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Abstract
Patient-specific implants offer a host of benefits over their generic counterparts. Nonetheless, the design and optimization 
of these components present several technical challenges, among them being the need to ensure their insertability into the 
host bone tissue. This presents a significant challenge due to the tight-fitting nature of the bone-implant interface. This paper 
presents a novel insertability metric designed to efficiently assess whether a rigid body can be inserted into a tight-fitting 
cavity, without interference. In contrast to existing solutions, the metric is fully differentiable and can be incorporated as 
a design constraint into shape optimization routines. By exploiting the tight-fitting condition, the problem of planning an 
interference-free insertion path is reformulated as the search for a single interference-free movement, starting from the 
inserted configuration. We prove that if there exists any outward movement for which no interference is indicated, then the 
body can be fully extracted from or, equivalently, inserted into the cavity. This formulation is extremely efficient and highly 
robust with respect to the complexity of the geometry. We demonstrate the effectiveness and efficiency of our method by 
applying it to the optimization of two-dimensional (2D) and three-dimensional (3D) designs for insertability, subject to vari-
ous design requirements. We then incorporate the proposed metric into the optimization of an acetabular cup used in total 
hip replacement (THR) surgery where geometric and structural requirements are considered.

Keywords  Patient-specific implants · Insertability analysis · Computational design · Shape optimization · Structural 
optimization · Path planning

1  Introduction

Insertability analysis, which is the problem of assessing 
whether a rigid body can be inserted into a tight-fitting cav-
ity, is ubiquitous in a wide range of engineering applica-
tions. In automated tooling, for example, it is used to plan an 
interference-free path for inserting robotically guided parts 
into mating fixtures (Canny 1988; Oliver and Huang 1994). 
In molding, it is used to ensure that the part can be extracted 
from the core and cavity without excessive force (Carley 
1993). And in engineering design, it is used to design tightly 

fitting parts and establish tolerances for assemblability (Shen 
et al. 2005). In particular, with respect to the design of ortho-
pedic implants, where a tight fit with the host bone is usually 
required, insertability analysis plays a key role in avoiding 
obstructing geometry and stuck configurations.

With advances in medical imaging and computational 
analysis, virtual models of a patient’s specific anatomy 
can be synthesized and used to develop custom orthopedic 
implants, designed to best fit the patient’s unique anatomy. 
These implants may also be optimized for maximum long-
term performance by simulating their effect on the host bony 
tissue. Nonetheless, the design of patient-specific implants is 
fraught with new technical challenges, not least of which is 
the requirement that the implant be insertable into the host 
bone tissue, without interference. The insertability require-
ment is particularly difficult to incorporate into a design 
optimization framework because of (1) the tight-fitting 
nature of the bone-implant system, and (2) the need for a 
differentiable insertability metric.

The problem of assessing the insertability of tight-fit-
ting components has been extensively studied in the field 
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of robotics, where it is known as the peg-in-hole prob-
lem (Sacks and Joskowicz 1995). It is typically treated as 
a special instance of the general path planning problem, 
wherein the goal is to determine how to insert a movable 
body (the peg) into a stationary cavity (the hole) without 
interference (Latombe 2012). What makes the peg-in-hole 
problem challenging is that the body and cavity share nearly 
complementary geometry in the inserted configuration, 
resulting in highly constrained movement. This feature sig-
nificantly decreases the efficiency and efficacy of traditional 
path-planning strategies, especially when considering 3D 
motion and complex geometry. Traditionally, solving the 
peg-in-hole problem involves searching the space of all 
possible physical configurations (configuration space) for a 
continuous non-overlapping set of interference-free configu-
rations leading from an initial uninserted configuration to a 
final inserted configuration (Joskowicz and Taylor 1996). 
The search for an insertion path involves two tasks: (1)   
determining if a particular configuration is interference-free, 
and (2) planning a path between interference-free configu-
rations. How and when these tasks are performed is deter-
mined by the particular path-planning strategy employed. 
These strategies can be categorized as either global or local, 
based on how they explore the configuration space.

Global path planning strategies first construct and par-
tition the entire configuration space into cells, individu-
ally assessing each cell for interference. Path planning 
is performed only once the configuration space has been 
fully mapped out. These strategies are effective when the 
topography of the configuration space can be captured with 
a reasonably coarse sampling. However, for tight-fitting 
insertion problems, where the shapes are complex and the 
clearance is small, a prohibitively fine sampling may be 
required in the vicinity of the inserted configuration. This is 
exacerbated by the high computational cost of the methods 
used to assess interference, which typically involve divid-
ing the geometry into fine polyhedra and repeatedly test-
ing for overlap between the polyhedra of different bodies. 
Moreover, for tight-fitting bodies, where small incremental 
movements are required for insertion, simplification of the 
geometry or reduction of the configuration space is not pos-
sible. Therefore, techniques such as hierarchical decomposi-
tion (Faverjon 1984; Zhu and Latombe 1989), geometry sim-
plification (Hwang et al. 2003), or selective exploration of 
configuration space (Kavraki and Latombe 1994; Karaman 
and Frazzoli 2011) are not applicable, meaning that com-
plete mapping of the configuration space remains infeasible.

Local path planning strategies reduce the number of inter-
ference assessments by starting from an initial configuration 
and using local information to move toward the intended 
final configuration, mapping out the configuration space 
only as needed. Conventional local path-planning algo-
rithms, such as artificial potential fields, Dijkstra, A*, D*, 

and rapidly exploring random trees (Siciliano et al. 2008), 
are often able to plan and adapt a path based on new environ-
mental information but tend to be computationally expensive 
or become unstable in tight-fitting environments (Ayawli 
et  al. 2018). Intelligent reactive approaches search the 
configuration space more efficiently by leveraging nature-
inspired principles (Mac et al. 2016). Among these, genetic 
algorithms, artificial neural networks, and fuzzy logic have 
proven effective in navigating some specific types of envi-
ronments (Siddique and Adeli 2015).

Despite these advances, few path-planning strategies 
are efficient in navigating tight-fitting environments with 
complex geometry. One exception is a method proposed 
by Joskowicz and Taylor (1996), which specifically tar-
gets the peg-in-hole problem by exploiting the tight fit and 
known insertion direction. It works by partitioning the cav-
ity into neighborhoods. These neighborhoods, defined by 
convex polyhedra, are then used to generate a set of linear 
constraints that ensure non-interference, thereby eliminat-
ing the need for overlap tests. The algorithm seeks out a 
sequence of small movements by formulating, for each suc-
cessive movement, a linear optimization problem in which 
a move-related task function is minimized while subject to 
a set of neighborhood constraints. This method significantly 
reduces the cost of each movement. Yet, like other path-
planning approaches, it involves searching for a complete 
path, which may be made up of many individual configura-
tions, each adding to the computational cost of the insert-
ability assessment.

Related to insertability is the problem of ensuring accessi-
bility for machining. Langelaar (2019) suggested a constraint 
developed for multi-axis machining. This method assesses 
whether a particular design can be machined from a block of 
material by effectively making sure that any material to be 
removed is accessible from one of several prescribed inser-
tion directions. If a single insertion direction is considered, 
any cavity which can be created by the tool can be inter-
preted as a hole for which there exists a complementary peg. 
This method is highly efficient since the insertion path is 
known. Moreover, it provides gradient information that can 
be used in design optimization. Nonetheless, it is effective 
only when an exact rectilinear insertion direction is provided 
and rotation along the insertion path can be omitted.

In this paper, we present a novel approach that exploits 
the tight-fitting condition to assess insertability without 
computing the entire insertion path. We represent insert-
ability as a continuously differentiable function that can be 
incorporated into gradient-based optimization to ensure that, 
to the extent that is possible, the optimized design satis-
fies the insertability requirement, together with the other 
design specifications. The insertability analysis can, then, 
be performed throughout the design process, rather than as 
a validation tool.
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We formulate the insertability problem as a path-plan-
ning problem in which the object is initially fully inserted. 
The objective is to determine if there exists a path from 
this inserted configuration to some uninserted configura-
tion. We eliminate the need to construct the full path by 
exploiting the fact that the body and cavity shapes are nearly 
complementary, which is typically the case in the design 
and optimization of implants. We prove that if there exists 
any infinitesimal interference-free movement which moves 
the body slightly out of the cavity, then the object can be 
fully extracted, without interference. We demonstrate how 
our formulation can be employed as a design tool for both 
generic shape optimization and for advanced structural 
optimization.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the novel insertability metric and the related 
interference-free criterion. Section 3 presents a shape opti-
mization strategy that incorporates the insertability metric 
as a design constraint. Section 4 explores an application of 
the insertability constraint to the optimization of a patient-
specific acetabular cup for use in hip replacement surgery. 
Finally, Sects. 5 and 6 conclude with a discussion and sum-
mary of the numerical results.

2 � Insertability

Consider the perfectly complementary body-cavity sys-
tem shown in Fig.  1. If the body is slightly rotated, as 
shown, clearance will be created in some areas (green) and 

interference will be introduced in others (red). In areas with 
clearance, points along the body surface are displaced in the 
direction of the local cavity surface normal, while in areas 
with interference, they are displaced in the negative normal 
direction. If all points along the body surface move in the 
direction of the local cavity wall normal, the configuration is 
interference-free. The question thus becomes whether there 
exists such a rigid body motion. This observation eliminates 
the need for the computationally expensive geometry subdi-
vision and overlap testing commonly used to assess interfer-
ence. The following describes how interference is assessed 
mathematically.

We define the movable object B as a rigid 3D body with 6 
degrees of freedom (DOF), and the open cavity C as a fixed 
rigid 3D obstacle, as illustrated in Fig. 2. We further define 
the cavity interior I as the empty space within C, and the 
cavity exterior E as ℝ∖I . Finally, the body-cavity interface 
Γ includes the complementary surfaces of B and C, which 
are assumed perfectly coincident. We define a fixed global 
coordinate system and a movable frame associated with B.

We describe a configuration as the set (p,�) , made up of 
three displacements, p , and three rotations, � , with respect 
to the fixed coordinate frame.

In a configuration (p,�) , the position, v , of a body point, 
b is expressed as

(1)v = F(p,�) ⋅ b = Rot(�) ⋅ b + p

Fig. 1   A body-cavity system shown before and after a small body 
movement. Clearance and interference are shown in green and red, 
respectively. Local cavity surface normals are shown in yellow. Sam-
ple body surface vertices in areas with interference are displaced in 
the negative normal direction, while body surface vertices in areas 
with clearance are displaced in the positive normal direction. (Color 
figure online)

Fig. 2   Illustration of an original (left) and partitioned (right) body-
cavity system
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where Rot(�) is the rotation matrix specifying the orienta-
tion of the body.

C o n s i d e r  n ow  t h e  r i g i d  b o d y  m o t i o n 
T ∶ (p0,�0) → (p∗,�∗) , which maps from an initial configu-
ration (p0,�0) to a new configuration (p∗,�∗) . The resulting 
displacement for a point b is:

If point b is on the body-cavity interface, Γ , in (p0,�0) , rb 
may be expressed in terms of local interface normal and 
interface tangent components, �̂b and �̂b , as illustrated in 
Fig. 3:

where n̂b is defined as pointing toward the cavity interior.

2.1 � Interference‑free criterion

Interference is defined as the condition in which two bodies 
overlap at some point in space. For a continuous motion, 
starting from a tight-fitting configuration, interference 
can only initiate where both bodies were previously coin-
cident. Therefore, analysis of the instantaneous velocities 
of the bodies along their interface can predict subsequent 
interference.

Let us now consider a motion T ∶ (p0,�0) → (p∗,�∗) 
which results in an infinitesimally small movement of the 

(2)rb = F(p∗,�∗) ⋅ b − F(p0,�0) ⋅ b

(3)rb = rn
b
�̂b + rt

b
�̂b

body. If the resulting displacement rb of a point b on the 
interface Γ is positive with respect to the local normal, i.e.,

then it can be said that T is collision-free with respect to b.
For the general case in which the tangential displacement 

is non-zero, the displacements should be limited based on 
the shared local interface curvature, �b . If the local curvature 
is less than or equal to 0, the minimum normal displacement 
is unrelated to the tangential displacement. However, when 
the local curvature is positive, a purely tangential displace-
ment causes interference. In this case, a minimum normal 
displacement rn

min
 is defined based on the local interface cur-

vature, � , and the tangential displacement rt
b
 , as shown on 

the bottom right of Fig. 3. Graphically, rn
min

 is the distance 
in the normal direction n̂b from v0

b
 to the intersection of the 

local curvature circle and a line parallel to rn
b
 through the 

point v0
b
+ rt

b
t̂b . Mathematically, rn

min
 is given by:

and Eq. 4 is replaced by the general local Interference-free 
criterion

(4)rb = rn
b
�̂b, r

n
b
≥ 0

(5)rn
min

=

⎧⎪⎨⎪⎩
𝜅−1 −

�
𝜅−2(rt

b
)2

𝜅−2−(rt
b
)2

if 𝜅b > 0

0 otherwise

(6)rn
b
≥ rn

min

Fig. 3   A body-cavity system in its inserted configuration, C0 , (left) and 
a perturbed configuration, C∗ (center). The net displacement of a point 
b from v0 to v∗ of an arbitrary interface point (red) is decomposed into 

interface normal and tangent components, with respect to the interface 
in configuration C0 . The minimum normal displacement, as defined in 
Eq. 5, is shown for a case in which rn = rn

min
 . (Color figure online)
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Since we are concerned with infinitesimal displacements, the 
local curvature is not expected to change significantly from 
v0 to v∗ . The constraint is, therefore, sufficient to prevent 
interference.

If Eq. 6 is respected for all points along Γ , then T is inter-
ference-free. This can be expressed as:

To facilitate differentiability, the Kreisselmeier-Steinhauser 
(KS) function commonly employed in numerical optimi-
zation (Kreisselmeier and Steinhauser 1980; Akgun et al. 
1999; Poon and Martins 2007) is used to approximate the 
maximum function. The final Interference-free criterion is 
then expressed as:

where � is a tuning parameter, typically in the range 
100–1000.

2.2 � Path planning

Traditionally, insertability analysis requires the iterative 
computation of a complete path between the inserted and 
extracted configurations. The high computational cost associ-
ated with this process is exacerbated when full 6 DOF motion 
and complex geometry are considered. Here, we exploit the 
tight-fitting condition to circumvent the process entirely.

Consider the perfectly complementary body-cavity sys-
tem shown in Fig. 4 and an interference-free transforma-
tion T ∶ (p0,�0) → (p∗,�∗) . T is defined as non-reentrant if 
it results in an exclusively outward movement of the body 
with respect to the cavity. In other words, any point b on 
the cavity opening O in the initial configuration must either 
remain on O or move to the cavity exterior E, as a result of 
the movement T , i.e.,

If there exists a non-zero T which simultaneously satisfies 
the non-reentrance and the interference-free criteria, it can 
be proven that successive application of the same trans-
formation T on B will always be interference-free and will 
eventually lead to full extraction from the cavity. In other 
words, T describes a full interference-free extraction/inser-
tion path.

Property 1  Successive application of T on B is always 
interference-free

Proof  Consider a body point bj which initially lies inside the 
cavity interior I. The transformation T

(
(p0,�0) → (p∗,�∗), bj

)
 

(7)I = max
b∈Γ

(
rn
min

− rn
b

)
≤ 0

(8)I ≈ KS
b∈Γ

(
rn
min

− rn
b

)
=

1

�
ln
∑
b∈Γ

e�(r
n
min

−rn
b) ≤ 0

(9)v∗
b
∈ (O ∪ E), ∀ v0

b
∈ O

moves bj from v0
j
∈ I  to v∗

j
∈ (I ∪ E) . If v∗

j
∈ E , then 

T
(
(p∗,�∗) → (p∗∗,�∗∗), bj

)
 moves bj from v∗

j
 to v∗∗

j
∉ I (case 

1), since T satisfies the non-reentrance criterion. Otherwise, 
if v∗

j
∈ I (case 2), then v∗

j
 is coincident with some position vk 

corresponding to a body point bk in the initial configuration 
(p0,�0) . Since T

(
(p0,�0) → (p∗,�∗), bk

)
 was interference-

free, T
(
(p∗,�∗) → (p∗∗,�∗∗), bj

)
 is guaranteed to be interfer-

ence-free. Thus, repeated application of T on B will always 
be interference-free.

Property 2  Successive application of T on B eventually leads 
to complete extraction

Proof  Excluding the trivial zero-displacement solution, any 
transformation T which satisfies the non-reentrance constraint 
results in a portion of the body exiting the cavity. Suppose T 
moves bj from v0

j
∈ O to v∗

j
∈ E . Given that B is a single con-

tinuous entity, T moves some bk from v0
k
∈ I to v0

j
∈ O . This 

means that each application of T on B causes some portion of 
B to exit the cavity. Since B is always purely exiting, repeated 
application of T will eventually lead to the full extraction of B.

The process of assessing whether a body-cavity system 
is insertable along a path described by the movement T is 
described in Algorithm 1. The algorithm reports the degree 
of insertability, measured by the amount of interference 

Fig. 4   An illustration of both possible scenarios resulting from 
the application of transformation T to a body point bj . In case 1, bj 
moves from v0

j
 to v∗

j
 , which lies outside of the cavity interior. In case 

2, bj moves from v0
j
 to v∗

j
 , which overlaps with the position v0

k
 of some 

point bk in the initial configuration C0
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(Eq. 8. This scalar-valued metric allows an optimization 
routine to find the motion which minimizes interference.

Algorithm 1: Insertability
Input: A set of n interface vertex

coordinates Γx, unit normals Γn̂,
and curvature values Γκ, an
immersed condition function, ψ,
and a transformation T

Output: A scalar value I representing
the degree of insertability of
design x with respect to the
transformation T

1 for i ← 1 to n do
2 xi ← Γx[i]
3 n̂i ← Γn̂[i]
4 κi ← Γκ[i]
5 ψi ←LERP (ψ,xi)

6 if ψi > 0 then
7 v0 ← xi

8 v ← T (xi)
9 r ← v − v0

10 rn ← r · n̂
11 rt ← ||r|| − rn · r
12 rmin

n ← Eq.5(κi, rt)
13 I[i] ← rmin

n − rn

14 I =KS(I)

15 return I

3 � Design optimization

The proposed insertability metric, defined as the scalar out-
put of Eq. 8, can be used as an efficient design validation 
tool. However, it is most effectively used as a constraint in 
structural optimization. To demonstrate this, we formulate a 
shape/topology optimization problem, following a common 
level set approach (Andreasen et al. 2020). This formulation 
is ideally suited to the interference constraint since it pro-
vides a crisp interface and allows for an efficient representa-
tion of arbitrarily complex topology (Van Dijk et al. 2013).

The following sections describe the level set method 
and provide detail on how the insertability constraint is 
implemented.

3.1 � Design parametrization

The continuous body-cavity system is represented as a dis-
crete nodal level set field on a regular grid, as shown in 
Fig. 5. The surface geometry is defined as the zero contour 

of the level set � , with 𝜙i > 0 designating the interior of the 
body, and 𝜙i < 0 designating the exterior. The positions of 
the zero contour vertices �x are linearly interpolated from 
the nodal level set values according to:

where xp1
i

 and xp2
i

 represents the field values of the parent 
nodes, associated with �p1

i
 and �p2

i
 , respectively.

This representation provides a crisp interface and auto-
matically generates a set of sample interface points for 
assessing insertability, along with their respective surface 
normals and curvature.

3.1.1 � Interface properties

The zero contour � provides a polygonal representation of 
the smooth geometry. In spite of this, the local normal and 
curvature information at the vertices can be readily obtained 
from the gradient of the level set field:

(10)�xi
=

|�p1

i
|xp2

i
+ |�p2

i
|xp1

i

|�p1

i
| + |�p2

i
|

(11)∇�l,m,n =

[
��l,m,n

�x
,
��l,m,n

�y
,
��l,m,n

�z

]T

(12)
��l,m,n

�x
=

�l+1,m,n − �l−1,m,n

2Δx

Fig. 5   An illustration of a continuous body-cavity system (left), 
approximated as a discrete level set � (right). The level set zero con-
tour � is partitioned into interface vertices (red) and external vertices 
(black). By convention, � > 0 on the interior and � < 0 on the exte-
rior. (Color figure online)
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where �l−1,m,n and �l+1,m,n are the neighboring level set val-
ues in the x-direction. The other terms are calculated accord-
ingly for each physical dimension.

The nodal unit normal vectors are obtained by normal-
izing the local gradient, i.e.,

and the curvature is obtained as the divergence of the nor-
malized gradient field:

The zero contour unit normals �n̂ and curvature �� are inter-
polated from n̂ and � via Eq. 10.

3.1.2 � Partitioning

Finally, the body level set zero contour vertices are par-
titioned into a set of body-cavity interface vertices and a 
set of external vertices. This is achieved by converting the 
immersed region (cavity body and interior) into a level set 
�(x) , and interpolating its value at each body contour vertex. 
Positive values correspond to interface vertices and negative 
values correspond to external vertices.

The discrete field of design variables is not used directly 
as a level set. Instead, we follow the filter-projection-scaling 
method presented in (Andreasen et al. 2020) to ensure stabil-
ity and mesh independency. The three stages are described 
briefly here, for completeness.

3.1.3 � Filtering

Firstly, the raw field of design variables, s , is filtered to s̃ . 
The standard Helmholtz filter, introduced by Lazarov and 
Sigmund (2011), produces a smoothed field s̃ as the solution 
of the equation

with homogeneous Neumann boundary condition 𝜕s̃
𝜕n

= 0 
imposed on the boundary of the design domain. The radius 
parameter r defines the smoothing strength.

3.1.4 � Projection

The projection stage applies the smoothed Heaviside func-
tion frequently used in robust topology optimization (Wang 
et al. 2011), to sharpen the filtered design. This stage helps 
stabilize the optimization procedure and can be used to gen-
erate additional eroded and dilated variants, in the case of 
robust optimization.

(13)n̂ =
∇𝜙

||∇𝜙||

(14)� = ∇ ⋅

∇�

||∇�||

(15)−r2∇2s̃ + s̃ = s

where � is a threshold parameter, and � controls the steep-
ness of the projection. Throughout this work, � = 0.5 and 
� = 12.

3.1.5 � Scaling

The final scaling step ensures that � ∈ [�min;�max] , through 
linear rescaling,  i.e.,

The interval is chosen as � ∈ [−h∕2;h∕2] , where h is the 
side length of a grid element, following Sharma and Maute 
(2018) and Andreasen et al. (2020).

3.2 � Shape modification for insertability

As a first example, we consider a number of 2D and 3D body-
cavity systems and use the proposed insertability metric to 
assess whether they are insertable and, if not, determine how 
they can be modified to ensure insertability. To that end, we 
formulate an optimization problem wherein the objective is 
to minimize a cost function, defined as total shape change 
(Eq. 18, and the insertability requirement (Eq. 8) is included 
as a constraint. This formulation ensures that the design will be 
rendered insertable while changing the shape as little as possi-
ble. The optimization routine then aims to simultaneously find 
the optimal shape, together with the optimal insertion motion, 
as defined by s and T.

The shape match function is defined as:

where d(bi, S0) is the closest distance from a point bi on the 
evolving body surface to a point cloud describing the origi-
nal geometry S0 , which can be interpolated from a pre-com-
puted signed distance field. The resulting constrained opti-
mization problem is solved by mathematical programming 
using the method of moving asymptotes (MMA)  (Svanberg 
1987). The procedure for optimizing a design for insertabil-
ity is shown in Algorithm 2. It is also necessary to exclude 
the trivial solution with transformation T resulting in a triv-
ial zero displacement, as it does not guarantee insertability. 
This is achieved by imposing a constraint on the minimum 
net displacement of the body subject to T.

(16)ŝ =
tanh(𝛽𝜂) + tanh(𝛽(s̃ − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

(17)� = 𝜙min + (𝜙max − 𝜙min)ŝ

(18)FS =
1

n

n∑
i=1

|d(bi, S0)|
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Algorithm 2: Make insertable
Input: A discrete design field s0, an

immersed condition function ψ
Output: A modified design field s

1 s ← s0
2 T ← 0
3 i ← 0
4 do
5 i ← i+ 1
6 (s, T )prev ← (s, T )
7 φ ← S(P(F(s)))
8 Γx ← {(x, y, z) | φ(x, y, z = 0)}
9 Γn̂ ← { ∇φ

||∇φ|| (x, y, z) | φ(x, y, z = 0)}
10 Γκ ← {∇· ∇φ

||∇φ|| (x, y, z) | φ(x, y, z = 0)}
11 if i = 1 then Γ0

x ← Γx

12 ci ←INSERTABILITY (Γx,Γn̂,Γκ,ψ,T )

13 cd ← −DISPLACEMENT (Γx,T )

14 os ←SHAPECHANGE(Γx,Γ0
x)

15 (s, T ) ←MMA(min
(s,T )

(os), s.t.{ci, cd}≤0)

16 δ ← |(s, T )− (s, T )prev|
17 while ci > 0 | cd > 0 | δ > δmin

18 return s

Four uninsertable designs are shown in the top row of 
Fig. 6. The corresponding optimized designs are shown 
in the bottom row. In each case, the extraction direction 
is shown by an arrow, and the areas which locally violate 
the insertability constraint are highlighted in red. Once 
the iterative optimization procedure has converged, the 
shape has been modified to eliminate all local interfer-
ence. Magenta lines highlight the local shape change from 
the original design.

In the first case, the initial design is axisymmetric 
and the interference is localized around the undercuts, 
as shown. The modified design eliminates the undercuts 
to produce a straight shaft. In the second case, double-
curvature is present, resulting in three regions with local 
interference. The algorithm simultaneously eliminates the 
double-curvature and modifies the extraction direction 
to eliminate the interference. The third case is similar to 
the first and is included to show that the algorithm can 
handle complex topology such as internal cavities. In this 
instance, a flooding algorithm (Heckbert 1990) is used 
to distinguish the internal and external contours. Finally, 
case four highlights the algorithm’s ability to handle 
large rotations. In this instance, the contour is modified 
to smooth out the protrusion, while largely maintaining 
its curvature.

3.2.1 � Space‑filling

Another noteworthy feature of these results is that the 
algorithm tends to move interface inwards in some areas 
and outwards in others. In cases where both the body and 
cavity can be modified, this is adequate. However, in many 
cases, the cavity geometry is prescribed, and the objective 
may be to design a body that maximally fills the cavity. 
In this case, the space-filling version of the shape match 
function may be used:

where � and � are tuning parameters, with 𝛼 >> 𝛽 . This 
ensures that outwards changes are more expensive than 
inward changes. The same original designs presented in 
Fig. 6 are modified using the shape-filling objective. Results 
are shown in the top row of Fig. 7. In each case, the cavity 
is unchanged and the design is reduced in order to comply 
with the insertability constraint.

(19)FS∗ =
1

n

n∑
i=1

{
𝛼|d(bi, S)| if d(bi, S) < 0

𝛽|d(bi, S)| if d(bi, S) ≥ 0

Fig. 6   Various 2D body-cavity systems modified for insertability 
using Eq. 18 as the design objective. The original designs (top row) 
fail to meet the local interference-free criterion at the highlighted 
points (red). The modified designs (bottom row) are presented 
along with the local shape change from the original design, shown 
as magenta vectors. The crosshatching designates the cavity wall. 
All designs use  2 × 104 node level set meshes with a filter radius of 
r = 6 . (Color figure online)
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3.2.2 � Space‑making

We also consider a scenario in which only the cavity can 
be modified, or in which the body must at least occupy the 
same space as the original. The direction-distinguishing 
version of the shape-matching function Eq.  19 can be used 
with 𝛼 << 𝛽 . Results obtained using this space-making 
version are presented in the bottom row of Fig. 7. Here, 
the results refer to the scenario where both body and cavity 
can be modified. In the case where only the cavity can be 
modified, the modified interface would be as shown, but 
the body would remain unchanged.

3.2.3 � 3D design

The same method is equally applicable to the modification 
of 3D designs. Various 3D original and modified designs 
are presented in Fig. 8. In 3D, more complex movements 
are possible. For example, the third example involves a 
corkscrew motion about the vertical axis. The algorithm 
successfully identifies the appropriate transformation vec-
tor automatically. As for the 2D case, the space-filling and 
space-making versions may be used instead of the original 
shape-matching function. Space-making and space-filling 
results are presented in the lower half of Fig. 8. Numerical 
results for all studies are included in Table 1.

3.3 � Discussion on parameters

3.3.1 � Ease of insertion

The insertability constraint is defined as an inequality with 
the right side set to zero. This, in effect, allows for pure 
sliding motion along the body-cavity interface. In certain 
applications, such as in automated assembly, this can result 
in designs that are difficult to insert. If, for example, the 
body and cavity have rough surfaces, the resulting friction 
may require high forces or prevent insertion entirely. This 
can be addressed by setting the right side of the inequal-
ity constraint to � ≤ 0 . Figure 9 shows how the design of a 
straight bar is affected for various values of �.

3.3.2 � Filter radius

A minor issue highlighted by these results is the unneces-
sary dilation near the cavity opening. This results from the 
filtering stage described above. While it may be possible 
to eliminate this issue by increasing the tuning parameters 
in the projection stage, it is generally sufficient to replace 
the exterior portion of the modified design with that of the 
original, as shown in Fig. 9d.

We note that in some cases, the modified design does not 
maximally fill the cavity. In cases 2 and 3, for example, the 
implant should touch the bottom of the cavity, but does not. 
This is likely related to the filtering and may be addressed by 
either adjusting the tuning parameters or refining the level-
set grid.

3.4 � Convergence

The convergence history for a selection of the case studies, 
chosen at random, is shown in Fig. 10. In all cases, the inter-
ference constraint is initially normalized. The optimization 
history reveals a generally smooth evolution in which the 
design is first changed significantly at the expense of the 
objective function, in order to bring the interference con-
straint below zero. Subsequent iterations minimize the shape 
match objective. The optimization tends to converge within 
less than 100 iterations. Note that in the 2D case (Fig. 7a), 
the observed instability between iterations 75 and 110 results 
from a coarse mesh discretization and a large step size.

4 � Application to the design of acetabular 
cups

Orthopedic implants are medical devices used to replace 
damaged or missing bone tissue in an effort to improve 
the patient’s mobility, reduce pain, and generally improve 
quality of life. Traditional implant systems include a set of 

Fig. 7   Results obtained by applying the space-filling (top row) and 
space-making (bottom row) objectives to the original designs from 
Fig. 6
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generic implant shapes and sizes to help find the best fit. 
However, patient-specific implants (PSI), designed accord-
ing to a patient’s unique anatomy, may offer better outcomes 
than their traditional counterparts. Some of the expected 
benefits of patient-specific implants include: better posi-
tional accuracy of the joint, reduced risk of complications, 
and reduced recovery times (Small et al. 2014; Spencer-
Gardner et al. 2016; Maniar and Singhi 2014).

A particularly challenging aspect in the design of patient-
specific implants is the need to optimize functional compat-
ibility between the implant and the surrounding bone tissue, 
while also ensuring that the implant can be inserted without 
causing damage to itself or to the peri-prosthetic tissue. The 
method presented in this work is ideally suited to address 
these potentially conflicting design objectives. In this sec-
tion, we demonstrate how our insertability constraint can 

Fig. 8   Various 3D body-cavity systems modified for insertability 
using Eq. 18 as design objective. The original designs (top row) fail 
to meet the local interference-free criterion at the highlighted areas 
(left). The modified designs (bottom rows) are presented along with 
the local shape change from the original design (right). Red and green 

refer to added and removed material, respectively. The third and 
fourth rows use the space-filling and space-making variations of the 
shape-match functions. All designs were generated on  500,000 node 
level set meshes with a filter radius of r = 4 . (Color figure online)
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be applied to the design of an acetabular cup, considering 
both geometric and structural objectives, via finite element 
analysis (FEM).

The acetabular cup is the female component of a hip 
replacement implant (Fig. 11). It is a typically hemispheri-
cal component that is placed in the acetabulum, which is the 
socket of the pelvis that forms the hip joint. Traditionally, 
orthopedic surgeons determine the ideal diameter of the cup 
from a range of options, based on patient-specific measure-
ments. However, since the surface of the acetabulum is not 
perfectly hemispherical, there is always some morphological 
mismatch between the cup and the acetabulum. This mis-
match may reduce the implant’s stability and cause damage 
to the surrounding cortical bone.

As a first approach, we can apply the shape-matching for-
mulation subject to our insertability constraint, as described 
above. However, we must first generate a morphologically 
matched implant design to use as a starting point. This 
can be achieved by performing a CT scan of both hips and 
extracting the difference between the healthy and defec-
tive anatomy. If both hips are anatomically defective, we 
may use a computational model to obtain an approximate 
reconstruction of the original healthy bone. In this work, 
we use a pre-processed set of defective and reconstructed 
pelvis geometry obtained from Meynen et al. (2020). The 
defective pelvis, which is classified as type IIA according to 
the Paprosky classification system, is reconstructed using 
a statistical shape model based on data from 90 patients. 
By comparing the defective geometry, shown in Fig. 12a 
with the reconstructed healthy geometry, shown in Fig. 12b, 
we can identify the missing acetabular tissue and the ideal 
bone-implant contact surface. The missing tissue geometry 
is then used to create an implant with a perfectly matching 
bone contact surface, as well as the required hemispherical 
bearing surface for the synthetic joint, as shown in Fig. 13.

Results of the design process are presented in Fig. 14. 
Each column shows a different view of the implant-bone 
contact surface. The top row shows the values of the local 
insertability metric. The areas which prevent insertability 
are highlighted with circles. The bottom row shows the opti-
mized implant with the local shape change shown in red 
and green. In this case, since cortical bone tissue can be 
resected but not added, green areas represent gaps between 
the implant and the bone. We can observe that the shape 
changes are concentrated on either side of the implant and 
that, for each, inwards and outwards changes are paired. This 
coupling makes the local surface parallel to the insertion 
direction, as would be expected for the nearly linear inser-
tion path shown.

If indicated, space-filling and space-making may be used 
instead. The space-filling design will preserve as much of the 
cortical bone tissue as possible but will result in some mor-
phological mismatch. On the other hand, the space-making 

Fig. 9   a–c Three versions of a straight rod, each modified for inserta-
bility with different � values. From left to right, � = 0 , � = −1 × 10−2 , 
� = −1 × 10−1 . d Shows how the exterior portion of the design in c 
can be overwritten with the original geometry from a 

Fig. 10   Optimization history for three case studies, one for each of 
the 2D, 3D and 3D acetabular cup sets
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design will ensure a perfect contact surface but requires 
some bone resection.

Beyond the purely geometric shape-matching functions, 
more sophisticated objectives based on structural analysis of 
the bone-implant system may be considered. For example, 
we may aim to minimize the risk of implant slipping and 
loosening by assessing the global Hoffman failure criterion 

Hoffman (1967). This function assesses the local risk of 
interface fracture based on the cortical bone properties and 
the local stress conditions throughout the interface. With 
the Hoffman index set as the optimization objective and the 
insertability criterion set as the only constraint, and reduc-
tion in the Hoffman index of 94% is achieved (Fig. 15). The 
Hoffman criterion and the associated finite element methods 

Fig. 11   An illustration of the total hip replacement (THR) procedure 
with a generic hemispherical acetabular cup. Reaming ensures proper 
contact between the bone and cup along the exterior, but pockets are 

present on the interior. Screws (not shown) may be included to help 
stabilize the cup

Fig. 12   a A Paprosky classification type IIA defective pelvic bone extracted from CT data, b the reconstructed healthy bone obtained using the 
statistical shape modeling by Meynen et al. (2020, c the defective pelvic bone with the recovered acetabular tissue highlighted
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are presented in Garner et al. (2022). Details regarding loads 
and boundary conditions are included in “Appendix A”.

5 � Discussion

The preceding examples demonstrate that the proposed 
insertability constraint can effectively and efficiently restrict 
the design of complex 2D and 3D structures subject to vari-
ous geometry and structural requirements.

The method is implemented in MATLAB R2023a. All 2D 
and 3D results presented were computed on a laptop com-
puter with M1 Max processor and 64 GB LPDDR5 RAM. 
The 2D shape optimization was performed with approxi-
mately 20,000 design variables and required 30–50 itera-
tions, each performed in approximately 0.6 s. The 3D results 
were performed with approximately 500,000 variables and 
required 40–100 iterations, at 8–10 s per iteration. Compared 
with our MATLAB implementation of the method presented 
by Joskowicz and Taylor (1996), the 2D insertability assess-
ment was performed approximately 70× faster, primarily due 
to the computation of a complete insertion path.

The level set-based optimization framework proved 
highly effective as a host for the insertability constraint. 
Performance improved monotonically throughout the opti-
mization procedure and converged in less than 100 iterations 
for all the experiments. The algorithm proved capable of 
handling complex topology and cases with large rotations in 
both 2D and 3D. No parameter tuning was required between 
numerical studies.

5.1 � Limitations

The main limitation of the insertability metric is that it 
reduces the cavity to an interface curve (2D) or surface 

(3D), thereby ignoring possible interference between the 
fixed cavity body and the external/extracted portion of the 
moving body. For this reason, under certain circumstances, 
the insertability criterion may potentially produce false 
positive results. Handling of this special case may require 
additional constraints and is left as a challenge for future 
research.

5.2 � Notes on implementation

For problems in which significant rotation is required for 
insertion/extraction, it is critical to choose an appropriate 
reference frame origin. Otherwise, the sensitivities of the 
constraint with respect to the rotations in � may become very 
large. This is generally avoided by setting the origin to the 
centroid of the initial design.

The insertability constraint tends to be sensitive to the 
filter radius. In particular, significant instability has been 
observed for r < 4 . While a relatively large filter radius does 
tend to reduce the design complexity for a given grid size, 
sharper projection and finer grid resolution help mitigate 
this issue.

In a real-world application, designs should take into 
account manufacturing-related uncertainties. Methods such 
as the one presented by da Silva et al. (2019) help account 
for local defects on internal stresses. In the case of the pro-
posed insertability constraint, small surface imperfections 
may impede insertion. We demonstrated how this can poten-
tially be mitigated by tailoring the ease of insertion param-
eter � . However, a perfect fit in the inserted configuration 
remains tied to the accuracy of the manufactured compo-
nents. For this reason, manufacturing uncertainty should be 
incorporated into the optimization framework, alongside the 
insertability constraint.

Fig. 13   The initial implant level set based on the geometry of the missing acetabular tissue. The bone-implant interface is highlighted in blue 
while the modified spherical bearing surface, required for finite element analysis, is highlighted in red. (Color figure online)
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Fig. 14   Row 1: Original implant design with local interference shown. 
Row 2: Implant modified using the standard shape-matching objective. 
Row 3: Implant modified using the space-filling objective. Row 4: 
Implant modified using the space-making objective. The added mate-

rial (red) corresponds to local bone tissue resection, and the removed 
material (green) corresponds to gaps with the surrounding bone tissue. 
Vin and Vout represent the total inward and outward volumetric change, 
normalized to the initial design volume. (Color figure online)
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6 � Conclusion

We have demonstrated that the proposed insertability met-
ric is able to efficiently assess the insertability of complex 
body-cavity systems, taking into account full 6 DOF motion. 
Beyond its use as a validation tool, the insertability metric 
can be applied as a constraint in the design and optimiza-
tion of functional components where geometric or struc-
tural objectives are considered. The level set-based for-
mulation allows for straightforward integration with many 
topology optimization approaches. Future work will focus 
on applying the insertability constraint to multi-scale opti-
mization in which both the overall shape and the internal 
microarchitecture of the architected material are optimized 
simultaneously.

Appendix A: Finite element methods

The finite element analysis used to assess the risk of inter-
face fracture is based on an enriched XFEM model with 
second-order displacement discontinuities along the bone-
implant interface. The fixed isometric grid is extended from 
the design level set grid to encompass the entire pelvic bone 
and is comprised of tri-linear hexahedral elements with 1.45 
mm side length. A detailed description of the XFEM strat-
egy can be found in Moës et al. (1999).

In order to assess the stress conditions along the bone-
implant interface, appropriate loads and boundary con-
ditions are essential. Ghosh et al. (2015) proposed mod-
eling both the sacroiliac joint and pubic symphysis as fully 
constrained. Instead, we apply an in-plane constraint on 

Fig. 15   The original (top row) and modified (middle row) implant 
designs colored according to the local risk of interface fracture from 
Garner et  al. (2022). In the bottom row, the local shape change is 

shown in terms of added (red) and removed (green) material.Vin and 
Vout represent the total inward and outward volumetric change, nor-
malized to the initial design volume. (Color figure online)
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the pubic symphysis, which, we argue, more accurately 
reflects the bilateral symmetry of the full pelvis. The joint 
reaction force is distributed on the implant’s inner sur-
face, following the elastic body bearing pressure model 
described in Popov et al. (2019). All loads and boundary 
conditions are shown in Fig. 16. The total magnitude and 
orientation correspond to the walking case described in 
Heller et al. (2005).

Approximate bone densities and mechanical properties 
are mapped from the CT scan. Densities are obtained by 
linearly rescaling the Hounsfield values to a typical range 
of [0.04; 1.9] g cm−3 in accordance with Dalstra et al. 
(1993). The elastic moduli are then interpolated from the 
densities according to Morgan et al. (2018). The density-
dependent material strengths used to assess the Hoffman 
failure risk index are computed as per Stone et al. (1983).

Appendix B: Sensitivity analysis

In order to use the insertability function in an optimization 
setting, we require the sensitivities with respect to the field 
of design variables. They are computed analytically with 
respect to the processed design variables as:

where the partial sensitivities of the local interference func-
tion at each vertex i are:

(B1)
�F

��j

=
1∑
e�fi
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��j

Table 1   Problem parameters 
and performance values for each 
numerical experiment

The insertability metric values are normalized with respect to the mean body displacement, and the Hoff-
man risk index is normalized to that of the original design

Figure  Parameters Initial insert Î
0

Final shape change  Hoffman risk

� � � In Out Total Initial Final

6a 1 1 0 0.5049 0.0379 0.0510 0.0889 – –
6b 1 1 0 0.0456 0.0887 0.1116 0.2003 – –
6c 1 1 0 0.0811 0.0253 0.0258 0.0511 – –
6d 1 1 0 0.0814 0.0578 0.0443 0.1020 – –
7a 1 1 × 10

2 0 0.5049 0.0635 0.0056 0.0691 – –
7b 1 1 × 10

3 0 0.0456 0.2871 0.0122 0.2994 – –
7c 1 1 × 10

2 0 0.0811 0.1758 0.0185 0.1943 – –
7d 1 1 × 10

2 0 0.0814 0.0306 0.0009 0.0315 – –
7e 1 × 10

3 1 0 0.5049 0.0021 0.2213 0.2234 – –
7f 1 × 10

3 1 0 0.0456 0.0004 0.3192 0.3196 – –
7g 1 × 10

3 1 0 0.0811 0.0007 0.0363 0.037 – –
7h 1 × 10

3 1 0 0.0814 0.0022 0.0669 0.0691 – –
8a 1 1 0 0.2560 0.1179 0.0776 0.1955 – –
8b 1 1 0 0.6158 0.0955 0.1082 0.2037 – –
8c 1 1 0 0.1906 0.0343 0.0170 0.0513 – –
8d 1 × 10

3 1 0 0.2560 0.0700 0.0022 0.0721 – –
8e 1 × 10

3 1 0 0.6158 0.3305 0.0061 0.3366 – –
8f 1 × 10

3 1 0 0.1906 0.0549 0.0002 0.0551 – –
8g 1 1 × 10

2 0 0.2560 0.0009 0.1539 0.1548 – –
8h 1 1 × 10

2 0 0.6158 0.0002 0.2957 0.2959 – –
8i 1 1 × 10

2 0 0.1906 0.1729 0.0000 0.1730 – –
9a 1 1 0 0 0 0 0 – –
9b 1 1 − 5 × 10−3 0 0.0794 0.0648 0.1442 – –
9c 1 1 × 10

2 − 1 × 10
−2 0 0.1443 0.1251 0.2694 – –

14(1) 1 1 0 0.0455 0.0315 0.0261 0.0576 1 9.946
14(2) 1 1 × 10

2 0 0.0455 0.0640 0.0007 0.0647 1 7.843
14(3) 1 × 10

3 1 0 0.0455 0.0004 0.0704 0.0708 1 0.794
15 – – – 0.0455 0.0647 0.0240 0.0888 1 0.075
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Finally, the sensitivities of the interpolated vertex position bi 
and gradient ∇�i are equal to zero everywhere except at their 
respective edge parent nodes p1 and p2, for which:

and

where x represents either bi or ∇�i.
Note that these sensitivities are computed with respect to 

the processed design variables � . To obtain the sensitivities 
with respect to the actual design variables, the chain rule is 
applied.

Additionally, to automatically determine the appropriate 
extraction direction, we require the sensitivities with respect 
to the transformation T.
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Fig. 16   An illustration of the loads and boundary conditions applied 
on the pelvis-implant system. The pelvis is fully fixated along the sac-
roiliac joint, and an in-plane constraint on the pubic symphysis pre-
vents motion in the lateral direction. The implant-acetabulum inter-
face is modeled as fully bonded. A joint reaction force corresponding 
to the walking case described in Heller et al. (2005) is distributed on 
the spherical contact surface, following the elastic body bearing pres-
sure model described in Popov et al. (2019)
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where ej is a null 3 × 1 vector with 1 at index j
The sensitivities of the shape-matching functions are 

given as:

where 𝜁 = 𝛼 ∀d(bi, S) < 0 and � = � ∀d(bi, S) ≥ 0
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