to obtain

To eliminate the implicit variations 𝛿𝜃I(x,
⋆
u) − 𝛿rI(u,w,u;

⋆
u) , 

we solve the following adjoint equation for the heretofore 
arbitrary w ∈ H(0)

for all 
⋆
u ∈ H(0) . As such, the sensitivity reduces to

Note that �� can be expressed as a boundary integral by 
applying the divergence method, Haug and Choi (1986), 
but it is well known that this introduces error in the finite 
element computations as mentioned in Sect. 1. Conse-
quently, we use the “domain” expression (32) in all of our 
computations.9

We now discuss the finite element discretization. The 
Equilibrium Equation (1) becomes

where U and W are the degrees-of-freedom vectors corre-
sponding to u and w , K is the symmetric stiffness matrix 
defined such that WT

KU = a(u,w) = ∫
Ω
∇w ⋅ ℂ[∇u] dv 

and P  is  the load vector def ined such that 
W

T
P = 𝓁(w) = ∫

Ω
w ⋅ b dv + ∫

At w ⋅ tn da + ∫
Ap w ⋅ pn da   . 

The arbitrariness of W yields the linear equation KU = P 
that we solve for U.

(29)
𝛿rI(u,w, u;

⋆
u) = ∫Ω

∇w ⋅ ℂ[∇
⋆
u] dv

= a(
⋆
u,w)

(30)

𝛿i𝜃(x, 𝛿x) = 𝛿𝜃E(x, 𝛿x)

− 𝛿rE(u,w, x;𝛿x)

+
(
𝛿𝜃I(x,

⋆
u) − 𝛿rI(u,w, u;

⋆
u)
)

(31)

0 = a(
⋆
u,w)

− ∫Ω

(
∇

⋆
u ⋅

𝜕Λ
𝜕∇u

+
⋆
u ⋅

𝜕Λ
𝜕u

)
dv

− ∫At

⋆
u ⋅

𝜕𝜏
𝜕u

da

− ∫Ap

⋆
u ⋅

(𝜕�
𝜕u

)T

n da

(32)
��(x;�x) = ��E(x;�x)

− �rE(u,w, x;�x).

(33)W
T (KU − P) = 0

After evaluating U , we can interpolate u and ∇u within 
the elements as u(x) = N(x)U and ∇u(x) = B(x)U where 
N contains the element shape functions, B = �N∕�x and 
the gradient ∇u is expressed in the usual vector representa-
tion formed by stacking its columns. These interpolations 
allow us to evaluate the cost and constraint functions � of 
(3) by summing over the elements Ωe and performing the 
usual quadratures. The same interpolation is used to express 
x = N(x)X , �x = N(x) �X , and ∇�x = B(x) �X . In this way, 
��E(x;�x) = �XT �Θ∕�X where

in which � is the usual finite element assembly operator and 
all tensors, e.g., −∇Tu

�Λ

�∇u
+ Λ I are expressed in their vec-

tor representations. We similarly have 𝛿𝜃I(x;
⋆
u) =

⋆

U

T

𝜕Θ∕𝜕U 
where

Further, �rE(u,w, x;�x) = �XT �R∕�X where

in which w and ∇w are interpolated similarly to u and ∇u . 
Finally

(34)

𝜕Θ
𝜕X

= �
nelem
e=1

[

∫Ωe

(
B
T
(
−∇T

u
𝜕Λ
𝜕∇u

+ Λ I

)T

+ N
T 𝜕Λ
𝜕x

)
dv

+∫At
e

(
N

T 𝜕𝜏
𝜕x

+ B
T 𝜏 (I − n⊗ n)

)
da

+∫A
p
e

(
N

T
(𝜕�
𝜕x

)T

N

+BT ((� ⋅ n) I − (n⊗ �))
)
da

]

(35)

�Θ
�U

= �
nelem
e=1

[
∫Ωe

(
B
T �Λ
�∇u

+ N
T �Λ
�u

)
dv

+∫At
e

N
T ��
�u

da + ∫A
p
e

N
T
(��
�u

)T

N da

]

(36)

𝜕R
𝜕X

= 𝔸
nelem
e=1

[
∫Ωe

(
B
T
(
−∇T

wℂ[∇u]

−∇T
uℂ[∇w] + (∇w ⋅ ℂ[∇u] − w ⋅ b) I

)

+ N
T

((
𝜕ℂ[∇u]

𝜕x

)T

[∇w] −
(𝜕b
𝜕x

)T

w

))
dv

−∫At
e

(
N

T
(𝜕tp
𝜕x

)T

w

+BT (w ⋅ t
p) (I − n⊗ n)

)
da

−∫A
p
e

(
N

T

(
𝜕p

𝜕x
⊗ w

)
n

+BT p ((w ⋅ n)I − (n⊗ w))
)
da

]

9  The gradient smoothing and fictitious energy algorithms cited in 
Sect.  1 use the less accurate boundary expression. We implement 
those algorithms here using the more accurate domain expression.
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so that

To annihi la te  this  implici t  term,  we equate 
⋆

U

T(
(𝜕Θ∕𝜕U)T − KW

)
= 0 and use the arbitrariness 

of 
⋆

U to define the adjoint problem K W = (�Θ∕�U)T 
that we solve for W . Finally, we evaluate the sensitivity 
DΘ∕DX = �Θ∕�X − �R∕�X.

Appendix 2: Gradient smoothing derivations

The finite element implementation of (10) gives the sensitiv-
ity filter equation

where we define G̃radΘ as the degrees-of-freedom vector 
corresponding to g̃rad� , K̃ as the symmetric smoothing 
stiffness matrix that satisfies WT

K̃ U = ∫
Ω
∇w ⋅ � ∇u dv and 

M̃ as the symmetric smoothing mass matrix that satisfies 
W

T
M̃ U = ∫

Ω
w ⋅ u dv . The arbitrariness of W gives the lin-

ear equation (K̃ + M̃) G̃radΘ = (D�∕DX)T that we solve for 
G̃radΘ.

Appendix 3: Fictitious energy derivations

Fictitious energy function

We desire a fictitious energy density functional Ψf  that is 
unaffected by rigid motions and dilations/contractions as we 
do not want to penalize an element that is subjected to such a 
shape preserving transformation. To these ends, we use pose 
the fictitious energy function

where Cd = F
T
d
Fd is the fictitious symmetric right-Cauchy-

Green strain and n = 2(3) for two(three)-dimensional 
domains. It is readily verified that for Fd = � Rd , i.e., a 
combined rotation Rd and dilation/contraction � I that 
Ψf (Fd) = 0.

(37)𝛿rI(u,w, x;
⋆
u) = a(w,

⋆
u) =

⋆

U

T

KW

(38)
𝛿𝜃I(x,

⋆
u) − 𝛿rI(u,w, x;

⋆
u)

=
⋆

U

T(
(𝜕Θ∕𝜕U)T − KW

)
.

(39)W
T

(
(K̃ + M̃) G̃radΘ −

(
DΘ

DX

)T
)

= 0

(40)Ψf (Fd) =
trCd

(detCd)
1

n

− n

To obtain the Eq. (40) energy density functional Ψf  , we 
note that

where Rd is a rotation and Ud is symmetric positive definite. 
The first equality is a result of the polar decomposition theo-
rem and the second uses the definition Ud = (detFd)

−1∕n Ud 
so that detUd = 1 . As seen above, the fictitious deformation 
gradient consists of an isochoric distortion/contraction Ud , 
followed by a dilation (detFd)

1∕n I followed by a rotation 
Rd . Based on this decomposition, we pose the Neo-Hookean 
like fictitious energy function that does not depend on the 
dilation/contraction detFd I nor the rotation Rd

which is equivalent to (40). Using the spectral decomposi-
tion theorem, we can express the above for two dimensions 
as

where � and 1∕� are the positive eigenvalues of Ud and for 
three dimensions as

where �1, �2 and 1∕(�1 �2) are the positive eigenvalues of 
Ud . A simple derivation subsequently indicates that the min-
imum energy is obtained for � = 1 in two dimensions and for 
�1 = �2 = 1 in three dimensions which implies Ud = I , i.e., 
there is no distortion. This further confirms that Fd = � Rd 
is an energy minimizer for which Ψf (� Rd) = 0.

Newton’s method

To solve the residual Eq. (15), we use Newton’s method and 
iterate by finding the Δd ∈ Hf (0) such that

for all w ∈ Hf (0) . Upon evaluating Δd0 we update 
d
0
← d

0 + Δd0 and continue iterating until r(d,w, dp) ≤ � 
for some suitable convergence tolerance � . Note that the 
fictitious energy residual Eq. (14) for d0 is solved over the 
initial configuration Ω0 whereas the H1 smoothing Eq. (10) 
for g̃rad� is solved over the current design configuration Ω.

To evaluate the residual and tangent, we need

(41)Fd = Rd Ud = Rd (detFd)
1∕n

Ud

(42)Ψf (Fd) = trU
2

d
− n

(43)Ψf (Fd) = �2 +
1

�2
− 2

(44)Ψf (Fd) = �2
1
+ �2

2
+

1

�2
1
�2
2

− 3

(45)
�d0rf (d

0,w, dp;Δd0) = ∫Ω0

∇w ⋅
�2Ψf

�F2
d

[∇Δd0] dv

= −rf (d,w, d
p)
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where, for any 2-tensors A and B , the conjugate product 
A⊠ B is the 4-tensor that satisfies (A ⊠ B)[C] = A C B

T 
for any 2-tensor C . For the energy function of (40), we have

where the dyadic product A⊗ B is the 4-tensor that satisfies 
(A ⊗ B)[C] = (B ⋅ C) A for any 2-tensor C.

A linearization about Fd = I , which is accurate when ∇d 
is “small,” provides

where

wherein the symmetrizer �sym is the 4-tensor that satis-
fies �sym[C] =

1

2
(C + C

T ) for any 2-tensor C . Note that 
�f [C] = 4 (�sym[C] − trC I) is deviatoric and symmetric and 
hence as expected �f [∇d] = 0 for ∇d = � I an infinitesimal 
dilation/contraction, for ∇d = W where W is skew, i.e., an 
infinitesimal rotation and for their combination ∇d = �W . 
The stiffness tensor ℂ for a linear elastic isotropic mate-
rial can be expressed as ℂ = 2� 𝕀sym-dev + 3 � 𝕀sph where 
�sym-dev = �sym −

1

n
I⊗ I and �sph =

1

n
I⊗ I are the projections 

(46)

𝜕Ψf

𝜕Fd

= 2Fd

𝜕Ψf

𝜕Cd

𝜕2Ψf

𝜕F2
d

= 2 I⊠
𝜕Ψf

𝜕Cd

+ 4(F⊠ I)
𝜕2Ψf

𝜕C2
d

(F⊠ I)T

(47)

𝜕Ψf

𝜕Cd

= (detCd)
−

1

n

(
I −

1

n
trCd C

−1
d

)

𝜕2Ψf

𝜕C2
d

=
1

n
(detCd)

−
1

n

(
−I⊗ C

−1
d

− C
−1
d

⊗ I

+
1

n
trCd C

−1
d

⊗ C
−1
d

+ trCd C
−1
d

⊠ C
−1
d

)

(48)

Ψf =
1

2
∇d ⋅�f [∇d]

�Ψf

�Fd

= �f [∇d]

�2Ψf

�F2
d

= �f

(49)�f =
𝜕2Ψf

𝜕F2
d

||||Fd=I

= 4
(
�sym −

1

n
I⊗ I

)

onto the spaces of symmetric deviatoric tensors and spheri-
cal tensors, respectively. And hence, the “fictitious” material 
can be thought of as an elastic material with shear stiffness 
� = 1∕2 and bulk modulus � = 0 which also implies it has 
first Lamé parameter � = −1∕3 , Poisson ratio � = −1 , and 
Young’s modulus E = 0.1011

Sensitivity analysis

Noting that �x = �d allows us to write

from (32). The problem arises because d is an implicit 
function of dp as seen through (15), i.e., we have 
d = d

0(dp) + d
p(dp) and hence, with a slight abuse of nota-

tion, we have

We annihilate the implicit variation �d0(dp;�dp) in (50) by 
again applying the adjoint method. To do this, the total vari-
ation of (15) with respect to dp in the direction �dp , which 
equals zero, is subtracted from (50) to give

where �d0rf  is the tangent operator of (45) and the term in 
braces equals zero. Upon requiring the heretofore arbitrary 
w ∈ Hf (0) to satisfy

for all �d0 ∈ Hf (0) , (62) reduces to

which is the desired explicit sensitivity expression. The fact 
that rf  and � are defined over different domains Ω0 and Ω is 
not a concern as the change-of-variable theorem can always 
be used to express � over Ω0 . Indeed, the change-of-variable 
theorem is often used to obtain the shape sensitivity expres-
sions ��E

i
 and �rE of (26) and (28).

A simplification arises for the sensitivity analysis of 
the Equation (16) constraint on the total fictitious energy. 
Indeed, using the adjoint sensitivity analysis, one can show 
that

(50)
��(d;�d) = ��E(x;�x)

− �rE(u,w, x;�x)

(51)� = �(dp) = �(d(dp)) = �(d0(dp), dp(dp)).

(52)

��(dp;�dp) = �d0�(d
0(dp), dp(dp);�d0(dp;�dp))

+ �dp�(d
0(dp), dp(dp);�dp(dp;�dp)

−
{
�d0rf (d

0(dp),w, dp(dp);�d0(dp;�dp))

+�dprf (d
0(dp),w, dp(dp);�dp(dp;�dp))

}

(53)
�d0rf (d

0(dp),w,dp(dp);�d0(dp;�dp))

= ��(d(dp);�d0(dp;�dp))

(54)
��(dp;�dp) = �dp�(d

0(dp), dp(dp);�dp(dp;�dp))

− �dprf (d
0(dp),w, dp(dp);�dp(dp;�dp))

10  For the n = 2 case, ℂ is obtained by using the plane stress assump-
tion.
11  A constraint on the linearized energy, i.e., mesh quality metric, 
∇d ⋅ �sym-dev[∇d] is used by Matsumori et al. (2017) to limit mesh dis-
tortion.
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where we use (15) with w = �dp(dp;�dp)12 and the fact that 
the adjoint response w = 0 . The latter claim is true since, for 
all �d0 ∈ Hf (0) , w ∈ Hf (0) must satisfy

where we used (15) with w = �d0(dp;�dp) ∈ Hf (0) to obtain 
the last equality. We trivially obtain w = 0 since the load 
linear term on right-hand side equals zero.

Discretization

In the finite element discretization, we partition D the 
degrees-of-freedom vector corresponding to d = d

0 + d
p , 

into the degrees-of-freedom vectors D0 and Dp that cor-
respond to d0 and dp ; the discretization and partition of w 
are similarly performed. The residual Equation (15) is then 
expressed as

where Rf  is the residual vector defined such that 
W

T
Rf = ∫

Ω0
∇w ⋅

�Ψf

�Fd

dv and R0
f
 is the partition of Rf  that 

corresponds to W0 . Notably, we only solve the residual equa-
tion rf = 0 for the degrees-of-freedom that corresponds to 
the unknown D0 . The discretization of the Newton update 
equation (45) yields

where Kf  is the symmetric tangent stiffness matrix defined 
such that WT

Kf ΔD = ∫
Ω0

∇w ⋅ �2Ψf∕�F
2
d
[∇Δd] dv and K00

f
 

is the partition of Kf  that corresponds to W0 and ΔD0 . The 
arbitrariness of W0 renders the linear update equation 
K

00
f
ΔD0 = −R0

f
 that we solve for ΔD0 .  Updates 

D
0
← D

0 + ΔD0 continue until |R0
f
| ≤ � for suitably small 

tolerance �.
The adjoint Eq. (53) is discretized as

(55)

��f (d
p;�dp) = ∫Ω0

�Ψf (Fd)

�Fd

⋅ ∇�dp(d
p;�dp) dv

− �dprf (d
0(dp),w, dp(dp);�dp(dp;�dp))

= rf (d
0(dp), �dp(dp;�dp), dp(dp))

(56)

�d0rf (d
0(dp),w, dp(dp);�d0(dp;�dp))

= ∫Ω0

�Ψf (Fd)

�Fd

⋅ ∇�d0(dp;�dp) dv

= rf (d
0(dp), �d0(dp;�dp), dp(dp))

(57)W
0T
R
0
f
(D0,Dp) = 0

(58)W
0T
(
K

00
f
ΔD0 + R

0
f

)
= 0

where D�∕DX0 is the partition of D�∕DX that is associated 
with the D0 degrees-of-freedom. The arbitrariness of �D0 
renders the linear adjoint equation K00

f
W

0 =
(
D�∕DX0

)T 
that we solve for W0 . Finally, the sensitivity Eq. (54) is dis-
cretized such that

where D�∕DXp is the partition of D�∕DX that is associated 
with Dp and K0p

f
 is the partition of Kf  that is associated with 

W
0 and ΔDp . The sensitivity of the energy constraint (16) is 

obtained directly by evaluating DΘf∕DD
p = �Θf∕�D

p . The 
computation of �Θf∕�D

p = R
p

f
 follows from (15) and (55) 

where Rp

f
 is the partition of Rf  that corresponds to the Dp 

degrees-of-freedom.

Appendix 4: Consistent filtering derivations

Noting that �x = �d̃ allows us to trivially obtain

from (32). The problem arises because d̃ is an implicit 
function of d as seen through (17), i.e., we have 
d̃ = d̃(d) and hence, using our abusive notation, we have 
� = �(d) = �(d̃(d)) . We annihilate the implicit variation 
�d̃(d;�d) in (61) by again applying the adjoint method. The 
variation of (17) with respect to d in the direction �d , which 
equals zero, is subtracted from (61) to give13

Upon requiring the heretofore arbitrary w ∈ Hc to satisfy

(59)�D0T

(
K

00
f
W

0 −

(
D�

DX0

)T
)

= 0

(60)
D�
DDp =

D�
DXp −W

0T
K

0p

f

(61)
��(d̃;�d̃) = ��E(x;�x)

− �rE(u,w, x;�x)

(62)

��(d;�d) = ��(d̃;�d̃)
=0

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

−ac(�d̃,w) + �c(w, �d)

(63)ac(�d̃,w) = ��(d̃;�d̃)

12  The fact that �dp(dp;�dp) ∉ Hf (0) is not an issue here.

13  The bilinear form ac in (17) uses ∫
Ω0

∇w ⋅ � ∇�d̃ dv for the PDE 
filter. For the nonlinear energy filter replace this integral with 
∫
Ω0

∇w ⋅ �Ψf ∕�F̃d[∇�d̃] dv and for the linearized energy filter replace 
it with ∫

Ω0
∇w ⋅�f [∇�d̃] dv.
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for all �d̃ ∈ Hc , (62) reduces to the desired explicit sensitiv-
ity expression

As discussed above, the fact that ac , �c and �� are defined 
over different domains in (62) - (64) is not a concern.

The finite element discretization of (17) yields the 
equation

where D , D̃ , and W are the degrees-of-freedom vectors cor-
responding to d , d̃ , and w , Kc is the symmetric filter stiffness 
matrix defined such that14 WT

Kc D̃ = ∫
Ω0

∇w ⋅ � ∇d̃ dv and 
Mc is the symmetric filter mass matrix defined such that 
W

T
Mc D = ∫

Ω0
w ⋅ d dv . Using the symmetries of Kc and Mc , 

the adjoint problem (63) is discretized as

. The arbitrariness of �D̃ renders the linear adjoint equation 
(Kc +Mc)W = (DΘ∕DX)T that we solve for W . Finally, the 
derivative of (64) is computed from DΘ∕DD = Mc W.
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