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Abstract
With the rapid advancement of technology and computing, numerous processes and products have been developed to achieve 
improved performance at a lower cost and/or reduced material usage. Orthopedic prostheses, benefiting from the discovery 
of new materials, have witnessed continuous evolution and optimization. Therefore, this study aims to develop and para-
metrically optimize a high-performance composite material using the interpolation strategy of splines and keypoints, thick-
ness variations, and the number of layers, resulting in 16 decision variables. Furthermore, the performance of four different 
multi-objective optimizers was evaluated in the optimization process: NSGA-II, MOLA, MOSFO, and MOPSO. The study 
aimed to minimize the total mass and evaluate the Tsai–Wu failure criterion under two different loading conditions. The 
numerical results obtained through the finite element method and optimization led to different convex Pareto fronts. The 
MOPSO algorithm demonstrated superior robustness compared to the other metaheuristic algorithms evaluated. As a result, 
the optimal solution obtained using MOPSO was substantially improved compared to the initial model, indicating the effec-
tiveness of this approach in optimizing the high-performance composite material for the specific problem under consideration.
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List of symbols
MOGA  Multi-objective Genetic Algorithm
MOLA  Multi-objective Lichtenberg Algorithm
MOSFO  Multi-objective SunFlower Optimization 

Algorithm
MOPSO  Multi-objective Particle Swarm Optimization 

Algorithm
PSO  Particle Swarm Optimization
TW  Tsai–Wu failure index
HV  Hypervolume
Xk  Newton’s method objective function variable
Xk+1  Future value of
fi(X)  Objective function to be minimized
gk(x)  Problem restriction
hj(X)  Problem restriction

xi  Decision variables
M  Number of problem objectives
N  A generic population
Rd  Real space of dimension d
Ns  Undominated solutions
pp  Pollination rate
M  Mortality Rate
s  Sunflower Survival Rate
xn  Decision variable in x from point n
yn  Decision variable in y from point n

1 Introduction

Engineering has always sought to optimize and improve pro-
cesses and their constructions. The relief of weight associ-
ated with the good performance of a machine or tool is one 
of the many challenges within engineering, because it means 
lower spending on material and better use of it. Furthermore, 
lighter structures become easier to handle and bring several 
other benefits depending on their applications. For example, 
regarding motoring, weight relief means better performance 
in curves and better acceleration, because the engine will 
have to work less to break the inertia of the vehicle and 
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to leave the static state. However, it is not only within the 
field of high-performance engineering that mass reduction 
is beneficial. In medicine, the use of lightweight prostheses 
brings several benefits to its users (Ma et al. 2020), because 
it enables better locomotion (Carbonaro et al. 2021). For 
example, according to Lourenço (2019) a lower limb pros-
thesis should be lightweight to minimize energy expenditure 
and muscle effort, considering the biomechanical changes in 
gait that cause greater energy expenditure.

Choosing the appropriate material is a key factor in reduc-
ing the mass and improving the performance of a prosthesis. 
Historically, prostheses have been made from a variety of 
materials, including animal bones and wood. With the dis-
covery of metals, ferrous alloys became a popular choice, 
and in ancient Greece they were often produced by the same 
blacksmith who crafted armor.

With the rapid advancement of technology and comput-
ing, numerous processes and products have been developed 
to achieve improved performance at a lower cost and/or 
reduced material usage. Orthopedic prostheses, benefiting 
from the discovery of new materials, have witnessed con-
tinuous evolution and optimization. Multi-objective optimi-
zation has played a crucial role in the development of these 
prostheses, allowing the search for efficient and balanced 
solutions across multiple performance criteria (Diniz et al. 
2019; Francisco et al. 2021; Pereira et al. 2022ab).

Multi-objective optimization involves the simultane-
ous search for multiple conflicting objectives, taking into 
account the trade-offs between them. Unlike single-objective 
optimization, where a single solution is sought, multi-objec-
tive optimization aims to find a set of optimal solutions, 
known as the Pareto front, which represents the trade-off 
among the considered objectives.

In recent years, various multi-objective optimization 
approaches have been proposed in the scientific literature. 
Metaheuristic-based algorithms have proven particularly 
suitable for solving complex multi-objective optimization 
problems due to their ability to efficiently explore the search 
space and find high-quality solutions. Some examples of 
widely used metaheuristic algorithms include NSGA-II 
(Non-dominated Sorting Genetic Algorithm II), MOLA 
(Multi-Objective Lichtenberg Algorithm), MOSFO (Multi-
Objective Sunflower Optimization Algorithm), and MOPSO 
(Multi-Objective Particle Swarm Optimization).

For example, a multi-criteria optimization model was 
developed by Ruben et al. (2007) in order to obtain the 
optimal geometry of the femoral component of a hip pros-
thesis. The objective function minimizes both the relative 
tangential displacement and the contact normal stress. The 
three-dimensional optimization procedure developed allows 
us to characterize the stem shape that minimizes displace-
ment and stress individually or simultaneously using a multi-
criteria approach. Results show that thin stem tips minimize 

the interface stress while collared stems minimize displace-
ment. The author concluded that the multi-criteria formula-
tion leads to balanced solutions.

Rosel Solis et al. (2021) used a crow search algorithm 
(CSA) to optimize a running blade made of composite mate-
rials. The optimization objective was to increase RBP dis-
placement while considering the Tsai–Wu failure criterion. 
Displacement and the Tsai–Wu criterion were predicted 
using artificial neural networks (ANN) trained with FEM 
simulations. The authors concluded that the carbon fiber lay-
ers with layers oriented 0°/90° were the best option for the 
design of the RBP and the proposed methodology can reduce 
the manufacturing costs of the final structure.

Equally important, Chanda et  al. (2016) presented a 
multi-criteria 3D shape optimization for both long-term and 
post-operative failure criteria associated with cementless hip 
prostheses design. From the final obtained Pareto optimal 
solutions, two chosen trade-off models were analyzed later. 
Despite the limitations, the multi-objective optimization 
results obtained by the authors attempt to address three key 
failure mechanisms to understand the design rationale of 
cementless hip prostheses.

Running-specific prosthetic feet, designed to enhance 
performance by storing and releasing elastic energy, have 
gained significant attention in the field of prosthetics. Shep-
herd et al. (2022) performed finite element analyses in order 
to demonstrate the influence of prosthesis shape on its mul-
tidimensional and non-linear mechanics. The authors pro-
posed a novel approach that combines simple formulations 
for foot mechanics with a spline-based shape optimization 
technique. By optimizing the shape based on desired end-
point mechanics, the methodology was able to generate new 
prosthetic foot designs that can improve performance and 
biomechanics for individuals with lower limb amputations.

Currently, prostheses are made of materials that combine 
lightness and mechanical strength, as shown by Light (2000) 
in his article “Development of a lightweight and adaptable 
multiple-axis hand prosthesis.” In the present study, the 
prosthesis material will be carbon fiber, which is widely 
used in applications that require the mentioned characteris-
tics, such as in the aeronautic and automotive industries, and 
in other applications that seek self-performance, as already 
mentioned, in motor racing.

Different final tasks and conditions require prosthetic foot 
devices with varying stiffness. According to this, Tryggv-
ason et al. (2020) presented a case study focused on modify-
ing the design of a prosthetic foot to achieve variable stiff-
ness. The objective was to demonstrate the proof-of-concept 
by using finite element modeling to simulate the design 
modifications where the goal was to adjust the stiffness of 
the device under dynamic loading by applying a high damp-
ing constant that approaches force coupling for the speci-
fied boundary conditions. The results demonstrated that the 
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introduction of a high damping constant damping element 
can increase the overall rotational stiffness of the device by 
50%. Furthermore, with a sufficiently large damping coef-
ficient, the energy dissipation in the active element accounts 
for approximately 20% of the maximum strain energy.

Furthermore, the choice of material is not the only factor 
that implies the reduction of mass and the improvement of 
the performance of a prosthesis. Within solid mechanics, 
the dimensions imply directly in the resistance to stresses. A 
poorly dimensioned geometry means that a design must have 
greater mass to resist the same forces than a well dimen-
sioned geometry.

In the field of lower limb prostheses, this study is still 
scarce and there is still much to be developed. As mentioned 
before, combining mass and mechanical strength is not an 
easy task and must be studied carefully. There are various 
methods to optimize these two parameters, including topo-
logical optimization based on the material’s points of maxi-
mum stress, as demonstrated in Zhen Tao’s study (2017). 
However, topological optimization is still a challenge for the 
development of carbon fiber prostheses and structures due to 
the orthotropic characteristic of the materials. In this case, 
parametric optimization is more suitable. Nevertheless, the 
research and the development of prostheses with this type 
of optimization are even scarcer.

Given this problem, it is perceptible that there is a lack of 
studies in this area. Thus, the present work seeks to develop 
a study on the multi-objective optimization of a high-perfor-
mance foot prosthesis made of composite material. In terms 
of structural design, multi-objective optimization has been 
applied to optimize the shape and dimensions of a prosthetic 
foot. This study aims to improve the structural integrity, 
reduce weight, and enhance the biomechanical compatibility 
of the prosthetic devices. When considering various objec-
tives such as Tsai–Wu failure criterion and weight reduction, 
innovative designs result in better performance and greater 
user comfort.

The main objective of this study is to develop a carbon 
fiber foot prosthesis and optimize it using a parametric 
approach. To achieve this, the following steps were under-
taken: (1) Development of a parametrized finite element 
model that accurately represents the prosthesis geometry 
and properties; (2) Application of appropriate boundary 
conditions that simulate realistic loading conditions on the 
prosthesis; (3) Integration of the model with four multi-
objective optimization algorithms, namely Multi-objective 
Lichtenberg Algorithm (MOLA), Multi-objective Genetic 
Algorithm (MOGA), Multi-objective Particle Swarm Opti-
mization (MOPSO), and Multi-objective Sunflower Opti-
mization (MOSFO); and (4) Determination of the optimal 
design that minimizes both the mass and the Tsai–Wu failure 
index, which are critical factors in ensuring that the prosthe-
sis meets performance requirements.

2  Theoretical background

2.1  High‑performance composite prosthesis

As the name already says, they are prostheses that seek 
maximum performance. That is, less mass and more effi-
ciency, besides a profile that resists well to the impacts 
during a walk or run, avoiding major problems to the user 
(Venkadesan et al. 2020).

Contrary to popular belief, performance prosthetics 
are not exclusively designed for athletes, as is often the 
case with orthopedic prosthetics for runners. They are also 
suitable for individuals who seek greater comfort while 
walking or running. This is because, as demonstrated by 
Oudenhoven’s research (2017), performance prosthetics 
must exhibit similar properties to that of a human leg, 
particularly with regard to stiffness.

Figure 1 shows a comparison between the anatomy of 
a human foot, highlighting the arches, and an arbitrary 
profile of the prosthesis modeled numerically in this study. 
From the two images it is possible to note the similarity 
between the two profiles, as the focus of the study was to 
develop and optimize a prosthesis that follows the pattern 
of a real foot.

2.2  Composite structures

By definition, composites are the union of two or more 
distinct materials with the objective of forming a third 
material that has specific characteristics of the materials 
used, such as high hardness and low density. In addition, 
composites are made up of two basic phases:

• Matrix: which can be ceramic, metallic, or polymeric. 
Generally, metals and polymers are chosen as the 
matrix materials, for presenting ductility, a character-
istic that is frequently required by the industry.

• Reinforcement: may be particles or fibrous material.

From this phase of matrix and reinforcement, one can 
work with the proportions and/or characteristics of each to 
achieve the required properties, such as higher mechani-
cal resistance, resistance to temperature, higher hardness, 
flexibility, among others.

In the regions that separate these phases (the so-called 
interfaces), we have different properties from the other two 
phases, thus opening up a very wide range of possibilities. 
In addition, what sets composites apart from other materi-
als that can also be combined (metal alloys, for example) 
is the fact that the combination is done macroscopically, 
that is, seen with the naked eye.
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Nowadays, composite materials are widely used in differ-
ent types of industries, among them: aeronautic, automotive, 
and construction.

However, the applications of composite materials are not 
limited to these three areas. Due to the combination of low 
density and high mechanical strength of some of these mate-
rials, as is the case of carbon fiber, many orthopedic prosthe-
ses are developed and manufactured in composite material.

2.3  Optimization

According to Yang (2014), optimization is widely used and 
quite essential in several activities, such as business, indus-
trial production, and, undoubtedly, engineering projects. The 
first optimization methods were based on deriving a func-
tion to be optimized, and thus obtaining the maximum or 
minimum value of that function. However, this method has 
errors, since within a function there are several local maxi-
mum and minimum points and only one global minimum 
and one global maximum.

A classic and rather old example based on derivatives is 
Newton’s method (Eq. 1), which can be used for functions 
of one variable, where Xk+1  is a future value that will be 
obtained from a present value Xk , where the first value will 
be a guess X1 , f (Xk) is the objective function to be mini-
mized in Xk , and f �(Xk) its first-order derivative:

The iterative process above takes the function to a mini-
mum value near the initial guess which can be a local or 
global minimum. Deriving this procedure we have the New-
ton–Raphson method.

The problem with these classical methods, as can be 
seen, is that it is limited to functions that are continuous 

(1)Xk+1 = Xk −
f
(

Xk

)

f
(

Xk+1

) .

and derivable near the local minimum. Thus, these methods 
do not fit most real problems.

Mathematically speaking, according to Yang (2014), it 
is possible to write most optimization problems in generic 
form:

where fi(x) , hj(x) , and gk(x) are functions of the vector

Here, the components xi of x are called decision variables, 
and they can be real continuous, discrete, or a mixture of 
these two.

Also according to Yang (2014), the functions fi(x) , where 
i = 1, 2, 3,… ,M are called objective functions, and in the 
case of M = 1 , there is a single objective. The space gener-
ated by the decision variables is called the design space or 
search space Rd , whereas the space formed by the objec-
tive function values is called the solution space or response 
space. The equalities for hj and the inequalities for gk are 
called constraints. It is worth noting that we can also write 
the inequalities in another form, ≥ 0 , and we can also formu-
late the objectives as a maximization problem.

2.3.1  Multi‑objective optimization

Multi-objective optimization, also known as multi-criteria 
optimization or Pareto optimization, is the process of opti-
mizing multiple objectives or criteria simultaneously. This 
approach is used when there is no single-objective function 

(2)minimize fi (x), (i = 1, 2, 3,… ,M), x ∈ Rd

(3)subject to hj (x) = 0, (j = 1, 2, 3,… , J)

(4)gk(x) ≤ 0, (k = 1, 2, 3,… ,K),

(5)x =
(

x1, x2, x3,… , xd
)T
.

(a) Anatomy of a human foot  
(adapted from Ricciardi, 2015) 

(b) an arbitrary profile of the modeled
structure 

Fig. 1  Comparison between the a profile of a human foot and the b prosthesis developed in this work
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that can adequately represent all the goals of the optimiza-
tion problem.

In multi-objective optimization, the goal is to find a set of 
solutions that are Pareto optimal. A Pareto optimal solution 
is one where any improvement in one objective function 
would result in a deterioration in at least one other objective 
function. In other words, a Pareto optimal solution cannot 
be improved in one objective without worsening at least one 
other objective. Multi-objective optimization problems are 
commonly encountered in engineering and design problems, 
where the design goals often involve multiple criteria that 
need to be satisfied simultaneously.

There are several methods and algorithms that can be 
used to solve multi-objective optimization problems. These 
include traditional methods such as weighted sum, epsilon 
constraint, and goal programming, as well as more modern 
approaches such as evolutionary algorithms, swarm intel-
ligence, and machine learning. Evolutionary algorithms are 
popular for solving multi-objective optimization problems 
because they can effectively explore the search space and 
find a set of Pareto optimal solutions. Common evolution-
ary algorithms used for multi-objective optimization include 
genetic algorithms, particle swarm optimization, and dif-
ferential evolution.

Basically, multi-objective optimization of a process is to 
optimally and/or evenly combine two or more variables cho-
sen to be improved, usually in conflict with each other. An 
easy and intuitive example to understand what optimization 
is the purchase of a cell phone. The price and the quality of 
the handset are conflicting characteristics, because usually a 
handset with a lot of features and excellent performance nor-
mally has a higher price when compared to a lower quality 
handset. The optimal choice will depend on the consumer, 
and they may choose the most expensive one with the best 
performance, one with lower performance and lower price, 
or a balance point between the two features, that is, the best 
value for money. However, among all the equipment con-
figurations there are some that are superior to others, that is, 
they present higher or equivalent performance for a lower or 
equal cost. These configurations (solutions) that surpass oth-
ers are known as non-dominated solutions, while the config-
urations that are surpassed by at least another one are known 
as dominated solutions (Kaveh and laknejadi 2011, 2013).

2.3.2  Multi‑objective lichtenberg algorithm (MOLA)

One metaheuristic based on the lightning storm and Lichten-
berg figures was recently created in the mono-objective ver-
sion and expanded to its multi-objective version, which is 
what interests us in the present study. Pereira et al. (2021a, 
b) and Pereira et al. (2022a, b) present and detail the whole 

study behind the mono- and multi-objective optimizer, 
respectively.

In short, the algorithm consists of creating a Lichtenberg 
figure that is thrown into the search space, and points of its 
structure are taken as candidates for the evaluation of the 
objective functions.

According to Pereira et al. (2022a, b), Lichtenberg (1777) 
was the first to study this phenomenon of propagation of 
electrical discharges in dielectric material (resistant) that 
leads the figure to have branched and tortuous aspects. This 
happens because the material is not homogeneous and, 
therefore, the growth of these rays appears randomly even 
under the same electrostatic conditions. This growth has an 
indescribable physical and mathematical reason. And, until 
today, it is impossible to calculate and predict it.

The direction of the lightning depends on the tempera-
ture, density, pressure and humidity of the air, the dielectric 
environment, the type of soil below the cloud, the density 
of that cloud, the velocity of the particles within it and what 
types they are, whether or not there are oxides, finally, a wide 
variety of variables with a single result: a stochastic event 
that spreads in the direction of least resistance. Lichtenberg 
Figure can be constructed through a random growth process 
with many particles, forming a cluster. Due to its stochastic 
model, each run of the algorithm can generate different fig-
ures. Therefore, the construction of the Lichtenberg Figure 
is entirely numerical.

2.3.3  Non‑dominated sorting genetic algorithm (NSGA‑II)

This algorithm was first proposed by Fonseca and Flem-
ing in 1993, and is a multi-objective optimization method 
based on genetic algorithms for generating the set of non-
dominated solutions.

This algorithm works as follows: a population Z of size N 
is generated. Using selection, recombination, and mutation, 
a population of offspring of the same size as Z is generated. 
After that, the two groups are put together and we have a set 
of size 2N. Then, they are sorted into dominance fronts and 
the clustering distances on each front are evaluated. Then the 
final descendants are determined by selecting the fronts with 
the best degree of dominance. If the size limit N is exceeded, 
the solutions with the smallest clustering distance on the last 
selected front are eliminated. Thus, if the convergence crite-
rion is reached, end of process. Otherwise, one set is again 
joined to another forming a new one of size 2N.

2.3.4  Multi‑objective particle swarm optimization 
(MOPSO)

From the observation and study of the social behavior of 
schools of fish, migratory bird species, and humans, the 
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Particle Swarm Optimization (PSO) algorithm was devel-
oped by James Kennedy and Russell Elberhart in 1995.

According to Kennedy and Eberhart, two concepts govern 
the performance of the algorithm: one is the ability of each 
particle (individual of a population) to quantify the effec-
tiveness of its own experience, called cognitive learning, 
and the iterative exchange of experiences with its neighbors, 
labeled as social learning. As such, a particle traverses the 
solution space with velocity of displacement consequent to 
social–cognitive learning.

In this algorithm, the particles walk in a space Rd , where 
d is the dimension of the space. The changes in the attributes 
of that particle lead to new positions in that space. These 
changes occur as a consequence of the already-mentioned 
social–cognitive behavior.

2.3.5  Multi‑objective sunflower optimization (MOSFO)

The multi-objective sunflower algorithm (or SunFlower 
Optimization Algorithm) is similar to its mono-objective 
version (Gomes et al. 2019; Gomes and Almeida 2020). Ini-
tially, the algorithm generates a first population of n sunflow-
ers (population), which are randomly ordered in the size of 
the search space. Then, MOSFO (Multi-objective SunFlower 
Optimization) computes the fitness of each sunflower using 
each of the objective functions of the problem. Each decision 
vector in the search space generates a solution in the objec-
tive space, which is divided into hypercubic grids (Coello 
et al. 2000). The Pareto dominance relation is performed and 
these solutions are divided into dominated and non-domi-
nated solutions. The dominated solutions are excluded and 
Ns non-dominated solutions form the first Pareto front of the 
algorithm, which becomes the sunflowers sun and is saved.

Since sunflowers in nature are guided by the sun during 
the day, in this optimization technique sunflowers are ori-
ented by the current Pareto front. Once all individuals are 
oriented by the sun, the individuals in a random and orderly 
way will generate new individuals towards it. This occurs 
via three MOSFO parameters, called biological operators: 
(i) pollination rate (pp), (ii) mortality rate (m), and (iii) sun-
flower survival rate (s). At each iteration or day (of the num-
ber of iterations N days), the pollination rate determines the 
proportion of individuals in a population that cross-pollinate 
with each other. It is worth noting that the best individu-
als cross-pollinate hierarchically, chosen at random at the 
minimum distance between flower i and flower i + 1. For 
simplicity, each sunflower produces only one pollen gamete 
and reproduces individually.

The plant mortality rate determines that a percentage of 
the individual will not survive because they are away from 
the sun and, therefore, have not received enough energy 
to be sustained. Individuals m (%) will be selected as the 
worst individual in their population based on their fitness 

value. Thus, the percentage of surviving plants will move in 
a controlled manner towards the sun. Even though in nature 
sunflowers do not move, in this algorithm, a movement is 
assigned to each individual. The range of movement will 
be random, following a normal distribution, between its 
position and the position of the sun. Figure 2 compiles the 
summarized flowchart of all the multi-objective algorithms 
discussed in this study.

3  Methodology

The constructive model of the prosthesis previously defined 
was that the structural part of the prosthesis, in other words, 
the object of study of this work, would consist of three 
identical carbon fiber strips that would be placed inside a 

NSGA-II)b(MOLA)a(

MOSFO)d(MOPSO(c)

Fig. 2  Summary flowcharts of the multi-objective algorithms NSGA-
II, MOLA, MOPSO, and MOSFO
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3D printed foot. For these reasons, the dimensions of these 
strips should respect the dimensions of the printed foot (or 
customized according to the size of the foot of the individual 
receiving the prosthesis). In addition, the prosthesis will be 
subjected to loading conditions (i) at the foot and (ii) at the 
heel, and, subsequently, analyzed numerically to obtain the 
stresses and Tsai–Wu failure index.

3.1  Direct problem: finite element formulation

At first the case study was isolated for only one strip and 
all the information obtained for this one will be taken as 
results for the other two strips as well. Moreover, in order 
to simplify the analysis, the whole prosthesis was built in 
shell elements.

After the initial considerations and the boundary condi-
tions already explained, in Ansys® APDL a profile of a 
strip of the prosthesis was created from random points that 
would generate a profile visually similar to that of a pros-
thesis and that respected the geometric limits imposed. For 
this, 13 points (keypoints) were defined with coordinates 
in the x–y plane. Figure 3 shows the 12 points responsi-
ble for generating the structural profile of the prosthesis 
(points 1 to 12). The points were connected by means of a 
spline and an area was generated considering a Z thickness 
(points 12 to 13).

Regarding the numerical model, we sought to build a 
simple structured mesh and sufficient elements in order to 
obtain reliable results and with the shortest possible simu-
lation processing time, since, a posteriori, several prosthe-
ses will be simulated (objective function evaluation) until 
reaching the optimal model. Thus, we arrived at a mesh of 
275 elements with 8 nodes per element.

Once the mesh was built, the boundary conditions were 
defined, which were done in two different cases. One with 
the strength applied to the tip of the prosthesis, and a sec-
ond case with the strength applied to the heel. The first 
with a value of 400 kgf and the second of 500 kgf, given 
by standard, were divided equally in the three carbon fiber 
strips. It is worth noting that these forces were distributed 
at the nodes located in the regions of interest (Perl et al. 
2012). Beyond this applied force, the ankle region of the 
prosthesis was crimped in both the cases. Figure 4 shows 
the two boundary conditions evaluated in this study.

3.2  Optimization problem: modeling 
and formulation

As already mentioned in the previous paragraphs, the main 
objective of this study is to optimize a carbon-epoxy prosthesis 
that is as light as possible and structurally safe.

However, before starting the optimization, it is necessary 
to simplify it as much as possible and in the best possible way, 
so that there is no waste of time and uninteresting results for 
our study. Thus, it is known that the optimization of the profile 
must happen respecting the 13 keypoints that have freedom in 
the three dimensions (X, Y, and Z axes). From this point on 
39 decision variables would be present for the objective func-
tions that are to minimize mass and Tsai–Wu. This number of 
variables would not be ideal for an optimization problem. So, 
the need to simplify the problem is confirmed.

Knowing the boundary conditions and geometric limits that 
the prosthesis must respect, some variables were fixed and 
dependency was created between them. In this way, the num-
ber of decision variables was reduced from 40 (39 geometric 
freedoms plus the number of fiber layers) to 16.

Thus, following what is shown in Eqs. 3, 4, the optimization 
problem statement of this study can be summarized by Eqs. 4.

Visually, the design vector X composed of the decision 
variables considered in this study can be seen in Fig. 5. 
At the same time, the considerations about the decision 

(6)
find{X}

=
{

y3, x4, y4, x5, y5, x7, y7, x8, y8, x9, y9, x10, x11, y12, z13,NCAM
}

(7)that minimizes ∶ f1(X) = TW(X) → Tsai − Wu�svalue

(8)f2(X) = mass (X) → Mass value

(9)subject to ∶ g1(X) ∶ mass (X) ≤ 550

(10)g2(X) ∶ TW(X) ≤ 1

(11)where ∶ LB ≤ {X} ≤ UB

Fig. 3  An arbitrary profile obtained for the prosthesis
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variables, {X} , and their limits (lower and upper) can be 
seen in Table 1 and Table 2.

It is also worth mentioning that besides the points for 
the formation of the lateral structural profile, the prosthe-
sis thickness  (z13) was considered in the formulation of the 
optimization problem as well as the number of layers along 
the thickness  (NCAM). All layers are oriented at 0° along the 
longitudinal direction of the prosthesis. Furthermore, for all 
optimization cases, the  NCAM variable was considered as the 
integer variable to be optimized.

It is worth noting that in Table 1 many values are nega-
tive because the reference axis in the construction of the 
prosthesis was fixed in the ankle region. That is, all points 
in y are below the axis, therefore, negative.

Furthermore, in the four optimizers used, it is necessary 
to define upper and lower bounds for the values of each 
decision variable. These values can be seen in Table 2 and 
were defined considering the shape to which the prosthesis 
is limited, and we tried to keep it as close as possible to the 
previously built shape.

Regarding the optimizers considered, Table 3 shows the 
main internal control factors used. As a comparative study, 
for all cases it was defined as a stopping criterion the maxi-
mum amount of objective function evaluation or simply the 

iterations, since the population of individuals is the same 
for all.

In addition, these algorithm-specific MO algorithms were 
chosen due to some reasons. First, these algorithms have been 
shown to be effective in other studies involving composite 

Fig. 4  Load application points 
on the prosthesis

(a) simulated prosthesis with strength on the tip (b) simulated prosthesis with strength on the heel

Fig. 5  Details about modeling 
and parameterization of the 
direct model

Table 1  Keypoints and formulation of the geometric construction of 
the prosthesis

X (m) Y (m) Z (m)

Point 1 0 0 0
Point 2 0 − 0.02045 0
Point 3 0 y3 0
Point 4 x4 y4 0
Point 5 x5 y5 0
Point 6 (x7 + x5)/2 − 0.13497 0
Point 7 x7 y7 0
Point 8 x8 y8 0
Point 9 x9 y9 0
Point 10 x10 − 0.13497 0
Point 11 x11 − 0.13497 0
Point 12 0.26994 y12 0
Point 13 0.26994 y12 z13
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materials and/or orthopedic prostheses. This suggests that 
they are well suited to the specific problem being addressed 
in the study. Secondly, the authors may have chosen to use 
these four algorithms because they represent a diverse set of 
metaheuristic algorithms, each with its own strengths and 
weaknesses. By evaluating multiple algorithms, the authors 
can compare their results and determine which algorithm is 
the most effective for their specific problem.

4  Numerical results and discussion

Based on the information and data presented in the previous 
sections, numerical simulations and optimizations were car-
ried out using the four metaheuristic optimizers mentioned 

earlier for two different boundary conditions applied to the 
prosthesis. That is, there were 8 simulations that generated 
a total of 779 different optimal configurations (non-dom-
inated solutions on the Pareto front). Then, using specific 
decision-making techniques, 8 optimal prostheses were 
obtained, improving both TW and mass. Besides these 8 
prostheses, another 16 prostheses were obtained: 8 of them 
targeting only TW and 8 targeting only the mass of the pros-
thesis. The latter 16 refers to the nadir points obtained by 
each optimizer.

Furthermore, for a first study before the simulation in 
the optimizers, having the upper and lower bounds of each 
decision variable, some examples of combination with these 
bounds were randomly generated, which can be seen in 
Fig. 6. As can be seen, different combinations of the decision 
variables can result in different structural designs, which 
directly impact the evaluated mass and Tsai–Wu responses. 
In addition to this example, the variables thickness  (z13) and 
number of layers  (NCAM) contribute significantly to these 
responses.

4.1  Analysis of variance and sensitivity

One of the ways to verify and analyze the influence of a 
given variable on a particular problem is through the analy-
sis of variance and sensitivity. Through it, it i s possible 
to know how the objective functions, mass and TW, of the 
problem behave in relation to the decision variables previ-
ously shown and how they are distributed, as well as in a 
histogram.

Moreover, for the initial sensitivity and variance analyses, 
a design of experiments was performed using a  216 factorial 
arrangement resulting in 65,536 different combinations of 
variables. These 65,536 different configurations were then 
simulated and the mass and TW responses for each case 
were stored.

By the violin plot shown in Fig. 7 it is possible to see that 
the average mass of the prostheses obtained was something 
close to 300 g, while the mass response with the highest 
density in the sample space was something slightly greater 
than 100 g.

Still in the violin plot, now analyzing the TW, it is 
possible to see that the average TW was between 2 and 
4, which is not interesting, because this value should be 
below one to ensure that the prosthesis does not reach fail-
ure. Note that this average is due to the fact that there are 
outliers—data that are very distant from the other data—of 
very high TW, which affects the calculation of the average 
TW, since these outliers reached a value of 20 for TW, 
while the ideal is below 1, as mentioned. However, there 
is a higher density of results at TW between 0 and 3, espe-
cially close to 2. That is, arriving at an optimal value that 

Table 2  Limits of the decision variables

Variable Upper bound (UB) Lower bound (LB)

y3 (m) − 0.0320 − 0.0552
x4 (m) 0.0020 − 0.0409
y4 (m) − 0.0700 − 0.0981
x5 (m) 0.0000 − 0.0123
y5 (m) − 0.0981 − 0.1309
x7 (m) 0.0800 0.0460
y7 (m) − 0.1145 − 0.1309
x8 (m) 0.1300 0.1100
y8 (m) − 0.1000 − 0.1100
x9 (m) 0.1841 0.1700
y9 (m) − 0.1145 − 0.1309
x10 (m) 0.2126 0.1850
x11 (m) 0.2515 0.2127
y12 (m) − 0.1288 − 0.1309
z13 (m) 0.0500 0.0200
NCAM 100 50

Table 3  Control factors of the optimizers

MOLA NSGA-II MOPSO MOSFO

Population 160 160 160 160
Refinement Ref 0,40 – – –
Particles  Np 106 – – –
Stick  Sc 1 – – –
Radius  Rc 150 – – –
Crossover – 60% – –
Mutation – 5% – –
Inertia W – – 0,4 –
Cognitive  C1 – – 2 –
Social  C2 – – 2 –
Pollination p – – – 10%
Mortality m – – – 10%
Iterations 100 100 100 100
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leads to a TW smaller than one is not an easy task, since 
few answers meet this requirement.

Besides the violin plot, a sensitivity analysis can be done 
through Fig. 8 and Fig. 9, which show how the mass and 
TW behave varying only one variable between their lower 
and upper limits.

For the mass it is possible to see that the parameters with 
the greatest influence are the last two, which are the width 
of the “strip” and the number of layers that directly influ-
ence the thickness and thus add weight to the prosthesis. In 
other words, the shape of the lateral profile of the prosthesis 
was of little importance, because by varying the parameters 
from  y3 to  y12 there was very little variation in mass. Some 

Fig. 6  Some examples of prostheses generated for different structural parameter settings
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parameters, such as  y3 and  y4, did not even vary the value of 
the mass by changing them. This happened because moving 
the points that generate the profile of the prosthesis does 
little to change its final length, that is, it will add almost no 
mass to it.

Nevertheless, for TW (Fig. 9), not only the last decision 
variables were important, but also most of the decision vari-
ables. However, similarly, here too the parameters with the 
greatest influence were the width of the prosthesis and the 
number of beds. Nevertheless, this time the relationship is 
the other way around, meaning that if we increase the num-
ber of layers and/or the width, we will get a lower TW for 
the simulated prosthesis. Although, the mass will increase 
as well.

In addition, the decision variables  x4,  y4,  x9,  x11, 
and  x12 were, among the variables that design the profile 
of the prosthesis, the parameters that most influenced the 
control of tension in the material studied. Therefore, these 

variables, together with the number of layers and t, are those 
that should be better defined in order to obtain the best-sized 
and optimized prosthesis possible.

As a complement to the analyses of the effects of each 
response separately, there was a correlation analysis between 
them. Figure 10 displays the result indicating the Pearson 
correlation coefficients of the mass (var1) and Tsai–Wu 
index (var2) responses. The results indicate, as expected, 
that the responses are not correlated. Furthermore, it is 
known that these responses, when treated in optimization 
formulation, are conflicting objective functions, ideas to be 
treated in multi-objective optimization problems.

4.2  Multi‑objective optimization results

As previously discussed, simulations were performed with 
the four optimizers, MOLA, NSGA—II, MOSFO, and 
MOPSO. After having performed the optimizations, the 

Fig. 7  Violin plot for the 
responses of mass (a) and Tsai–
Wu (b)

Fig. 8  Main effects of decision 
variables on mass response
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Pareto fronts were generated for all four optimizers in the 
two loading conditions (case #1 and case #2), and it is pos-
sible to discuss which ones obtained the best answers for the 
problem studied.

4.2.1  Case #1: strength on the prosthesis tip

The first case is that of a strength applied on the tip of the 
prosthesis (analogous to the human finger toe region), as 
already mentioned in Sect. 4.1. For this boundary condition 
(case #1) different optimal solutions were obtained consid-
ering the four optimization algorithms. The non-dominated 
solutions in the Pareto Front for each optimizer are visual-
ized in Fig. 11.

It can be noted that the optimizer with which the best 
answers were obtained, that is, its Pareto front dominates the 
others generated by the other optimizers, for this case was 

the MOPSO (multi-objective particle swarm algorithm). In 
turn, although the other optimizers present Pareto fronts with 
solutions that meet the loading conditions in the prosthesis, 
the results obtained by them are not the most optimized for 
the two objective functions considered in this study.

As a criterion for analysis, we obtained the images of the 
simulated prostheses with the geometries obtained by the 
optimizers. The answers sought were those corresponding to 
the nadir points on the Pareto front, it means, the prosthesis 
configurations that have individual objectives optimized only 
one criterion. In addition, the best non-dominated solution 
on each front was also sought using the TOPSIS (Technique 
for Order Preference by Similarity to Ideal Solution) method 
for decision making that equally weights the importance of 
the Tsai–Wu mass and failure index objectives.

Figure 12 shows the different structural designs of the 
prostheses considering the nadir and TOPSIS points for the 

Fig. 9  Main effects of the deci-
sion variables on the Tsai–Wu 
response

Fig. 10  Correlation between the 
responses mass (var1) and Tsai–
Wu (var2)
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Fig. 11  Pareto front obtained in 
the multi-objective optimization 
for boundary condition 1
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Fig. 12  Optimal forms obtained from the non-dominated Pareto front solutions for boundary condition I
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Fig. 13  Pareto front obtained in 
multi-objective optimization for 
boundary condition II
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Fig. 14  Optimal forms obtained from the non-dominated Pareto front solutions for boundary condition II
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different metaheuristics evaluated. Note that, as expected, 
the prostheses that prioritize mass reduction have a less 
robust structure than those that prioritize TW reduction. 
And in turn, the TOPSIS solution becomes an equilibrium 
of the two objective functions which for the present study is 
considered the sweet spot.

4.2.2  Case #2: strength on the heel of the prosthesis

The second case considered as boundary condition the 
strength applied in the heel region of the prosthesis with a 
total load of 500 kg. The analysis was performed similarly 
to Case 1. Figure 13 exhibits the non-dominated solutions 
that were the Pareto fronts for the four different optimizers 
considered.

Similar to the result obtained for the first boundary condi-
tion, the simulation with the load on the tip of the prosthesis, 
the optimizer that best minimized the mass and TW was 
MOPSO. However, with the load applied to the heel it was 
possible to obtain “lighter” prostheses, since the geometry 
allows for a greater load applied to this region of the pros-
thesis. Figure 14 shows in detail the structural profiles of 
the prosthesis considering the different nadir and TOPSIS 
solutions for the four metaheuristics.

As commented, with this load the prosthesis suffered 
less, so the optimizers were able to arrive at less robust 
geometries, unlike what happened in the prostheses with 
the tip load.

Complementing the previous results, Table 4 summa-
rizes the metrics obtained for cases 1 and 2 studies con-
sidering all the algorithms involved. It can be observed 
that the MOPSO algorithm was the metaheuristic that 
presented the best performance for this specific problem. 
When only the Nadir solutions are taken into account, 
the MOSFO algorithm showed a slight advantage over 
MOPSO. Evaluating the hypervolume (HV) metric 
obtained by the Pareto front, once again the MOPSO 
algorithm presents an advantage over the others. The best 
values are highlighted in bold.

5  Conclusions

Taking into account the findings of this study, which 
involved simulating two different stress conditions and 
testing four optimization algorithms (MOLA, NSGA-II, 
MOSFO, and MOPSO), it can be seen that the prosthesis 
that would best meet the loading conditions is the one 
obtained by the MOPSO optimizer for the load on the tip 
of the structure, once this boundary condition was the one 
that required more robustness in the prosthesis. Soon, just 
as it performed well in condition (I), it would also perform 
effectively with a load on the heel, condition (II). Moreo-
ver, as already mentioned, it also has a more convex Pareto 
front than the other optimizers, which generated a better 
decision making and TOPSIS solution. This metaheuristic 
provided the highest hypervolume index among the oth-
ers studied, adding one more advantage for this prosthesis 
among the others.
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