
Structural and Multidisciplinary Optimization (2023) 66:207
https://doi.org/10.1007/s00158-023-03657-y

RESEARCH PAPER

An optimized, easy-to-use, open-source GPU solver for large-scale
inverse homogenization problems

Di Zhang1 · Xiaoya Zhai1 · Ligang Liu1 · Xiao-Ming Fu1

Received: 4 February 2023 / Accepted: 14 August 2023 / Published online: 9 September 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
We propose a high-performance GPU solver for inverse homogenization problems to design high-resolution 3D microstruc-
tures. Central to our solver is a favorable combination of data structures and algorithms, making full use of the parallel
computation power of today’s GPUs through a software-level design technology exploration. This solver is demonstrated to
optimize homogenized stiffness tensors, such as bulk modulus, shear modulus, and Poisson’s ratio, under the constraint of
bounded material volume. Practical high-resolution examples with 5123 ≈ 134.2 million finite elements run in less than 40 s
per iteration with a peak GPUmemory of 9 GB on an NVIDIAGeForce GTX 1080Ti GPU. Besides, our GPU implementation
is equipped with an easy-to-use framework with less than 20 lines of code to support various objective functions defined by
the homogenized stiffness tensors. Our open-source high-performance implementation is publicly accessible at https://github.
com/lavenklau/homo3d.

Keywords Inverse homogenization problems · Microstructure design · High-resolution · GPU optimization

1 Introduction

Microstructure design is fundamental in various applications,
such as aerospace and biomedicine. Topology optimiza-
tion for inverse homogenization problems (IHPs) (Sigmund
1994) is a powerful and effective method to find optimal
microstructures. Many methods have been developed for the
microstructure topology optimization, such as density-based
method (Aage et al. 2015; Groen and Sigmund 2018), iso-
gemetric topology optimization (Gao et al. 2019, 2020),
bidirectional evolutionary structural optimization (Huang
et al. 2012, 2011), and level set method (Vogiatzis et al.
2017; Li et al. 2018).

We focus on high-resolution periodic 3D microstruc-
ture design via the density-based method. High-resolution
microstructures expand the search space of multi-scale struc-
tures, making their mechanical properties more likely to
approach the optimal solution. In addition, a microstructure
is periodically arranged in a macro-scale domain behaving

Responsible Editor: Ole Sigmund

B Xiaoya Zhai
xiaoya93@ustc.edu.cn

1 School of Mathematical Sciences, University of Science and
Technology of China, Hefei, China

like a material under the premise that the length scale of the
microstructure is much smaller than that of the macrostruc-
ture based on the homogenization theory (Bendsøe and
Kikuchi 1988; Suzuki and Kikuchi 1991; Nishiwaki et al.
1998).

We aim to use the parallel computation power of today’s
GPUs for time- and memory-efficiently solving large-scale
IHPs under periodic boundary conditions with the density
representation. However, it is challenging to make full use
of the computing resources of GPU to realize the solver. The
reasons are twofold. First, since the solver contains multiple
steps with different computational profiles, the choice of data
structures and algorithms should be considered globally to
be suitable for every step. Second, as the GPU memory is
limited, the memory usage should be reduced to adapt to
high resolution while ensuring accuracy and high efficiency.

The goal of (Wu et al. 2015) is similar with ours, and
they propose a high-performance multigrid solver with deep
integration of GPU computing for solving compliance min-
imization problems. However, since what they need to store
is different from ours due to different problems, their data
structure and multigrid solver are unsuitable for ours. For
example, we should store six displacement fields to evaluate
the elastic matrix and perform sensitivity analysis, but this

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-023-03657-y&domain=pdf
http://orcid.org/0000-0002-5209-8738
https://github.com/lavenklau/homo3d
https://github.com/lavenklau/homo3d

207 Page 2 of 17 D. Zhang et al.

Fig. 1 Solving large-scale IHPs on the unit cell domain (512 × 512 × 512 elements) with three different objectives: bulk modulus B (a), shear
modulus G (b), and Poisson’s ratio r (c). The corresponding volume fractions are 0.3, 0.3 and 0.2, respectively. We show the optimized objective
values below models.

storage is a heavy burden for most GPUs. Besides, handling
periodic boundary conditions is another difference.

This paper proposes an optimized, easy-to-use, open-
source GPU solver for large-scale IHPs with periodic bound-
ary conditions to design high-resolution 3D microstructures.
By exploring the software-level design technologies operat-
ing at only one GPU, we present a favorable combination
of data structures and algorithms to address the computa-
tional challenges of the desired solver. Specifically, themixed
floating-point precision representation is deeply integrated
into all components of the solver to achieve a favorable trade-
off betweenmemory usage, running time, andmicrostructure
quality. The mixed-precision formats under various preci-
sions are tested, and we ultimately find that FP16/FP32 is the
most suitable for IHPs. Besides, different types of memory
are called properly and reasonably to significantly increase
the number of optimizable finite elements on a GPU.We also
provide test results to identify these favorable design choices.

We demonstrate the capability and effectiveness of our
GPU solver by successfully optimizing the homogenized
stiffness tensors, such as bulk modulus, shear modulus, and
Poisson’s ratio, under the material volume-bounded con-
straint (Fig. 1). In practice, our solver consumes less than
40 s for each iteration with a peak GPU memory of 9 GB
for high-resolution examples with 5123 ≈ 134.2 million
finite elements on an NVIDIA GeForce GTX 1080Ti GPU.
Besides, we provide an easy-to-use framework for GPU
implementation. Specifically, the framework uses less than
20 lines of code to support various objective functions defined
by the homogenization stiffness tensor. Code for this paper
is at https://github.com/lavenklau/homo3d.

2 Related work

Inverse homogenization problems. Solving IHPs (Sigmund
1994) to optimize the distribution of materials is a powerful
method to obtain superior mechanical properties under given
load and boundary conditions. Topology optimization is used
to solve IHPswith different objectives, such as extreme shear
or bulk moduli (Gibiansky and Sigmund 2000), negative
Poisson’s ratios (Theocaris et al. 1997; Shan et al. 2015;
Morvaridi et al. 2021), and extreme thermal expansion coef-
ficients (Sigmund and Torquato 1997). Although there are
several open-source codes formicrostructure design (Xia and
Breitkopf 2015; Gao et al. 2021), most of them focus on 2D
microstructure design. We focus on developing an efficient
GPU solver for large-scale IHPs to design 3D microstruc-
tures via the density-based method.
High-resolution topology problems. Several acceleration
techniques for high-resolution topology problems are avail-
able, such as parallel computing (Borrvall and Petersson
2001; Aage et al. 2015), GPU computation (Challis et al.
2014), adaptive mesh refinement (Stainko 2006; De Sturler
et al. 2008; Rong et al. 2022). Equipping and solving large-
scale equilibrium equations is essential for slowing down the
optimization process. Thus, the geometric multigrid solver
is used (Briggs et al. 2000; Zhu et al. 2010; McAdams
et al. 2011; Zhang et al. 2022). Wu et al. (2015) present
a high-performance multigrid solver with deep integration
of GPU computing for compliance minimization problems.
PETSc (Aage et al. 2015) is a large-scale topology optimiza-
tion framework, where each iteration takes about 60s on 40

123

https://github.com/lavenklau/homo3d

An optimized, easy-to-use, open-source GPU … Page 3 of 17 207

CPUs (240 cores) for a model with 2883 (23.8 million) ele-
ments. The state-of-the-art work (Träff et al. 2023) which
accelerated topology optimization based on GPU implemen-
tation is not designed for solving IHP problems. We focus
on using the parallel computation power of today’s GPU and
customize data structure and multigrid solver to solve large-
scale IHPs of 3D microstructure design. A comparison with
Aage et al. (2015) is shown in Fig. 11, and our method shows
superiority.
Mixed-precision methods. The IEEE standard provides for
different levels of precision by varying the field width, e.g.,
16 bits (half precision), 32 bits (single precision) and 64 bits
(double precision). Double-precision arithmetic earns more
accurate computations by suffering higher memory band-
width and storage requirements. However, half precision is
4 times speedup for a double precision Haidar et al. (2018)
single-precision calculations take 2.5 times faster than the
corresponding double-precision calculations (Göddeke and
Strzodka 2010). Mixed-precision algorithms are proposed in
many works for the trade-off between high efficiency and
high precision (Sun et al. 2008; Ben Khalifa et al. 2020;
Zhang et al. 2019; Hosseini et al. 2023). Liu et al. (2018)
developed a mixed-precision multigrid solver to accelerate
the linear elasticity calculation. We use the mixed-precision
representation for a trade-off between memory usage, run-
ning time, and microstructure quality.

3 Inverse homogenization problem

3.1 Model

The IHP is performed on a unit cell domain Ω = [0, 1]3,
which is evenly discretized into M elements. Each element
is assigned an density variable ρe and a fixed volume ve. All
density variables ρe(e = 1, · · · , M) form a vector ρ. IHP is
formulated as follows:

min
ρ

J = f (CH (ρ)),

s.t. K(ρ)u = f,
∑M

e=1 ve · ρe

|Ω| ≤ V ,

ρmin ≤ ρe ≤ 1, ∀e = 1, · · · , M .

(1)

where the objective f (CH (ρ)) is a function as the elastic
matrix CH (ρ) to indicate mechanical properties. The dis-
placement field u is calculated by solving the equilibrium
equation with six load cases f for three dimensions. The stiff-
ness matrix K is a function of the material properties in the
elements. |Ω| is the volume of the unit cell domain Ω , V is
the prescribed volume fraction, and ρmin = 0.001.

3.2 Homogenization

Homogenization theory is typically used to determine the
elastic tensor EH of a microstructure (Allaire 2002). The
derivation of the homogenized elasticity tensor involves a
two-scale asymptotic expansion and boils down to solving
the following cell problem :

{
−∇ · (

E : [
ε
(
wkl

) + ekl
])) = 0 in Ω,

wkl (x) = wkl (x + t) , x ∈ ∂Ω.
(2)

Here, ekl with k, l ∈ {1, 2, 3} is a unit tensor whose (kl)-
th component equals to 1 and other components equal to
0. The operator “:” means the double dot product of two
tensors. The second equation means wkl is a periodic func-
tion whose period is t with ti = ±1, i = 0, 1, 2.

(∇χkl
)

is the gradient of χkl computed as [∇χkl]i j = ∂χkl
i

∂x j
. E

is the spatially varied elastic tensor of the base material.
ε(wkl) = 1

2

(∇wkl + (∇wkl)�
)
is the Cauchy strain tensor

of the displacement field wkl .
After solving this problem, the homogenized elastic tensor

is determined as:

EH
i jkl = 1

|Ω|
∫

Ω

(ei j + ε(wi j)) : E : (ekl + ε(wkl))dΩ. (3)

For numerical computation, Finite Element Method is
used to solve (2) (Andreassen and Andreasen 2014). We first
enforce a macro strain on each element and compute the
response force f i je :

f i je = Keχ
i j
e , (4)

where χ
i j
e is the displacement on element e-th vertices corre-

sponding to the unit strain tensor ei j . The global force vector
f i j is assembled from element force vector f i je . Based on the
SIMP approach (Bendsøe 1989),Ke = ρ

p
e K0 is the element

stiffness matrix, where K0 is the element stiffness matrix of
the solid element and p is a penalization factor. The global
stiffnessmatrixK is assembled from element stiffnessmatrix
Ke. Then, we achieve the numerical solution ui j by solving

Kui j = f i j . (5)

After solving (5) for each pair of i j , the homogenized elastic
tensor is computed as

EH
i jkl = 1

|Ω|
∑

e

(χ
i j
e − ui je)�Ke(χ

kl
e − ukle), (6)

where i, j, k, l ∈ {1, 2, 3} and ui je means the components of
ui j on the element e.

123

207 Page 4 of 17 D. Zhang et al.

Using the engineering notation with 11 → 0, 22 → 1,
33 → 2, 12 → 3 , 23 → 4 and 13 → 5 , the elasticity
tensor, i.e., EH

i jkl in (7), is rewritten as

CH
i j = 1

|Ω|
∑

e

(χ i
e − uie)

�Ke(χ
j
e − u j

e). (7)

The objective f (CH) is a user-defined function as the
components of CH . Its gradient is computed as:

∂ f

∂ρe
=

∑

i j

∂ f

∂CH
i j

∂CH
i j

∂ρe
, (8)

where

∂CH
i j

∂ρe
= 1

|Ω|
∑

e

pρ p−1
e (χ i

e − uie)
�K0(χ

j
e − u j

e). (9)

The sensitivity filtering defined in Andreassen et al. (2011)
is adopted by default.

3.3 Optimizationmodel

Solver for IHP (1). We solve IHP in an iterative manner. In
each iteration, the following four steps are performed:

1. Compute the displacement field u by solving (5).
2. Compute the homogenized elastic tensor CH via (7) and

the objective function f (CH).
3. Perform sensitivity analysis, i.e., evaluate the gradient ∂ f

∂ρ

via (8) and (9)
4. Update density ρ using ∂ f

∂ρ
based on the Optimal Criteria

(OC) method (Sigmund 2001).

Multigrid solver. Solving (5) to compute u for large-scale
problems is time-consuming and memory-intensive. To
reduce the time and memory overhead, the multigrid solver
is used (Dick et al. 2011; Wu et al. 2015; Liu et al. 2018).
The main idea of multigrid is to solve a coarse problem by
a global correction of the fine grid solution approximation
from time to time to accelerate the convergence.

Our first level grid is the cell domain Ω . Then, we recur-
sively divide Ω to construct a hierarchy of coarse grids. To
transfer data between grids of levels l and l+1, we use trilin-
ear interpolation and its transpose as the restriction operator,
denoted as I ll+1 and Rl+1

l , respectively. Based on Galerkin
rule, the numerical stencil on the level l + 1 is determined
from the level l asKl+1 = Rl+1

l Kl I ll+1. Then, the V-cycle of
the multigrid solver, with the Gauss–Seidel relaxation as the
smoother, is employed to effectively decrease the residual on
the first level grid until convergence. In addition, the coars-
ening process would be stopped if the subsequent coarsened

Algorithm 1: V-cycle in multigrid solver

for l = 0, · · · , L − 1 do
if l > 0 then

ul ← 0
end
Relax Klul = f l ; // Relaxation
rl = f l − Klul ; // Residual update

f l+1 = Rl+1
l rl ; // Restrict residual

end
Solve KLuL = f L directly; // Solve on coarsest level
for l = L − 1, · · · , 0 do // Go up in the V-cycle

ul ← ul + I ll+1u
l+1; // Interpolate error & correct

Relax Klul = f l ; // Relaxation
end

mesh becomes smaller than 4×4×4 while using coarsening
ratio of 1 : 2. The pseudocode of the V-cycle is outlined in
Algorithm 1.

4 Optimized GPU scheme for solving IHPs

We describe our optimized GPU scheme for solving large-
scale IHPs using a GPU-tailored data structure (Sect. 4.1), a
dedicated multigrid solver (Sect. 4.2), and an efficient eval-
uation of the elastic matrix and sensitivity (Sect. 4.3).

4.1 Data structure tailored to solve IHPs

Data for each vertex. For each vertex v of each level’s mesh,
we store the numerical stencil Kv , the displacement uv , the
force fv , and the residual rv in the multigrid implementation.
The numerical stencil Kv consists of 27 matrices of dimen-
sion 3×3, each of which corresponds to one adjacent vertex.
The displacement, force, and residual are all vectors with
three components, named nodal vectors. From the perspec-
tive of implementation, a numerical stencil can be regarded
as composed of 27×3 nodal vectors. On the first level mesh,
the density variable is stored for each element, which is used
to assemble the numerical stencil on the fly. To handle dif-
ferent boundary conditions and facilitate the Gauss-Seidel
relaxation, a 2-byte flag is stored for each vertex and element
on each level’s mesh, named vertex flag and element flag,
respectively.

Mixed floating-point precision representations. By employ-
ing mixed floating-point precision, a balance between com-
putational accuracy and performance can be achieved. Since
a large-scale IHP involves large elements calculation and
requires significantmemory usage, applyingmixed precision
can help conserve memory and enable more efficient data
storage. The throughput of lower precision format is usually
much higher than that of higher precision. Only using the

123

An optimized, easy-to-use, open-source GPU … Page 5 of 17 207

Table 1 Performance statistics of different precision representations for bulk modulus maximization with 128 × 128 × 128 elements under the
volume fraction 20%

Precision rmin
rel Mem. [MB] Time/Iter [s] Time [s] Objective

Density Stencil Nodal Vector Flag Sensitivity Total

FP16 1.22 × 10−2 8 163 44 8 39 262 – – –

FP32 2.36 × 10−6 8 327 89 8 77 509 0.75 57 0.0678

FP64 8.01 × 10−15 8 654 178 8 154 1002 2.05 202 0.0685

FP32/FP16 2.13 × 10−6 8 163 89 8 0 268 0.68 59 0.0684

FP64/FP32 8.29 × 10−15 8 327 178 8 0 521 1.14 107 0.0685

We report the minimum attainable relative residual rmin
rel on the final optimized density field, the memory usage excluding unified memory during

optimization (Mem. [MB]), the average time for one iteration (Time/Iter [s]), the whole time cost (Total [s]), and the final bulk modulus (Objective).
The term “Sens” indicates the used memory for sensitivity evaluation. We label the unavailable data with “-”

higher precision through the computation leaves the lower
precision pipeline underutilized, wasting significant com-
puting resources. Through extensive testing (Table 1), we
are pleasantly surprised to find that using mixed floating-
point precision (FP16/FP32) can maximize computational
efficiency and memory storage under the tolerance relative
residual rrel = 10−2, computed as ‖r‖2/‖f‖2 (see more dis-
cussions about rrel in Fig. 5 and Sect. 4.2). The numerical
stencils are stored in half-precision (FP16), and the rest vec-
tors are stored in single-precision (FP32).

Memory layouts. Nodal vectors are all stored in the Struc-
ture of Array (SoA) format. Namely, the same component of
stencil or nodal vector of all vertices is stored together in an
array, and different components are stored in different arrays.
The numerical stencils are stored in Array of Structure (AoS)
format.

Specifically, the eight-color Gauss-Seidel relaxation is
used for the parallelization, which partitions the vertices into
eight independent subsets and parallelizes the computation
within each subset. Our memory layout should provide an
efficient memory access pattern for this procedure. Given a
vertex with an integer coordinate (x0, x1, x2), it belongs to
the subset (x0 mod 2)20 + (x1 mod 2)21 + (x2 mod 2)22. To
exploit the high memory bandwidth and leverage the coa-
lesced memory transaction, we use a similar memory layout
as (Dick et al. 2011), i.e., the data on the vertices of the same
subset are grouped and different subsets are stored in the
consecutive memory block.

In most modern GPUs, only the 32-, 64-, or 128-byte
segments of device memory that are aligned to multiple of
their size can be read or written by memory transactions. To
maximize the memory throughput, data should be organized
in such a way that the i-th thread of a warp (containing 32
threads) accesses the i-th 32-bit (or 64-bit) word of a 128-
byte segment at single (or double) precision. Thus, we add
a few “ghost” vertices to supplement each subset so that its
number of vertices is a multiple of 32. Then, we can assign
one warp to each group of 32 vertices for each subset. Each

Fig. 2 2D illustration for periodic boundary conditions. In the Gauss-
Seidel relaxation, the vertices are partitioned into four subsets. Each
subset is shown in one color. We use the memory access to the left
adjacent vertex (the red solid or dotted arrow) for illustration. For the red
dotted arrow, memory access starts from the vertex of the left boundary.
Before padding (upper left), memory access from the left boundary
vertex is discontinuous (lower left), leading to uncoloasced memory
transactions. After padding (upper right), suchmemory access becomes
continuous (lower right); thus, the memory access is coloasced.

warp accesses an aligned 128-byte (or 256-byte) segment for
single-precision (or double-precision) nodal vectors. Ideally,
each warp’s memory access to the same adjacent vertices of
the group of 32 vertices is also coalesced as these adjacent
vertices are consecutive in another subset’s memory block.

Padding layers for periodic boundary conditions. The coarse
mesh in the multigrid solver should inherit the periodic fea-
ture of the fine mesh. Due to periodic boundary conditions,
the vertices on the opposite boundaries are the same. Hence,
when restricting residuals or numerical stencils from the fine
grid to the coarse grid, the vertices on one side of the bound-
ary should add the transferred data from the neighbor on the
other side.

In ourGPU implementation, we pad a layer of vertices and
elements around the mesh (Fig. 2). Those padded vertices
and elements are copies of their periodic equivalents and are

123

207 Page 6 of 17 D. Zhang et al.

updated when their copied vertices or elements change. After
the padding, the memory layout is updated to incorporate
the padded vertices. Then, the restriction can transfer data
from neighbors regardless of periodic boundary conditions.
We do not execute computations on the padded vertices or
elements and they only provide data to their neighbors. This
padding leads to a more efficient memory access pattern (see
an example in Fig. 2).

Accessing data in memory. Our grid is highly regular as it
is evenly divided from a cube. Given the integer coordinate
(x0, x1, x2) of a vertex, the memory location is:

p = pIdbase + �x0/2� +
(
�x1/2� + �x2/2�N Id

1

)
N Id
0 , (10)

where Id = (x0 mod 2)20 + (x1 mod 2)21 + (x2 mod 2)22 is
the index of the subset, pIdbase denotes the start address of the
memory block of the subset Id, N Id

i , i = 0, 1, 2 is the number
of vertices of the subset Id along three axes:

N Id
i = �

(
Ni − O Id

i

)
/2� + 1,

where Ni , i = 0, 1, 2 is the number of elements along three
axes, O Id

i is the origin of the subset Id defined as O Id
0 =

Idmod 2, O Id
1 = �Id/2�mod 2, O Id

2 = �Id/4�.
Since the coordinates of one vertex’s adjacent elements or

vertices can be calculated by offsetting the position of itself,
we can compute their memory locations easily. Hence, we
do not store the topology information, e.g., the index of the
adjacent vertex, to reduce a large amount of memory.

Different GPU memory types. In high-resolution problems,
the storage for the nodal vectors, e.g., nodal displacements,
is enormous. For example, we need about 1.5GBmemory for
one single-precision nodal displacement field of a grid with a
resolution of 5123. Six displacement fields should be stored
to evaluate the elastic matrix and perform sensitivity anal-
ysis. Besides, they are proper initializations for solving (5)
in the next iteration. However, it costs nearly 9GB of mem-
ory, which is unaffordable for most GPUs. Thus, our GPU
implementation stores them in unified memory that supports
oversubscription. It is noteworthy that the previously men-
tioned 9GB peak memory requirement does not encompass
the unified memory. This exclusion stems from the over-
subscription feature, allowing, for example, an allocation
of 22GB unified memory even when the device memory
capacity is only 11GB. Hosts and devices can access uni-
fied memory, and the CUDA underlying systemmanages the
physical location of data stored within, whether in host mem-
ory or device memory. Intuitively, through the utilization of
unified memory, the rest device memory, beyond our allo-
cated portion, serves as a “cache” for data originating from
the host memory. We provide methods to reduce the perfor-
mance loss of unified memory in Sect. 4.3.

Fig. 3 An ablation study of the Dirichlet boundary for maximizing the
bulk modulus with the resolution of 1283 and the volume ratio of 0.2.
The optimizations start from the same initialization. The terms “With”
and “W/O”mean the optimization is runningwith andwithout enforcing
the Dirichlet boundary condition, respectively

Except for these displacement fields, the storage for the
nodal vectors of the multigrid solver is allocated and resident
on the device memory, which is the same as the density vari-
able, vertex, and element flag. The numerical stencils are also
stored in the device memory except for the first level mesh,
where we assemble the numerical stencil using densities on
the fly. The frequently used data are cached on constantmem-
ory, such as the template matrix, pointers to vertices, element
data, and grid information like resolution.

4.2 Dedicatedmultigrid solver

Singular stiffness matrices. Due to the loss of precision
caused by the mixed-precision scheme and the high reso-
lutions, the multigrid solver may diverge with a numerical
explosion. We find in practice that these situations may be
caused by (1) insufficient Dirichlet boundary conditions and
(2) no materials at corners during optimization.

During homogenization, the eight corner vertices of the
unit cube domain are usually selected as the fixed vertices.
This amounts to adding Dirichlet boundary conditions at the
eight corner vertices to the cell problem (2) to guarantee a
unique solution (see Fig. 3b). Otherwise, the global stiffness
matrix becomes singular (see Fig. 3a).

However, as the density field evolves during the optimiza-
tion, it often tends to be zero near the corners. Accordingly,
the solid part gets isolated from the corners. Then, the global
stiffness matrix is again becoming singular. To handle such a
problem, we remove the component belonging to the numer-
ical stencil’s null space from the restricted residual before
solving the system on the coarsest mesh, similar to (Panetta
et al. 2015; Zhang et al. 2022). We show an example with the
resolution 1283 under the volume fraction 0.3 in Fig. 4.
Enforce macro strain. The response force on the vertex v
from an enforced macro strain ekl is:

f iv =
7∑

e=0

ρ
p
e

⎛

⎝
7∑

v j=0

K0[7−e,v j]χ
i
e,v j

⎞

⎠ , (11)

123

An optimized, easy-to-use, open-source GPU … Page 7 of 17 207

where K0[i, j] denotes (i, j)-th 3 × 3-block of K0, and χ i
e,v j

is the displacement on vertex v j for the macro strain, where
the superscript i is the engineering notation for kl.

To enforce macro strain ekl , we assign one thread for each
vertex. Each thread traverses the incident elements of its
assigned vertex and accumulates the response force of each
element on this vertex. On the vertex v j , we have

χ0
e,v j

= (x
v j
0 , 0, 0)�, χ3

e,v j
= (x

v j
1 /2, x

v j
0 /2, 0)�,

χ1
e,v j

= (0, x
v j
1 , 0)�, χ4

e,v j
= (0, x

v j
2 /2, x

v j
1 /2)�,

χ2
e,v j

= (0, 0, x
v j
2)�, χ5

e,v j
= (x

v j
2 /2, 0, x

v j
0 /2)�,

(12)

wherexv j = (x
v j
0 , x

v j
1 , x

v j
2) is the coordinate of the vertexv j .

Due to the accuracy loss of the half-precision stiffnessmatrix,
the translation of the nodal displacement causes a response
force that cannot be ignored numerically. Consequently, the
absolute position of v j affects the response force. Hence, we
use the relative coordinate of v j in the element rather than
the coordinate in the entire grid as xv j .

Relaxation and residual update. To implement the eight-
colorGauss-Seidel relaxation,we serially launch one compu-
tation kernel for each subset of the vertices. The performance
bottleneck of the multigrid solver is the Gauss-Seidel relax-
ation and residual update on the first level mesh. Central to
both procedures is to compute Ku on each vertex v:

[Ku]v =
7∑

e=0

ρ
p
e

⎛

⎝
7∑

v j=0

K0[7−e,v j]u
v j ,e

⎞

⎠ , (13)

where the subscript e is the incident element of the vertex v,
anduv j ,e is the nodal displacement on v j -th vertex of element
e. The residual is then updated as

rv = fv − [Ku]v. (14)

We introduce two notations for the relaxation:

Mv =
7∑

e=0

ρ
p
e

⎛

⎝
7∑

v j=0,v j =7−e

K0[7−e,v j]u
v j ,e

⎞

⎠ ,

Sv =
7∑

e=0

ρ
p
e K0[7−e,7−e],

(15)

where we use Mv to denote the modified [Ku]v and Sv to
denote the sum of 3 × 3 diagonal block of K0. Then, the
Gauss-Seidel relaxation is performed via the following linear
system to update uv:

Svu = fv − Mv. (16)

Fig. 4 Singular stiffness matrices. We optimize the bulk modulus, and
the initial density fields of (a) and (b) are the same. If our multigrid
solver does not remove the component belonging to the null space of
numerical stencil, it diverges at the 10-st iteration (a). When we remove
the component belonging to the null space (b), the optimization achieved
numerical convergence

50 100 150 200 250

10
-15

10
-10

10
-5

10
0

FP16
FP32
FP32 / FP16

FP64 / FP32
FP64

 # V-cycle

 R
el

at
iv

e
re

si
d
u
al

 # V-cycle
0 010 20 30 40 50 60

10-15

10-10

10
-5

10
0

 R
el

at
iv

e
re

si
d
u
al

FP16
FP32
FP32 / FP16

FP64 / FP32
FP64

Fig. 5 Comparing the evolution of relative residuals (i.e., ‖r‖2/‖f‖2)
in a multigrid solver with various precisions (i.e., FP16, FP32, FP64,
FP32/FP16, and FP64/FP32) using different density distributions. The
average time of per V-cycle for each precision is 31.2 ms, 35.8 ms, 65.5
ms, 33.0 ms, and 65.2 ms, respectively. Left: a random density field
is generated by assigning values between 0 and 1. Right: an optimized
density field is obtained by bulk modulus optimization for volume ratio
0.2. The solver iterates for 50 and 200 V-cycles, respectively, on a grid
resolution of 1283

To perform these computations via GPU, we first dispatch
eight warps for each group of 32 consecutive vertices. Each
warp accumulates the contribution of one incident element
in (13) or (15). Then, we compute the total sum by a block
reduction.

To use the computational power of modern GPUs, lower
precision representations such as FP32 and FP16 are pre-
ferred over FP64 due to their higher throughput and smaller
bandwidth requirement. However, a trade-off exists between
computational efficiency and accuracy. We explore differ-
ent combination schemes of precision representations within
our multigrid solver (Fig. 5 and Table 1). In Fig. 5, a random
initial design leads to a quite good condition number of the
stiffness matrix as the density filter smears out all the con-
trast. However, the condition number of the stiffness matrix
becomes larger when the density contrast is obvious shown
in the the right side of Fig. 5. It is observed that compared
to the single-precision scheme, the mixed-precision scheme
achieves a comparable relative residual using less memory.
Based on these comparisons, we have identified that the com-
bination of FP32 and FP16 yields the best results within the
specified tolerance error.

123

207 Page 8 of 17 D. Zhang et al.

rrel = 10−7 rrel = 10−2 rrel = 10−3 rrel = 10−4

B = 0.0695 B = 0.0689 B = 0.0707 B = 0.0707

Fig. 6 The optimization results of the bulk modulus B with different
relative residuals rrels. The leftmost result is the baseline achieved with
FP64, while the remaining three results are obtained using a mixed-
precision scheme combining FP32 and FP16

We also test different rrels of the equilibrium equation in
Fig. 6. Again, the structures are almost the same, and the
differences in bulk modulus are less than 3%.

Restriction and prolongation. We follow (Dick et al. 2011)
to restrict residuals and prolong displacements, except that
the index of the adjacent vertex is computed via (10) instead
of being loaded from global memory.

Assembling numerical stencils for coarse grids. Since the
numerical stencil on the first level is not stored, we assemble
the numerical stencil on the second level as follows:

[Kv]vk =
∑

e∈N (v)

7∑

vi=0

wv
e,vi

7∑

v j=0

wvk
e,v j

ρ
p
e K0[vi ,v j]. (17)

Here, [Kv]vk ∈ R
3×3 is the numerical stencil of the vertex v

to its adjacent vertex vk on the second level grid. N (v) is the
set of elements on the first level grid covered by the adjacent
elements of v on the second level. The weight wv

e,vi is:

wv
e,vi =

3∏

k=1

d − |xv
k − xe,vik |
d

, (18)

where (xv
0 , xv

1 , xv
2) and (xe,vi0 , xe,vi1 , xe,vi2) are the coordinates

of v and the vi -th vertex of the element e, respectively, and
d is the length of element on the second level. The weight
w

vk
e,v j is defined in the same way.
In the GPU implementation, we assign one thread to each

vertex in the second level. Each thread iterates through its 27
neighboring vertices and accumulates the summands in (17).
More specifically, in each loop, the thread accesses the den-
sity value in (17) from global memory, computes its power,
and then multiplies it by the weights and the 3 × 3 block
K0[vi ,v j]. The resulting product is then summed into a 3 × 3
matrix in localmemory,which iswritten back to globalmem-
ory at the end of each loop. It is worth noting that, due to the
presence ofmany zeroweights in (17), we only perform com-
putations on the first-level elements that are covered by both
the incident elements of the assigned vertex and the cur-
rent looping neighboring vertices in the second level. This

excludes many summands with zero weight. If the resolution
of the second level grid is high, e.g., the number of elements
exceeds 1283, the memory cost is reduced by the non-dyadic
coarsening strategy (Wu et al. 2015) that directly transfers
the numerical stencil from the first level to the third level.

The numerical stencil on the higher-level grid (e.g., third
level, fourth level, etc) is assembled in the sameway. Specifi-
cally,we use the numerical stencil on the fine grid to assemble
the numerical stencil on the coarse grid, e.g., second level for
third level. First, our GPU implementation assigns a thread
for each vertex on the coarse grid. The thread loops 9 times to
compute the 9 entries for all 3× 3 matrices of the numerical
stencil. In each loop, the thread loads one of the 9 entries
from the numerical stencil of its adjacent vertices on the fine
grid and computes the weighted sum. Then, the thread writes
the sum back to the global memory.

4.3 Elastic matrix evaluation and sensitivity analysis

Handling unified memory. Evaluating elastic matrix and sen-
sitivity heavily depends on the six displacement fields stored
in the unified memory. The performance loss of the unified
memory increases the time cost for both operations. We find
in practice that the FP32 precision displacement is necessary
for numerical stability when solving FEM, whereas the FP16
precision is enough to evaluate the elasticmatrix and perform
sensitivity analysis. To reduce such performance loss,wefirst
launch a kernel to cast the FP32 precision displacements to
FP16 precision and then store them in the memory of the dis-
placement, the residual, and the force on the first level mesh
(Fig. 7).

Evaluation. The elastic matrix and sensitivity are evaluated
similarly. Eight warps are assigned for each group of 32 con-
secutive elements. The first 6 warps compute χ i

e − uie, i ∈
{0, 1, 2, 3, 4, 5} and store it in the shared memory, where χ i

e
is computed on the fly and uie is loaded from the memory.

To evaluate the elastic matrix in our GPU implementa-

tion, we first split
(
χ i
e − uie

)�
Ke

(
χ

j
e − u j

e

)
in (7) into 8

summands by dividingKe into eight 3-row blocks, which are
dispatched into the eight warps, respectively. Then, a block
reduction is performed to get the product in the first warp for
each element. Since we aim to sum over all elements accord-
ing to (7), we do a warp reduction using the warp shuffle
operation to compute the sum over the 32 elements in the
first warp before writing it to memory. Finally, several par-
allel reduction kernels are serially launched to compute the
sum of the results produced by the last step.

For sensitivity analysis, the split product becomes

pρ p−1
e

∂ f
∂CH

i j

(
χ i
e − uie

)�
K0

(
χ

j
e − u j

e

)
with a constant coef-

ficient. We do not sum over all the elements as the sensitivity
is computed for each element according to (9).

123

An optimized, easy-to-use, open-source GPU … Page 9 of 17 207

ADM = 4G ADM = 3.4G ADM = 2.8G
0

0.5

1

1.5

2

2.5
T

im
e

(s
)

With transfering

W/O transfering

Fig. 7 An ablation study of transferring the displacement fields to
device memory. We report the timings for performing sensitivity anal-
ysis on a 2563 grid with different available device memories (ADMs)

5 An easy-to-use framework

5.1 Setup

Users can clone this framework or fork the current mas-
ter branch from the GitHub repository (https://github.com/
lavenklau/homo3d). The compilation and runtime environ-
ment mainly requires CUDA 11, gflags, Eigen3, glm, and
OpenVDB. The main classes are listed and explained in the
supplementary material.

5.2 Compiling and code invoking

The frameworkprovides a gooduser interface.After installing
the framework, the user can use the following steps to design
3D microstructure:

– The initialization includes optimization parameters, the
design domain, and its resolution:

Homogenization hom(config);
TensorVar<float> rho(config.reso[0],config.

reso[1],config.reso[2]);
initDensity(rho, config);

where config is a parsed configuration file with com-
mand line arguments, including theYoung’smodulus and
Poisson’s ratio of the base material, grid resolution, vol-
ume fraction, initialization type, symmetry requirement,
etc.

– Define the material interpolation method based on the
SIMP approach (Bendsøe 1989):

auto rhop = rho.conv(radial_convker_t<float
,Spline4>(config.filterRadius)).pow(3);

whereconv(radial_convker_t<float,Spline4>(1.2)
) means a convolution operation with the kernel

radial_convker_t<float, Spline4>(1.2),which is
same with the filtering method of (Wu et al. 2015). The
periodic filter kernel is discussed in Sect. 6.5.

– Create an elastic matrix from the design domain hom and
the material interpolation method rhop:

auto Ch = genCH(hom, rhop);

– Define the objective function f (CH), e.g., the following
objective is to maximize the bulk modulus:

f (CH) = −1

9

(
CH
00 + CH

11 + CH
22 + 2(CH

01

+CH
02 + CH

12)
)

. (19)

The code is written as

auto objective = -(Ch(0, 0) + Ch(1, 1) + Ch
(2, 2) + (Ch(0, 1) + Ch(0, 2) + Ch(1, 2)
) * 2) / 9.f;

– Define the optimization process. We create an optimizer
and begin the main optimization loop. In each iteration,
we evaluate the objective, compute the gradient, and then
update the density variable:

// create a oc optimizer
OCOptimizer oc(0.001, config.designStep,

config.dampRatio);
// convergence criteria
ConvergeChecker criteria(config.finthres);
// main loop of optimization
for (int iter = 0; iter < config.max_iter;

iter++) {
float val = objective.eval();
// compute derivative
objective.backward(1);
// check convergence
if (criteria.is_converge(iter, val)) {

printf("converged\n"); break; }
// make sensitivity symmetry
symmetrizeField(rho.diff(), config.sym);
// update density
oc.update(rho.diff(), rho.value(), config.

volRatio);
// make density symmetry
symmetrizeField(rho.value(), config.sym);
}

where ConvergeChecker is a class to check conver-
gence, symmetrizeField is a function to symmetrize
a 3D tensor according to a given symmetry type. In this
routine, we do not filter the sensitivity since the density
is already filtered.

– Output the optimized density field and elastic matrix:

rho.value().toVdb(getPath("rhoFile"));
Ch.writeToTxt(getPath("ChFile"));

where getPath is a function to prefix the output directory
to a given string. The member function toVdb writes the
data of TensorVar to a OpenVDB file.

123

https://github.com/lavenklau/homo3d
https://github.com/lavenklau/homo3d

207 Page 10 of 17 D. Zhang et al.

Users only need to define config, the material interpola-
tion method, and the objective function before running the
code to solve the IHPs. The outputs contain a microstructure
visualization file (*.vbd), an elastic tensor matrix (*.txt),
Users can use Rhino to visualize *.vdb files.

5.3 Extensions

Our framework uses the automatic differentiation (AD) tech-
nique (Griewank andWalther 2008) to make it easy to extend
our program to optimize various objective andmaterial inter-
polation methods. Users can modify the code according to
their needs by changing expressions with different objectives
or constraints and material interpolation methods without
repeating the tedious calculation.

Different objectives. For other objective function, such as
shear modulus, its expression can be defined accordingly:

f (CH) = −1

3

(
CH
33 + CH

44 + CH
55

)
(20)

We change nothing than the objective from the code of bulk
modulus optimization by calling

auto objective = - (Ch(3, 3) + Ch(4, 4) + Ch
(5, 5)) / 3.f;

To design negative Poisson’s ratio materials, Xia and Bre-
itkopf (2015) propose a relaxed form of objective function
for 2D problems. Accordingly, we can define a similar objec-
tive to design negative Poisson’s ratio materials in 3D:

f (CH) = CH
01 + CH

02 + CH
12 − βl

(
CH
00 + CH

11 + CH
22

)
,

(21)

where β ∈ (0, 1) is a user-specified constant and the expo-
nential l is the iteration number. The code is:

auto objective = Ch(0, 1) + Ch(0, 2) + Ch(1,
2) - powf(beta, iter) * (Ch(0, 0)+Ch(1, 1)
+Ch(2, 2));

where beta is a constant in (0, 1) and iter is the iteration
number in the main loop of optimization. We also support
common mathematical functions, such as exponential and
logarithm functions, to define the expression. Several works
Radman et al. (2013); Xia and Breitkopf (2015) find that the
negative value of Poisson’s ratio can reach -1 when the shear
modulus is much larger than its bulk modulus. Accordingly,
we can optimize the following objective function to obtain
the negative Poisson’s ratio:

f (CH) =log(1 + η(CH
01 + CH

12 + CH
20)/(C

H
00 + CH

11 + CH
22))

+ τ
(
CH
00 + CH

11 + CH
22

)γ

,
(22)

whereη, τ, γ are three parameters. In our experiments,we set
η = 0.6, τ = −1/Eγ

0 , and γ = 0.5, where E0 is the Young’s
modulus of solids. We discuss the difference between (21)
and (22) in Sect. 6.5.

Different material interpolation methods. For the routine of
Sect. 5.2, we support other convolution kernels (e.g., lin-
ear convolution kernels) for density filtering. Our program is
extensible, and users can define their own convolution kernel.
A more direct material interpolation is defined as:

auto rhop = rho.pow(3);

wherewe only penalize the density variable by the power of 3
without filtering. Accordingly, we should filter the sensitivity
before updating the density by OCOptimizer:

oc.filterSens(rho.diff(), rho.value(), config.
filterRadius);

6 Experiments and applications

For the optimization parameters, the material penalization
factor is 3, the filter radius is 2, the maximum iteration num-
ber is 300, the iterative step size of density is 0.05, and the
damping factor of the OC method is 0.5. The optimization
is stopped when the relative change of the objective func-
tion is less than 0.0005 for three consecutive iterations. The
cubic domain is discretized with 8-node brick elements. The
mechanical properties of solids are Young’s modulus E0 = 1
and Poisson’s ratio ν = 0.3.

We optimize three different objectives: bulkmodulus (19),
shearmodulus (20), and negative Poisson’s ratio (21) (Fig. 8).
Table 2 summarizes the numerical statistics of all examples.
Our solver consumes less than 40 s for each iteration with
a peak GPU memory of 9 GB for high-resolution examples
with 5123 ≈ 134.2 million elements. All experiments are
executed on a desktop PC with a 3.6 GHz Intel Core i9-
9900K, 32GB of memory, and an NVIDIA GTX 1080Ti
graphics card with 11 GB graphics card RAM size.

6.1 Symmetry

Symmetry is essential for designing isotropic material. We
have predefined three symmetry types:

– reflect3: the reflection symmetry on three planes
{x = 0.5, y = 0.5, z = 0.5} of the cube domain;

– reflect6: the reflection symmetry on six planes {x =
0.5, y = 0.5, z = 0.5, x + y = 0, y + z = 0, z + x = 0}
of the cube domain;

– rotate3: rotation symmetry means that the structure is
invariant under the rotation of 90◦ around the x, y, z axes

123

An optimized, easy-to-use, open-source GPU … Page 11 of 17 207

Table 2 Performance statistics for different objective functions

Applications Examples Resolution #Elements Vol(%) Objective Mem. [MB] Time/Iter [s] Total [s]

Bulk modulus Fig. 1a 5123 1.3 × 108 30 0.1094 8153 38.03 4412

Fig. 10a1 1283 2.1 × 106 10 0.0239 481 0.53 110

Fig. 10a2 1283 2.1 × 106 10 0.0283 481 0.51 138

Fig. 10a3 1283 2.1 × 106 10 0.0301 481 0.55 116

Fig. 13 left 1283 2.1 × 106 40 0.0674 481 0.55 154

Fig. 13 middle 1283 2.1 × 106 40 0.0680 481 0.55 141

Fig. 13 right 1283 2.1 × 106 40 0.0699 481 0.64 64

Fig. 15a left 643 2.6 × 105 30 0.1111 197 0.15 12

Fig. 15a middle 1283 2.1 × 106 30 0.1124 481 0.67 60

Fig. 15a right 2563 1.7 × 107 30 0.1127 2393 4.51 632

Fig. 17a left 1283 2.1 × 106 10 0.0312 481 0.69 45

Fig. 17a middle 1283 2.1 × 106 20 0.0650 481 0.68 50

Fig. 17a right 1283 2.1 × 106 30 0.1081 481 0.65 64

Shear modulus Fig. 1b 5123 1.3 × 108 30 0.0684 8153 36.13 5889

Fig. 10b1 1283 2.1 × 106 10 0.0164 481 0.60 45

Fig. 10b2 1283 2.1 × 106 10 0.0181 481 0.54 71

Fig. 10b3 1283 2.1 × 106 10 0.0169 481 0.53 83

Fig. 15b left 643 2.6 × 105 30 0.0653 197 0.15 13

Fig. 15b middle 1283 2.1 × 106 30 0.0721 481 0.60 77

Fig. 15b right 2563 1.7 × 107 30 0.0741 2393 4.53 671

Fig. 17b left 1283 2.1 × 106 10 0.0190 481 0.65 62

Fig. 17b middle 1283 2.1 × 106 20 0.0407 481 0.66 76

Fig. 17b right 1283 2.1 × 106 30 0.0804 481 0.59 84

Poisson’s ratio Fig. 1c 5123 1.3 × 108 20 −0.6644 8153 34.07 8347

Fig. 9a 1283 2.1 × 106 20 −0.5768 481 0.57 91

Fig. 9b 1283 2.1 × 106 20 −0.4170 481 0.67 202

Fig. 9c 1283 2.1 × 106 20 −0.4962 481 0.69 89

Fig. 10c1 1283 2.1 × 106 10 −0.4399 481 0.64 193

Fig. 10c2 1283 2.1 × 106 10 −0.5203 481 0.53 64

Fig. 10c3 1283 2.1 × 106 10 −0.4730 481 0.50 150

Fig. 12 leftup 1283 2.1 × 106 20 0.0949 481 0.49 147

Fig. 12 leftbottom 1283 2.1 × 106 20 −0.8130 481 0.51 152

Fig. 12 rightup 1283 2.1 × 106 20 −0.6094 481 0.58 175

Fig. 12 rightbottom 1283 2.1 × 106 20 −0.4363 481 0.69 207

Fig. 15c left 643 2.6 × 105 20 −0.3567 197 0.14 16

Fig. 15c middle 1283 2.1 × 106 20 −0.5152 481 0.59 126

Fig. 15c right 2563 1.7 × 107 20 −0.6023 2393 4.79 1437

Fig. 17c left 1283 2.1 × 106 10 −0.6301 481 0.58 46

Fig. 17c middle 1283 2.1 × 106 20 −0.5587 481 0.54 163

Fig. 17c right 1283 2.1 × 106 30 −0.5470 481 0.56 118

We report the number of elements (#Elements), the predefined volume fraction (Vol(%)), the optimized objective values for three applications
(Objective), the peak memory excluding unified memory during optimization (Mem. [MB]), the time for one optimization iteration (Time/Iter [s]),
and the whole time cost (Total [s]). The Objective values are calculated after the binarization of the optimized density field

123

207 Page 12 of 17 D. Zhang et al.

Fig. 8 Gallery of our optimizedmicrostructures bymaximizing bulkmodulus (a), maximizing shearmodulus (b) andminimizing negative Poisson’s
ratios (c) with the resolution 128 × 128 × 128

Fig. 9 An ablation study of the symmetry operation targeting at nega-
tive Poisson’s ratio (21). Upper row: symmetric initializations. Middle
row: without symmetries. Bottom row: with symmetries. The resolution
is 128 × 128 × 128 and the volume fraction is 20%

that pass through the cube domain’s center, as same under
their compositions.

Each symmetry splits the cube into many orbits. To enforce
the symmetry, we set the density variables on the same orbit
to their average. Figure 9 shows different symmetry results.
When the initial value is symmetric, the optimization natu-
rally ensures the symmetry even without reflect3 or rotate3
operation. However, the operation with or without reflect6
shows themost distinct structural difference. Specifically, the
result without using reflect6 only possesses reflect3.We con-
jecture that since more symmetry restrictions exist in reflect6

than reflect3 or rotate3, the numerical and machine errors
are enlarged with the optimization, thereby causing the sym-
metric constraint to be violated. Hence, we add symmetry
operations to generate symmetric structures. In the experi-
ments, we use the reflect6 symmetry by default.

6.2 Density initializations

The optimization problem (1) admits a trivial solution, where
all the density variables are the predefined volume ratio.
Besides, it (1) has numerous localminima. The initial density
field greatly influences which local minimum it converges to.
Thus, it is necessary to construct various initial density fields
to find desired microstructures. Previous work usually con-
structs initialization artificially and seldom discusses other
ways of initialization, while we propose to increase the ini-
tialization diversity. Different initial density fields and their
corresponding optimizated structures are shown in Fig. 10.

We use trigonometric functions to cover various initial
density fields. We first try the following basis functions:

Tn = {cos 2πkx̄i , sin 2πkx̄i : 0 < k ≤ n, i = 0, 1, 2,

x̄ = Rq (x − b) ,b = (0.5, 0.5, 0.5)�},

where the integer n determines the size of the initializa-
tion space, x ∈ R

3 is the coordinate of the element’s
center, Rq ∈ R

3×3 is a rotation matrix determined by a
normalized quaternion q with 4 random entries. Then, to
exploit more initializations, we extend Tn as: Qn = Tn ∪
{p1 p2 : p1, p2 ∈ Tn}, where the products of any two items
in Tn are incorporated. Qn of each element is different.

To initialize a density field, we first generate a set of ran-
dom numbers in [−1, 1] as weights, whose number is the
number of the basis functions in Qn . Then, for each element,
we use the obtained weights to weight the basis functions
in Qn and then sum them. Finally, we project the sum into

123

An optimized, easy-to-use, open-source GPU … Page 13 of 17 207

Fig. 10 We show different initial density fields (upper row) and optimized results (bottom row) for bulk modulus maximization (a1)-(a3), shear
modulus maximization (b1)-(b3), and negative Poisson’s ratio materials (c1)-(c3) with 128 × 128 × 128 elements under the volume fraction 10%

[ρmin, 1] via a rescaled Sigmoid function S(y) = ρmin +
V̂ /

(
1 + e−k(y−μ)

)
, where k = 15, V̂ = min(1.5V , 1), and

μ is determined by the binary search such that the volume
constraint is satisfied after the projection. This projection
aims to produce a valid density distribution, i.e., the con-
straint ρmin ≤ ρe ≤ 1 is satisfied for each element, and make
the initialization far from the trivial solution. In Fig. 10, we
use different initial density fields for optimization. Differ-
ent initial density fields lead to different results, which are
different local optimal solutions.

6.3 Mixed-precision scheme

To demonstrate the effectiveness of the proposed mixed-
precision approach, we test various precision representations
under the same configuration (optimization parameters, reso-
lutions, and desktop PC). The statistics are shown in Table 1.
A more precise representation of storage yields a smaller
residual, albeit at the cost of increased memory consump-
tion and iteration time. The computation time for pure
single precision (FP32) is comparable to that of mixed
precision (FP32/FP16). However, utilizing mixed precision
(FP32/FP16) can lead to a 47% reduction comparing with
pure FP32 in memory consumption. In addition, the relative
error of different precisions in the final bulk modulus is less
than 1.1%. In summary, due to this mixed-precision scheme,
we can solve high-resolution examples with 5123 ≈ 134.2
million finite elements on only a NVIDIA GeForce GTX
1080Ti GPU.

6.4 Comparison withmulti-CPU framework

We implement the multi-CPU framework Aage et al. (2015)
and conduct the experiments on a cluster with a total of 9
nodes, each equipped with two Interl Xeon E5-2680 v4 28-
core CPUs and 128GB memory connected by Intel OPA.
Since we have verified that the relative residual 10−2 is
acceptable for IHPs (see Fig. 6), the relative residual thresh-
olds for both multi-CPU and our frameworks are set as 10−2.
In Fig. 11, the same initialization is adopted for these two

Fig. 11 Maximizing bulk noduli usingMulti-CPU framework (Middle)
and our framework (Right). The domain resolution is set to 256×256×
256, and the volume fraction is fixed at 0.3

Fig. 12 Optimizing (21) and (22) using two different initial density
fields. The graph plots the Poisson’s ratio vs. the number of iterations.

frameworks. The multi-CPU framework is configured based
on the default settingsmentioned in Aage et al. (2015) except
the residual tolerance. The precision scheme used in Aage
et al. (2015) is FP64,whereaswe employ themixed-precision
scheme FP32/FP16. The final structures andmoduli obtained
by both frameworks are very similar. The average time of
each iteration for the Multi-CPU framework is around 40.0
s, while our framework achieves a significantly reduced aver-
age time cost of 4.4 s.

123

207 Page 14 of 17 D. Zhang et al.

Fig. 13 Optimizing the bulk modules B using different material inter-
polation methods with a same initial density field and a same filtering
radius. Left:wefilter the densityfield via theSpline4 convolution ker-
nel, i.e., radial_convker_t<float, Spline4>. Middle: we
filter the density field by the linear convolution kernel. Right: we do not
filter the density but filter sensitivity. The number of iterations are 282
(left), 255 (middle), and 100 (right), respectively

Fig. 14 Periodic filter kernel. We filter sensitivity without (left) and
with (right) a periodic filter kernel

6.5 Extending our framework

Users can optimizematerial properties according to their own
goals through our framework. To verify the scalability of the
framework, we optimize (21) and (22) to achieve the nega-
tive Poisson’s ratio structures using different density fields,
as shown in Fig. 12. From the results, both objective func-
tions can lead to negative Poisson’s ratios and have their own
advantages. It is an interesting future work to design specific
initial density fields so that the objective functions can be
optimized to get smaller Poisson’s ratios.

In Fig. 13, we test three material interpolation methods
for optimizing the bulk modules. The sensitivity filtering of
the OC solver is better than density filtering as it has fewer
iteration numbers and generates a greater bulk modules.

When the symmetry operation is not enforced, the
microstructure is not guaranteed to bewell connected. There-
fore, we modify the filter kernel to be periodic to improve
connectivity (see the zoomed-in views in Fig. 14). When
filtering the sensitivity or density of elements near the bound-
ary, the periodic filter kernel encompasses those elements
near the opposite boundary as if multiple unit cells are con-
nected along the boundaries.

Fig. 15 Various resolutions for bulk modulus maximization (a), shear
modulus maximization (b), and negative Poisson’s ratio materials (c).
Left: 64× 64× 64. Middle: 128× 128× 128. Right: 256× 256× 256.
The volume fraction is 30% for (a & b) and 20% for (c)

6.6 Resolution

We test the applications by optimizing bulk modulus (19),
shear modulus (20), and negative Poisson’s ratio (21) with
three different resolutions 64 × 64 × 64, 128 × 128 × 128,
256 × 256 × 256 in Fig. 15. The increase in computational
resolution provided by GPU implementation leads to design
improvement. The respective bulk moduli of the optimized
results with different resolutions are 0.1111, 0.1124, and
0.1127. The shear moduli of the three structures are 0.0653,
0.0721, and 0.0741, respectively. With the increase in reso-
lution, the results show a clear improvement in values and
details. A similar conclusion can be obtained for the negative
Poisson’s ratio microstructures in Fig. 15c.

To further validate the effect of resolution on structural
properties, we run our optimization on bulk modulus 100
times with different initializations for each resolution, count
the resulting bulk modulus, and show the statistics in Fig. 16.
The results show that most of the bulk modulus concentrates
near the high valuewhen the resolution is high. There are also
more outliers as the resolution becomes lower. The lower
the resolution, the more likely it is to approach the trivial
solution.

The highest achievable resolution using our current setup
is 5123. This limitation remains in place, even though the
peak memory usage of 9GB does not completely utilize the
device memory. This constraint arises due to the need to
consider the establishment of a multigrid hierarchy via itera-
tive grid coarsening. Ideally, the resolution of the finest grid
should be amultiple of a power of 2 to streamline this process.
Failing tomeet this conditionwould necessitate an increase in

123

An optimized, easy-to-use, open-source GPU … Page 15 of 17 207

64 128 256

0.095

0.1

0.105

0.11

0.115

Resolution

B
u
lk

 m
o
d
u
lu

s

Fig. 16 Box-plots show the statistics of the optimized bulk moduli for
different resolutions (64× 64× 64 on the left, 128× 128× 128 in the
middle, and 256 × 256 × 256 on the right). The volume ratio is 0.3

Fig. 17 Various volume fractions for bulk modulus maximization (a),
shear modulus maximization (b), and negative Poisson’s ratio materials
(c). Left: 10%. Middle: 20%. Right: 30%. The resolution is 1283

resolution to generate an adequate number of coarse grid lev-
els, quickly surpassing our memory capacity. As a result, the
largest resolution manageable with our current setup appears
to be capped at 5123.

6.7 Volume fraction

In Fig. 17, three applications are optimized for volume ratios
from 10 to 30%.When the volume ratio is 10%, the results of
the bulk modulus and shear modulus optimization are simi-
lar to the P surface. With the increase of volume fraction, the
structures become diversified. However, with the increase
of volume fraction, the structure changes from rod struc-
ture to closed wall structure for the negative Poisson’s ratio
structures. In Fig. 18, we also compare our optimized results

Fig. 18 For a 128 × 128 × 128 grid, we perform shear modulus max-
imization 100 times using different initializations for each volume
fraction. We show statistics of the resulting shear moduli by box-plots.
The green line shows the Voigt bound

with the Voigt bound (Voigt 1928), which provides a theo-
retical bound of the shear modulus of anisotropic materials
under different volume ratios. Increasing the resolution of the
microstructure would be considered in the future to obtain
themicrostructures closer to the upper limit of the theoretical
value.

7 Conclusions

We have proposed an optimized, easy-to-use, open-source
GPU solver for large-scale inverse homogenization prob-
lems. Through a software-level design technology explo-
ration, a favorable combination of data structures and algo-
rithms, which makes full use of the parallel computation
power of today’s GPUs, is developed to realize a time-
and memory-efficient GPU solver. Specifically, we use the
mixed-precision representation (FP32/FP16) and incorporate
padding to handle periodic boundary conditions. Conse-
quently, this new implementation is carried out on a standard
computer with only one GPU operating at the software
level. Topology optimization for achieving high-resolution
3D microstructures becomes computationally tractable with
this solver, as demonstrated by our optimized cells with up
to 5123 (134.2 million) elements. Our framework is easy-to-
use, and the used automatic differentiation technique enables
users to design their own objective functions and material
interpolation methods. Code for this paper is publicly avail-
able at https://github.com/lavenklau/homo3d.

Future work and limitations Even though our framework is
designed to be user-friendly, it needs to modify the source
code for specific goals; however, indiscreetmodificationmay

123

https://github.com/lavenklau/homo3d

207 Page 16 of 17 D. Zhang et al.

produce unexpected compilation or runtime errors. Heavy
dependence on the templates makes it harder to track the
error. In future work, we would work on providing a better
user interface, e.g., encapsulating the framework as a python
module that the user could import.

The most time consuming part of our solver is solving the
FEM equation which takes several V-cycles. Within our cur-
rent configuration, overlappedmemory access exists between
consecutive vertices on their common neighboring vertices
or elements. This overlap leads to a wastage of bandwidth,
impeding optimal performance. Advanced data structures
and access patterns such as block partition Liu et al. (2018)
may be designed to potentially achieve further acceleration.

We support a few material interpolation methods and
will add more (e.g., RAMP scheme Stolpe and Svanberg
(2001)) in future work. Besides, geometry represented by an
implicit function will be added later, where the tensor vari-
able becomes the parameters of a set of implicit functions.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s00158-023-03657-
y.

Acknowledgements The authors would like to acknowledge the finan-
cial support from the Provincial Natural Science Foundation of Anhui
(2208085QA01), the Fundamental Research Funds for the Central Uni-
versities (WK0010000075), the National Natural Science Foundation
of China (61972368 and 62025207).

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results Important details for replication of results have
been described in themanuscript. Code for this paper is at https://github.
com/lavenklau/homo3d.

References

AageN,AndreassenE,LazarovBS (2015)Topologyoptimization using
PETSc: an easy-to-use, fully parallel, open source topology opti-
mization framework. Struct Multidisc Optim 51:565–572

Allaire G (2002) Shape optimization by the homogenization method.
Springer, New York

AndreassenE,AndreasenCS (2014)How to determine compositemate-
rial properties using numerical homogenization.ComputMater Sci
83:488–495

Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O
(2011) Efficient topology optimization inMATLAB using 88 lines
of code. Struct Multidisc Optim 43:1–16

Ben Khalifa D, Martel M, Adjé A (2020) Pop: a tuning assistant
for mixed-precision floating-point computations. In: International
workshop on formal techniques for safety-critical systems, pp 77–
94

Bendsøe MP (1989) Optimal shape design as a material distribution
problem. Struct Optim 1(4):193–202

BendsøeMP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods
Appl Mech Eng 71(2):197–224

Borrvall T, Petersson J (2001) Large-scale topology optimization in
3d using parallel computing. Comput Methods Appl Mech Eng
190(46–47):6201–6229

Briggs WL, Henson VE, McCormick SF (2000) A multigrid tutorial
Challis VJ, Roberts AP, Grotowski JF (2014) High resolution topol-

ogy optimization using graphics processing units (GPUs). Struct
Multidisc Optim 49(2):315–325

De Sturler E, Paulino GH, Wang S (2008) Topology optimization with
adaptive mesh refinement. In: Proceedings of the 6th international
conference on computation of shell and spatial structures IASS-
IACM, pp 28–31

Dick C, Georgii J, Westermann R (2011) A real-time multigrid finite
hexahedra method for elasticity simulation using CUDA. Simul
Model Pract Theory 19(2):801–816

Gao J, Xue H, Gao L, Luo Z (2019) Topology optimization for auxetic
metamaterials based on isogeometric analysis. Comput Methods
Appl Mech Eng 352:211–236

Gao J, XiaoM,GaoL,Yan J, YanW (2020) Isogeometric topology opti-
mization for computational design of re-entrant and chiral auxetic
composites. Comput Methods Appl Mech Eng 362:112876

Gao J, Wang L, Luo Z, Gao L (2021) IgaTop: an implementation
of topology optimization for structures using IGA in MATLAB.
Struct Multidisc Optim 64(3):1669–1700

Gibiansky LV, SigmundO (2000)Multiphase composites with extremal
bulk modulus. J Mech Phys Solids 48(3):461–498

Göddeke D, Strzodka R (2010) Cyclic reduction tridiagonal solvers on
GPUs applied to mixed-precision multigrid. IEEE Trans Parallel
Distrib Syst 22(1):22–32

Griewank A,Walther A (2008) Evaluating derivatives, 2nd edn. Society
for Industrial and Applied Mathematics

Groen JP, Sigmund O (2018) Homogenization-based topology opti-
mization for high-resolution manufacturable microstructures. Int
J Numer Methods Eng 113(8):1148–1163

Haidar A, Tomov S, Dongarra J, Higham NJ (2018) Harnessing GPU
tensor cores for fast fp16 arithmetic to speed up mixed-precision
iterative refinement solvers. SC18: international conference for
high performance computing. Networking, storage and analysis,
IEEE, pp 603–613

Hosseini MT, Ghaffari A, Tahaei MS, Rezagholizadeh M, Asgharian
M, Nia VP (2023) Towards fine-tuning pre-trained language mod-
els with integer forward and backward propagation. Find Assoc
Comput Linguist: EACL 2023:1867–1876

HuangX,RadmanA,XieYM (2011) Topological design ofmicrostruc-
tures of cellular materials for maximum bulk or shear modulus.
Comput Mater Sci 50(6):1861–1870

Huang X, Xie YM, Jia B, Li Q, Zhou S (2012) Evolutionary topol-
ogy optimization of periodic composites for extremal magnetic
permeability and electrical permittivity. Struct Multidisc Optim
46(3):385–398

Li H, Luo Z, Gao L, QinQ (2018) Topology optimization for concurrent
design of structures with multi-patch microstructures by level sets.
Comput Methods Appl Mech Eng 331:536–561

LiuH,HuY,ZhuB,MatusikW, Sifakis E (2018)Narrow-band topology
optimization on a sparsely populated grid. ACM Trans Gr (TOG)
37(6):1–14

LiuH,HuY,ZhuB,MatusikW, Sifakis E (2018)Narrow-band topology
optimization on a sparsely populated grid. ACMTransGr 37(6):1–
14

McAdams A, Zhu Y, Selle A, Empey M, Tamstorf R, Teran J, Sifakis E
(2011) Efficient elasticity for character skinning with contact and
collisions. In: ACM SIGGRAPH 2011 papers, pp 1–12

Morvaridi M, Carta G, Bosia F, Gliozzi AS, Pugno NM, Misseroni
D, Brun M (2021) Hierarchical auxetic and isotropic porous

123

https://doi.org/10.1007/s00158-023-03657-y
https://doi.org/10.1007/s00158-023-03657-y
https://github.com/lavenklau/homo3d
https://github.com/lavenklau/homo3d

An optimized, easy-to-use, open-source GPU … Page 17 of 17 207

medium with extremely negative Poisson’s ratio. Extreme Mech
Lett 48:101405

Nishiwaki S, Frecker MI, Min S, Kikuchi N (1998) Topology optimiza-
tion of compliant mechanisms using the homogenization method.
Int J Numer Methods Eng 42(3):535–559

Panetta J, Zhou Q, Malomo L, Pietroni N, Cignoni P, Zorin D (2015)
Elastic textures for additive fabrication. ACMTransGr 34(4):1–12

Radman A, Huang X, Xie Y (2013) Topological optimization for
the design of microstructures of isotropic cellular materials. Eng
Optim 45(11):1331–1348

Rong Y, Zhao ZL, Feng XQ, Xie YM (2022) Structural topology opti-
mization with an adaptive design domain. Comput Methods Appl
Mech Eng 389:114382

Shan S, Kang SH, Zhao Z, Fang L, Bertoldi K (2015) Design of planar
isotropic negative Poisson’s ratio structures. Extreme Mech Lett
4:96–102

SigmundO (1994)Materialswith prescribed constitutive parameters: an
inverse homogenization problem. Int J Solids Struct 31(17):2313–
2329

Sigmund O (2001) A 99 line topology optimization code written in
MATLAB. Struct Multidisc Optim 21(2):120–127

Sigmund O, Torquato S (1997) Design of materials with extreme ther-
mal expansion using a three-phase topology optimization method.
J Mech Phys Solids 45(6):1037–1067

Stainko R (2006) An adaptive multilevel approach to the minimal
compliance problem in topology optimization. Commun Numer
Methods Eng 22(2):109–118

Stolpe M, Svanberg K (2001) An alternative interpolation scheme
for minimum compliance topology optimization. Struct Multidisc
Optim 22(2):116–124

Sun J, Peterson GD, Storaasli OO (2008) High-performance mixed-
precision linear solver for FPGAS. IEEE Trans Comput
57(12):1614–1623

Suzuki K, Kikuchi N (1991) A homogenization method for shape
and topology optimization. Comput Methods Appl Mech Eng
93(3):291–318

Theocaris P, Stavroulakis G, Panagiotopoulos P (1997) Negative Pois-
son’s ratios in composites with star-shaped inclusions: a numerical
homogenization approach. Arch Appl Mech 67(4):274–286

Träff EA, Rydahl A, Karlsson S, Sigmund O, Aage N (2023) Simple
and efficient GPU accelerated topology optimisation: codes and
applications. Comput Methods Appl Mech Eng 410:116043

Vogiatzis P, Chen S, Wang X, Li T, Wang L (2017) Topology optimiza-
tion of multi-material negative Poisson’s ratio metamaterials using
a reconciled level set method. Comput-Aided Des 83:15–32

Voigt W (1928) Lehrbuch der kristallphysik (textbook of crystal
physics). BG Teubner, Leipzig

Wu J,DickC,WestermannR (2015)A system for high-resolution topol-
ogy optimization. IEEE Trans Vis Comput Gr 22(3):1195–1208

Xia L, Breitkopf P (2015) Design of materials using topology optimiza-
tion and energy-based homogenization approach in MATLAB.
Struct Multidisc Optim 52(6):1229–1241

ZhangD, Zhai X, FuXM,WangH, Liu L (2022) Large-scaleworst-case
topology optimization. Comput Gr Forum 41(7)

Zhang H, Chen D, Ko SB (2019) Efficient multiple-precision floating-
point fused multiply-add with mixed-precision support. IEEE
Trans Comput 68(7):1035–1048

ZhuY, Sifakis E, Teran J, BrandtA (2010)An efficientmultigridmethod
for the simulation of high-resolution elastic solids. ACM Trans Gr
(TOG) 29(2):1–18

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

	An optimized, easy-to-use, open-source GPU solver for large-scale inverse homogenization problems
	Abstract
	1 Introduction
	2 Related work
	3 Inverse homogenization problem
	3.1 Model
	3.2 Homogenization
	3.3 Optimization model

	4 Optimized GPU scheme for solving IHPs
	4.1 Data structure tailored to solve IHPs
	4.2 Dedicated multigrid solver
	4.3 Elastic matrix evaluation and sensitivity analysis

	5 An easy-to-use framework
	5.1 Setup
	5.2 Compiling and code invoking
	5.3 Extensions

	6 Experiments and applications
	6.1 Symmetry
	6.2 Density initializations
	6.3 Mixed-precision scheme
	6.4 Comparison with multi-CPU framework
	6.5 Extending our framework
	6.6 Resolution
	6.7 Volume fraction

	7 Conclusions
	Acknowledgements
	References

