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Abstract
The ability to efficiently solve topology optimization problems is of great importance for many practical applications. Hence, 
there is a demand for efficient solution algorithms. In this paper, we propose novel quasi-Newton methods for solving PDE-
constrained topology optimization problems. Our approach is based on and extends the popular solution algorithm of Amstutz 
and Andrä (J Comput Phys 216: 573–588, 2006). To do so, we introduce a new perspective on the commonly used evolution 
equation for the level-set method, which allows us to derive our quasi-Newton methods for topology optimization. We 
investigate the performance of the proposed methods numerically for the following examples: Inverse topology optimization 
problems constrained by linear and semilinear elliptic Poisson problems, compliance minimization in linear elasticity, and 
the optimization of fluids in Navier–Stokes flow, where we compare them to current state-of-the-art methods. Our results 
show that the proposed solution algorithms significantly outperform the other considered methods: They require substantially 
less iterations to find a optimizer while demanding only slightly more resources per iteration. This shows that our proposed 
methods are highly attractive solution methods in the field of topology optimization.

Keywords  Topology optimization · Topological sensitivity · Level-set method · PDE constrained optimization · Numerical 
optimization

Mathematical Subject Classification  65K05 · 74P15 · 49Q10 · 49M41 · 35Q93

1  Introduction

Topology optimization is concerned with the optimization 
of a domain by altering its geometrical features. Whereas 
in shape optimization only the boundary of a domain is 
variable, topology optimization considers the addition or 
removal of material to the geometry. Originally introduced 
in the context of solid mechanics, topology optimization has 
been considered for many practical applications, e.g., com-
pliance minimization in elasticity (Eschenauer et al. (1994); 
Allaire et al. (2005); Amstutz and Andrä (2006)), design 
optimization in the context of fluid mechanics (Borrvall 

and Petersson (2003); Sá et al. (2016)), electrical machines 
(Gangl and Langer (2012)), as well as the solution of inverse 
problems (Canelas et al. (2015); Hintermüller and Laurain 
(2008); Laurain et al. (2013); Beretta et al. (2017)) and the 
modeling and simulation of fracture evolution (Xavier et al. 
(2018, 2017)).

The goal of topology optimization is to optimize a cost 
functional J depending on the set Ω , which plays the role of 
the design variable. To achieve this goal, usually all possible 
designs are assumed to belong to a fixed domain � ⊂ ℝ

d , 
d ∈ ℕ>0 , where ℕ denotes the set of positive integers, which 
is referred to as hold-all domain. The understanding how a 
functional varies under perturbations of Ω is crucial for the 
development of numerical methods. Of particular impor-
tance are perturbations obtained by removing or adding a 
small inclusion ��(x0) at x0 ∈ Ω or x0 ∈ �⧵Ω of size � . The 
first order variation of the functional under this perturba-
tion is called the “topological derivative”. This leads to the 
definition of the perturbed domains
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and ��(x0) ∶= x0 + �� with 𝜔 ⊂ ℝ
d  being a simply 

connected domain with 0 ∈ � . Then, the topological 
derivative can be defined by

where f satisfies lim�↘0 f (�) = 0 . In fact, the topological 
derivative can also depend on the inclusion � , which we 
omit in our notation for simplicity and just write DJ(Ω) . For 
many shape functionals in practice the function f is given by 
the volume of �� , however, there are problems where this is 
not the case, e.g., when Dirichlet boundary conditions are 
imposed on the inclusion boundary ��� (Amstutz (2022)).

The topological derivative was first formally introduced 
as the bubble method in Eschenauer et al. (1994) and later 
mathematically justified in Sokolowski and Zochowski 
(1999); Garreau et al. (2001). Topological derivatives have 
been established for a variety of PDE constrained functionals 
and we refer to the monographs Novotny and Sokołowski 
(2013, 2020) for further information. For the computation 
of the topological derivative there exist several methods, for 
instance a direct approach (Novotny and Sokołowski (2013)), 
where first the expansion of the state variable is computed 
and afterwards the topological expansion of the cost function 
is derived via Taylor’s formula. Lagrangian approaches 
provide another way to compute topological derivatives, e.g., 
a Lagrangian method using an averaged adjoint equation 
is presented in Sturm (2020), a method using a perturbed 
adjoint equation in conjunction with an unperturbed state 
equation is found in Amstutz and Andrä (2006), and another 
Lagrangian method using an unperturbed adjoint equation 
in Gangl and Sturm (2020). We refer to Baumann and Sturm 
(2022) for a comparison of Lagrangian methods and their 
advantages and disadvantages.

From a numerical perspective, one can either use the 
topological derivative directly to find the location of 
an optimal design (see, e.g., Hintermüller and Laurain 
(2008); Novotny and Sokołowski (2020)) or one can use 
a level-set approach (Amstutz and Andrä (2006)) in an 
iterative fashion to find the optimal topology. However, 
it should be noted that only the topological derivative is 
capable to create new holes while the level-set approach 
only allows to close already present holes. Additionally, 
Newton-type algorithms to find circular inclusions have 
been introduced using higher order topological expansions 
(Laurain et al. (2013); Canelas et al. (2015) or (Novotny 
et al. 2019, Chapter 10)). This leads to rapidly converging 

(1.1)Ω� ∶= Ω�(x0,�) ∶=

{
Ω ∪ ��(x0) for x0 ∈ � ⧵Ω,

Ω ⧵ ��(x0) for x0 ∈ Ω,

(1.2)DJ(Ω)(x0,�) = lim
�↘0

J(Ω�(x0,�)) − J(Ω)

f (�)
,

algorithms, however, it requires a combinatorial search, 
which makes it numerically expensive and also the study 
of nonlinear problems remains an open problem.

In the related field of shape optimization, the development, 
modification, and analysis of efficient solution algorithms 
has received lots of attention in recent years, e.g., in Blauth 
(2021b, 2022) and Schulz et al. (2016), where nonlinear 
conjugate gradient and quasi-Newton methods for shape 
optimization have been proposed, in Blauth (2022), where a 
space mapping technique for shape optimization is presented, 
and in Deckelnick et al. (2022), where a W1,∞ approach for 
shape optimization is introduced.

In this paper, we follow these developments and propose 
novel quasi-Newton methods for solving PDE constrained 
topology optimization problems based on the topological 
derivative. Our approach is based on and extends the 
popular level-set approach of Amstutz and Andrä (2006). 
In particular, we first provide a new perspective on the 
evolution equation for the level-set function given in 
Amstutz and Andrä (2006) to derive a gradient descent-
type algorithm. This algorithm is the foundation for the 
quasi-Newton methods we propose afterwards. In particular, 
we derive a limited-memory BFGS method for topology 
optimization. We investigate the novel methods numerically 
for several problem classes: Inverse topology optimization 
problems constrained by linear and semilinear Poisson 
problems, compliance minimization in linear elasticity, 
and the optimization of fluids in Navier–Stokes flow. We 
compare our methods behavior to the widely popular method 
of Amstutz and Andrä (2006) as well as a simpler convex 
combination method from Gangl and Sturm (2021). The 
results show that the novel quasi-Newton methods usually 
have a significantly better convergence behavior than 
the other solution algorithms. Particularly, they require 
substantially less iterations to find an optimizer of the 
problems while demanding only slightly more numerical 
resources per iteration. This makes our proposed quasi-
Newton methods highly attractive for solving topology 
optimization problems.

This paper is structured as follows. In Sect. 2, we briefly 
recall basic results from topology optimization as well as the 
level-set method for topology optimization and the solution 
algorithms from Amstutz and Andrä (2006) and Gangl 
and Sturm (2021), which are widely used in the literature. 
In Sect. 3, we present a new perspective on the evolution 
equation for the level-set function. This allows us to derive 
a gradient descent algorithm for topology optimization and, 
afterwards, propose novel quasi-Newton methods for topology 
optimization. Finally, we investigate the methods numerically 
and compare our quasi-Newton methods to the current state-
of-the-art methods in Sect. 4.



Quasi‑Newton methods for topology optimization using a level‑set method﻿	

1 3

Page 3 of 21  203

2 � Preliminaries

2.1 � Topological sensitivity analysis

In this section we recall basics on the topological derivative. 
We start by recalling the definition of the topological 
derivative (Amstutz (2022)).

Definition 2.1  Let � be a simply connected, bounded, and 
open subset of ℝd , d ∈ ℕ>0 , with 0 ∈ � , let � be a bounded 
hold-all domain, and let P(�) be the power set of � , i.e., 
P(�) = {Ω ⊂ ℝ

d ∶ Ω ⊂ �} . Let J ∶ P(𝖣) → ℝ be a shape 
functional. We say that J has a topological derivative at 
Ω ∈ P(�) and at the point x0 ∈ � w.r.t. � if there exists some 
function f ∶ ℝ>0 → ℝ>0 , where ℝ>0 denotes positive real 
numbers, with lim�↘0 f (�) = 0 so that the following limit 
exists

where the perturbed domain Ω� is defined by

and ��(x0) ∶= x0 + ��.

We follow the approach of Amstutz and Andrä (2006) and 
represent a set Ω ⊂ � with the help of a continuous level set 
function � ∶ 𝖣 → ℝ as follows

We write Ω� ∶= Ω for a domain Ω ⊂ � which is represented 
by the level-set function �.

Definition 2.2  Let J ∶ P(𝖣) → ℝ be a shape functional, let 
Ω ∈ P(�) be an open set, and let Γ = �Ω⧵�� . Assume that 
the topological derivative DJ(Ω)(x) exists for all x ∈ � ⧵ Γ . 
Then, we define the generalized topological derivative by

The idea behind the generalized topological derivative 
originates from the following observation. Let � ∶ 𝖣 → ℝ 
be a level set function representing Ω . If there is a constant 
c > 0 such that

DJ(Ω)(x0) ∶= lim
�↘0

J(Ω�) − J(Ω)

f (�)
,

Ω� = Ω�(x0,�) =

{
Ω ⧵ ��(x0) for x0 ∈ Ω,

Ω ∪ ��(x0) for x0 ∈ � ⧵Ω,

𝜓(x) < 0 ⇔ x ∈ Ω,

𝜓(x) > 0 ⇔ x ∈ 𝖣 ⧵Ω,

𝜓(x) = 0 ⇔ x ∈ 𝜕Ω ⧵ 𝜕𝖣.

(2.1)DJ(Ω)(x) ∶=

{
−DJ(Ω)(x) for x ∈ Ω,

DJ(Ω)(x) for x ∈ � ⧵Ω.

(2.2)DJ(Ω� )(x) = c�(x) for x ∈ �,

then

which is the necessary condition for Ω to be optimal (cf. 
Amstutz and Andrä (2006)). This observation is the starting 
point of the popular solution algorithm from Amstutz and 
Andrä (2006), which we present in the next section.

2.2 � Topology optimization algorithms using 
a level‑set method

Based on the discussion in the previous section, a solution 
algorithm for topology optimization has been derived in 
Amstutz and Andrä (2006), which we briefly recall in the 
following. For the derivation, we introduce a fictitious time 
t and consider a family of domains Ω(t) represented by a 
level-set function � ∶ [0, T] × 𝖣 → ℝ . To derive a solution 
algorithm, the idea is to establish an evolution equation for 
the level-set function � which ensures that Ω(t) converges 
to a minimizer for t → ∞ and to discretize this evolution 
equation. A natural idea would be to evolve the level-set 
function according to the generalized topological derivative 
DJ(Ω(t)) , so that

For the sake of better readability, we drop the dependence 
on the fictitious time t in the domain Ω(t) throughout the 
rest of this paper.

In Amstutz and Andrä (2006), the authors note that, in 
general, using this formulation does not guarantee conver-
gence since the generalized topological derivative DJ(Ω) 
does not vanish for an optimal geometry (2.3). Instead, the 
main idea of Amstutz and Andrä (2006) is to use a modified 
version of this equation, where the topological derivative 
is projected to the orthogonal complement of � in L2(�) , 
which is written as

where the operator P�⟂ is defined as

Here, (a, b) = (a, b)L2(�) denotes the L2(�) scalar product 
between a, b ∈ L2(�) . Now, if the right-hand side of (2.4) 
vanishes, i.e., if P�⟂(DJ(Ω)) = 0 , then it holds that there 
exists some � ∈ ℝ so that DJ(Ω) = �� . If 𝛼 > 0 , then the 
necessary optimality conditions (2.3) for the optimization 
problem are satisfied and the geometry Ω described by the 
corresponding level-set function � is a local minimizer. For 

(2.3)DJ(Ω)(x) ≥ 0 for all x ∈ � ⧵ �Ω,

��(t, ⋅)

�t
= DJ(Ω(t)), t ≥ 0.

(2.4)
��

�t
= P�⟂ (DJ(Ω)),

P�⟂ (a) = a −
(a,�)

||�||2
L2(�)

� .
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this reason, we also consider the norm of the projected topo-
logical derivative, i.e.,

as a second convergence criterion for our numerical 
experiments in Sect. 4.

(2.5)
|||
|||P

⟂
�
(DJ(Ω))

|||
|||L2(�)

For the numerical solution, it is proposed in Amstutz and 
Andrä (2006) to discretize (2.4) with Euler’s scheme on the 
sphere using a step size � , leading to

where �k is the angle between �k and DJ(Ωk) , i.e.
(2.6)

�k+1 =
1

sin(�k)
sin

(

(1 − �k)�k
)

�k + sin
(

�k�k
) J(Ωk)
|

|

|

|

J(Ωk)||||L2(�)
,

Note that the iteration is terminated if the angle between 
generalized topological derivative and level-set function is 

�k = arccos

(
(�k,DJ(Ωk))

||||�k
||||L2(�)||||DJ(Ωk)

||||L2(D)

)
.

sufficiently small, so that P�⟂(DJ(Ω)) ≈ 0 and the necessary 
optimality conditions are satisfied approximately.

The resulting numerical algorithm, which is analyzed 
in Amstutz (2011), can be seen in Algorithm 1. By slight 
misuse of notation, we write J(�) instead of J(Ω) , where � 
is the level-set function representing the domain Ω , in line 7 
of Algorithm 1 for the sake of better readability.
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The main idea of Algorithm 1 is to iteratively use a convex 
combination of generalized topological derivative and level-set 
function to reach a minimum of the optimization problem, where 
the weights for the convex combination are chosen according to 
Euler’s method on the sphere (cf. Amstutz and Andrä (2006)). 
A simpler idea was used in Gangl and Sturm (2021), where the 
authors consider the following convex combination to evolve 
the level-set function

where the parameter � plays the role of a step size. For a 
fixed step size 𝜆 > 0 , it is easy to see that if the method 
becomes stationary, i.e., if �k+1 = �k , then we have that 
�k = DJ(Ωk)∕||DJ(Ωk)||L2(�) and, in particular, the necessary 
optimality conditions (2.2) are satisfied. This idea gives rise 
to Algorithm 2.

Note that particularly the solution method presented in 
Algorithm 1 is widely popular and represents the state-
of-the-art algorithm for solving topology optimization 
problems with a level-set function.

3 � Quasi‑Newton methods for topology 
optimization

In this section, we present novel quasi-Newton methods for 
topology optimization. To do so, we first take a different 
perspective on equation (2.4) and formulate a new gradient 
descent method for topology optimization. This enables us 
to define (limited memory) BFGS methods for topology 
optimization afterwards.

3.1 � A novel perspective on the level‑set evolution 
equation

Before we can introduce quasi-Newton methods for topology 
optimization, we note that the algorithmic frameworks 

(2.7)�k+1 = �
DJ(Ωk)

||||DJ(Ωk)
||||L2(�)

+ (1 − �)�k,

presented in Algorithms 1 and 2 are not suitable for defining 
such methods. The reason for this is that the update rules for 
the level-set function given in (2.6) and (2.7) do consider 
a convex combination of the level-set function and the 
generalized topological derivative, which is different to the 
classical form of descent methods, where the update of the 
design variables (the level-set function) is performed by 
subtracting the gradient (topological derivative), scaled by 
an appropriate step size, from the current iterate.

To remedy this problem, we start by considering 
the continuous equation (2.4) for evolving the level-set 
function from Amstutz and Andrä (2006). Instead of using 
the elaborate approach of Amstutz and Andrä (2006), we 
discretize (2.4) by an explicit Euler method, which yields 
the discretized equation

where k denotes the current time step. For discretizing 
equation (2.4), one usually would consider small time steps 
Δt converging to 0, which would yield a so-called gradient 
flow method. However, we change our viewpoint and 
interpret (3.1) as gradient descent method, where the time 
step Δt now plays the role of a step size. The benefit of this 
interpretation is that we can (potentially) make use of the 
convergence behavior of the gradient descent method and 
use large step sizes when appropriate, reducing the 
computational cost of our algorithm. Therefore, we can now 
interpret gk = −P�⟂

k
(DJ(Ωk)) as the “gradient” associated to 

our topology optimization problem. The resulting 
optimization algorithm is presented in Algorithm 3. Note, 
that the main benefit of this method is that it follows the 
“standard” form of a gradient descent method, which makes 
it amenable to define quasi-Newton methods, which we do 
in the next section. Additionally, our numerical experiments 
in Sect.  4 show, that Algorithm 3 can also yield faster 
convergence compared to Algorithms 1 and 2.

(3.1)

�k+1 − �k

Δt
= P�⟂

k
(J(Ωk)) ⇔ �k+1 = �k + ΔtP�⟂

k
(J(Ωk))



	 S. Blauth, K. Sturm 

1 3

203  Page 6 of 21

3.2 � A Limited Memory BFGS Method for Topology 
Optimization

With the gradient descent method described in the previous 
section, we now focus our attention to quasi-Newton 
methods for topology optimization, which can now be 
derived analogously to the finite-dimensional case (see, e.g., 
Nocedal and Wright (2006); Kelley (1999)). To do so, we 
introduce the functions sk = �k+1 − �k and yk = gk+1 − gk . 
The quasi-Newton methods rely on the so-called secant 
equation, which in our setting can be written as

where Bk+1 is an isomorphism from L2(�) to L2(�) which 
can be seen as approximation of the Hessian, and we denote 
its inverse by Hk+1 . In the following, we will describe a 
BFGS method for topology optimization based on Hk , the 
inverse of the Hessian approximation, which makes it easier 
to derive the limited-memory version of the method which 
we have implemented in the software package cashocs 
(Blauth (2021a, 2023)). In particular, the search direction 
for the BFGS method is given by

and the update formula for Hk is given by

Bk+1sk = yk,

(3.2)pk = −Hkgk

(3.3)
Hk+1 =

(

IdL2(�) −
sk ⊗ yk

(yk , sk)L2(�)

)

Hk

(

IdL2(�) −
yk ⊗ sk

(sk , yk)L2(�)

)

+
sk ⊗ sk

(yk , sk)L2(�)
,

where ⊗ denotes the outer product of L2(�) , i.e., 
(a⊗ b)c = (b, c)L2(�)a.

To avoid storing large dense matrices as discretizations 
of the operator Hk , we employ a limited memory BFGS 
method for our numerical implementation which is shown 
in Algorithm 4. Particularly, the limited memory BFGS 
method only requires us to additionally store sk and yk to 
compute the application of Hk to some right-hand side, 
which is shown in Algorithm 5 (cf. Nocedal and Wright 
(2006) for a description of the L-BFGS method in a finite-
dimensional setting).

Remark 3.1  Our numerical experiments presented in Sect. 4 
showed that the search direction computed with (3.2) may 
sometimes not yield descent of the cost functional. There-
fore, we employ a restarted version of the BFGS method, 
which replaces the search direction with pk = −gk if the line 
search procedure in line 9 of Algorithm 4 does not converge.

Remark 3.2  The idea presented above could also be applied 
analogously to derive nonlinear conjugate gradient (NCG) 
methods for topology optimization. As a thorough investi-
gation of the several popular NCG methods is beyond the 
scope of this paper, we do not consider these methods in 
the following (cf. Blauth (2021b) for a discussion of NCG 
methods in the context of shape optimization). However, the 
NCG methods are already implemented and ready for use 
in our software package cashocs (Blauth (2021a, 2023)). An 
investigation of such NCG methods for topology optimiza-
tion is planned for future research.
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4 � Numerical investigation of quasi‑Newton methods for topology optimization
In this section, we consider the practical performance of the 
proposed quasi-Newton methods from Sect. 3. We consider 
four problem classes: Inverse topology optimization problems 
constrained by linear and semilinear Poisson problems, 
compliance minimization in linear elasticity, and the 
topological design optimization in Navier–Stokes flow. We 
solve each of these problems with the four solution algorithms 
presented in this paper, where we use the following notation 
for the sake of simplicity. Algorithm 1, originally introduced 
in Amstutz and Andrä (2006), is called the sphere combination 
method, Algorithm 2 is called convex combination method, 
Algorithm 3 is called gradient descent method and, finally, 
Algorithm 4 is called (limited memory) BFGS method. We 
remark that, for all numerical test cases considered in this 
paper, we choose a memory size of m = 5 for the limited 
memory BFGS methods.

Note that we have implemented all of the optimization 
algorithms for topology optimization considered in Sect. 2 
and the novel gradient descent and BFGS methods from 
Sect. 3 in our open-source software package cashocs (Blauth 
(2021a, 2023)), which is a software for solving arbitrary PDE 

constrained shape optimization and optimal control problems. 
Our software is based on the finite element software FEniCS 
(Alnæs et al. (2015); Logg et al. (2012)) and derives the 
necessary adjoint systems for the optimization with the help 
of automatic differentiation. Therefore, for the discretization 
of the PDE constraints, the finite element method is naturally 
employed. Moreover, the source code for our numerical 
experiments is available freely on GitHub (Blauth and Sturm 
(2023)).

4.1 � Linear poisson problem

In this section, we investigate a topology optimization 
problem constrained by a linear Poisson problem. Let 
� ⊂ ℝ

d with d ∈ ℕ>0 be an open and bounded domain 
with boundary �� and let Ω ⊂ � be an open subset. We 
denote by Γ = �Ω⧵�� the interior boundary of Ω in � and 
by Ωc = �⧵Ω the complement of Ω in � . We consider the 
following problem

Fig. 1   Evolution of the optimization for the linear poisson problem (4.1)
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w h e r e  �Ω(x) = �Ω(x)�in + �Ωc (x)�out  a n d 
fΩ(x) = �Ω(x) fin + �Ωc(x)fout with 𝛼in, 𝛼out > 0 as well as 
fin, fout ∈ ℝ are constant in Ω and Ωc . In our setting, udes 
is given as the solution of the PDE constraint on a desired 
domain Ωdes . Hence, the above problem can be interpreted 
as an inverse problem of identifying the unknown domain 
Ωdes using the measurement udes . The generalized topological 
derivative for this problem is derived, e.g., in Amstutz 
(2022) and is given by

(4.1)

min
Ω

J(Ω, u) = 1
2 ∫�

(

u − udes
)2 dx

s.t. − Δu + �Ωu = fΩ in �,
u = 0 on ��,

J(Ω)(x) = (�out − �in)u(x)p(x) − (fout − fin)p(x) for all x ∈ � ⧵ Γ,

where u solves the state equation (4.1) and p solves the fol-
lowing adjoint equation

Remark 4.1  Usually, the term “inverse problem” is used to 
denote a identification problem which aims to reconstruct 
some unknown domain Ωdes ⊂ � using measurements 
obtained on (parts of) the boundary of � , see, e.g., Canelas 
et al. (2015); Hintermüller and Laurain (2008); Laurain et al. 
(2013); Beretta et al. (2017). However, for our model prob-
lems (4.1) and (4.2), we use (artificial) measurements in the 
entire domain � . Still, we refer to these problems as inverse 
problems for the sake of simplicity.

−Δp + �Ωp = −(u − udes) in �,

p = 0 on ��.

Table 1   Evolution of the geometries for the linear Poisson problem (4.1)
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In the following, we solve this problem with the four opti-
mization algorithms described in Sects. 2 and 3, where we 
consider a hold-all domain of � = (−2, 2)2 . We discretize 
the geometry using four different mesh sizes to investigate 
the dependence of the algorithms on the discretization. 
The considered meshes are generated by creating a uni-
form quadrangular grid with 32 × 32 , 48 × 48 , 64 × 64 , and 
96 × 96 squares, where each square is in turn subdivided 
into four triangles, so that the meshes consist of 2113 nodes 
and 4096 triangles ( 32 × 32 ), 4705 nodes and 9216 triangles 
( 48 × 48 ), 8321 nodes and 16384 triangles ( 64 × 64 ), and 
18625 nodes and 36864 triangles ( 96 × 96 ), respectively. 
Moreover, we discretize both the state and adjoint variables 
with linear Lagrange finite elements. For the parameters, we 
use �in = fin = 10 and �out = fout = 1 . The sought design Ωdes 
is chosen as the one corresponding to a clover shape, which 
can be seen in the right-most column of Table 1.

The results of the optimization can be seen in Fig. 1, 
where we show the evolution of the cost functional, the 
angle criterion, and the norm of the projected gradient (2.5) 
over the optimization for the finest discretization. Here, 
we observe that our proposed gradient descent and BFGS 
methods perform significantly better than the established 
methods. We observe that the convergence behavior, based 
on the cost functional and the norm of the projected gradi-
ent, is best for the BFGS method, followed by the gradient 
descent and sphere combination methods, and that the con-
vex combination algorithm performs worst. Particularly, the 

BFGS method reaches stationarity in the cost functional and 
norm of the projected gradient after only about 125 itera-
tions, whereas all remaining methods continue to decrease 
the respective measures until the final iteration.

However, none of the methods converged based on the 
angle criterion after 500 iterations. On the contrary, the 
angle between level-set function and generalized topological 
derivate remains bounded from below by about 30 ◦ , so that 
none of the methods can be considered as converged by 
this criterion. However, if we take a look at the evolution 
of the relative norm of the projected gradient, we observe 
a steep decrease for all methods. The convex and sphere 
combination methods are able to decrease the norm of the 
projected gradient by about five and six orders of magnitude, 
respectively. The gradient descent and BFGS methods are 
even more efficient and decrease the norm of the projected 
gradient by about seven and eight orders of magnitude, 
respectively. Therefore, based on the second convergence 
criterion, the algorithms can be considered converged. 
Moreover, for this example, it seems like the angle criterion 
is too strict as a convergence criterion, whereas the norm of 
the projected gradient seems to be better suited.

Remark 4.2  A possible explanation for this behavior is the 
fact, that problem (4.1) is well-known to be ill-conditioned. 
This means that topological derivatives become flatter the 
closer we get to the optimal solution of the problem, which 
is also what we have observed in our numerical experiments. 

Fig. 2   Plots of the topological derivative at two iterations of the sphere combination algorithm for problem (4.1)
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The topological derivative becomes successively smaller and 
flatter over the course of the optimization.

In Fig. 2, we show plots of the topological derivative 
during the middle of the optimization for the sphere 
combination method. In Fig. 2a, the topological derivative 
is shown at iteration 203 and for this iterate, the angle 
between topological derivative and level-set function 
is comparatively small with 29 ◦ . On the other hand, the 
topological derivative in the next iteration, which is shown 
in Fig. 2b, has a much larger angle of 130 ◦ with the level-set 
function. A possible reason for this behavior could be the 
line search, which, at first, uses successively larger step sizes 
up to iteration 204, after that the accepted step size drops 
down. This behavior repeats and causes the oscillations in 
the angle criterion which can be seen in Fig. 1.

Moreover, we remark that the angle criterion only 
provides a necessary condition for optimality, as can be 
easily seen by the discussion in Sect. 2.1 (cf. (2.2) and (2.3)). 
There may be other minimizers that satisfy (2.3) without 
satisfying the angle criterion. A thorough investigation of 
these issues is an interesting direction for future work.

The evolution of the geometry during the optimization 
algorithms is depicted in Table 1, where we show the geom-
etries after 50, 100, and 500 iterations for all four considered 
optimization algorithms on the finest discretization. In addi-
tion, we also show the reference shape for comparison. Note, 
that the reference shape has four larger inclusions in the 
middle and a smaller one in the center, making the problem 
particularly hard to solve. Comparing the obtained shapes 
after 50 iterations, we observe that the sphere combination 
and convex combination algorithms only start to form the 
four major inclusions, whereas they are already present for 
the gradient descent and BFGS methods. Moreover, the 
geometry obtained by BFGS method already has an inclu-
sion in the center of the geometry, making it already very 
similar to the reference solution. After 100 iterations, the 
established methods have formed the major inclusions, but 
their position and shape is still quite wrong. The gradient 
descent method has improved the shapes of the major inclu-
sions so that they are rather similar to the desired ones and 

is starting to locate the inclusion in the center. For the BFGS 
method, there is no visible difference anymore between the 
obtained and desired geometry, indicating that the method 
has already converged after 100 iterations, whereas the other 
methods are still quite far away from the desired shape. After 
500 iterations, we observe that the sphere combination and 
convex combination methods have corrected the shape of 
the four major inclusions so that they are now quite similar 
to the desired ones. However, neither of these methods was 
able to reconstruct the inclusion in the center of the geom-
etry. The gradient descent method, on the other hand, was 
able to reconstruct the center inclusion after 500 iterations, 
and there are no visual distinctions between the obtained and 
desired geometry anymore. The same is, of course, also true 
for the BFGS method, whose corresponding shape does not 
change visually between iterations 100 and 500.

Let us finally investigate the dependence of the algo-
rithms on the discretization. We do so by comparing the evo-
lution of the cost functional for all methods on the different 
discretization levels. The results are depicted in Fig. 3. Here, 
we observe that the performance of the algorithms, which 
we have discussed previously, is not dependent on the mesh 
size. In particular, the BFGS and gradient descent methods 
always perform best, whereas the sphere and convex com-
bination methods perform significantly worse. Overall, the 
cost functional decreases further when a finer discretization 
is chosen. This is due to the fact, that a finer discretiza-
tion also allows for a more detailed resolution of the desired 
shape, which in turn results in a lower cost functional value 
for the optimum. Therefore, we conclude that all algorithms 
behave mesh-independently, i.e., they do not require more 
iterations for finer levels of discretization to reach the same 
level of approximation of the optimal solution.

These results show the great potential of the proposed 
BFGS methods as they performed best of all considered 
methods, significantly outperforming the remaining 
algorithms. Moreover, we have shown that the methods 
also show mesh-independent behavior, which is due to 
the fact that the presented algorithms are discretizations 
of optimization algorithms acting in infinite-dimensional 
spaces.

Fig. 3   Evolution of the cost functional for the linear Poisson problem (4.1) for several discretization levels
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Fig. 4   Evolution of the optimization for the semilinear Poisson problem (4.2)

Table 2   Evolution of the geometries for the semilinear Poisson problem (4.2)
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4.2 � Semilinear poisson problem

To showcase the methods’ performance for nonlinear 
problems, we now investigate a semilinear variant of the 
Poisson problem we considered in Sect. 4.1. Our setting 
is like before, so � ⊂ ℝ

d with d ∈ ℕ>0 and d ≤ 3 denotes 
the holdall domain, �� is its boundary, Ω ⊂ � is an open 
subset of � , Γ = �Ω⧵�� is the interior boundary of Ω in � , 
and Ωc = �⧵Ω is the complement of Ω in � . Our semilinear 
version of the problem reads

where we again have �Ω(x) = �Ω(x)�in + �Ωc (x)�out and 
fΩ(x) = �Ω(x)fin + �Ωc(x)fout with 𝛼in, 𝛼out > 0 as well as 
fin, fout ∈ ℝ . The topological derivative for this problem is 
given by

where u solves the state equation and p solves the following 
adjoint equation

We again solve this problem with the four solution 
algorithms under consideration and use the hold-all domain 
� = (−2, 2)2 . The desired state udes is obtained by solving the 
semilinear Poisson problem on a reference domain, which 
is given by the same clover shape as considered in Sect. 4.1. 
The geometry is discretized by dividing it into 96 × 96 
squares, which are subdivided into four triangles each, so 
that we use 18625 nodes and 36864 triangles. Again, we 
employ linear Lagrange elements for the discretization of the 
state and adjoint variables. Finally, we use the same setting 
for � and f as before, so that �in = fin = 10 and �out = fout = 1.

The evolution of the cost functional, angle criterion, and 
norm of the projected topological derivative over the course 
of the optimization are shown in Fig. 4. Analogously to our 
previous findings, we observe that the BFGS method signifi-
cantly outperforms the remaining methods as it decreases 
the cost functional and the norm of the projected topological 
derivative most. For this problem, we observe that the gradi-
ent descent method does not perform as well as previously, 
but is rather comparable to the sphere and convex combina-
tion methods in performance. Again, for all considered algo-
rithms, the angle between level-set function and generalized 
topological derivative remained bounded away from zero.

(4.2)

min
Ω

J(Ω, u) = 1
2 ∫�

(

u − udes
)2 dx

s.t. − Δu + �Ωu3 = fΩ in �,
u = 0 on ��,

J(Ω)(x) = (�out − �in)u(x)3p(x) − (fout − fin)p(x) for all x ∈ � ⧵ Γ,

−Δp + 3�Ωu
2p = −(u − udes) in �,

p = 0 on ��.

Let us investigate the geometries obtained by the 
methods, which are depicted in Table 2 after 100, 200, and 
500 iterations of the methods. Here, we observe that the 
BFGS method again performs substantially better than the 
other methods. Even after 100 iterations, all inclusions of 
the geometry are found and the geometry exhibits the correct 
topology. However, the shape of the inclusions is still a bit 
off. The geometry obtained with the remaining algorithms, 
on the other side, is still far away from the optimal geometry. 
The same is true after 200 iterations: There, the geometry 
obtained by the BFGS method is visually identical to the 
reference solution, whereas the other methods produce 
geometries that still deviate significantly, both in topology 
and shape, from the optimal solution. Finally, the results 
after 500 iterations show, that the sphere and convex 
combination methods are able to locate the four major 
inclusions of the reference solution, but their shape is still a 
bit off. Moreover, they were unable to detect the inclusion in 
the center. The gradient descent method, on the other hand, 
was able to find all inclusions and, hence, to reconstruct the 
sought topology. However, the shape of the inclusions could 
still be improved. For the BFGS method, there are no major 
changes in the geometry between 200 and 500 iterations, as 
the geometry showed no visual differences to the reference 
solution already after 200 iterations.

Again, these results highlight the potential and efficiency 
of the BFGS methods for solving topology optimization 
problems, as they significantly outperformed all other meth-
ods considered in this paper.

4.3 � Compliance minimization in linear elasticity

In this section, we consider the problem of compliance 
minimization in linear elasticity which has been previously 
investigated, e.g., in Amstutz and Andrä (2006); Allaire et al. 
(2004, 2005). Let � ⊂ ℝ

d , d ∈ ℕ>0 be an open and bounded 
domain with boundary �� , which is the disjoint union of the 
Dirichlet boundary ΓD and Neumann boundary ΓN . Further, 
let Ω ⊂ � and denote its complement by Ωc = �⧵Ω . The 
compliance minimization problem is given by

ΓD ΓND

Fig. 5   Schematic of the cantilever problem
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(4.3)

min
Ω

J(Ω, u) = ∫�

�Ω�(u):e(u) dx + l|Ω|

s.t. − div(�Ω�(u)) = f in �,
u = 0 on ΓD,

�Ω�(u)n = g on ΓN .

Here, u is the deformation of a linear elastic mate-
r ia l ,  �(u) = 2�e(u) + �tre(u)I  i s  Hooke’s  tensor, 
e(u) = 1∕2(∇u + (∇u)⊤) is the symmetric gradient of u, and 
A : B denotes the Frobenius inner product between matrices 
A,B ∈ ℝ

d×d , i.e., A ∶ B ∶=
∑d

i,j=1
aijbij . Here, � and � are 

the so-called Lamé parameters for which we assume 𝜇 > 0 
and 2𝜇 + d𝜆 > 0 . Moreover, �Ω(x) = �Ω(x)�in + �Ωc (x)�out 
is, again, constant in Ω and Ωc = �⧵Ω with 𝛼in, 𝛼out > 0 . 
The first term in the cost functional measures the compli-
ance of the structure and the second term is a regularization 

Fig. 6   Evolution of the optimization for the cantilever problem

Fig. 7   Optimized geometries for the cantilever problem

Fig. 8   Schematic setup of the bridge problem
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parameter which penalizes large domains Ω , so that the opti-
mization is not trivial.

The topological derivative for problem (4.3) can be found, 
e.g., in Amstutz and Andrä (2006) and is given by

DJ(Ω)(x) =

⎧
⎪⎨⎪⎩

−�in
rin−1

�rin+1

�+1

2

�
2�(u) ∶ e(u) +

(rin−1)(�−2)

�+2rin−1
tr�(u)tre(u)

�
− l for x ∈ Ω,

−�out
rout−1

�rout+1

�+1

2

�
2�(u) ∶ e(u) +

(rout−1)(�−2)

�+2rout−1
tr�(u)tre(u)

�
+ l for x ∈ Ωc = � ⧵Ω,

where rin =
�out

�in
 , rout =

�in

�out
 , and � =

�+3�

�+�
.

In the following, we consider two test cases for this 
problem, namely the so-called cantilever and bridge 
problems, which are taken from Amstutz and Andrä 

Fig. 9   Evolution of the optimization for the bridge with a single load

Fig. 10   Optimized geometries for the bridge with a single load

Fig. 11   Evolution of the optimization for the bridge with multiple loads
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(2006). For these test cases, we follow Amstutz and Andrä 
(2006) and use �in = 1 and �out = 1 × 10−3 as well as f = 0 . 
Additionally, as we consider the case of plane stress, the 
Lamé parameters are given by � =

E

2(1+�)
 and � =

2��∗

�∗+2�
 

with �∗ = E�

(1+�)(1−2�)
 and we use a Young’s modulus of 

E = 1 and a Poisson’s ratio of � = 0.3 for the following 
numerical experiments. Finally, we discretize the state 
variable using linear Lagrange finite elements.

4.3.1 � Cantilever

For our first example, we consider the so-called cantilever 
problem (see, e.g., Amstutz and Andrä (2006); Allaire 
et al. (2004, 2005)). Here, the holdall domain is given by 
� = (0, 2) × (0, 1) . The Dirichlet boundary ΓD = {x = 0} 
is the left side of the rectangle and for the Neumann 
load g we consider a unitary point load at (2, 0.5). As 
in Amstutz and Andrä (2006), we discretize this domain 
with a uniform triangular mesh consisting of 4193 nodes 
and 8192 triangles and choose l = 100 . A schematic of the 
problem setting can be seen in Fig. 5.

The evolution of the cost functional, angle criterion, 
and norm of the projected topological derivative are shown 
in Fig. 6. Here, we observe that all methods converge very 
fast, requiring a maximum of 25 iterations to satisfy the 
angle criterion with a tolerance of 1.5 ◦ . The performance 
of all methods is very comparable for this problem and 
no method performs significantly better or worse than the 
others.

However, when we investigate the optimized geometries 
obtained with the methods, there are some differences, as 
they converged to different local minimizers of the prob-
lems. Whereas the sphere combination and BFGS meth-
ods converged to the same solution that was reported in 
Amstutz and Andrä (2006), the gradient descent and con-
vex combination method converged to different geometries 
with finer beam structures (Fig. 7).

4.3.2 � Bridge

In this section, we consider another problem of compli-
ance minimization in linear elasticity which corresponds 
to a bridge with a single and multiple loads. As before, 
these problems are taken from the literature (Amstutz and 
Andrä (2006); Allaire et al. (2004, 2005)). Here, the hold-
all domain is given by � = (0, 2) × (0, 1.2) . As boundary 
conditions, we have zero vertical displacement at the bot-
tom left and right corners. For the single load case, we 
apply a vertical downwards unitary force at (1, 0) and for 
the multiple load case we apply three vertical unitary loads 
at (0.5, 0), (1, 0), and (1.5, 0). We discretize this setup 
with a mesh consisting of 7809 vertices and 15360 trian-
gles. For the volume regularization, we use the parameter 
l = 30 in the single load case and use l = 120 for the mul-
tiple load case, in analogy to Amstutz and Andrä (2006). 
A schematic of the problem can be seen in Fig. 8.

Let us first discuss the single load case. The history of the 
cost functional, angle criterion, and norm of the projected 
topological derivative are shown in Fig. 9. Similarly to the 
cantilever problem, there are no significant differences in the 
performance of the optimization algorithms. All methods 
required between 20 and 22 iterations to reach the prescribed 
tolerance of 1 ◦ of the angle criterion. The only notable dif-
ference between the methods is that the convex combina-
tion algorithm decreases the quality measures slightly earlier 
than the other methods, but they “catch up” during later 
iterations. The optimized geometries obtained with the 
methods are shown in Fig. 10. Here, we also observe, that 
the methods converge to different local minimizers. Whereas 
the sphere combination and BFGS method find a similar 
geometry, which is the same as reported in Amstutz and 
Andrä (2006), the convex combination and gradient descent 
method find a different local minimizer with less height and 
a different supporting beam structure.

The results are very similar for the multiple loads case. 
In Fig. 11 the evolution of the considered quality measures 
is depicted over the history of the optimization. Here, we 

Fig. 12   Optimized geometries for the bridge with multiple load
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observe some slight differences in the performance of the 
algorithms. The convex combination method performs best 
as it requires only 25 iterations to satisfy the angle criterion, 
where we have chosen a tolerance of 1.5 ◦ for this example. 
The gradient descent and BFGS methods showed the sec-
ond best performance, requiring about 30 iterations each 
to satisfy the stopping criterion. The sphere combination 
method performed worst and required 40 iterations to reach 
the stopping tolerance. Finally, let us briefly investigate the 
optimized geometries, which are shown in Fig. 12. Here, we 
see that all methods converge to a similar solution, which 
has a slightly more complicated beam structure than the one 
reported in Amstutz and Andrä (2006).

Altogether, for the case of linear elasticity, we observe 
no major differences between all considered optimization 
algorithms. The proposed BFGS methods show a very 
similar performance to the already established methods 
on all considered test problems. A possible reason for this 
behavior is that the problems are comparatively easy to 
solve, at least in comparison to the problems considered 
in Sects. 4.1 and 4.2, as the already established methods 
only require 20 to 50 iterations to solve these problems to a 
desired tolerance, so that there may not be enough iterations 
for the BFGS methods to show their potential, particularly 
if they have to be restarted often due to large changes in the 
topology. This topic is of interest for future research.

4.4 � Optimization of fluids in Navier–Stokes flow

Let us now consider another application, the optimization of 
fluids in Navier–Stokes flow. Our setting is similar to before, 
i.e., let � ⊂ ℝ

d be an open and bounded hold-all domain 
with boundary �� . Let Ω ⊂ � , denote by Ωc = � ⧵Ω the 
complement of Ω in � , and let Γ = �Ω⧵�� . We consider the 
following optimization problem

where �Ω(x) = �Ω(x)�in + �Ωc (x)�out with 𝛼in, 𝛼out > 0 and 
|Ω| denotes the Lebesgue measure in ℝd . Here, u denotes 
the fluid’s velocity and p its pressure, � is its viscosity, � its 
density, and � is the inverse permeability. The cost functional 
of the above problem models the energy dissipation of the 
fluid, which should be minimized. Moreover, we have a 
volume equality constraint, which ensures that only the 

(4.4)

min
Ω

J(Ω, u) = ∫
�

�∇u ∶ ∇u + �Ωu ⋅ u dx

s.t.

−�Δu + �(u ⋅ ∇)u + ∇p + �Ωu = 0 in �,

∇ ⋅ u = 0 in �,

u = uD on ��,

∫
�

p dx = 0,

|Ω| = voldes,

desired volume of the domain is occupied by the fluid. For 
the topology optimization problem (4.4), the sought domain 
Ω is the domain of the fluid, whereas its complement Ωc 
plays the role of a solid region. In particular, the inverse 
permeability � is small inside Ω and large outside of it. For 
a more detailed discussion, we refer the reader to Borrvall 
and Petersson (2003), where this model was first introduced 
and used for the topology optimization of fluids.

For our numerical experiments, we regularize the 
equality constraint with a quadratic penalty term, leading 
to the following optimization problem

The topological derivative for problem (4.5) can be found, 
e.g., in Sá et al. (2016) and is given by

where (v, q) solves the adjoint Navier–Stokes system

(4.5)

min
Ω

J(Ω, u) = ∫
�

�∇u ∶ ∇u + �Ωu ⋅ u dx +
l

2

(|Ω| − voldes

)2

s.t.

−�Δu + �(u ⋅ ∇)u + ∇p + �Ωu = 0 in �,

∇ ⋅ u = 0 in �,

u = uD on ��,

∫
�

p dx = 0.

J(Ω)(x) =
(

�out − �in
)

u(x) ⋅ (u(x) + v(x))
+ l

(

|Ω| − voldes
)

for x ∈ � ⧵ Γ,

Fig. 13   Schematic setup of the pipe bend problem
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To model an actual solid region, �out should tend to +∞ . For 
our numerical investigation, however, we follow Sá et al. 
(2016) and chose a finite value for �in and �out , namely we 
choose

Moreover, we choose a value of � = 1 for the fluid’s density 
and � = 1 × 10−2 for its viscosity. In the following, we will 
consider two common benchmark problems, which are 
taken from Borrvall and Petersson (2003); Sá et al. (2016) 
and consider the problem of constructing a pipe bend and 
the drag minimization of an obstacle. Note, that for both 
problems, the hold-all domain is given by � = (0, 1) × (0, 1) , 
and that we discretize this with a uniform mesh consisting 
of 20201 nodes and 40000 triangles. Moreover, we use the 

−�Δv + �(Du)⊤v − �(u ⋅ ∇)v + ∇q + �Ωv = 2
(

�Δu − �Ωu
)

in �,

div(v) = 0 in �,

v = 0 on ��,

∫�
q dx = 0.

�in =
2.5�

1002
�out =

2.5�

0.012
.

LBB-stable Taylor-Hood finite element pair of quadratic 
Lagrange elements for the velocity and adjoint velocity 
and linear Lagrange elements for the pressure and adjoint 
pressure.

4.4.1 � Pipe bend

Let us first investigate the problem of designing a pipe 
bend, which is taken from Borrvall and Petersson (2003). 
For Dirichlet boundary conditions, we prescribe the inlet 
velocity with the parabolic profile

on the top part of the left boundary of � , and for the outlet 
velocity we use the profile

uD(x) =

[
1 − 100

(
x2 − 0.8

)2
,

0

]
for x1 = 0 and 0.7 ≤ x2 ≤ 0.9

uD(x) =

[

0,
−
(

1 − 100
(

x1 − 0.8
)2
)

]

for x2 = 0 and 0.7 ≤ x1 ≤ 0.9

Fig. 14   Evolution of the optimization for the pipe bend problem

Fig. 15   Optimized geometries for the pipe bend problem
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on the right side of the bottom boundary of � . On all other 
parts of the boundary, we use a no-slip boundary condition, 
so that uD = [0, 0]⊤ . The corresponding setup is shown sche-
matically in Fig. 13. For the volume constraint, we proceed 
according to Borrvall and Petersson (2003) and use a value 
of voldes = 0.08� . Additionally, we choose a regularization 
parameter of l = 1 × 104 to enforce the volume constraint.

The evolution of the cost functional, angle criterion, and 
norm of the projected topological derivative can be seen in 
Fig. 14. We observe that the BFGS method substantially 

outperforms the remaining methods as it only required about 
30 iterations to reach the stopping criterion and find a local 
minimizer of the problem. The gradient descent method per-
formed worse, but still way better than the already estab-
lished methods: The former required around 100 iterations to 
satisfy the stopping criterion, whereas the sphere and convex 
combination methods performed very similarly, requiring 
about 250 iterations to reach a local minimizer. Considering 
the optimized geometries obtained by the method, which are 
depicted in Fig. 15, we observe that all methods converge to 
a similar minimizer and that all optimized geometries show 
only the slightest visual differences.

4.4.2 � Rugby Ball

Let us now consider the rugby-ball problem from Bor-
rvall and Petersson (2003), which is shown schematically 
in Fig. 16. Here, the goal is to design an obstacle which 
minimizes the energy dissipation of the flow. For the volume 
constraint of the problem, we choose voldes = 0.8 and use a 
regularization parameter of l = 1 × 104 to enforce the vol-
ume constraint. For the boundary conditions, we prescribe 
a constant value of uD = [0, 1]⊤ on the entire boundary �� . 

The history of the cost functional, angle between 
topological derivative and level-set function, and the norm 
of the projected topological derivative are depicted in 
Fig. 17. Here, we can observe that the BFGS method again 
outperforms all other methods significantly, as it requires 
slightly less than 50 iterations to find a local minimizer. The 
gradient descent method shows the second best performance 
and is able to satisfy the stopping criterion after around 
80 iterations. The performance of the sphere and convex 
combination methods is, again, very similar and both require 
slightly more than 100 iterations to converge.

The obtained optimized geometries are shown in Fig. 18. 
We see that all methods produce the same desired shape, 

Fig. 16   Schematic of the rugby ball problem

Fig. 17   Evolution of the optimization for the rugby ball
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which is reminiscent of a rugby ball, so that all of them 
converge to the same local minimizer of the problem.

Altogether, in the context of fluid design optimization, we 
observe that the BFGS method performs substantially better 
than the other methods considered in this paper. It reaches 
the desired stopping criteria with significantly less itera-
tions than the remaining methods. Our findings highlight 
the efficiency and potential of the proposed BFGS method 
for solving topology optimization problems.

5 � Conclusion and outlook

In this paper, we have presented novel quasi-Newton 
methods for topology optimization using a level-set 
method. We recalled the topological derivative, the level-
set method for topology optimization, and the widely 
used optimization algorithm proposed in Amstutz and 
Andrä (2006). Then, we presented a new perspective on 
the evolution equation for evolving the level-set function 
according to the topological derivative, which enables an 
interpretation as a classical gradient descent method. This 
method is the basis for our derivation of quasi-Newton 
methods for topology optimization and we present a limited-
memory BFGS method in this paper. The derivation of the 
BFGS methods is analogous to the finite-dimensional case 
and is possible due to the change in perspective described 
above. We investigated the performance of the proposed 
gradient descent and BFGS methods on four problem 
classes: Inverse topology optimization problems constrained 
by linear and semilinear Poisson problems, compliance 
minimization in linear elasticity, and the optimization of 
fluids in Navier–Stokes flow. We compared the results to 
current state-of-the-art solution algorithms for topology 
optimization with level-set methods. Our results show that 

the novel BFGS methods often significantly outperform 
the other considered methods, requiring substantially 
less iterations to compute a (local) minimizer. The only 
exception was the problem of compliance minimization in 
linear elasticity, where all considered methods performed 
very similarly, so that the BFGS method performed at least 
as good as the other, already established methods. All in 
all, the proposed BFGS methods are efficient and attractive 
solution algorithms for topology optimization and show 
great potential for solving such problems.

For future research, there are several interesting 
directions. One could consider nonlinear conjugate gradient 
(NCG) methods for topology optimization in analogy to 
Blauth (2021b), whose derivation is straightforward with 
the new perspective on the level-set evolution equation 
presented in this chapter. In fact, these methods are already 
implemented and available in our open-source software 
cashocs (Blauth (2021a, 2023)). However, a thorough 
numerical analysis of such NCG methods is still required for 
understanding their performance and behavior. Moreover, 
a theoretical analysis of the proposed BFGS methods is 
of great interest. For this, it would be useful to study the 
properties of the approximate Hessian operator, which the 
BFGS methods make use of, and its relation to higher order 
topological derivatives (see, e.g., Baumann and Sturm 
(2022) and the references therein). Further, it remains an 
open question why the BFGS methods do not perform as 
well in the context of compliance minimization in linear 
elasticity as they do for the other problem classes considered 
in this paper. Finally, it is, of course, of particular interest 
to employ our proposed methods for solving practically 
relevant topology optimization problems, e.g., in the fields 
of fluid-dynamical optimization or the simulation of fracture 
evolution.

Fig. 18   Optimized geometries for the rugby ball problem
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