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Abstract
In this work, we propose a method to optimize the material thickness distribution of partition panels for maximized sound 
insulation while constraining material usage. A framework is developed to couple structural optimization with diffuse field 
sound transmission loss (STL) predictions based on deterministic-statistical energy analysis (Det-SEA). The methodology 
can handle the design of both single panels, including a single mechanical plate, and double panels, in which two mechanical 
plates are separated by an air cavity. Three formulations of the optimization problem are developed and compared in terms of 
final obtained performance and computational cost. In the first formulation, the resonance dips in the STL are suppressed by 
pushing the panel eigenfrequencies as far away as possible from the target frequency. In the second and the third formulations, 
the diffuse STL of the panel is directly maximized respectively at the target frequency and in a frequency band around the 
target frequency. The practical advantages of the method are investigated for different target frequencies in the audible range 
and for relevant design cases, such as the suppression of the STL dip located around the critical frequency of single panels 
and around the mass–spring–mass resonance frequency of double panels. For single panels, all three different formulations 
lead to significant insulation improvements, with no big differences in the final obtained performance. For double panels 
instead, we show that simply suppressing the resonance dips with the first formulation does not lead to adequate insulation 
improvements, but a direct maximization of STL is needed.

Keywords  Thickness optimization · Deterministic-statistical energy analysis · Sound insulation · Single and double panels · 
Critical frequency · Mass–spring–mass resonance frequency

1  Introduction

Achieving sufficient levels of sound insulation is necessary 
to provide quiet and comfortable living and working envi-
ronments, e.g. in buildings (Osipov et al. 1997) or transport 
systems (Koval 1976; Van Genechten et al. 2011; Jung et al. 
2019). For this reason, single and double partition panels 
are frequently used to separate rooms and to enclose noisy 

machines. However, common single and double panels are 
often acoustically deficient in specific frequency ranges, 
where they exhibit poor effectiveness against tonal noises, 
e.g. due to rotating machines. Single panels exhibit low 
sound insulation around the critical frequency, at which the 
wave speed in the panel coincides with the speed of sound in 
air (coincidence phenomenon) (Rindel 2018). Furthermore, 
the sound insulation of single panels scales with mass, and a 
significant amount of material may be needed to guarantee 
adequate comfort levels (Fahy and Gardonio 2007). In dou-
ble panels, two plates separated by a cavity are employed, 
leading to higher sound insulation and a higher increase of 
insulation over frequency. However, double panels typically 
suffer from reduced sound insulation at low frequencies due 
to the mass–spring–mass resonance effect (Rindel 2018).

Novel design strategies for acoustic partitions are there-
fore emerging to achieve higher sound insulation while 
limiting the amount of used material. For example, vibroa-
coustic metamaterial solutions are based on attaching local 
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resonators to a host panel, and create a sound insulation peak 
at the resonance frequency of the resonators (Vazquez Torre 
et al. 2021; Giannini et al. 2023). Also, structural and topol-
ogy optimization (Bendsøe and Sigmund 2004), originally 
proposed to design structures with maximum stiffness and 
limited mass (Bendsøe and Sigmund 1999), have recently 
been proposed for obtaining optimized lightweight designs 
in different engineering domains. These include structural 
dynamics with control of structural response (Ma et al. 1995; 
Tcherniak 2002) and of structural eigenfrequencies (Gian-
nini et al. 2020a, 2021a, b), acoustics (Du and Olhoff 2007; 
Dühring et al. 2008), wave propagation (Dahl et al. 2008; 
Van hoorickx et al. 2016), and vibroacoustics (Yoon et al. 
2007; Dilgen et al. 2019), with some attention given to noise 
control (Du and Olhoff 2010; Wang et al. 2017).

One of the main challenges of structural optimization 
for vibroacoustics is that the employed prediction model 
needs to be both sufficiently accurate and computationally 
efficient. In most of the examples found in the literature, 
both the mechanical and acoustic domains are modeled 
deterministically. The use of full finite element models 
(Kook 2019; Jensen 2019), with discretized mechanical 
and acoustic domains, usually comes with high computa-
tional costs. Different degrees of simplification to reduce 
computational costs have been proposed, e.g. high-frequency 
approximations in which the acoustic pressure is computed 
by multiplying the interface velocity with the characteristic 
impedance of air (Du and Yang 2015), and finite element 
- elementary radiator approaches, where the acoustic pres-
sure field is found by superposing the effects of elementary 
radiators distributed on a vibrating surface (Jung et al. 2017, 
2022). In the design of partition panels with maximized 
sound insulation, a specific challenge is to account for dif-
fuse incident sound fields. When using fully deterministic 
models, the sound transmission loss (STL) can be maxi-
mized separately for different angles of incident, or by inte-
gration of the response to plane incident sound waves over 
the incidence angles (Cool et al. 2024). As an alternative to 
fully deterministic models, an approach based on the hybrid 
deterministic-statistical energy analysis (Det-SEA) method 
has been proposed (Reynders et al. 2014; Reynders and Van 
hoorickx 2023). In this case, the partition panel is modeled 
in full detail, while the surrounding sound fields are inher-
ently modeled as diffuse. This enables efficient and accurate 
predictions of diffuse STL, by rigorously considering the 
interaction between the finite structure and the diffuse sound 
fields through the diffuse field reciprocity relationship.

In this paper, a methodology is developed to optimize the 
material thickness distribution of partition panels for maxi-
mum diffuse STL, while constraining the maximum mass. 
In other words, optimized material thickness topologies are 
designed for maximum sound insulation without exceed-
ing the maximum material usage. The designed panels 

with non-uniform thickness distribution can be fabricated 
by additive manufacturing, molding, or milling processes. 
Some preliminary results for the design of simple single pan-
els have been published in Van den Wyngaert et al. (2019) 
and Giannini et al. (2021). We here offer a generalized 
framework to couple Det-SEA vibracoustic modeling with 
structural optimization, which for the first time handles also 
the more complex design of double panels. In addition, the 
sensitivity analysis for the design of both single and double 
panels is presented in full detail.

Three formulations of the optimization problem are 
developed and compared in terms of final obtained perfor-
mance and computational costs, pointing out their level of 
effectiveness in the different design cases. In the first for-
mulation, the resonance dips in the STL are suppressed by 
pushing the panel eigenfrequencies as far away as possible 
from a given target frequency. In the second formulation, 
the diffuse STL of the panel at the target frequency is maxi-
mized. In the third formulation, the diffuse STL is maxi-
mized over a frequency band around the target frequency. 
The practical advantages of the developed method are 
demonstrated for different target frequencies in the audible 
range and for relevant showcases, such as the suppression 
of the STL dips located at the critical frequency of single 
panels and at the mass–spring–mass resonance frequency 
of double panels.

The paper is organized as follows. Section 2 describes 
the Det-SEA vibroacoustic model of single and double pan-
els. Section 3 discusses the formulation of the optimization 
problem, i.e. the chosen design variables, objective func-
tion and constraints, along with the solution procedure. The 
optimized layouts and their vibroacoustic performance are 
discussed in Sect. 4. Section 5 contains conclusions and 
remarks.

2 � Vibroacoustic model

In this Section, we describe the approach followed to model 
the panel and to efficiently compute its diffuse STL, which is 
based on the hybrid Deterministic-Statistical Energy Analy-
sis (Det-SEA) framework. We first present the mechanical 
model of the panel, and then we discuss the coupling with 
the diffuse model of the surrounding sound fields for STL 
computations.

2.1 � Deterministic model of the panel

The present work considers both single panels (Fig. 1a), con-
sisting of one single mechanical plate, and double panels 
(Fig. 1b), consisting of two mechanical plates (plate 1 and 
plate 2), separated by an air cavity. In what follows, the models 
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of the mechanical plates and of the air cavity are discussed, 
along with their coupling in the case of double panels.

2.1.1 � Model of the mechanical plates

For both single and double panels, each mechanical plate is 
discretized by plate finite elements (cf. Fig. 1) and modeled as 
simply supported on its four edges. The equations of motion of 
the pth mechanical plate ( p = 1 for single panels and p = 1, 2 
for double panels) in the frequency domain can be written as:

where up are the degrees of freedom of the plate correspond-
ing to the finite element discretization, M

p
 and K

p
 are the 

associated mass and stiffness matrices, D
p
 is the dynamic 

stiffness matrix, i ∶=
√
−1 is the imaginary unit, and �p 

denotes the damping loss factor of the plate. The vector 
f p contains the external loads, e.g. the fluid loading onto 
the plate due to the acoustic pressure in the surrounding 
acoustic space. In what follows, discretizations by Kirchhoff 
and Mindlin plate finite elements are considered. Through-
thickness effects, such as dilatational propagating waves 
and thickness resonances (Hopkins 2007) are therefore not 
modeled here. In case these effects are of interest in the audi-
ble range, e.g. for thick walls, volume finite element model 
discretizations e.g. by hexahedral elements can be adopted 
(Reynders et al. 2014).

The eigenfrequencies �p,k and the mode shapes �p,k of the 
pth plate are found by solving the following undamped eigen-
value problem:

and the eigenfrequencies in Hz are found as fp = �p∕2�.
The equations of motion in Eq. (1) are projected onto a 

set of basis functions �p =
[
�p,1, ...,�p,np

]
 consisting of the 

(1)D
p
u
p
=
[
−�2M

p
+ K

p
(1 + i�

p
)
]
u
p
= f

p

(2)(−�2
p
Mp + Kp)�p = 0

first np mass-normalized mode shapes computed from Eq. 
(2), in order to reduce the size of the model. By approxi-
mating up ≈ �pqp through the modal coordinates qp , we 
therefore obtain:

where Dm,p is the modal dynamic stiffness matrix of the 
p la te ,  Mm,p = �

T
p
Mp�p = I ,   Km,p = �

T

p
K

p
�

p
= diag(

�2

p,1
,�2

p,2
, ...,�2

p,n
p

)
 are the modal mass and stiffness matri-

ces, I is the identity matrix, and fm,p = �
T
p
f p is the vector 

of modal loads.

2.1.2 � Model of the air cavity

Following what was proposed in Van den Wyngaert 
et al. (2018), the air cavity present in double panels is 
studied by approximating the associated pressure field 
pcav(x,�) , at spatial location x = (x, y, z) and frequency 
� , using a set of basis functions �cav,k(x) , such that 
pcav(x,�) ≈

∑ncav
k=1

�cav,k(x)qcav,k(�) where qcav,k(�) are the 
modal coordinates of the cavity. The basis functions are 
chosen as the first ncav analytically computed and normal-
ized mode shapes of the decoupled, hard-walled, rectan-
gular cuboid cavity. The kth mode shape of the cavity is 
computed as:

where Lx, Ly are the in-plane dimensions of the plates 
and the cavity, Lz is the cavity depth (cf. Fig. 1), mk ∈ ℕ0 , 
nk ∈ ℕ0 and pk ∈ ℕ0 are the number of half wavelengths 
in the x-, y- and z-coordinate directions. The normalization 
constants satisfy

(3)Dm,pqp =
[
−�2Mm,p + Km,p(1 + i�

p
)
]
q
p
= fm,p

(4)�cav,k(x) = ak cos

(
mk�x

Lx

)
cos

(
nk�y

Ly

)
cos

(
pk�z

Lz

)

Fig. 1   Layout of (a) single and (b) double panels
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where ca = 343 m/s is the speed of sound in air. The angular 
natural frequency corresponding to mode k equals:

The presence of absorbents or metal studs in the cavity has 
not been considered in the model, but can be added, e.g. 
following Van den Wyngaert et al. (2018).

2.1.3 � Model of the double panel

The equations of motion of the double panel are derived by 
coupling the two plates and the air cavity through the loads on 
the plates due to the sound pressure in the cavity, and the loads 
on the cavity due to the displacement of the plates:

where Dm,1 and Dm,2 are the modal dynamic stiffness matri-
ces of the plates as defined in Sect. 2.1.1, and Dcav is the 
modal dynamic stiffness matrix of the air cavity. In particu-
lar, Dcav is a diagonal matrix with entries:

where �cav,k denotes the damping loss factor of cavity mode 
k. We here consider an empty cavity and determine the 
modal loss factor from �cav,k =

4.4�

�cav,kTcav
 , for a chosen rever-

beration time Tcav = 2 s.
In Eq. (7), the interaction matrices Lf,m,p express the load-

ing on the modes of the pth plate due to the cavity pressure 
pcav(x,�) (Van den Wyngaert et al. 2018). The load on the 
transversal degree of freedom of kth node of the plate can be 
expressed as:

(5)

ak =
ca�(mk)�(nk)�(pk)√

LxLyLz

with: �(s) =

� √
2 if s ≠ 0

1 if s = 0

(6)�cav,k = ca

√(
mk�

Lx

)2

+

(
nk�

Ly

)2

+

(
pk�

Lz

)2

(7)

⎡⎢⎢⎣

Dm,1 0 Lf,m,1

0 Dm,2 Lf,m,2

Ls,m,1 Ls,m,2 Dcav

⎤⎥⎥⎦

⎧⎪⎨⎪⎩

q1
q2
qcav

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩

fm,1

fm,2

0

⎫⎪⎬⎪⎭
⇒ Ddq = f

(8)Dcav,kk = −�2 + �2
cav,k

(1 + i�cav,k)

(9)

fp,k,cav(�) = −∫Γp

Up,k(x)pcav(x,�)dx

≈ −

ncav∑
l=1

Lfp,klqcav,l(�)

with: Lfp,kl = ∫Γp

Up,k(x)�cav,l(x)dx

where the function Up,k(x) has a unitary value at the kth 
node of the plate, is zero at the other nodes and in-between 
the nodes follows the interpolation provided by the shape 
functions of the plate elements. The integral in Eq. (9) is 
computed over the interface surface area Γp between the 
plate and the cavity. Equation (9) leads to the matrices Lf,p , 
which can be projected onto the modal basis of the plates as 
Lf,m,p = �

T
p
Lf,p.

The interaction matrices Ls,m,p in Eq. (7) express the 
loading on the modes of the cavity, due to the modal dis-
placements of the plate. The load on the kth mode of the 
cavity, due to the transversal displacement of the pth plate 
up(x,�) ≈

∑
k Up,k(x)up,k(�) (Van den Wyngaert et al. 2018), 

can be expressed as:

with �a = 1.20 kg/m3 being the density of air. Equation (10) 
leads to the matrices Ls,p , which can be projected onto the 
modal basis of the plates as Ls,m,p = Ls,p�p.

When considering homogenous equations of motion, the 
eigenfrequencies and the mode shapes of the double panel 
can be found by solving the following eigenvalue problem:

where Mm,cav = I , Km,cav = diag
(
�2
cav,1

,�2
cav,2

, ...,�2
cav,ncav

)
 

are the modal mass and stiffness matrices of the cavity. In 
general, the stiffness and mass matrices Kd and Md of the 
double panel are nonsymmetric, and therefore each eigen-
value �2

d,k
 will be associated with a left eigenvector �d,k,L and 

a right eigenvector �d,k,R.

2.2 � Diffuse STL computations based on the hybrid 
Det‑SEA modeling framework

A complete description of diffuse STL computations based 
on the Det-SEA framework can be found in dedicated litera-
ture (Reynders et al. 2014; Shorter and Langley 2005a, b; 
Decraene et al. 2018; Sound transmission 2016). In what fol-
lows, we introduce the main relations that will be employed 

(10)

fcav,k,p = −�a�
2 ∫Γp

�cav,k(x)up(x,�)dx

≈ −

n1∑
l=1

Lsp,klup,l(�)

with: Lsp,kl = �a�
2Lfp,lk

(11)

�
Kd − �2

d
Md

�
�d = 0

with: Kd =

⎡⎢⎢⎣

Km,1 0 Lf,m,1

0 Km,2 Lf,m,2

0 0 Km,cav

⎤⎥⎥⎦
,

Md =

⎡⎢⎢⎣

Mm,1 0 0

0 Mm,2 0

−�aL
T

f,m,1
− �aL

T

f,m,2
Mm,cav

⎤⎥⎥⎦
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further on in this paper, based on the summary provided in 
Reynders and Van hoorickx (2023).

The airborne sound insulation of the partition panel 
depends on the properties of the panel itself, but also on 
the nature of the incident sound field at the source side and 
of the radiated sound field at the receiver side. Referring 
to Fig. 2, we here consider an indoor setting in which the 
panel is interposed between two rooms, i.e. a source room 
(room 1) and a receiver room (room 2). In such indoor set-
ting, the sound fields in rooms 1 and 2 are conventionally 
approximated as diffuse, i.e. the incident sound field consists 
of incoherent plane waves coming from all possible direc-
tions and carrying the same energy, and the radiated sound 
field equals that of an acoustic halfspace. A diffuse field is 
by definition a random field, representing not just a nominal 
situation, but the sound field of a conceptual random ensem-
ble of rooms with the same modal density and total absorp-
tion, yet otherwise any possible arrangement of boundaries 
and small objects that have a wave scattering effect. The 
employed Det-SEA model therefore accurately represents 
the average insulation performance of the finite-sized panel 
across a random ensemble of rooms.

The STL R across the partition panel is determined by the 
sound transmission coefficient � , which is the ratio between 
the power flow from the source room to the receiver room 
P
(1→2)

in
 and the incident sound power on the panel in the 

source room P(1)

inc
:

where � is the angular frequency. A quantity related to 
the transmission coefficient is the coupling loss factor �12 
between the source and the receiver rooms, which is defined 
as:

(12)R(�) ∶= −10 log �(�), with: � =
P
(1→2)

in
(�)

P
(1)

inc
(�)

If the source room carries a diffuse sound field, the ensemble 
mean of the incident power relates to the total energy of the 
room (Lyon and DeJong 1995):

where the hat denotes the mean across the diffuse random 
field ensemble, c denotes the sound speed, Lx , Ly are the pla-
nar dimensions of the wall, and V1 the volume of the source 
room ( V1 = V2 = 87 m3 have been considered).

In the diffuse model of the rooms, the sound fields are 
decomposed into a direct field and a reverberant field. The 
direct field is deterministic and describes waves traveling 
away from the panel, due to its vibration. The reverber-
ant field is random and represents reflected and scattered 
waves traveling back to the panel. The equations of motion 
of the rth room (r = 1,2) can be written as:

where the dynamic stiffness matrix Dr,p of the room 
describes the relationship between the displacements of the 
pth plate up and the forces f r,p at the interface between the 
plate and the room. Dr,p has been decomposed into a deter-
ministic direct field dynamic stiffness matrix Ddir,r,p and a 
random reverberant field dynamic stiffness matrix Drev,r,p . 
In particular, the deterministic direct field dynamic stiffness 
matrix is the one of an acoustic halfspace, which can be 
computed numerically via the Rayleigh integral, e.g. using 
a wavelet discretization of the baffled interface (Langley 
2007).

(13)�12(�) ∶=
P
(1→2)

in
(�)

�E1(�)

(14)P̂
(1)

inc
(𝜔) =

cLxLy

4V1

Ê1(𝜔)

(15)Dr,pup =
(
Ddir,r,p + Drev,r,p

)
up = f r,p

Fig. 2   Scheme of the transmission suite (room–panel–room) model: two possible realizations of the random ensemble of rooms are represented
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Equation (15) can be projected onto the modal basis of 
the single or double panel by approximating up ≈ �pqp , and 
therefore:

where Dm,r,p = �
T
p
Dr,p�p is the direct field dynamic stiffness 

matrix expressed in modal coordinates, and fm,r,p = �
T
p
f r,p 

is the vector of interface modal loads.
The equations of motion of the room-wall-system are 

therefore:

where D0 is the dynamic stiffness matrix of the in-vacuo 
panel, i.e. for single panels D0 = Dm,1 and for double panels 
D0 = Dd , while D′

dir,1
 , D′

dir,2
 , D′

rev,1
 , D′

rev,2
 are the (expanded) 

direct field and reverberant field dynamic stiffness matrices, 
expressed in terms of the reduced panel coordinate vector.

Considering that the diffuse reverberant dynamic stiff-
ness matrices have zero mean, and invoking the diffuse field 
reciprocity relationship (Shorter and Langley 2005b), it can 
be proven that the expected value P̂(1→2)

in
 of the sound power 

flow from the source room to the receiver room is (Reynders 
and Van hoorickx 2023):

where n1 is the modal density of the source room, i.e. the 
expected number of modes per unit radial bandwidth (Lyon 
and DeJong 1995).

Combining the previous equations leads to:

3 � Optimization of the material thickness 
distribution

3.1 � Design variables

Once the modeling strategy for the computation of the panel 
eigenfrequencies and the STL has been established, a set of 
design variables is chosen in order to describe the material 
thickness distribution to be optimized.

(16)Dm,r,pqp =
(
Ddir,m,r,p + Drev,m,r,p

)
qp = fm,r,p

(17)

(
Dtot + D�

rev,1
+ D�

rev,2

)
q = f

with: Dtot = D0 + D�
dir,1

+ D�
dir,2

(18)P̂
(1→2)

in
=

2Ê1

𝜋𝜔n1

∑
rs

Im(D�
dir,2

)rs(D
−1
tot
Im(D�

dir,1
)D−H

tot
)rs

(19)
� =

4V1�

LxLyca
�12, with:

�12 =
2

��n1

∑
rs

Im(D�
dir,2

)rs(D
−1
tot
Im(D�

dir,1
)D−H

tot
)rs

The thickness distribution within each plate area is 
described by considering a design variable �e ∈ [0, 1] for each 
finite element e. The set of design variables � is used to scale 
the thickness of the elements. The framework is similar to 
density-based topology optimization (Bendsøe and Sigmund 
2004), in which the design variables are used to scale the mate-
rial properties between void ( �e = 0 ) and solid ( �e = 1 ). In 
density-based topology optimization intermediate values are 
usually penalized in order to ensure all elements are void or 
solid in the final design. In the present work instead, no penali-
zation is used, such that also the intermediate thickness values 
within the given range are allowed.

A convolution filter is applied to the set of design variables 
� (Wang et al. 2011), in order to avoid mesh dependence of the 
solution and convergence to checkerboard layouts. The filtered 
design variables are obtained as:

where Aj is the area of the jth element and ℕs,e is the set of 
elements with centers lying within a circle with radius rmin 
centered on the centroid of element e, and belonging to the 
same plate. The linear weighting function w(xj) is given as:

where xj = (xj, yj) and xe = (xe, ye) are the centroid coordi-
nates of elements j and e.

The filtered design variables are used to scale the element 
thicknesses between a minimum value tmin and a maximum 
value tmax:

The element matrices are then scaled according to the ele-
ment thickness. In what follows, both Kirchhoff and Mind-
lin plate finite elements are considered, whose stiffness and 
mass matrices are the combination of a term proportional to 
the thickness and a term proportional to the third power of 
the thickness (Bathe 1996):

It can be noted that no artificial interpolation (e.g., like 
SIMP (Bendsøe and Sigmund 1999) or RAMP (Pedersen 
2000) in topology optimization) of material properties is 
employed in this work. Instead, the considered scaling of 
the stiffness and mass matrices accurately follows the finite 
element formulation. The scaled element matrices are finally 
assembled to find the global plate stiffness and mass matri-
ces Kp and Mp used in Eq. (1).

(20)𝛾̃e =

∑
j∈ℕs,e

w(xj)Aj𝛾e,j∑
j∈ℕs,e

w(xj)Aj

(21)w(xj) = rmin− ∣ xj − xe ∣

(22)te = tmin + (tmax − tmin)𝛾̃e

(23)
Ke(te) = Ke,1(t = 1)te + Ke,3(t = 1)t3

e

Me(te) = Me,1(t = 1)te +Me,3(t = 1)t3
e
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3.2 � Formulation of the optimization problem

Three formulations of the thickness optimization prob-
lem are proposed in order to improve the vibroacoustic 
performance of the panel around a given target frequency. 
The three formulations consider three different objective 
functions, which are separately maximized while constrain-
ing material usage. The first formulation simply focuses 
on controlling the panel eigenfrequencies, while the sec-
ond and the third formulations maximize the panel STL 
respectively at the target frequency and in a surrounding 
frequency band.

3.2.1 � Widest frequency band without eigenfrequencies 
around the target frequency (F1)

In the first formulation (F1), the goal is to control the in-
vacuo eigenfrequencies of the panel. The material thickness 
distribution is optimized to maximize the width of the fre-
quency band without structural eigenfrequencies around a 
given target frequency fc . The aim of this formulation is 
to keep a low model complexity (only an in-vacuo model 
of the panel is needed, with no acoustic coupling), while 
still improving the vibroacoustic performance against tonal 
noises by indirectly avoiding resonance STL dips around the 
target frequency.

For (F1), the following objective function and constraints 
are considered:

The formulation in Eq. (24) aims at maximizing the mini-
mum normalized distance dfi =

|fi−fc|
fc

 between the eigenfre-
quencies fi and the target frequency fc . The corresponding 
max-min problem is treated by introducing an additional 
design variable � , which is maximized while imposing that 
� is lower than all the considered normalized distances. A 
further constraint is imposed to set the maximum material 
usage, by prescribing that for each plate the average thick-
ness tavg,p computed over the elements of the plate (index ep ) 
should not exceed the mean value between tmin and tmax . The 
computation of the eigenfrequencies follows Eq. (2) for sin-
gle plates, where the simple finite element model of the in-
vacuo mechanical plate is considered. For double plates, we 
instead compute the eigenfrequencies through Eq. (11), 
when considering the coupled plate-cavity-plate system.

(24)

max
�,�

�

subject to � ≤ dfi =
��fi − fc

��
fc

∀i

tavg,p =

∑
ep
tepAep∑

ep
Aep

≤ t =
tmin + tmax

2
∀p

3.2.2 � Maximum STL at the target frequency (F2)

In the second formulation (F2), we directly focus on maxi-
mizing the STL at the target frequency fc . In this case, the 
modeling complexity increases with respect to (F1) (acous-
tic coupling is now needed), but the computational cost is 
kept low by solving for the STL only at one single target fre-
quency. The formulated optimization problem is, therefore:

where the STL computation has been discussed in Sect. 2.2, 
and the same constraints as (F1) on the maximum material 
usage have been introduced.

3.2.3 � Maximum STL around the target frequency (F3)

In the third formulation (F3), we maximize an averaged 
measure Ravg(fc) of the STL in a frequency band Ωf  around 
the target frequency fc . In this case, we aim at achieving 
a broader frequency band with improved STL, in order to 
increase the robustness against variations of the tonal noise 
frequency and modeling approximations. However, the com-
putational cost of (F3) is expected to be higher than (F1) and 
(F2): in order to compute the average STL, the values of the 
STL for multiple frequencies need to be computed.

(F3) is formulated as:

Ravg(fc) is obtained by discretizing the frequency band by nf  
frequencies �j and computing the corresponding energetic 
mean of the STL. In the computation of Ravg(fc) , spectral 
adaptation terms L(�j) can be introduced to account for 
different spectra of noise sources and for the fact that the 
sensitivity of human hearing is frequency-dependent as, 
e.g. proposed in ISO 717-1 (2020). Also, in (F3) the same 
constraints on material usage as in (F1) (Eq. (24)) and (F2) 
(Eq. (25)) are considered.

In particular, in the following examples, no specific adap-
tation terms are introduced, i.e. ∀j ∶ L(�j) = 0 dB, and the 
considered frequency bands are 1/3 octave bands which are 
discretized by nf=16 points that are equidistant on a loga-
rithmic axis.

(25)

max
�

R(fc)

subject to tavg,p =

∑
ep
tepAep∑

ep
Aep

≤ t =
tmin + tmax

2
∀p

(26)

max
�

Ravg(fc) = −10 log

⎛
⎜⎜⎝
1

nf

�
�j∈Ωf

10(L(�j)−R(�j))∕10
⎞⎟⎟⎠

subject to tavg,p =

∑
ep
tepAep∑

ep
Aep

≤ t =
tmin + tmax

2
∀p
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3.3 � Solution of the problem

The optimization problems formulated in Eqs. (24), (25), 
(26) are solved through the Method of Moving Asymptotes 
(MMA) (Svanberg 1987), which is a gradient-based opti-
mizer searching for local optimality. In order to iteratively 
update the designs until convergence, the sensitivities of 
objective function and constraints with respect to changes in 
the design variables are needed. We here compute the sensi-
tivities analytically, using an adjoint method when needed, 
since a significant number of design variables is considered.

The expressions of the sensitivities of objective functions 
and constraints can be derived analytically once the sen-
sitivities of eigenfrequencies and coupling loss factor are 
known. The sensitivities of the eigenfrequencies, needed 
to compute the sensitivities of the constraints in (F1) (Eq. 
(24)), can be found in Bendsøe and Sigmund (2004) and 
are briefly recalled in Appendix A. The sensitivities of the 
coupling loss factor, needed to compute the sensitivities of 
the objective functions in (F2) (Eq. (25)) and (F3) (Eq. (26)), 
are also derived in Appendix A.

The local optimum found by MMA generally depends 
on the choice of the initial guess. Numerical experiments 
have therefore been performed in order to identify guide-
lines for this choice. It has been found that satisfying solu-
tions are obtained by choosing a uniform initial guess with 
a somewhat higher thickness than the maximum average 
one t = tmin+tmax

2
 set by the constraint on material usage (cf. 

Eqs. (24), (25), (26)). Therefore, uniform initial guesses 
with thickness equal to tmin + 0.7(tmax − tmin) are used in the 
following examples. For the presented design examples we 
have used the following MMA parameters: a0 = 1, ai = 0, ci 
= 1000, di = 0, whose nomenclature and explanation are pro-
vided in Svanberg (2002). The optimization parameters have 
been chosen based on exhaustive numerical experiments. 
The optimization is run for 500 steps, after which the con-
vergence of the objective function is also assessed visually.

The thickness optimization algorithm, along with the 
needed FEM and Det-SEA solvers, is implemented in 
MATLAB: eigenvalue problems are solved by ARPACK (as 
”eigs”), applying an implicitly restarted Lanczos method 
(IRLM), whereas matrix inversions are considered by apply-
ing LU decomposition (as ” ∖”). At each optimization step, 
the amount of computed modes np (p = 1,2) and ncav , for the 

plates and the cavity respectively, is such that we retain all 
the modes with a natural frequency that is lower than twice 
the frequency of the analysis.

4 � Optimization results and discussion

4.1 � Single panel

As a first case, we consider the design of a single polym-
ethyl methacrylate (PMMA) panel. Table 1 lists the material 
properties (mass density � , Young modulus E, Poisson ration 
� , damping loss factor � ), along with the panel dimensions 
and the range of variation for thickness [tmin, tmax] . The con-
sidered 1 m × 1 m panel is discretized by 50 × 50 linear 
Mindlin plate finite elements, and the filter radius rmin is set 
to twice the dimension of one single element. We also note 
that, due to the varying thickness, the designed panel will 
be translucent but not fully transparent.

The single panel is optimized following the three prob-
lem formulations outlined in Sect. 3.2. Two different target 
frequencies are considered, i.e. fc = 500 Hz as an example 
of a mid-frequency tonal noise (coming, e.g. from compres-
sor machines (Ku et al. 2019)), and fc = fcrit as the critical 
frequency of the uniform panel having a thickness equal to 
t =

tmin+tmax

2
 = 37.5 mm. The critical frequency is defined as 

the frequency at which the speed and the wavelength of the 
incident sound waves coincide with the speed and the wave-
length of free bending waves in the panel (Rindel 2018), 
creating a resonance phenomenon:

where D =
Et

3

12(1−�2)
 is the bending stiffness of the uniform 

panel. High radiation efficiency and sound transmission are 
observed around the critical frequency: as shown in Fig. 3, 
the STL reduces around fcrit = 862 Hz, while at higher fre-
quencies it follows the stiffness-controlled trend with an 
average increase of 18 dB/octave (Fahy and Gardonio 2007).

The optimized layouts for the chosen target frequencies 
are shown in Fig. 4. It can be observed that, as the target 

(27)fcrit =
c2
a

2�

√
�t

D
,

Table 1   Material and geometrical properties of the considered single PMMA panels and double glazing panels

Experimental values for the damping loss factors � are taken from Reynders et al. (2014)

Panel type  � [kg∕m3] E [GPa] � [-] � [-] Dim. [m2] tmin [mm] tmax [mm]

Single 1275 4.5 0.35 0.05 1×1 15 60
Double 2500 62 0.24 0.03 1.25×1.5 plate 1: 3

plate 2: 4
plate 1: 5
plate 2: 8
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frequency increases, finer details in the optimized design are 
needed to control higher order modes. This follows the 
reducing bending wavelength, which is known to impose a 
required finite length-scale to the design (Sigmund and 
Jensen 2003). The resolution of the optimization process, 
i.e. the minimum admissible size of the design features, is 
strictly related to the filter radius (Wang et  al. 2011). 

Therefore, a filter radius that is too big can inhibit well-
performing designs with fine enough features. In our 
designs, the chosen filter radius is significantly smaller than 
the minimum bending wavelength in the panel 
�min(tmin) = 2�

(
Et2

min

12��2(1−�2)

)1∕4

 , in order to allow for the 
creation of both sub-wavelength and supra-wavelength fea-
tures in the control of the modes of interest.

The convergence histories of the objective functions for 
the different design cases are plotted in Fig. 5. The algorithm 
is run for 500 iteration, however we can see that conver-
gence is generally achieved in around 100 iterations. The 
details of the convergence history for the layout optimized 
with formulation (F2) for fc = 500 Hz is shown in Fig. 6. 
The performances of the optimized layouts in terms of 
final objective functions mini dfi , R(fc) , Ravg(fc) are listed in 
Table 2, while the corresponding STL curves are shown in 
Fig. 7. A comparison with the uniform panel having constant 
thickness equal to t is also provided, in order to assess the 
vibroacoustic advantages introduced by optimizing panels 
with non-uniform thickness distribution.

In general, for the same total amount of used material and 
mass, a non-uniform thickness distribution leads to superior 
sound insulation properties around the target frequency. We 
see that for this design case all the three employed formula-
tions boil down to a similar design strategy, as the algorithm 
creates bands without structural eigenfrequencies around 
the target frequency, allowing for higher STL by pushing 
away the STL dips related to mechanical resonances. For 
this reason, similar insulation performances in terms of R(fc) 

Fig. 3   Sound STL of a uniform single PMMA panel with constant 
thickness equal to t  = 37.5 mm. At the critical frequency fcrit , the 
wavelength �air of the incident sound waves in air coincides with the 
wavelength �B of free bending waves in the panel, and a band with 
reduced STL appears

Fig. 4   Optimized single panel 
layouts
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and Ravg(fc) are obtained when using the different problem 
formulations, and the optimization always leads to layouts 
without eigenfrequencies in a band wider than a 1/3-octave 
band, for both fc = 500 Hz and fc = fcrit . However, we still 
see how the maximum distance of the closest eigenfrequency 
is achieved when using formulation (F1). R(fc) and Ravg(fc) 
are instead maximum when using (F2) and (F3). Around fc 
= 500 Hz, the uniform panel presents already a STL peak 

and a band without structural resonances, but optimizing 
non-uniform thickness distributions leads to increases in 
R(fc) and Ravg(fc) by about 4 dB and about 5 dB respectively. 
When considering fc = fcrit , the uniform panel presents a 
coincidence STL dip, and the optimization leads to higher 
increases in R(fc) and Ravg(fc) by about 10 dB. For both fc 
= 500 Hz and fc = fcrit , we can see that the improvements 
in sound insulation are mainly localized in the targeted 

Table 2   Comparison between 
the different optimized single 
panel layouts in terms of 
obtained objective functions

Layout fc = 500 Hz fc = fcrit = 862 Hz

mini dfi R(fc) Ravg(fc) mini dfi R(fc) Ravg(fc)

Uniform 0.1143 37.9 dB 35.3 dB 0.0278 31.8 dB 31.3 dB
Opt. (F1) 0.2456 40.5 dB 40.0 dB 0.1810 39.6 dB 37.9 dB
Opt. (F2) 0.1502 41.5 dB 39.8 dB 0.1540 41.5 dB 38.7 dB
Opt. (F3) 0.2158 41.4 dB 40.7 dB 0.1296 41.8 dB 41.3 dB

(a) (b)

Fig. 5   Convergence history of the single panel optimization for (a) fc = 500 Hz (b) fc = fcrit = 862 Hz

Fig. 6   Convergence history of 
the single panel layout: optimi-
zation with (F2) for fc = 500 Hz
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frequency band: a relatively pronounced STL dip is obtained 
at immediately higher frequencies, and for further increase 
in frequency the behaviour of non-uniform panels becomes 
again similar to the one of the uniform layout.

The computational costs associated with the different 
problem formulations are reported in Table 3, in terms of 
the average computational time of one single optimization 
iteration, when using a Intel(R) Core(TM) i7-9850 H CPU 
(2.60GHz). We can see how (F3) is associated to the high-
est computational cost, which is about 5 to 6 times the one 
of (F2) and about 2 to 3 times the one of (F1). However, as 
discussed above, for this design case the highest computa-
tional cost of (F3) does not lead to a significant improve-
ment in the vibroacoustic performances of the panel.

4.2 � Double panel

The second considered case is related to the design of trans-
lucent double glazings with non-uniform material distribu-
tion. The material properties, panel dimensions and thick-
ness ranges are again shown in Table 1. Since in this case 
the maximum thickness is low with respect to the in-plane 
dimensions of the panels (1.25 m × 1.5 m), a mesh of 50 × 
60 linear Kirchhoff plate finite elements is used. The filter 
radius rmin is again set as twice the dimension of one element.

In this case, the baseline uniform double panel (denoted as 
a 4-12-6 glazing) consists of plates with constant thickness 
equal to 4 mm and 6 mm, and separated by a 12 mm cavity. 
The target frequencies for the optimization are fc = 500 Hz 
and fc = fmsm , where fmsm is the mass–spring–mass resonance 
frequency of the equivalent infinite-sized double panel. This 
frequency is characterized by a surrounding band with low 
STL, with both plates vibrating quasi-rigidly in anti-phase and 

the air cavity being compressed as a spring. For uniform pan-
els with constant thicknesses t1 and t2 , the mass–spring–mass 
resonance frequency can be estimated as (Rindel 2018):

Similarly to the critical frequency of single panels dis-
cussed in Sect. 4.1, around the mass–spring–mass resonance 
frequency of double panels a reduction in STL is observed. 
Figure 8 shows the STL of the uniform finite-sized 4-12-6 
glazing, and highlights the mass–spring–mass resonance 
frequency, around which a band with reduced STL appears. 
The objective of the design is to obtain a non-uniform dou-
ble panel with superior vibroacoustic behavior around fc = 
500 Hz and fc = fmsm = 223 Hz, when keeping the same 
maximum plate masses as the uniform 4-12-6 glazing panel.

The optimized double panel layouts when using the three 
formulations of the problem are shown in Fig. 9, while the 
associated convergence histories of the objective functions 
are shown in Fig. 10. Similarly to the single panel optimi-
zation, we see that layouts with finer details are optimized 
when targeting higher frequencies, in order to control the 
behaviour of higher order modes.

The final values of the objective functions cor-
responding to the optimized double panel layouts are 

(28)fmsm =
ca

2�

√
�a

Lz

(
1

�t1
+

1

�t2

)

(a) (b)

Fig. 7   STL of the single panel optimized for (a) fc = 500 Hz and (b) fc = fcrit = 862 Hz

Table 3   Single panel 
optimization: average 
computational time per iteration 
for the different formulations of 
the optimization problem

fc (F1) (F2) (F3)

500 Hz 1.55 s 0.629 s 4.71 s
862 Hz 4.88 s 1.85 s 10.5 s
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shown in Table 4, while the corresponding STL curves 
compared with the uniform 4-12-6 glazing are shown 
in Fig. 11. The computational costs associated to each 
problem formulation are reported in Table 5. For both 
fc = fmsm and fc = 500 Hz, we can see how maximizing 
the width of the frequency band without eigenfrequen-
cies (formulation (F1)) has the lowest computational 
cost and successfully suppresses resonance dips around 
the target frequency, but does not lead to an adequate 
increase of the STL. Despite the creation of a STL 
peak, pronounced resonance dips remain still close to 
fc , leading to insulation performances in terms of R(fc) 
and Ravg(fc) that can be still lower than the uniform dou-
ble glazing. A direct maximization of the STL at the 
target frequency (formulation (F2)) comes with a slight 
increase of the computational cost and allows to achieve 
a clear and pronounced peak in the STL, with increases 
in R(fc) with respect to the uniform panel of about 12 Fig. 8   Sound STL of a uniform 4-12-6 double glazing. At the mass–

spring–mass resonance frequency fmsm , the two plates vibrate quasi-
rigidly in anti-phase and the air cavity is compressed as a spring

Fig. 9   Optimized double panel 
layouts
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dB and about 7 dB for fc = fmsm and fc = 500 Hz respec-
tively. However, the presence of close and pronounced 
STL dips still limits broader band insulation improve-
ments in terms of Ravg(fc) . When directly maximizing 
broader band insulation (formulation (F3)), the impor-
tant increase in computational costs is paid off by the 

significant improvements achieved in broadband sound 
insulation. In the targeted band the STL curve shows in 
fact a plateau at increased values, and the overlapped 
modal behaviour has no pronounced STL dips: this is 
probably due to the low degree of coupling between 
the two plates in the corresponding mode shapes of the 

(a) (b)

Fig. 10   Convergence history of the double panel optimization for (a) fc = fmsm = 223 Hz (b) fc = 500 Hz

Table 4   Comparison between 
the different optimized double 
panel layouts in terms of 
obtained objective functions

Layout fc = fmsm = 223 Hz fc = 500 Hz

mini dfi R(fc) Ravg(fc) mini dfi R(fc) Ravg(fc)

Uniform 0.0001 25.1 dB 18.7 dB 0.0002 33.4 dB 30.3 dB
Opt. (F1) 0.0694 22.1 dB 15.3 dB 0.0328 35.0 dB 30.1 dB
Opt. (F2) 0.0212 37.6 dB 20.6 dB 0.0115 40.8 dB 31.1 dB
Opt. (F3) 0.0122 28.5 dB 27.0 dB 0.0029 34.3 dB 34.6 dB

(a) (b)

Fig. 11   TL of the double panel optimized for (a) fc = fmsm = 223 Hz (b) fc = 500 Hz
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double panel. The final increase in Ravg(fc) obtained with 
formulation (F3) are of about 8 dB for fc = fmsm , with 
an effective suppression of the low STL region due to 
mass–spring–mass resonance effects, and of about 4 dB 
for fc = 500 Hz.

5 � Conclusions

In this paper, an approach has been proposed to optimize the 
material thickness distribution in partition panels, with the 
aim of maximizing sound insulation around a given target 
frequency while constraining material usage. First, a frame-
work has been developed to couple structural optimization 
with deterministic-statistical energy analysis modeling, which 
provides accurate diffuse sound transmission loss (STL) pre-
dictions and reduces the computational costs with respect to 
fully deterministic models. The framework can handle both the 
simpler design of single panels, including a single mechani-
cal plate, and the more complex design of double panels, in 
which two mechanical plates are separated by an air cavity. 
The sensitivity analysis for both cases has been also presented.

Subsequently, three formulations of the optimization prob-
lem have been developed and compared, i.e. (F1) pushing 
the panel eigenfrequencies away from the target frequency, 
(F2) maximizing the STL at the target frequency, and (F3) 
maximizing the STL in a frequency band around the target 
frequency. The practical advantages offered by the proposed 
approach have been demonstrated by considering differ-
ent target frequencies in the audible range and for relevant 
showcases. In particular, sound insulation improvements 
have been targeted at 500 Hz and in correspondence with 
the STL dips present at the critical frequency of the single 
panel and at the mass–spring–mass resonance frequency of 
the double panel.

In the design of single panels, the layouts optimized with 
the three formulations have shown similar STL improvements, 
outperforming corresponding uniform panels with equal 
mass by about 4 to 10 dB around the target frequency. In this 
case, the different formulations of the problem boil down to 
a similar design strategy, in which the STL dips associated 
with structural resonances are pushed far away from the target 
frequency. However, in the design of double panels, results 

have shown how simply suppressing the resonance dips as for 
(F1) is not enough to adequately improve the sound insula-
tion properties, due to the high modal density of the panel. A 
direct maximization of the STL through (F2) or (F3) is instead 
needed, with a possible increase of computational costs and 
modeling complexity. In these cases, the STL of a uniform 
panel with the same mass has been outperformed by about 4 
to 12 dB at the target frequency, and to effectively suppress the 
STL dip due to the mass–spring–mass resonance.

Appendix A: Sensitivity analysis of panel 
eigenfrequencies and coupling loss factor

In this Appendix, the expression of the sensitivities of the 
panel eigenfrequencies and of the coupling loss factor with 
respect to changes in the design variables are presented. 
Also, some details regarding the computation of the needed 
sensitivities of the system matrices are discussed.

A.1: Sensitivity analysis of the panel 
eigenfrequencies

In single panels, the sensitivities of the squared eigenfre-
quencies can be found as:

while for double panels:

The (filtered) design variables 𝛾̃e directly influence only the 
stiffness and mass matrices of the mechanical plates Kp and 
Mp , while the sensitivities of stiffness and mass matrices 
of the double panel Kd and Md can be computed from the 
sensitivities of Kp and Mp , as discussed in Appendix A.3. 
Similarly to what was done in Giannini et al. (2021a), the 
multiplicity of the eigenfrequencies has not been consid-
ered in the sensitivity analysis. Despite the fact that this 
choice may disturb the convergence for formulation (F1), 
the employed optimization algorithm has demonstrated to 
be robust enough to obtain adequate designs.

A.2: Adjoint sensitivity analysis of the coupling loss 
factor

The sensitivities of the coupling loss factor �12 with respect to 
a design variable 𝛾̃e can be written as:

(A1)
𝜕𝜔2
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𝜕𝛾̃e
= �T

p,k

(
𝜕Kp

𝜕𝛾̃e
− 𝜔2

p,k

𝜕Kp

𝜕𝛾̃e

)
�p,k

(A2)
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)
�d,k,R

Table 5   Double panel optimization: average computational time per 
iteration for the different formulations of the optimization problem

fc (F1) (F2) (F3)

223 Hz 3.31 s 4.09 s 19.5 s
500 Hz 6.25 s 10.8 s 71.2 s



Optimization of material thickness distribution in single and double partition panels for…

1 3

Page 15 of 18  243

By considering the following property of the element-wise 
product:

the term � can be rewritten as:

where Esr is a matrix with unitary element in position (s, r) 
and zeros elsewhere, while xr and ys are respectively the rth 
column of matrix X and the sth column of matrix Y . The 
matrices X and Y are defined such that:

By separating the contributions of the real and the imaginary 
parts of X and Y , the term � can be rewritten as:

where we have considered that � is real-valued and therefore 
its imaginary part is null.

By introducing the real and the imaginary parts of Dtot 
and DH

tot
 , the first equality in Eq. (A6) can be rewritten as:

The second equality in Eq. (A6) can be rewritten as:

(A3)
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where Im(d2,r) and Im(d1,s) are the imaginary parts respec-
tively of the rth column of D′T

dir,2
 and of the sth column of 

D′
dir,1

.
In order to find the sensitivities of � , we first define the 

augmented functional 𝜙̃ , by adding Eqs. (A8) and (A9) to 
� through the Lagrange multipliers �R,r , �I,r , �R,s and �I,s:

The sensitivities with respect to a design variable 𝛾̃e can be 
computed by differentiating the previous equation:

(A9)

(
Re(Dtot) + iIm(Dtot)

)
(Re(Y) + iIm(Y)) = Im(D�

dir,1
) + 0i

⇒

(
Re(Dtot)Re(Y) − Im(Dtot)Im(Y)

)
+

+ i
(
Re(Dtot)Im(Y) + Im(Dtot)Re(Y)

)
= Im(D�

dir,1
) + 0i

⇒ ∀s ∶
(
Re(Dtot)Re(ys) − Im(Dtot)Im(ys)

)
+ i

(
Re(Dtot)Im(ys) + Im(Dtot)Re(ys)

)
= Im(d1,s) + 0i

(A10)

𝜙̃ = 𝜙 +
∑
r

[
�T
R,r

(
Re(DH

tot
)Re(xr) − Im(DH

tot
)Im(xr) − Im(d2,r)

)

−�T
I,r

(
Re(DH

tot
)Im(xr) + Im(DH

tot
)Re(xr)

)]

+
∑
s

[
�T
R,s

(
Re(Dtot)Re(ys) − Im(Dtot)Im(ys) − Im(d1,s)

)

−�T
I,s

(
Re(Dtot)Im(ys) + Im(Dtot)Re(ys)

)]

(A11)

𝜕𝜙̃

𝜕𝛾̃e
=
∑
r

(
𝜕𝜙

𝜕Re(xr)

𝜕Re(xr)

𝜕𝛾̃e
+

𝜕𝜙

𝜕Im(xr)

𝜕Im(xr)

𝜕𝛾̃e

)

+
∑
s

(
𝜕𝜙

𝜕Re(ys)

𝜕Re(ys)

𝜕𝛾̃e
+

𝜕𝜙

𝜕Im(ys)

𝜕Im(ys)

𝜕𝛾̃e

)

+
∑
r

(
�T
R,r

(
𝜕Re(DH

tot
)

𝜕𝛾̃e
Re(xr) + Re(DH

tot
)
𝜕Re(xr)

𝜕𝛾̃e

−
𝜕Im(DH

tot
)

𝜕𝛾̃e
Im(xr) − Im(DH

tot
)
𝜕Im(xr)

𝜕𝛾̃e

))

−
∑
r

(
�T
I,r

(
𝜕Re(DH

tot
)

𝜕𝛾̃e
Im(xr) + Re(DH

tot
)
𝜕Im(xr)

𝜕𝛾̃e

+
𝜕Im(DH

tot
)

𝜕𝛾̃e
Re(xr) + Im(DH

tot
)
𝜕Re(xr)

𝜕𝛾̃e

))

+
∑
s

(
�T
R,s

(
𝜕Re(Dtot)

𝜕𝛾̃e
Re(ys) + Re(Dtot)

𝜕Re(ys)

𝜕𝛾̃e

−
𝜕Im(Dtot)

𝜕𝛾̃e
Im(ys) − Im(Dtot)

𝜕Im(ys)

𝜕𝛾̃e

))

−
∑
s

(
�T
I,s

(
𝜕Re(Dtot)

𝜕𝛾̃e
Im(ys) + Re(Dtot)

𝜕Im(ys)

𝜕𝛾̃e

+
𝜕Im(Dtot)

𝜕𝛾̃e
Re(ys) + Im(Dtot)

𝜕Re(ys)

𝜕𝛾̃e
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with:

In order to eliminate the terms in 𝜕Re(xr)
𝜕𝛾̃e

 , 𝜕Im(xr)

𝜕𝛾̃e
 , 𝜕Re(ys)

𝜕𝛾̃e
 and 

𝜕Im(ys)

𝜕𝛾̃e
 from Eq. (A11), we impose:

Multiplying the second and the fourth equations by the 
imaginary unit i , and summing them to the first and the 
third ones respectively, we get:

From Eq. (A14) we can derive the adjoint problems that 
allow to computing the multipliers �r = �R,r + i�I,r and 
�s = �R,s + i�I,s:

The expression of the sensitivities of � therefore becomes:

(A12)

��

�Re(xr)
=
∑
s

Re(ys)
TET

sr
,

��

�Im(xr)
= −

∑
s

Im(ys)
TET

sr

��

�Re(ys)
=
∑
r

Re(xr)
TEsr,

��

�Re(ys)
= −

∑
r

Im(xr)
TEsr

(A13)

∀r ∶ �T
R,r
Re(DH

tot
) − �T

I,r
Im(DH

tot
) = −

��

�Re(xr)

�T
R,r
Im(DH

tot
) + �T

I,r
Re(DH

tot
) =

��

�Im(xr)

∀s ∶ �T
R,s
Re(Dtot) − �T

I,s
Im(Dtot) = −

��

�Re(ys)

�T
R,s
Im(Dtot) + �T

I,s
Re(Dtot) =

��

�Im(ys)

(A14)

∀r ∶ �T
R,r
Re(DH

tot
) − �T

I,r
Im(DH

tot
) + i�T

R,r
Im(DH

tot
) + i�T

I,r
Re(DH

tot
)

= −

(
��

�Re(xr)
− i

��

�Im(xr)

)

⇒

(
�R,r + i�I,r

)T(
Re(DH

tot
) + iIm(DH

tot
)
)

= −

(
��

�Re(xr)
− i

��

�Im(xr)

)

∀s ∶ �T
R,s
Re(Dtot) − �T

I,s
Im(Dtot) + i�T

R,s
Im(Dtot) + i�T

I,s
Re(Dtot)

= −

(
��

�Re(ys)
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��

�Im(ys)
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⇒

(
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)T(
Re(Dtot) + iIm(Dtot)
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= −
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��
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(A15)
∀r ∶ conj (Dtot)�r = −

(
��

�Re(xr)
− i

��

�Im(xr)

)T

∀s ∶ DT
tot
�s = −

(
��

�Re(ys)
− i

��

�Im(ys)

)T

In Eq. (A16), the sensitivities of the total dynamic stiffness 
matrix Dtot can be computed from the sensitivities of the 
stiffness and mass matrices Kp and Mp of the mechanical 
plates, as discussed in Appendix A.3.

A.3: Sensitivities of the system matrices

The sensitivities of the panel eigenfrequencies in Eqs. (A1) 
and (A2) and of the coupling loss factor in Eq. (A16) involve 
the sensitivities of the system matrices. The design vari-
ables directly influence the stiffness and mass matrices of 
the mechanical plates Kp and Mp , while the sensitivities of 
Dtot , Kd and Md can be computed from the sensitivities of 
Kp and Mp.

For single panels, Dtot can be expressed as:

while, for double panels, Dtot can be expressed as:

with � = diag (�1,�2, I).
The matrices Kd and Md can be expressed as:

(A16)

𝜕𝜙̃

𝜕𝛾̃e
=
∑
r

(
�T
R,r

(
𝜕Re(DH

tot
)

𝜕𝛾̃e
Re(xr) −

𝜕Im(DH
tot
)

𝜕𝛾̃e
Im(xr)

))

−
∑
r

(
�T
I,r

(
𝜕Re(DH

tot
)

𝜕𝛾̃e
Im(xr) +

𝜕Im(DH
tot
)

𝜕𝛾̃e
Re(xr)

))

+
∑
s

(
�T
R,s

(
𝜕Re(Dtot)

𝜕𝛾̃e
Re(ys) −

𝜕Im(Dtot)

𝜕𝛾̃e
Im(ys)

))

−
∑
s

(
�T
I,s

(
𝜕Re(Dtot)

𝜕𝛾̃e
Im(ys) +

𝜕Im(Dtot)

𝜕𝛾̃e
Re(ys)

))

=
∑
r

Re

(
�T
r

𝜕DH
tot

𝜕𝛾̃e
xr

)
+
∑
s

Re

(
�T
s

𝜕Dtot

𝜕𝛾̃e
ys

)

(A17)Dtot = �
T

1

(
D1 + Ddir,1,1 + Ddir,2,1

)
�1

(A18)

Dtot = �
T

⎛
⎜⎜⎝

⎡
⎢⎢⎣

D1 0 Lf ,1

0 D2 Lf ,2

Ls,1 Ls,2 Dcav

⎤
⎥⎥⎦

+

⎡⎢⎢⎣

Ddir,1,1 0 0

0 0 0

0 0 0

⎤⎥⎥⎦
+

⎡⎢⎢⎣

0 0 0

0 Ddir,2,2 0

0 0 0

⎤⎥⎥⎦

⎞⎟⎟⎠
�

(A19)

Kd = �
T

⎡
⎢⎢⎣

K1 0 Lf,1

0 K2 Lf,2

0 0 Kcav

⎤
⎥⎥⎦
�

Md = �
T

⎡⎢⎢⎣

M1 0 0

0 M2 0

−�aLf,1 − �aLf,2 Mcav

⎤⎥⎥⎦
�
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When computing the sensitivity of Dtot , Kd and Md , the 
sensitivities of the (modal) reduction basis � have been 
neglected as proposed in Haftka and Gürdal (1992) and simi-
larly performed in Giannini et al. (2020b, 2021a). The sen-
sitivities of Dtot , Kd and Md can be therefore expressed as:
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