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Abstract
This work presents an efficient parallel geometric multigrid (GMG) implementation for preconditioning Krylov subspace 
methods solving differential equations using non-conforming meshes for discretization. The approach does not constrain 
such meshes to the typical multiscale grids used by Cartesian hierarchical grid methods, such as octree-based approaches. It 
calculates the restriction and interpolation operators for grid transferring between the non-conforming hierarchical meshes 
of the cycle scheme. Using non-Cartesian grids in topology optimization, we reduce the mesh size discretizing only the 
design domain and keeping the geometry of boundaries in the final design. We validate the GMG method operating on 
non-conforming meshes using an adaptive density-based topology optimization method, which coarsens the finite elements 
dynamically following a weak material estimation criterion. The GMG method requires the generation of the hierarchical 
non-conforming meshes dynamically from the one used by the adaptive topology optimization to analyze to the one coars-
ening all the mesh elements until the coarsest level of the mesh hierarchy. We evaluate the performance of the adaptive 
topology optimization using the GMG preconditioner operating on non-conforming meshes using topology optimization 
on a fine-conforming mesh as the reference. We also test the strong and weak scaling of the parallel GMG preconditioner 
with two three-dimensional topology optimization problems using adaptivity, showing the computational advantages of the 
proposed method.

Keywords  Geometric multigrid · Adaptivity · Parallel computing · Topology optimization

1  Introduction

Topology optimization techniques provide the optimal 
material distribution with prescribed mechanical proper-
ties from scratch, i.e., without making any assumptions 
about the design configuration. Accordingly, these power-
ful techniques apply to several applications (Deaton and 
Grandhi 2014). We adopt a density-based topology optimi-
zation approach to evaluate the proposed geometric multi-
grid (GMG) method to accelerate it using adaptive mesh 

refinement (AMR) techniques. In particular, we adopt the 
Solid Isotropic Material with Penalization (SIMP) method 
(Zhou and Rozvany 1991). This method models the material 
properties interpolating between empty and solid by linking 
the elastic modulus of elemental stiffness and the design 
variables. Such an approach allows us to use optimization 
approaches based on the gradient. A key advantage of SIMP 
formulation is that it uses the same mesh during the topology 
optimization. This fact facilitates the concurrent implemen-
tation of the parallel stages of the method. We can affirm that 
SIMP formulation is the most attractive and implemented 
approach in commercial software, presumably due to its 
simpleness concerning other formulations.

The number of optimization variables is crucial in the 
topology optimization process. We usually obtain more 
accurate results using finite element analysis (FEA) with 
more refined meshes. A more precise structural response 
also provides more accurate evaluations of the objective 
function. Using more refined meshes also permits us to 
capture more details in the optimization, increasing the 
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performance of the final design. However, high-resolution 
models require solving a high system of equations whose 
resolution is a considerable computational challenge (Ven-
kataraman and Haftka 2004). Another problem in density-
based topology optimization is the mechanical penalization 
of the modulus of elasticity of finite elements. The weak 
phase mimicking void material prevents the singularity of 
the stiffness matrix but induces errors in the FEA (Allaire 
et al. 2004). Besides, the system of equations becomes more 
and more badly conditioned as the discretization size tends 
to zero (Dambrine and Kateb 2010), which can be a high 
obstacle in the optimization problem.

We can improve the efficiency of the SIMP method using 
different strategies. We refer to the rescaling of the system 
of equations to reduce the condition number (Wang et al. 
2007), the approximate reanalysis in some topology optimi-
zation iterations (Amir et al. 2009; Long et al. 2019), the use 
of low-accurate approximations of the solution of the system 
response (Amir et al. 2010), the efficient preconditioning for 
calculating the system response (Amir et al. 2014), and the 
reduction of the degrees of freedom (DoFs) of the system 
response (Zheng et al. 2020) using a gray-scale suppres-
sion method (Groenwold and Etman 2009). Multiresolution 
schemes decoupling analysis and design discretization are 
also rewarding. These methods use a coarse mesh for ana-
lyzing and a fine mesh for optimizing (Nguyen et al. 2010; 
Liu et al. 2018b). However, there is a dependency between 
the design variables and the finite elements used to estimate 
the system response, limiting the type and order of such 
finite elements depending on the design variable resolution 
(Gupta et al. 2020).

We also can improve computing performance using high-
performance computing (HPC) techniques for addressing 
large-scale problems. We can mention the acceleration of 
the computationally intensive stages of the SIMP method 
using multi-core (Borrvall and Petersson 2001; Vemaganti 
and Lawrence 2005; Liu et al. 2019; Zhang et al. 2021) and 
many-core (Martínez-Frutos et al. 2015; Martínez-Frutos 
and Herrero-Peréz 2016; Martínez-Frutos and Herrero-
Pérez 2017; Herrero-Pérez and Martínez-Castejón 2021) 
computing techniques. Recently, Liu et al. (2022) also use 
multi-core computing techniques to address and accelerate 
large-scale structural topology optimization using the level 
set method (LSM), including unstructured meshes (Lin et al. 
2022).

We also can reduce the computing burden and increase 
the accuracy of system response using AMR techniques 
(Vogel and Junker 2021). These methods increase and 
decrease the tessellation size in the regions of interest. They 
use an error estimator for determining such areas of interest, 
roughening less important areas or refining them to reduce 
the error in the areas of interest. It is possible to use AMR 
techniques considering error estimators based on the system 

response estimation and the variables used for the topol-
ogy optimization (Wang et al. 2014). The resolution of the 
system of equations of elasticity provides the accuracy of 
the system response, and the number of design variables 
permits us to capture more details in the final design. One 
can use error estimators to enhance the approximation of 
a concerning measure in topology optimization, e.g., the 
stress estimation in stress-constrained topology optimization 
using AMR (Salazar de Troya and Tortorelli 2018, 2020). 
Another option is refining the interface in topology optimi-
zation for a better interface definition (Nana et al. 2016). In 
our case, increasing the accuracy of the system response for 
calculating compliance does not modify the final design sig-
nificantly. Thus, we adopt a coarsening strategy of the weak 
material based on the design variables of the density-based 
topology optimization approach to increase the computing 
performance.

We generally regard multigrid methods as the most suit-
able and efficient technique to solve large equation sys-
tems (Peetz and Elbanna 2021). We usually employ these 
methods for preconditioning a Krylov subspace solver (Li 
et al. 2021) in topology optimization problems. Aage et al. 
(2015) propose the GMG preconditioning for a generalized 
minimal residual (GMRES) iterative solver to address large-
scale density-based topology optimization problems (Aage 
et al. 2017). They use the DMDA interface of PETSc (Balay 
et al. 2022) for parallel refining and coarsening the Cartesian 
hierarchical grids needed by the GMG V-cycle. Liu et al. 
(2018a) restrict the calculation of the system response to 
a narrow band around solid regions in an adaptive SIMP 
approach. The authors adopt a parallel matrix-free instance 
of a GMG method for preconditioning a Krylov subspace 
solver using shared memory. The matrix-free implemen-
tation permits them to omit the on-the-fly calculation on 
large void regions, improving the computing performance 
significantly.

We can find in the literature some works using paral-
lel GMG methods coupled with AMR techniques to solve 
variable-coefficient elliptic partial differential equations 
(PDEs) efficiently. The early work of Sampath and Biros 
(2010) proposes a parallel global coarsening and refinement 
algorithm for constructing balanced coarse octrees, transfer-
ring the information among successive multigrid levels in 
parallel using PETSc (Balay et al. 2022) with MPI standard. 
They use such functionalities to implement a parallel GMG 
method for solving elliptic PDEs using finite elements on 
octree-based discretizations. The recent work of Clevenger 
et al. (2021) presents a parallel implementation of an adap-
tive GMG method used for preconditioning Krylov sub-
space solvers. The proposal is not constrained to quadtree 
or octree meshes performing the GMG cycle on adaptively 
refined meshes. The implementation is available as part of 
the deal II finite element library (Arndt et al. 2021). The 
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parallel instance showed relevant computational advan-
tages for three-dimensional elasticity problems compared 
to algebraic multigrid (AMG) solvers. To the best of the 
authors’ knowledge, adaptive GMG methods have not been 
previously used to address topology optimization using non-
conforming meshes, where we can find relevant difficulties, 
such as the contrast between void/solid material, which can 
deteriorate the convergence severely.

We use the SIMP method with dynamic parallel AMR 
techniques to evaluate the performance of the adaptive par-
allel GMG preconditioner. This GMG method operates on 
the non-conforming hierarchical meshes of the GMG cycle 
scheme for preconditioning Krylov space solvers. The adap-
tive topology optimization method used for evaluating the 
adaptive GMG method provides an analogous design to the 
one obtained on a uniform conforming mesh with a lower 
computing cost (Baiges et al. 2019). The GMG method 
operating on the non-conforming hierarchical meshes per-
mits us to evaluate the objective function on a dynamically 
coarsened mesh efficiently, improving the convergence of 
the Krylov space solver by providing extra geometric infor-
mation. We have to remark that the analysis using finite 
elements is the more expensive stage of the SIMP process. 
Following (Herrero-Pérez et al. 2022), we use a fine mesh 
to regularize the design variables, compute the sensitivi-
ties, and optimize. On the other hand, we use a dynamically 
coarse mesh for the FEA (Zave and Rheinboldt 1979) using 
local criteria based on the values of the density field. This 
strategy achieves significant computational improvements in 
the approach used to evaluate the adaptive GMG precondi-
tioner, especially configuring a small target volume because 
the density field is highly composed of void material after a 
few topology optimization iterations.

The adaptive GMG method roughs and refines the hier-
archical non-conforming meshes from and to the coarsest 
level of the mesh hierarchy for each topology optimization 
iteration. This strategy permits us to reintroduce coarsened 
areas in previous topology optimization iterations. We also 
have to recalculate the restriction and interpolation operators 
for grid transferring between the non-conforming meshes 
of the GMG cycle scheme (setup stage) at all topology opti-
mization iterations. The restriction and interpolation opera-
tors are the same for all the topology optimization iterations 
using conforming multiscale grids in the SIMP method. 
Thus, we have to find a trade-off between the performance 
improvement reducing the DoFs of the system response and 
the cost of recalculating the setup stage of the GMG method 
at each topology optimization iteration. We use the adap-
tive GMG method for preconditioning a parallel conjugate 
gradient method for calculating the structural response on 
the dynamically coarsened mesh. Finally, we evaluate the 
strong and weak scaling of the proposal for different three-
dimensional problems.

We structure the remainder of the paper as follows. Sec-
tion 2 describes the distributed density-based framework 
used to evaluate the parallel and adaptive GMG method for 
preconditioning Krylov subspace solvers. It also reviews 
the theoretical background of the SIMP method, introduces 
the AMR approach, and details the distributed implemen-
tation of the Krylov subspace solver. Section 3 presents 
the adaptive GMG approach using mesh transfer opera-
tors between the hierarchical non-conforming meshes in 
the GMG cycle scheme. Section 4 shows the experiments 
testing the efficiency and scalability of the adaptive GMG 
method for preconditioning the Krylov solver in the adaptive 
SIMP approach. Finally, Sect. 5 presents the conclusion of 
the proposed adaptive and parallel GMG implementation 
for improving the computing performance of the system 
response in adaptive topology optimization.

2 � Parallel adaptive approach

2.1 � Problem formulation

The SIMP method relaxes the solid/void topology optimiza-
tion problem by modeling the material properties interpo-
lating between empty and solid, characterizing composite 
materials (Bendsøe and Sigmund 1999). This approach links 
the elastic modulus of elemental stiffness and the continuous 
design variables � , modeling the void material as � = 0 and 
the solid one with � = 1 . We use structural compliance in the 
formulation of the optimization problem as follows

where f is the objective function, K is the global stiffness 
matrix, U and F are the displacement and force vectors, 
E( ̄̃𝜌e) is the artificial elastic modulus of an element, E0 and 
Emin > 0 are the elastic modulus for solid and void mate-
rial, respectively, VT is the total volume without material 
penalization, and V∗ is the objective target volume. Lower-
case symbols represent the element-wise quantities, ve is the 
volume of each element e, and ke = E( ̄̃𝜌e)�

�

�
 is the element 

stiffness matrix, being ��
�
 the element stiffness matrix with 

E0 elastic modulus.
The topology optimization problem formulated as com-

pliance minimization is ill-posed. We impose a length 
scale constraint by filtering the design field �(x) into 𝜌̃(x) 
to obtain a well-posed problem, proving Bourdin (2001) 

(1)

min
𝝆

f
�
̄̃𝝆
�
= F

T
U = U

T
KU =

�

e

�
�

T
�
�
�
�

s. t.: KU = F

∶ E
�
̄̃𝜌e

�
= Emin + ̄̃𝜌p

e

�
E0 − Emin

�

∶

∑
e
̄̃𝜌eve

VT

− V∗ ≤ 0, 𝜌(x) ∈ [0, 1],
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the existence of solutions in this setting. We adopt the 
conic filter introduced by Bruns and Tortorelli (2001) for 
regularizing the density field by the mean of a convolution 
operator. In particular, we perform the convolution product 
of the filter F and density � functions as follows

where BR denotes the open ball of radius R > 0 , and the 
filter function satisfies F ≥ 0 ∀ x ∈ BR . The filter requires 
that the volume is the same for the filtered and unfiltered 
field, and thus the volume constraint can be imposed on the 
latter (Lazarov and Sigmund 2011). We usually replace the 
expression (2) by

where �̃ represents the filtered design field, Ne is the neigh-
borhood set of elements lying within the radius R, and w(⋅) is 
the weighting function w(�

�
) = R − ‖�

�
− �

�
‖ , where xi is the 

centroid coordinate of the element e, and �
�
 is the centroid 

coordinate of the neighborhood set of elements lying within 
the radius R respecting to xi.

We use the volume-preserving Heaviside filter pro-
posed by Xu et al. (2010) to prevent blurred boundaries 
in the material interface projecting to full or empty ̄̃𝜌(x) 
the regularized design variables 𝜌̃(x) . This filter combines 
the original Heaviside filter (Guest et al. 2004) and the 
modified Heaviside filter proposed by Sigmund (2007). 
It projects the regularized design variables �̃ above the 
threshold � to solid and below the � value to empty. We 
use the threshold function

where the � parameter controls the smoothing operator 
(Wang et al. 2011). We obtain a similar design using � = 0 
to the Heaviside step filter proposed by Guest et al. (2004), 
ensuring a minimum length scale on the solid material dis-
tribution. If we use � = 1 , we generate a design similar to the 
one obtained using the modified Heaviside filter suggested 
by Sigmund (2007), providing a minimum length scale on 
the empty design.

We calculate the sensitivity of (1) to the design variable 
� using the chain rule as follows

(2)𝜌̃(x) = (F ∗ 𝜌)(x) = ∫ F(x − x�)𝜌(x�)dx�

(3)∫BR

F(x)dx = 1

(4)𝜌̃e =

∑

i∈Ne

w(xi)vi𝜌i

∑

i∈Ne

w(xi)vi

(5)̄̃𝜌e =
tanh(𝛽𝜂) + tanh(𝛽(𝜌̃e − 𝜂))

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))
,

obtaining the different terms as

where we use the element-wise relationship of the expres-
sion 𝜕U

𝜕 ̄̃𝜌
= −K−1 𝜕K

𝜕 ̄̃𝜌
U obtained by deriving the expression 

K( ̄̃�)U( ̄̃�) = F from the regularized and projected physical 
design field ̄̃�.

We use the Method of Moving Asymptotes (MMA) sug-
gested by Svanberg (1987) as the optimization approach for 
its parallel scalability (Aage and Lazarov 2013). This opti-
mization approach addresses inequality-constrained optimi-
zation problems, as formulated in (1), solving a set of convex 
subproblems rather than resolving the non-linear one.

2.2 � Adaptivity

We use the approach proposed by Červený et al. (2019) for 
calculating the system response on non-conforming meshes. 
Non-conforming meshes are meshes containing at least one 
hanging node. Hanging nodes are vertices inside an edge or 
a face for 2D and 3D cases, respectively. We refer to mas-
ter entities as the ones containing other slave entities. The 
AMR approach decouples the adaptivity and the equation 
governing the system’s behavior by removing constrained 
degrees of freedom (DOFs). This method requires solving 
a linear system of equations similar to (1), whose solution 
approximates �

�
 . Assuming that slave entities have hanging 

nodes with independent DOFs of their master DOFs in non-
conforming meshes, we can restore the conformity in the 
interfaces containing hanging nodes restricting slave DOFs 
by interpolating the finite element functions of their masters.

We can obtain the solution Ûh in the non-conforming 
mesh as

(6)
𝜕f
(
̄̃𝜌
)

𝜕𝜌i
=

𝜕f
(
̄̃𝜌
)

𝜕 ̄̃𝜌e

𝜕 ̄̃𝜌e

𝜕𝜌̃e

𝜕𝜌̃e

𝜕𝜌i
,

(7)

𝜕f
(
̄̃𝜌
)

𝜕 ̄̃𝜌e
=�

�

T
�
�

𝜕�
�

𝜕 ̄̃𝜌i
= −�

�

T
�
�
�
−�
�

𝜕�
�

𝜕 ̄̃𝜌
�
�

= − �
�

Tp ̄̃𝜌
p−1

e

(
E0 − Emin

)
�
�

�
u

(8)
𝜕 ̄̃𝜌e

𝜕𝜌̃e
=

𝛽(sech(𝛽(𝜌̃e − 𝜂)))2

tanh(𝛽𝜂) + tanh(𝛽(1 − 𝜂))

(9)
𝜕𝜌̃e

𝜕𝜌i
=

w(xi)vi∑

i∈Ne

w(xi)vi

(10)Ûh = �
�
�

�
=

(
�

�

�
�

)
with �

�
=

(
I

W

)
,
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where �� ∈ ℝd , �� ∈ ℝd̂−d with d̂ > d represents all slave DOFs 
that we can evaluate by the linear interpolation �

�
 = W �

�
 

using the interpolation operator W , I is the identity matrix, 
and �

�
 is the conforming prolongation matrix.

We can assemble the stiffness matrix K̂ and load vec-
tor F̂ obviating the hanging nodes in the non-conforming 
mesh. Solving the linear system K̂Ûh = F̂ , we obtain a non-
conforming solution where the slave DOFs are not restricted. 
We can then interpolate Ûh using the conforming prolonga-
tion matrix �

�
 to calculate the solution �

�
 . We refer to the 

work of Červený et al. (2019) and the implementation of the 
AMR method using the Mfem (Anderson et al. 2021) and 
Hypre (Hypre 2021) libraries for the details of the construc-
tion of the �

�
 operator.

The adaptive topology optimization approach gener-
ates a set of consistent nested non-conforming meshes tes-
sellating the domain � into the l = {0,… , L} mesh levels 
with {Gl

i
}
nl
e

i=1
 the mesh of nl

e
 elements for the level l and 

Ω = ∪
n0
e

i
G0

i
= ⋯ = ∪

nL
e

i
GL

i
 . The hierarchical meshes satisfy 

GL ⊂ ⋯ ⊂ G0 , where G0 is the coarse mesh, and GL is the 
fine one.

The AMR technique requires some criteria to find the regions 
on which to perform the coarsening and refinement operations. 
We choose the regions with weak material as regions of inter-
est because they contribute meaningfully to the ill-conditioning 
of the system of equations to solve but little to the precision of 
the objective function estimation. For these reasons, coarsening 
these void material regions can increase computing performance 
meaningfully (Wang et al. 2014). Following (Herrero-Pérez 
et al. 2022), we use the following criteria

where gl
e
= {Gl

kc
}kc∈Gl−1

e
 with kc the child elements of the par-

ent element Gl−1
e

 , vl
e
 is the elemental volume at the level l, 

and �l−1
e

 is the criteria to find the regions of interest for coars-
ening the children elements at the level l. We use the thresh-

old 
�l−1
e

≤
gl
e∑
Emin + �

 with � a threshold to find regions of 

elements with weak material properties for coarsening gl
e
 

child elements to their parent and �l
e
≤ Emin + � for refining 

them again.

2.3 � Parallel strategy

Parallel computing approaches divide complex problems 
into smaller subproblems by distributing their computation 

(11)𝜀l−1
e

=
∫gl

e

̄̃𝜌l
e
dΩ

∫gl
e

dΩ

=

∑

gl
e

̄̃𝜌l
e
vl
e

∑

gl
e

vl
e

,

across distributed computational resources. The efficiency 
of such distributed calculations depends on the communi-
cations needed between subdomains and the workload of 
each one, which can be optimized using efficient partition-
ing techniques. In this work, we choose a non-overlapping 
subdomain strategy to address the topology optimization 
problem using distributed resources.

Figure  1 shows the f lowchart of the distributed 
memory implementation of the adaptive density-based 
topology optimization. First, we divide the problem into 
several non-overlapping subdomains for computing the 
recursive stages of the topology optimization method. We 
partition the domain minimizing the number of interface 
elements to reduce the data exchange between processes. 
We generate a dual graph from the mesh using nodes as 
elements and arcs as the shared entities between elements. 
We then use a multilevel k-way approach (Karypis and 
Kumar 1998) to tessellate such a representation minimiz-
ing the connectivity graph and enforcing the contiguous 
partitioning. We use the parallel version of the metis 
library (Karypis and Schloegel 2013) for graph partition-
ing with multilevel algorithms using MPI standards.

We then initialize the communications needed by dis-
tributed operations: the mesh transfer operators and the 
information required for regularizing the design field. 
We solve the elasticity equations in the non-conforming 
coarse mesh G0 following the criterion detailed in Eq. (11) 
to improve the performance. Since we use dynamic AMR 
techniques to obtain such a coarse mesh G0 , we generate 
the nested hierarchical non-conforming meshes needed 
by the GMG cycle at each topology optimization itera-
tion. This fact also requires calculating the mesh trans-
fer operators from G0 to the coarse conforming mesh D0 
defining the problem. We detail this procedure in Sect. 3.

Finally, we project the resulting displacement field to 
the fine mesh GL , calculating the sensitivities and updat-
ing the design variables in such a fine mesh. We have to 
remark that this strategy ensures a similar evolution of 
the functional to the conventional scheme evaluating the 
objective function on the uniform mesh GL . Besides, the 
design update in the fine mesh permits us to reintroduce 
elements coarsened previously.

2.4 � Parallel solving using distributed memory

Let us consider the following linear equation system

where A = ��

�
K̂�

�
∈ ℝ

nu×nu is the coefficient matrix, 

B = ��

�
F̂ ∈ ℝ

nu×1 is the right-hand side vector, �
�
∈ ℝ

nu×1 
is the solution vector, and nu is the number of unknowns. We 

(12)A�
�
= B,
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adopt a distributed representation of the coefficient matrix 
and vectors to evaluate the objective function of the expres-
sion (1) using multi-core computing architectures. Let’s 
assume that the matrix of coefficients A utilizing the parallel 
version of compressed sparse row (ParCSR) format (Falgout 
et al. 2006) is distributed across p = {1,… , np} processes, 
with np the number of computing processes. We use the 
functionalities provided by the Hypre library (Hypre 2021) 
for manipulating and operating with matrices of coefficients 
and vectors using the ParCSR format with the standardized 
and portable MPI framework for communications.

We adopt a conjugate gradient solver using the ParCSR 
format as the Krylov subspace method for solving the 
expression (12). We commonly use multigrid approaches 
in structural mechanics problems as efficient precondi-
tioners of iterative methods to obtain the system response 
of the elasticity system of equations. We propose pre-
conditioning the distributed Krylov subspace method 
using the GMG method operating on the non-conforming 
meshes used by the adaptive density-based topology opti-
mization scheme.

Fig. 1   Flowchart of the parallel topology optimization using adaptivity for evaluating the adaptive GMG preconditioner

Fig. 2   Parallel conic filter implementation that only uses communica-
tions between adjacent subdomains



A parallel geometric multigrid method for adaptive topology optimization﻿	

1 3

Page 7 of 21  225

Algorithm 1 details the pidgin code of the iterative solver 
preconditioned by the V-cycle using the GMG method. The 
method needs the maximum number of iterations maxit , the 
tolerance tolabs , the coefficient matrix A , the right-hand side 
B , the initial seed ��

�
 for the recursive method, the num-

ber of pre-smoothing �1 and post-smoothing �2 steps in the 
recursive cycle of the multigrid method, and the maximum 
number of grid levels L for performing the V-cycles of the 
GMG preconditioner. We configure the maximum number of 
grid levels L for coarsening the weak material in the adaptive 
topology optimization approach as the number of hierarchi-
cal mesh levels for the cycles of the adaptive GMG precon-
ditioner operating on non-conforming meshes. The recursive 
solver provides an approximate solution �

�
 of (12) with a 

residual ||�nom||2 after it iterations.

2.5 � Parallel regularization

The density filter (Bourdin 2001) regularizes the dependency 
of design variables as the weighted average of the convolution 
operator of (2). The convolution operator requires the value of 
the design variables surrounding finite elements at a shorter dis-
tance than the radius of the open ball BR defined in (3). We also 

can refer to the convolution operator as the conic filter. We have 
to remark that the resulting search in the non-conforming coarse 
grid G0 is different during the iterations of the adaptive topol-
ogy optimization, which requires updating the communications 
needed by the density filter, increasing the computational cost 
meaningfully. We only search the neighbor elements in the ini-
tialization of the adaptive topology optimization because we 
apply the parallel regularization to the fine mesh GL . We also 
should notice that the distributed memory parallel implemen-
tation of the conic filter uses communications intensively by 
sharing the design fields between computing processes. This 
data exchange increases as we increment the radius R defined 
in (3) for regularizing the design variable field.

Figure  2 shows an example of the communications 
needed for sharing the design fields close to the subdomain 
border in the distributed memory parallel implementation of 
the conic filter. We depict the shared information for filter-
ing two design variables, showing data in the same memory 
space using gray circles and remote information using empty 
ones. We use arrows to indicate sharing information between 
subdomains to calculate the expression (4). We minimize the 
communications needed by compiling all the information 
required by the design variables in a preprocessing stage. 
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This information gathering is crucial to achieving an effi-
cient distributed memory instance of the conic filter.

We store the information needed for regularizing each 
design variable using hash tables. These hash tables include 
the following data by design variable: element indexes in 
the same subdomain within the radius R defined in (3), ele-
ment indexes in a different subdomain inside such a radius 
R, and the Euclidean distance to the design variables inside 
the radius R. We can then employ point-to-point connections 
linking the computing processors during the regularization. 
The use of point-to-point communications facilitates scal-
ability. Gathering the information for parallel regularization 
increases the efficiency at the cost of increasing the memory 
requirements to cache hash tables.

Alternatively, we could use a diffusion–reaction partial 
differential equation (PDE) to regularize the design vari-
ables. In particular, a Helmholtz-type PDE with homogene-
ous Neumann boundary conditions (Lazarov and Sigmund 
2011). This approach requires determining the relationship 
between the length scale PDE parameter and the radius R 
of the conic filter. We have to remark that the geometric 
complexity increases as R → 0 (Salazar de Troya and Tor-
torelli 2018), requiring a small length scale parameter in the 
PDE, which can induce fluctuations in the resulting design. 
When this problem appears, it is hard maintaining the fil-
tered design variables in the range [0, 1]. We can solve the 
PDE using similar parallel iterative techniques to those used 
for solving the elasticity system of equations in Sect. 2.4. 
Therefore it is a scalable approach. However, we require tol-
erances of a higher order of magnitude to the elastic modulus 
Emin for void material to keep the robustness of the dynamic 
AMR approach based on the thresholding of design vari-
ables presented in Sect. 2.2. Such tolerances for the iterative 
solver can increase the computational cost meaningfully. For 
these reasons, we consider that the regularization using a 
PDE is a more suitable option for relatively large R values.

2.6 � Parallel density update and sensitivity 
calculation

The parallel computation of the sensitivities of (6) apply-
ing the chain rule is straightforward in the different non-
overlapped subdomains taking the results of the distributed 
calculations presented above. In particular, Eq. (7) uses the 
local elemental stiffness, the design variable, and the result-
ing displacement field of the corresponding finite element 
calculated following the techniques mentioned in Sect. 2.4. 
Equation (8) only requires the design field to project it to a 
manufacturable design. Finally, the expression correspond-
ing to Eq. (9) needs the design field and the area/volume of 
the elements within the radius R of the regularization opera-
tion. We can obtain such data from the information stored in 
the hash tables mentioned in Sect. 2.5.

For the density update in the optimization loop, we fol-
low the parallel implementation of the Method of Moving 
Asymptotes (MMA) proposed by Aage and Lazarov (2013). 
This implementation has already shown excellent scaling 
properties because it operates using the design variables of 
the non-overlapped subdomains independently. In particular, 
such an implementation consists of formulating the MMA 
optimization problem as several MMA subproblems in terms 
of Lagrange multipliers alone. Such subproblems are almost 
embarrassingly parallel, and we solve them using an interior 
point method.

3 � Adaptive geometric multigrid 
preconditioner

Multigrid methods use a multiscale grid scheme to address 
the problems. They are very efficient for solving problems 
exhibiting multiple scales of behavior. These methods elimi-
nate the “smooth errors” s by relaxation and coarse grid 
correction. In particular, they remove the “smooth error” 
by smoothing and calculating the residual on a coarse mesh 
and then correcting it by prolonging the error to the fine-
grid approximation. The preconditioning of Krylov sub-
space solvers using multigrid methods is quite common for 
addressing structural mechanics problems. The basis is that 
the prolongation operator will unlikely be optimal, making 
it less efficient for some error components. In these cases, 
the convergence of the multigrid approach deteriorates even 
though practically all error components reduce rapidly. An 
iterative method to remove such error components is usually 
easier than enhancing the prolongation operator.

We can broadly classify the multigrid approaches into 
two groups (Stüben 2001): GMG and AMG methods. The 
former uses geometric information to define the grid transfer 
operators (Hülsemann et al. 2006). The latter only uses the 
coefficient matrix information of the linear system of equa-
tions, permitting its usage as a “black-box” function. These 
solvers contain the setup and solving phases. The setup 
phase generates the transfer operators, while the solving one 
computes the cycle over the multiscale grids to eliminate the 
corresponding error components. We have to remark that 
the generation of the grid transfer operators is difficult to 
calculate in parallel. On the other hand, the solving stage 
performs matrix–vector and vector–vector product opera-
tions, which we can compute in parallel.

We propose an adaptive and parallel GMG implemen-
tation for preconditioning the iterative method used for 
solving the elasticity system efficiently in the iterations of 
the adaptive topology optimization scheme. We increase 
the preconditioner performance operating between the 
non-conforming hierarchical meshes. The adaptive GMG 
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preconditioner uses an �-Jacobi relaxation as smoother for 
simplicity. We have to remark that the performance of these 
methods deteriorates by increasing the contrast in material 
properties (Briggs et al. 2000). We attribute this fact to the 
coarsening across discontinuities which affects the coarse 
grid correction (Sampath and Biros 2010). Nevertheless, 
GMG methods preconditioning Krylov solvers show high 
convergence rates for topology optimization problems using 
a sufficiently strong smoothing operator (Amir et al. 2014).

The adaptive GMG preconditioner operates from the coarse 
non-conforming mesh G0 shown in Fig. 1. Since we can mod-
ify this coarse non-conforming mesh G0 at each iteration of the 
adaptive topology optimization scheme, we have to calculate 
the setup stage for the adaptive GMG preconditioner at all the 
topology optimization iterations. We have to remark that this is 
not needed if we operate with multiscale conforming meshes. 
In this case, we keep the mesh transfer operators between hier-
archical meshes during the topology optimization.

Fig. 3   V-cycle used by the adaptive parallel GMG preconditioner operating on non-conforming hierarchical meshes
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Algorithm 2 details the setup phase for the adaptive GMG 
approach. This phase needs the nested non-conforming hier-
archical meshes �� with DL ⊂ DL−1 ⊂ ⋯ ⊂ D0 obtained 
from DL = G0 with Ω = ∪iD

L
i
= ⋯ = ∪iD

0

i
= ∪iG

0

i
 , where 

G0 is the coarse mesh of the adaptive SIMP approach using 
the error estimator of (11) for coarsening the weak material. 
It also requires the tree refinement ��

��
 storing the relation-

ship between elements of the nested consistent hierarchical 
meshes, the essentials or Dirichlet boundary conditions ���� 
at the mesh levels, and the number of mesh levels L for the 
adaptive GMG cycle.

Figure 3 shows an example of a consistent nested non-
conforming multiscale mesh hierarchy �� from DL = G0 to 
the coarse mesh D0 for preconditioning using the adaptive 
and parallel GMG method. We can observe that the coarse 
mesh D0 is a conforming mesh with all the elements coars-
ened up to the maximum number of mesh levels L defined 
in the adaptive topology optimization scheme presented in 
Sect. 2. We assemble the coefficient matrices of elasticity 
{A0,… ,AL} in the different mesh levels of the consistent 
nested non-conforming multiscale mesh hierarchy �� , con-
sidering the essentials or Dirichlet boundary conditions 
���� when assembling the matrices of coefficients of elas-
ticity at the l levels. We use such matrices of coefficients 

to define the smoothers {S0,… , SL} for each mesh level. 
In our case, we use a distributed conjugate gradient solver 
S0 for solving the system of equations �

�
= �

−�
�
�
�
 in the 

coarse mesh and an �-Jacobi relaxation as smoother in the 
{1,… , L} mesh levels for simplicity. Finally, we use the 
non-conforming multiscale mesh hierarchy �� and the tree 

refinement ��

��
 for constructing the mesh transfer operators, 

{P1,R1,… ,PL,RL} , between the non-conforming meshes. 
The tree refinement ��

��
 stores the information for coarsening 

and refining the non-conforming meshes and for comput-
ing the relationship between children and parent elements 
between adjacent levels gl

e
 used by the criteria of (11). It 

does this by restoring the parent element and eliminating 
the child elements forming it at the different mesh levels of 
the adaptive GMG preconditioner.

A key feature for supporting the parallelization scheme 
presented in Sect. 2 is that we assemble the coefficient 
matrices of elasticity with essentials in all the mesh levels 
using the ParCSR format (Falgout et al. 2006) described in 
Sect. 2.4. In particular, we use the distributed functionalities 
provided by the Hypre library (Hypre 2021) for support-
ing the distributed matrix–matrix and matrix–vector opera-
tions. We also use the ParCSR format to define the smoother 
operators {S1,… , SL} and the distributed conjugate gradient 
solver to approximate S0 . We then calculate the interpolator 
operator {P1,… ,PL} for prolonging from the coarse mesh 
l − 1 to the finest one l. We use the non-conforming mesh 
hierarchy �� and the tree refinement ��

��
 to construct consist-

ent prolongation operators Pl between the hierarchical mesh 
levels. Finally, we calculate the restriction operator as the 
transpose of the interpolation operator Rl = PT

l
.

Algorithm 3 shows the pseudo-code of the solving stage 
of the adaptive GMG method for preconditioning the dis-
tributed conjugate gradient solver presented in Algorithm 1. 
The solving consists of a V-cycle used to eliminate the resid-
ual error of Eq. (12). It does this by smoothing or solving 
the residual on the coarse mesh and then prolonging the 
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error back, correcting it in the fine mesh approximation. 
The mesh transfer, smoothing, and solving stages use the 
ParCSR format for implementing the parallelization scheme 
of the adaptive SIMP method. The restriction and interpo-
lation operators perform the mesh transferring between 
the non-conforming meshes of the GMG cycle scheme, as 
depicted in Fig. 3. The V-cycle applies �1 smoothing opera-
tions approximating the solution sl at level l and calculates 
the residual rl for the relaxed approximate solution sl . We 
adopt an �-Jacobi relaxation as smoother for simplicity, 
which only requires a dumping factor � and the inverse of 
the diagonal of the assembled coefficient matrix in the cor-
responding mesh level diag(�

�
)−1 . We restrict the residual 

recursively to the coarse mesh and solve the linear system 
if we reach the coarsest level l = 0 . We prolongate the solu-
tion sl from the coarse mesh to the fine one by applying �2 
smoothing operations to the approximate solution.

The distributed conjugate gradient algorithm presented in 
Sect. 2.4 using the adaptive GMG V-cycle for precondition-
ing calculates the system response of �

�
 efficiently using 

parallel computing with distributed memory systems. We 
can then use Eq. (10) to approximate the system response 
Ûh in the non-conforming meshes.

4 � Numerical experiments

We evaluate the proposed parallel adaptive GMG precon-
ditioner for solving the elasticity system penalized with the 
design variables using the adaptive density-based topology 
optimization scheme presented above. We test the precon-
ditioning efficiency using topology optimization on a uni-
form conforming mesh as the reference. The solution of this 
reference allows us to check that we obtain a similar evolu-
tion of the objective function using the adaptive approach, 
validating that the proposal is feasible. We also evaluate the 
strong and weak scaling in 3D problems, testing the results 
for large-scale problems with limited computing resources.

We detail the cumulative timing for the whole SIMP 
process, the wall-clock time per iteration, and the iterations 

required by the iterative solver to converge. The cumulative 
timing aims to show the computing benefits of the proposal. 
The timing per iteration indicates when we achieve the per-
formance improvement. Finally, the number of iterations 
of the iterative solver shows the computational benefits of 
the adaptive GMG preconditioner in the solver. We use two 
computers connected through a 10 Gbps Ethernet for run-
ning the experiments. These computing nodes incorporate 
two E5-2687W v4 CPUs and 256 GB of RAM. The CPUs 
include 12 cores working at 3.0 GHz, running up to 24 pro-
cesses in parallel per computing node.

We present two three-dimensional topology optimization 
experiments: a cantilever and a round arch. The former is a 
broadly used benchmark in the literature, which we use to 
evaluate the feasibility, performance, and scalability of the 
proposed GMG preconditioner to increase the computing per-
formance of the adaptive topology optimization approach. The 
latter shows that the GMG instance is not constrained to a 
fixed pattern, such as the stencil computations used in octree-
based methods. We solve large-scale topology optimization 
experiments using both models, evaluating the performance 
using the adaptive topology optimization approach with the 
adaptive GMG for preconditioning the iterative solver.

We specify the geometry and optimization settings in 
Table 1 to report reproducible benchmarks. We configure 
the tolerance tolabs = 10−6 for the iterative solver detailed 
in Algorithm  1. The power-law interpolation function 
of (1) uses the elastic modulus of solid E0 = 1 and void 
Emin = 10−9 material and the penalization power p = 3 . We 
use a radius R of approximately two times the maximum 
edge of elements to regularize the density field using Eq. 
(4). We thus tune the magnitude of the radius R depending 
on the discretization of the model.

We have to remark that small regularization distances R 
permit us to obtain more details in the optimized design. 
However, it increases the contrast in material properties, 
which deteriorates the performance of the GMG precon-
ditioning (Briggs et al. 2000). For this reason, we use a 
damping factor � = 0.25 to ensure convergence in all the 
experiments using an �-Jacobi relaxation as smoother (Mar-
tínez-Frutos et al. 2017). We use the same number of pre and 

Table 1   Geometry and 
optimization parameter 
settings used in the numerical 
experiments

Geometry (m) Topology parameters

R
a

L W H V
∗ (%) tolabs Emin

Cantilever beam
2.0 1.0 1.0 8 1e−6 1e−9

Round arch
4.0 1.0 1.0 3 1e−6 1e−9
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post-smoothing steps �1 = �2 = 4 . We use the value � = 0.5 
for the projection of Eq. (5), following a heuristic continua-
tion strategy for the � parameter. In particular, we initialize 
� = 1.0 , doubling each 15 optimization steps from the itera-
tion it = 60 until the � = 16.0 value. The experiments also 
use the system response of the previous optimization step as 
the seed of the iterative solver. This strategy accelerates the 
convergence of the iterative method in density-based topol-
ogy optimization problems (Herrero-Pérez and Martínez-
Castejón 2021).

4.1 � Cantilever

We optimize a 3D beam by fixing all the DOFs on one side 
and applying a uniform load on the lower edge of the other 
side. Figure 4a depicts the geometric configuration and 
boundary conditions, detailing the setting parameters indi-
cated in Table 1. Figure 4b specifies the symmetric simpli-
fications applied to the finite element model, including the 
boundary conditions. Figure 4c depicts a coarse mesh tes-
sellated into many subdomains using the parallel version of 
the metis library for graph partitioning, which we configure 
for minimizing sharing elements and balancing the number 
of finite elements per subdomain. We also parameterize the 
tessellation of the model using the div variable.

Figure 5 shows the strong scaling experiments with the 
tessellation parameter div = 96 , giving rise to a Cartesian 
grid of 96 × 48 × 192 ( H ×W × L ) elements. This tessel-
lation generates a model with 884,736 finite elements and 
2,751,987 unknowns. We solve the same topology optimiza-
tion problem with different computing resources from one 
computing core up to 48 computing cores in two comput-
ing nodes. We use a radius of R = 2/96 for regularizing, 
corresponding to the size of two edge elements. The GMG 
preconditioner for the reference conforming implementation 
uses four grid levels in the V-cycle of Algorithm 3 from the 
mesh D4 with 96 × 48 × 192 finite elements to the mesh 
D0 with 6 × 3 × 12 finite elements. On the other hand, the 
proposed adaptive GMG preconditioner also uses four grid 
levels to perform the V-cycle from the coarse mesh dynam-
ically D4 = G0 using the adaptive density-based topology 
optimization scheme based on void material thresholding 
presented above. We limit the coarsening of the elements to 
the level L = 0 , which generates a grid level D0 similar to 
the one with the uniform conforming fine mesh of 6 × 3 × 
12 finite elements.

Figure 5a shows the compliance evolution along the opti-
mization using and neglecting the adaptive approach, i.e., 
using the adaptive topology optimization scheme with the 
proposed adaptive GMG preconditioning and ignoring AMR 
techniques. We can observe a similar evolution of the objec-
tive function using and ignoring the adaptive topology opti-
mization approach. The progression of the objective function 
is also the same using different computational resources.

Figure 5b shows the number of finite elements employed 
for the analysis along the optimization. We can observe that 
the number of finite elements used for the topology opti-
mization is the same for experiments using the adaptive 
scheme. The initial iterations of the topology optimization 
with the adaptive topology optimization scheme use a simi-
lar number of finite elements as the optimization neglecting 
AMR techniques. We observe a reduction of the number 
of finite elements, almost nine times smaller, using four 
grid levels L = 4 for coarsening weak material regions. The 

a

b

c

Fig. 4   Cantilever experiment: a geometric configuration and bound-
ary conditions, b symmetry simplifications, and c tessellation and 
partitioning into eight subdomains
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number of finite elements using the adaptive scheme quickly 
decreases until the optimization captures the shape of the 
design. Then, it maintains a stable number of finite elements 
to extract such details. We have to remark that the number of 
finite elements in the topology optimization iterations 105 
and 120 increases, which corresponds to the reintroduction 
of finite elements to the design by the continuation strategy 
for the � parameter of Eq. (5).

Figure 5c and d show the cumulative wall-clock time for 
the topology optimization using and neglecting the adaptive 
scheme with different computing resources. We can observe 
a significant reduction in the wall-clock time using both 
approaches as increasing the computing resources. Besides, 
the adaptive method shows a performance increment 

concerning the scheme ignoring the adaptive methodology 
used as the reference. However, this performance increment 
decreases as we increase the computational resources. We 
can observe a speedup of almost 2.5× using one computing 
core, whereas the speedup is around 1.07× for six comput-
ing cores. We attribute this performance decrement to the 
small size of the subdomains as we increase the number of 
computing cores. The coarsening of weak material regions 
does not reduce the problem size meaningfully in small 
subdomains. Another relevant factor is the intensive use of 
communications between subdomains, which also can dete-
riorate the computing performance.

We also have to remark that we have to calculate the setup 
stage of the adaptive GMG preconditioner operating between 

a b

c d

Fig. 5   Strong scaling of topology optimization of cantilever experiment using a mesh of 96 × 48 × 192 elements: a scaled compliance, b the 
number of elements, and c, d cumulative wall-clock time with different computing resources
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non-conforming meshes for every topology optimization 
iteration of the adaptive topology optimization approach. 
On the other hand, the GMG preconditioner implementa-
tion that neglects the adaptive scheme uses the same grid 
transfer operators during the topology optimization process 
on a conforming mesh. Nevertheless, we observe that the 
adaptive proposal scales performing the topology optimiza-
tion from 8 h 36′ using one computing core to 56′ using 48 
computing cores with two computing nodes.

Figure 6 shows the weak scaling experiment for the can-
tilever model using 48 cores and two computational nodes 
with div = {96, 128, 192} . These tessellations give rise to 
meshes of 884,736, 2,097,152, and 7,077,888 elements 
and finite element models with 2,751,987, 6,464,835, and 
21,622,755 unknowns, respectively. We solve such topology 

optimization problems using a regularizing radius of approx-
imately two times the edge of the uniform elements, which 
correspond to R = {2/96,2/128,2/192} , respectively. The 
GMG and adaptive GMG preconditioning use the grid lev-
els L = {4,5,5} in the V-cycle of Algorithm 3, limiting the 
coarsening of elements to the level L = 0 generating a coarse 
grid level D0 of 6 × 3 × 12, 4 × 2 × 8, and 6 × 3 × 12 finite 
elements, respectively.

Figure 6a shows the cumulative wall-clock time of the 
weak scaling experiment for the cantilever model. We can 
observe the long time spent initializing the large model of 
7,077,888 finite elements. We use such time to store the 
required information in the hash tables for the distributed fil-
tering described in Sect. 2.5. The results show a computing 
performance increment of the adaptive approach by increas-
ing the model size with the same computing resources. We 
attribute such a performance increment to the larger size of 
the subdomains, which permits us to coarse the weak mate-
rial regions. We also attribute such a performance incre-
ment to the number of multiscale mesh levels, which affect 
the performance meaningfully. The problem size limits the 
number of hierarchical mesh levels in the cycle of the GMG 
preconditioner. The topology optimization problems of 
2,097,152 and 7,077,888 finite elements using adaptivity 
show a similar speedup of 1.5× . The reference for calculat-
ing the acceleration is the instance neglecting adaptivity. 
These larger models use L = 5 grid levels for the V-cycle 
of Algorithm 3 with two computing nodes. However, the 
smaller finite element model of 884,736 finite elements 
using L = 4 multiscale grid levels, previously shown in the 
strong scaling experiment, presents a poor acceleration.

Figure 6b shows the timing per iteration of the conju-
gate gradient solver presented in Algorithm 1. Such timing 
includes the setup and solving stages of the GMG and adap-
tive GMG preconditioners. We can observe that the com-
puting performance increases beginning the optimization 
for obtaining the optimum shape. We reduce the number of 
finite elements in such iterations meaningfully by coarsening 
the mesh following the weak material estimator of Eq. (11). 
However, the computing performance increment reduces 
when the topology optimization approach captures the shape 
details in the last iterations of topology optimization.

Figure 7 shows the final designs of the cantilever experi-
ment for div = {96, 128, 192} and the adaptive coarse meshes 
G0 of the last topology optimization iteration to obtain them. 
We can observe the coarsening of four levels L = 4 for the 
experiment with the coarse mesh of 96 × 48 × 192 elements 
and the coarsening of five levels L = 5 for the experiments 
with the finer meshes of 128 × 64 × 256 and 192 × 96 × 384 
finite elements. However, we have noticed that the coarsen-
ing of the higher model does not reach the mesh level L = 0 
to capture the details of the topology optimization. We can 
observe that the experiment using div = {96} for tessellating 

a

b

Fig. 6   Weak scaling for the topology optimization of the cantilever 
experiment using 48 cores and two computing nodes for meshes of 96 
× 48 × 192 (884,736 elements), 128 × 64 × 256 (2,097,152 elements), 
and 192 × 96 × 384 (7,077,888 elements): a cumulative wall-clock 
time and b wall-clock time per iteration
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the domain obtains truss-like designs. On the other hand, 
topology optimizations using the fine tessellations with 
div = {128, 192} generate shell-like structures with variable 
thicknesses as final designs (Sigmund et al. 2016).

Figure 8 shows the details of the large-scale cantilever 
experiment with div = {192} using the two computing nodes 
connected with the 10 Gigabit Ethernet network. Figure 8a 
shows the evolution of compliance (objective function) 
during the topology optimization using and neglecting the 
adaptive scheme. We can observe that the sequence of the 
objective function is similar for both approaches since we 
optimize in the fine mesh GL . This approach permits us to 
reintroduce finite elements coarsened previously in the final 
design. Figure 8b shows the number of finite elements for 
solving. We can observe that the number of finite elements 
reduces seven times in the adaptive approach after some 
iterations of the topology optimization. We also can notice 
the increment of elements in the topology optimization itera-
tion 110 due to the continuation strategy for the � parameter 
in the projection of Eq. (5). Figure 8c shows the cumulative 
wall-clock time for all the stages of the topology optimiza-
tion. We observe a speedup of 1.4× adopting the adaptive 
approach concerning the efficient reference method neglect-
ing the AMR techniques.

Figure 8d shows the wall-clock time per topology optimi-
zation iteration for solving using and neglecting the adaptive 
approach. The wall-clock time includes the setup and solv-
ing stages of GMG and adaptive GMG for preconditioning 
the conjugate gradient method presented in Algorithm 1. 

We can observe a relevant performance increment as we 
reduce the number of elements used for assembling the sys-
tem of equations. We obtain accelerations of up to 10× in 
the first iterations of the topology optimization, decreasing 
such a speedup as we advance in the optimization. Figure 8e 
shows the number of iterations to converge the distributed 
conjugate gradient solver using and neglecting the adap-
tive approach per topology optimization iteration. We can 
observe an increment in the solver iterations performed by 
the adaptive approach concerning the method ignoring the 
AMR techniques. However, the computational cost is signifi-
cantly lower since we perform the operations in the reduced 
system of equations.

Figure  8f shows the wall-clock time percentage for 
the different stages of the cantilever experiment with 
div = {192} using the two computing nodes connected with 
the 10 Gigabit Ethernet network. We depict these percent-
ages using concentric doughnut charts, showing the outer 
ring the topology optimization results neglecting the AMR 
techniques and the inner one the topology optimization 
results using the proposed adaptive approach with the adap-
tive GMG preconditioning. We can observe a significant 
reduction in the percentage of the wall-clock time for the 
assembly and solving stages using adaptive techniques. 
The wall-clock time percentage for calculating the sensi-
tivities and updating the design variables using MMA also 
increases using adaptive techniques. We perform these tasks 
on the same fine mesh, and thus the wall-clock time percent-
age reduces due to the reduction of the total time for the 

Fig. 7   (Top) The adaptive mesh for the last topology optimization iteration and (bottom) the design showing the system response for different 
tessellations
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a b

c d

e f

Fig. 8   The cantilever experiment with a mesh of 192 × 96 × 384 
(7,077,888 elements) using 48 cores (two computing nodes): a scaled 
compliance, b the number of finite elements for solving, c cumulative 
wall-clock time, d wall-clock time for solving per topology optimi-

zation iteration, e the iterations of the conjugate gradient solver per 
topology optimization iteration, and f the percentage of time for the 
different phases of the optimization
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topology optimization iteration. Finally, we can observe that 
the wall-clock time percentage for coarsening and refine-
ment using the adaptive approach is relevant. Coarsening 
and refinement stages take more than 37% of the wall-clock 
time, whereas the solving and assembling calculations take 
more than 56% of the wall-clock time. Therefore, it is of the 

utmost importance to make up for reducing the size of the 
equation system for estimating the system response. We can 
do this by tuning the maximum number of levels L for grid 
roughening and refining using adaptive techniques.

4.2 � Round arch

We optimize a 3D semicircular beam arc in the round arch 
experiment. We fix all the DOFs on both sides of the beam, 
applying a uniform load in the arc center along the top edge 
in the direction perpendicular to the arc plane. This experi-
ment shows that the proposed GMG preconditioner does 
not depend on any pattern computation constraint, such as 
stencil pattern computations used in hierarchical Cartesian 
grid methods like octree approaches. Figure 9a shows the 
geometry and boundary conditions indicating in Table 1 the 
settings to configure the optimization problem. These con-
figuration parameters include the volume fraction V∗ , the 
tolerance of the distributed conjugate solver tolabs , and the 
elastic module for weak material Emin . Figure 9b shows the 
symmetric simplification used for the topology optimization, 
including the boundary conditions. Figure 9c depicts a coarse 
mesh partitioned into many subdomains using the parallel 
version of the metis library. As in the cantilever experiment, 
we tessellate the domain into balanced subdomains enforcing 
the contiguous partitions. We also show the parameterization 
of the tessellation with the div and diva variables.

Figure 10 shows the details of the large-scale round arch 
experiment with div = 128 and diva = 800 using the two 
computing nodes connected through the 10 Gbps Ethernet 
network. This tessellation gives rise to a mesh of 128 × 128 
× 800 ( H ×W ×

�Ra

2
 ) with 13,107,200 finite elements and 

39,988,323 unknowns. We solve this large-scale topology 
optimization problem using a radius R for regularization 
of approximately two times the edge of the finite elements, 
which corresponds to R  =  ( � ⋅ Ra)/800. The GMG and 
adaptive GMG preconditioning use five grid levels L = 5 in 
the V-cycle of Algorithm 3, generating a coarse mesh level 
D0 of 4 × 4 × 25 elements.

Figure  10a shows the number of finite elements for 
solving using and neglecting the adaptive scheme. We can 
observe that the number of finite elements reduces more than 
thirteen times in the adaptive approach after some iterations 
of the topology optimization. We also notice the increment 
of elements in the topology optimization iterations 105 and 
120 due to the continuation strategy for the � parameter in 
the projection of design variables. Figure 10b shows the 
cumulative wall-clock time for all the stages of the topol-
ogy optimization. We observe a speedup of 1.75× for the 200 
topology optimization iterations of the adaptive approach 
concerning the efficient reference method neglecting the 
AMR techniques. We have to remark that the slopes of the 

a

b

c

Fig. 9   The round arch experiment: a geometric configuration, b sym-
metry simplifications, and c mesh parameterization and partitioning 
into several subdomains
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cumulative wall-clock time indicate an increasing speedup 
as we perform more topology optimization iterations.

Figure 10c shows the wall-clock time per topology optimi-
zation iteration for solving using and neglecting the adaptive 

approach. The wall-clock time includes the setup and solv-
ing stages of GMG and adaptive GMG for preconditioning 
the conjugate gradient method presented in Algorithm 1. We 
can observe a relevant computing performance increment as 

a b

c d

e

Fig. 10   The round arch experiment using a mesh of 128 × 128 × 800 
(13,107,200 elements) with 48 cores (two computing nodes): a the 
number of finite elements for solving, b cumulative wall-clock time, 

c wall-clock time per topology iteration, d the percentage of time for 
the phases of the topology optimization, and e the refinement detail 
of design variables and final design showing the displacement field
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we reduce the number of elements used for assembling the 
system of equations. We obtain accelerations of up to 6 × in 
the first iterations of the topology optimization, decreasing 
such a speedup as we advance in the optimization up to 2 × 
in the last iterations capturing the shape details.

Figure 10d shows the percentage of wall-clock time for 
the round arch topology optimization stages. We depict the 
information using the same format as Fig. 8f. The outer ring 
presents the results neglecting the adaptive approach, and 
the inner one shows the results using the proposed adaptive 
scheme with the adaptive GMG preconditioner operating 
between non-conforming meshes. The assembly and solv-
ing stages take 98% of the wall-clock time for the method 
ignoring the adaptive techniques. We reduce these calcula-
tion percentages using the adaptive scheme, taking 8% of 
the wall-clock time for assembling and 48% for solving. We 
observe an increment in the wall-clock time percentage for 
calculating the sensitivities and updating the design varia-
bles using MMA in the adaptive approach. This increment is 
because we perform these tasks on the same fine mesh using 
and neglecting adaptive techniques. However, the total time 
for the topology optimization iterations using the adaptive 
approach is significantly lower. Finally, we can observe that 
the wall-clock time percentage for coarsening and refine-
ment using the adaptive scheme is relevant, taking more than 
34% of the wall-clock time.

Figure 10e shows the final design of the round arch exper-
iment and the adaptive coarse mesh G0 of the last topology 
optimization iteration to obtain it. We can observe that the 
topology optimization problem using a fine tessellation with 
almost 40 million unknowns generates final designs with 
similar shell-like structures with variable thicknesses (Sig-
mund et al. 2016).

5 � Conclusion

We present a parallel and adaptive GMG implementation 
for preconditioning the iterative method for solving elastic-
ity systems from adaptive topology optimization problems 
using non-Cartesian meshes. The resolution of the system 
of equations of elasticity penalized with the design vari-
ables is still the computational bottleneck of topology opti-
mization approaches using adaptivity. We aim to increase 
the computing performance of the solver by operating on 
the non-conforming hierarchical meshes of the GMG cycle 
scheme. We use the geometric information for constructing 
the mesh transferring operators between the non-conforming 
hierarchical meshes.

We use an efficient adaptive instance of the SIMP method 
to evaluate the proposed adaptive GMG preconditioner 
method. This implementation combines parallel computing 
and dynamic adaptivity based on the thresholding of design 

variables, providing an efficient approach to address large-
scale topology optimization problems. We use a topology 
optimization implementation without adaptivity as the refer-
ence. We use it to test the improvement in computing effi-
ciency using the adaptive approach with the proposed adap-
tive GMG preconditioner. The experimental results show the 
computational advantages of the proposed adaptive GMG 
scheme for adaptive topology optimization approaches.

We evaluate the strong scaling of the proposal by solving 
a problem varying the number of computing threads using 
distributed memory. The proposed adaptive scheme shows 
good scalability using subdomains with significant size. We 
observe a speedup increment as increasing the number of 
topology optimization iterations. We also test the weak scal-
ing by solving topology optimization problems with different 
problem sizes using two computing nodes. We observe good 
scalability as incrementing the size of the system of equations 
keeping the computational resources. We also notice a high 
computational cost using several refinement levels for coars-
ening and refinement operations. Thus, we should choose a 
suitable number of refinement levels to improve the comput-
ing efficiency.
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