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Abstract
Multidisciplinary optimization problems exist in many disciplines and constitute a large percentage of problems in industry. 
Due to their wide-scale applicability, significant research efforts have been spent on developing effective methods that can 
not only derive accurate solutions but also improve the computational efficiency in the problem solving process. As a result, 
different algorithms are proposed to coordinate the solution of the different disciplines. However, in realistic problems, 
the coupling across these disciplines introduces difficulty in the coordination between them. In this paper, a new hybrid 
meta-heuristic method based on a Lagrangian relaxation of complicating constraints is introduced to reduce the coupling 
between disciplines in such systems. The proposed scheme identifies complicating constraints and implements a Lagrangian 
relaxation scheme that allows the constraint to be decomposed over different subproblems. This reduces the coupling across 
the disciplines and improves the coordination between them. The developed algorithm has been tested on numerical case 
studies as well as an engineering problem to demonstrate its efficacy as compared with existing methods in the literature for 
multidisciplinary optimization problems with strong links between subproblems as well as the scalability.

Keywords Multidisciplinary design optimization · Coupled systems · Lagrangian relaxation · Analytical target cascading

1 Introduction

Within the complex nature of physical, social and technical 
systems, their exist interconnected subsystems whose interac-
tions need to be accounted for when making system-wide deci-
sions. This allows the decision maker to make globally optimal 
decisions for the overall system. However, the complex nature 
of these systems introduces a computational burden that may 
be too large to justify system-wide optimization, where the 
problem is solved All-At-Once (AAO). Due to this widespread 
problem, many algorithms try to address these specific prob-
lem structures that consist or inter-connected disciplines with 
shared variables and parameters. Such problems are referred 
to as Multidisciplinary Optimization (MDO) problems which 
are tackled by decomposing the different disciplines into 

subproblems in distributed methods, or through monolithic 
formulations Tedford and Martins (2010). Monolithic for-
mulations include approaches that have a single system-wide 
optimization, where the decomposed system interactions are 
determined in a single iteration. Monolithic formulations, such 
as multidisciplinary design feasible formulations, tend to be 
easy to implement and solve, but their solutions could scale 
poorly with the complexity of the problem Tedford and Mar-
tins (2010) and this motivates new studies that use Machine 
Learning methods for solving MDO problems Ramu et al. 
(2022). Similarly, for staged problems, the different stages 
could be treated as disciplines, however, their is tight coupling 
across the stages that needs to be accounted for Hamdan et al. 
(2019). On the other hand, the performance of decomposition 
schemes is dependent on the complexity of the subproblems as 
well as the connections between them Santiago et al. (2014). 
The term complexity, here, refers to the number of constraints 
and the dimensionality and number of variables in the problem 
that could make solving each discipline difficult, in addition to 
the number of constraints and variables that link the different 
disciplines together.

Decomposition-based methods use iterative solution 
schemes to coordinate between the different subproblems. 
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This coordination strategy allows the discrepencies between 
the different subproblems to be minimized with each itera-
tion, approaching a global optimal solution to the problem. 
The behavior of such methods is highly dependent on the 
interactions between the subproblems Martins and Ken-
nedy (2021). Therefore, such methods are ideal for prob-
lems where the subproblems are modular and have little con-
nections between the other subproblems. When it comes to 
real-life systems, these links are not always trivial and could 
cause iterative schemes to diverge or result in a far from 
optimal solution Lizier et al. (2018). To tackle these com-
plex system structures, the links between the subproblems 
are usually oversimplified from the true system to facilitate 
solving the problem. This can make the problem solution not 
representative of reality or could even result in solutions that 
are not feasible to the real problem. In order to handle the 
coordination of MDO problems with complicating variables 
and constraints, the links across the subproblems need to be 
reduced to facilitate their coordination with existing MDO 
methods. As the dimensionality of the problem increases, 
the links become more intricate. Therefore, decomposing 
the links across disciplines greatly facilitates their solu-
tion, especially when considering iterative MDO solution 
approaches.

In this paper, a decomposition-based solution scheme is 
proposed to tackle complex dependencies between modular 
systems for non-decomposable multidisciplinary optimiza-
tion problems, while maintaining the quality of the solutions 
and mitigating the solution complexity. We present a nested 
Analytical Target Cascading - Lagrangian Relaxation (LR-
ATC) solution scheme which can relax complicated links 
between subproblems to enable tractable solutions. The pro-
posed method can be applied to problems where the rela-
tionship between subproblems is complex and can therefore 
result in improved system-wide optimization for modular 
problems. Numerical case studies are implemented to meas-
ure the effectiveness of the proposed approach over bench-
mark methods in the literature as well as study the scalability 
of the proposed solution scheme. A physical system case 
study is also implemented to highlight the applicability of 
the proposed method to real case studies.

The rest of the paper is organized as follows. Section 2 
introduces the relevant methods in the literature. Section 3 
presents the proposed solution scheme. Section 4 presents 
two numerical case studies and details how the proposed 
scheme was implemented to solve the problem and how well 
it scales with the size of the problem. It also highlights the 
benefit of the proposed method when it comes to the quality 
of the solution as well as the computational time. Section 5 
presents the Golinski Speed Reducer case study and show-
cases the applicability of the ATC-LR method to real system 
applications as well as highlights the benefit of the method. 
Lastly, Sect. 6 concludes the paper.

2  Relevant literature

In this section, some of the most prominent solution methods 
for coupled systems are reviewed. A comparison between 
the different methods is drawn and the benefit and applica-
bility of each method is highlighted.

Analytical Target Cascading (ATC) is a hierarchical 
decomposition method for solving problems with coupled 
systems Kim et al. (2003). The method was first proposed 
by Kim et al. (2003) to create a tool to propagate top level 
targets down in a hierarchical scheme. Since then, many 
studies formalize this solution scheme in a framework and 
integrate it with lagrangian methods to improve its appli-
cability to complex problems Kim et al. (2006), Kim et al. 
(2003), Tosserams et al. (2010), Kang et al. (2014). ATC is 
a framework that decomposes formulation through hierar-
chical levels where the top level contains the system targets 
and the bottom levels try to match the targets from above. 
Additionally, there is target matching across different sub-
models within the same level that have shared variables. 
ATC is an iterative scheme where the exterior objective is to 
minimize the discrepancies between the targets. The method 
is generally applied in three stages: dividing the formulation 
into coupled sub-problems (in the case of clearly coupled 
systems, identification of each subsystem and linking vari-
ables), setting the targets for each subsystem depending on 
system links and solving the sub-problems in a coordinated 
scheme Kim et al. (2003).

Lagrangian Relaxation (LR) is an exterior penalty method 
which approximates difficult problems with simpler prob-
lems in order to facilitate solving complicated problems. 
LR is implemented by identifying (a set of) complicating 
constraints and removing them from the constraint space. 
However, the model penalizes violation of these constraints 
through including a penalty term in the objective function. 
This penalty term usually consists of the constraint viola-
tion multiplied by a penalty parameter. LR is then usually 
solved in an iterative solution scheme where the value of 
the penalty parameter is optimized Fisher (1985). Different 
ways of updating the penalty parameter exist (subgradient 
method, ect.), however, in most cases setting a high penalty 
parameter value tends to improve the quality of the solution. 
Nonetheless, a trade-off exists between solution time and the 
quality of the solution when it comes to a choice of a penalty 
parameter. That is why iterative solution schemes to select 
the best penalty parameter values exist Hamdan and Diabat 
(2020). Eqn 1 shows the general form of the relaxed prob-
lem given the original objective, cTx , the original constraint 
Ax ≤ B and the penalty parameter �.

(1)Maximize
�

min
x

cTx + �(Ax − B)
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Augmented Lagrangian (AL) method is an extension to the 
LR method where the penalty term is augmented with an 
additional term which is added to avoid ill-conditioning 
of the problem Afonso et al. (2010). This parameter is a 
quadratic penalty function that also serves as a convexify-
ing term. The main benefit of this method is that the penalty 
parameter does not need to be too large in order to obtain 
an optimal solution to the original problem Papalambros 
and Wilde (2000). The updated form of the objective is now 
shown in Eqn. 2. In this equation, � is an additional penalty 
parameter for the augmenting term.

The method has been extended further by using the Alternat-
ing Direction Method of Multipliers (ADMM) to reduce the 
cost incurred with coordination among different levels of the 
decomposed problem Tosserams et al. (2006). The updated 
method is referred to as AL-AD ATC which represents an 
Augmented Lagrangian ATC approach with an Alternating 
Direction Method of Multipliers. ADMM is an extension 
to the Method of Multipliers (MM) where instead of itera-
tively solving an inner loop problem as shown in Fig. 1. 
The ADMM takes into consideration that in a hierarchical 
scheme, the odd levels and even levels can each be solved in 
parallel since odd levels only need responses from even lev-
els and vice versa. Additionally, since in ATC, models along 
the same level can be solved in parallel, the ADMM method 
can drastically reduce computational time by parallelizing 
model optimization along a single level and throughout the 
levels Tosserams et al. (2005). It also solves each inner loop 
once instead of the iterative inner loop structure that is very 
computationally expensive. The results of ADMM are also 
shown to converge to the results of the original ATC formu-
lation for certain conditions on the problem structure.

(2)Maximize
�

min
x

cTx + �(Ax − B) +
�

2
‖Ax − B‖2

3  A new Lagrangian solution scheme

This section details the developed new Lagrangian solution 
scheme for the multidisciplinary optimization problems 
with non-decomposable subsystems. Section 3.1 explains 
the non-decomposable problem structures, and Sect. 3.2 then 
details the developed the LR-AL ATC algorithms for the 
non-decomposable MDO problems. The motivation for the 
proposed algorithm is that it can handle non-decomposable 
problem structures with strong links across subproblems. 
This is done by relaxing the complicating constraints and 
solving a meta-heuristic, iterative algorithm that can update 
the relaxation penalties while coordinating the different 
subproblems.

3.1  Non‑decomposable problem structures

In this section we define non-decomposable subsystems. 
This work targets systems that have an embedded group-
ing of subsystems that are tightly connected. This hinders 
the ability of the model to be decomposed into subsys-
tems which can greatly increase the computational time 
of large and complex problems. In order to illustrate the 
class of problems targeted in this work, a simple math-
ematical example is presented in Eqns. 3a to 3g. In this 
problem, there are six local decision variables represented 
by xi , two partially shared variables across two subprob-
lems, ui , and a shared variable across all subproblems, v. 
Although this simple mathematical model has an inherent 
subgrouping of its variables that make it a strong can-
didate for solving the problem through decomposition, 
the existence of constraint Eqn. 3g makes the problem 
non-decomposable. Figure 2 illustrated the decomposition 

Level 1

Level 2

Level 3

Level 1

Level 2

Level 3

a. Nested bo�om-up b. Nested top-down

Fig. 1  Inner loop coordination strategy for the method of multipliers

Fig. 2  Decomposed outline of the subgroups found in the model 
structure highlighting the non-decomposable nature of the problem. 
Shared variables across subgroups are highlighted in gray
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matrix of the problem. A clear decomposition structure 
exists for the local variables and partially shared vari-
ables, yet, the shared variable found in Eqn. 3g creates 
strong links along all three subproblems. The gray shaded 
areas in the figure represent the shared variables. Current 
decomposition methods have been shown to be effective 
with partially shared variables (highlighted in light gray), 
however, strong links between the subproblems (high-
lighted in dark gray) greatly hinder the effectiveness of 
decomposition schemes. 

(3a)min f = x2
2
+ 5x6

(3b)s.t. x2
1
+ 3x2 + 2 ≤ 0

(3c)x1 − u1 + x2 + 2 ≤ 0

(3d)− x3 + 3x4 − 4 ≤ 0

(3e)− u1 + x5 − u2 + 2 ≤ 0

(3f)2x6 − u2 + 3 ≤ 0

(3g)x2 + vx6 − x4 + 2 ≤ 0

(3h)
xi; ui ≥ 0, ∀i

v ≥ 0

3.2  The LR‑AL ATC methodology

In this section, a new Lagrangian Relaxation solution 
scheme is introduced, which can be used to solve analyti-
cal mathematical models that have a non-decomposable or 
slightly decomposable structures. In order to illustrate how 
the algorithm can be applied to a general set of problems, 
general variable and constraint sets will be used. The gen-
eral form of the problem being studied is presented in Eqn 
4. In this formulation, x represents the vector of decision 
variables, indexed by i, where the full set of decision vari-
ables is given by x = [xT

1
, xT

2
,… , xT

n
]T . cT represents the cost 

vector indexed by i. The objective function is to minimize 
the total cost of the chosen decision, given by the product 
CTx . The matrix A represents the left hand side of the con-
straints and B represents the vector of the right hand side of 
the constraints.

The proposed method combines an AL-AD ATC solu-
tion scheme in an iterative Lagrangian Relaxation solution 
scheme. This approach can handle the added complexity of 
complicating constraints that make ATC inapplicable for 
applications where the system is not perfectly modular, or 
where the links between the subsystems are complex. LR 
can be used to relax the complicating constraints that link 
the subsystems in order to improve the ability of ATC to 
coordinate between the subproblems. Figure 3 shows how 
the simple mathematical example presented in Eqns. 3 can 
be converted into a decomposable structure through relaxing 
the coupling constraint. The constraint causing the strong 
linkage between subproblems, highlighted in Fig.  2, is 

(4)
Minimize

x
cTx

S.t. Ax ≤ B

Fig. 3  Benefit of relaxing a single complicating constraint for non-decomposable systems
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relaxed. Due to the additive property of the objective func-
tion, the relaxed constraint is distributed over the subprob-
lems in their respective objective functions.

The proposed solution scheme is shown in Fig 4, where 
the structure is outlined for a general implementation of the 
solution algorithm. The psuedocode presented in Fig 5 pre-
sents the proposed nested solution framework. The overall 
solution scheme is presented in Fig 5 where the outer loop 
is defined for a general problem structure. The inputs to the 
algorithm include the Cost vector for the objective function, 
C, the matrix, A, which represents the left-hand side coeffi-
cients for the constraints, and the vector, B, which represents 
the right hand side constants for the constraints. For this 
case, the relaxed set of constraints is represented by inequal-
ity constraints, however, for equality constraints, this can 
be easily modified. In the case of equality constraints, the 
absolute value of the difference Ax − B is used to determine 
the stepsize. The Lower Bound (LB) and the Upper Bound 

(UB) are calculated based on the values of the objectives of 
the Relaxed MDO solution and the heuristic solution. For 
a minimization problem, the LB value is the optimal but 
not necessarily feasible solution obtained from the MDO 
formulation. The UB, on the other hand, represents the fea-
sible, yet not necessarily optimal solution obtained from the 
heuristic model. Moreover, the pseudocode shows the case 
for a minimization problem, in the case of a maximization 
objective, the UB and LB values can be reversed. The param-
eters for the algorithm include the stepsize, � , the penalty 
parameter (this can be a vector in the case of relaxing a set 
of constraints), � , and the number of consecutive iterations 
with no improvement in the value of the upper bound (for a 
minimization problem), noimp.

The algorithm then enters a loop until the upper bound 
and lower bound converge within a predefined tolerance, �1 
or the scale factor, � falls below a tolerance, �2 . Inside the 
outer loop, the Relaxed Master Problem (RMP) is solved 

Ini�aliza�on: Par��on the original 
formula�on into hierarchical subproblems

Complica�ng constraints 
between subproblems?

Relax complica�ng constraints & 
add penalty terms in the high-

level objec�ve

Implement 
Decomposi�on 

Method

Solve heuris�c model. Set 
PotUB= Objec�ve Value

Update UB, LB, α and λ

UB = LB?

Set CLB = Objec�ve Value

Solu�on 
feasible to the original 

problem?

Set PotUB = Objec�ve 
Value

Terminate at 
op�mal solu�on

Solve subproblems without devia�on 
terms

Ini�aliza�on

Solve top-level problem

Solve level 2 
subproblem 1

Solve level 2 
subproblem n1

Solve level m 
subproblem nm

Solve level m 
subproblem 1

Error terms < 
tolerance?

...

...

Decomposi�on Scheme

Yes

No

Yes No

No

Yes

Yes No

Fig. 4  Proposed LR-AL ATC Method Framework
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using ATC. This is described in the ATC Subroutine pseu-
docode defined in Fig. 6. Once the ATC code terminates, 
the solution is recorded and the objective function value is 
recorded as the current lower bound, CLB, solution. Next, 
the relaxed constraint is checked with the recorded solu-
tion from the RMP to check if it was violated. If the con-
straint was not violated, that means that the solution of the 
RMP is feasible to the original formulation and the objec-
tive function value is recorded as a potential upper bound 
value, PotUB. If the constraint was violated, then a heuristic 
model is solved to obtain a feasible solution to the original 
problem. This is described in the Heuristic Subroutine pre-
sented in Fig. 7.

Once a feasible solution is obtained, the objective func-
tion value is calculated and it is recorded as the PotUB. If 

the value of the PotUB is lower than the UB, then the UB is 
updated with the objective function solution for the heuris-
tic model. Otherwise, the UB value is not updated and the 
noimp parameter is incremented by 1. Next, the stepsize is 
calculated as in Eqn. 5, where � corresponds to the constraint 
violation. If the constraint is active, then the stepsize is set 
as 0. However, if the constraint is violated or inactive, then 
the stepsize is calculated based on the values of the UB and 
the CLB as well as the slack or surplus from the relaxed 
constraint. The scale factor also impacts the stepsize value 
and as the number of iterations increases, the stepsize is 
decreased by the stepsize value. This allows the model to 
fine tune the change in � as the constraint activity is reached 
as shown in Eqn. 6. As seen in the constraint, � can either 
increase or decrease depending on whether the relaxed con-
straint was violated or not ( � can either be positive or nega-
tive). Lastly, the LB and the stepsize are updated based on 
whether there is an improvement in the lower and upper 

Fig. 5  The LR-ATC Algorithm pseudocode

Fig. 6  The ATC Subroutine

Fig. 7  The Heuristic Subroutine
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bounds and if the noimp parameter is greater than 5. The 
algorithm terminates when the conditions of the while loop 
are no longer met.

The ATC Subroutine is detailed in Fig. 6, for a general 
problem decomposition of N levels and each level can have 
multiple subproblems. The notation in the algorithm is based 
on the work in Kim et al. (2003), where Tv denotes the design 
targets, and �v and �y denote the deviation tolerance for coor-
dinating the system responses and the and system linking 
variables. The problem formulation is set up as in Kim et al. 
(2003) and the ATC algorithm is initialized by solving the top 
level optimization problem without including the deviation 
constraints (since no lower level response has been recorded 
yet). The algorithm then iterates between levels, where all 
subproblems in a single problem are solved simultaneously 
with deviation targets for the shared variables between them, 
if any. In each iteration, the values of the shared lower and 
upper levels are shared so as to ensure that the discrepancy 
between their values is minimized. This pseudocode focuses 
on the traditional ATC method, for the AL ATC and the 
AL-AD ATC, the readers are referred to the relevant refer-
ences Tosserams et al. (2006), Tosserams et al. (2005).

As for the heuristic algorithm that is shown in Fig. 7, an 
example of a generalized heuristic solution scheme is pre-
sented. Although any heuristic method could be used, in order 
to present a solution scheme that can be easily applied to all 
applications, a simple procedural method is proposed. The 
method in Fig. 7, starts off by selecting a subset of decision 
variables whose values have been determined from the RMP, 
and setting them as parameters in the original formulation 
(before constraint relaxation). This is referred to as the first 
heuristic model. In terms of the decision variables that are 
fixed, although any combination can be selected, in order to 
leverage the decomposable nature of the problem, the shared 
variables between subproblems can be fixed. This allows the 
subproblems to be solved completely in parallel, which will 
drastically decrease the computational time required to obtain 
a feasible solution. Any resulting solution can be suboptimal 
to the original formulation, however, if it is feasible to the 
heuristic model, then it is feasible to the original formulation. 
If a feasible solution is obtained, the objective function value is 
stored as a PotUB for the problem and the LR-ATC scheme is 
continued. On the other hand, in the case that the problem has 
an empty feasible solution space, the second heuristic model 
can be solved. This is similar to the first heuristic model, how-
ever, a smaller subset of decision variables is fixed in order to 

(5)� =
�(UB − CLB)

√
�2

(6)�i = max{0, �i−1 + ��}

increase the feasible region to the problem. The advantage of 
this method is that as the LR outer loop approaches a feasible 
solution while refining the Langrangian penalty parameter, the 
heuristic solution also improves with the improving values of 
the decision variables from the RMP. While any number of 
heuristic models can be introduced until a feasible solution is 
obtained, in order to limit the number of inner loop iterations, 
the heuristic models are limited to two models.

4  Numerical case studies

4.1  Geometric programming problem

In this section, a numerical example is used to illustrate the 
benefit of the proposed nested solution scheme in handling 
complex dependencies between subsystems. The proposed 
LR-AL ATC solution method is applied to the numerical 
example and is shown to perform well for even the simple 
numerical example presented in this section. The results show 
that the advantage of the solution scheme over the existing 
methods in the literature.

4.1.1  Problem description

The numerical example used in this study is based on the non-
convex geometric programming problem formulation presented 
in Kim et al. (2006). However, one of the contributions of the 
proposed method is its applicability to sub-problems that are 
highly coupled. Therefore, the a constraint in the model has 
been modified to further increase the coupling in the numerical 
model. Specifically, Eqns. 7 represent the updated formulation 
for the non-convex, geometric programming model presented in 
Kim et al. (2006), where Eqn. 7b has been updated from Eqn. 8. 

(7a)min f = x2
1
+ x2

2

(7b)s.t.g1 ∶
x−2
3

+ x2
4

x2
5

≤ 1

(7c)g2 ∶
x2
9
+ x−2

6

x2
7

≤ 1

(7d)g3 ∶
x2
8
+ x2

9

x2
11

≤ 1

(7e)g4 ∶
x−2
8

+ x2
10

x2
11

≤ 1
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This model is used since it provides a simple numerical 
example for a non-linear problem with non-trivial coupling 
between subsystems. Such problems are underrepresented 
in the literature and need tools that can handle the intricate 
relationships between the sub-models. For this reason, the 
numerical example presented in Eqns. 7 is used to illustrate 
the proposed method’s ability to handle problems that are 
more representative of real-world, complex systems.

4.1.2  Heuristic models

In order to generate quick, feasible solutions to the original 
problem, heuristic models are used. However, in order to 
bridge the gap between the lower-bound solution (the solu-
tion to the Relaxed Master Problem), there needs to be a 
link between the heuristic and the solution to the RMP. For 
this reason, three heuristic models are introduced that utilize 
partial results from the solution of the RMP. The reason that 
multiple heuristics are generated, is due to the fact that in 
some cases, utilizing the results of the RMP in the original 
problem could result in an infeasible solution depending on 
if the introduced constraints are within the feasible region 
for the original problem, which tends to be smaller than that 
of the RMP.

The first heuristic is divided into three models that can be 
solved in parallel. This parallel solution scheme is achieved 
by fixing the values of the linking variables between the 
different sub-models. The first heuristic model is shown in 
Eqns. 9, Eqns. 10 and Eqns. 11. The three models make up 
the heuristic where the objective value can be calculated 

(7f)g5 ∶
x2
11
+ x−2

12

x2
13

≤ 1

(7g)g6 ∶
x2
11
+ x2

12

x2
14

≤ 1

(7h)R1 = x1 = r1(x3, x4, x5) = (x2
3
+ x−2

4
+ x2

5
)1∕2

(7i)R2 = x2 = r2(x5, x6, x7) = (x2
5
+ x2

6
+ x2

7
)1∕2

(7j)R3 = x3 = r3(x8, x9, x10, x11) = (x2
8
+ x−2

9
+ x−2

10
+ x2

11
)1∕2

(7k)
R4 = x6 = r4(x11, x12, x13, x14) = (x2

11
+ x2

12
+ x2

13
+ x2

14
)1∕2

xi ≥ 0, ∀i ∈ 1 − 14

(8)g2 ∶
x2
5
+ x−2

6

x2
7

≤ 1

from just solving Eqns. 9, and the values of the remaining 
decision variables can be determined by solving all three 
sub-models. The linking variable values selected are x3 , x6 , 
and x11 . Given that the values of these variables are fixed to 
be the result of the corresponding variables in the RMP, then 
the three sub-models can be solved individually on different 
machines or in parallel. This greatly reduces the computa-
tional cost of retrieving a feasible solution to the original 
problem. The objective functions of 10 and 11 are set to 
1 in order to get the first feasible solution available for the 
variable values that are not in the objective of the original 
problem. 

(9a)min f = x2
1
+ x2

2

(9b)s.t.g1 ∶
x−2
3

+ x2
4

x2
5

≤ 1

(9c)R1 = x1 = r1(x3, x4, x5) = (x2
3
+ x−2

4
+ x2

5
)1∕2

(9d)
R2 = x2 = r2(x5, x6, x7) = (x2

5
+ x2

6
+ x2

7
)1∕2

xi ≥ 0, ∀i ∈ 1 − 7

(10a)min f = 1

(10b)s.t.g3 ∶
x2
8
+ x2

9

x2
11

≤ 1

(10c)g4 ∶
x−2
8

+ x2
10

x2
11

≤ 1

(10d)

R3 = x3 = r3(x8, x9, x10, x11) = (x2
8
+ x−2

9
+ x−2

10
+ x2

11
)1∕2

xi ≥ 0, ∀i ∈ 3, 8 − 11

(11a)min f = 1

(11b)s.t.g5 ∶
x2
11
+ x−2

12

x2
13

≤ 1

(11c)g6 ∶
x2
11
+ x2

12

x2
14

≤ 1

(11d)

R4 = x6 = r4(x11, x12, x13, x14) = (x2
11
+ x2

12
+ x2

13
+ x2

14
)1∕2

xi ≥ 0, ∀i ∈ 6, 11 − 14
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In the case that fixing the values of x3 , x6 , and x11 results 
in an empty feasible space, then the second heuristic model 
can be solved. The second heuristic model consists of two 
sub-models and is represented in Eqns. 12 and 13. Note that 
the main difference between the Heuristic 1 and 2 is that 
the second and third sub-models in Heuristic 1 have been 
combined in one model. This means that the number of vari-
ables to be fixed can be reduced to only fixing x3 and x6 . 
This increases the search space within the feasible region 
and improves the probability of finding a feasible solution. 

Given that both the first and the second heuristic models 
have an empty feasible region, the third heuristic model is 
solved. The disadvantage of the third model is that it is costly, 
although still less computationally expensive than the original 
problem. The third heuristic model is described in Eqns. 14. 
Here, only one model is solved, since the equations are linked 

(12a)min f = x2
1
+ x2

2

(12b)s.t.g1 ∶
x−2
3

+ x2
4

x2
5

≤ 1

(12c)R1 = x1 = r1(x3, x4, x5) = (x2
3
+ x−2

4
+ x2

5
)1∕2

(12d)
R2 = x2 = r2(x5, x6, x7) = (x2

5
+ x2

6
+ x2

7
)1∕2

xi ≥ 0, ∀i ∈ 1 − 7

(13a)min f = 1

(13b)s.t.g3 ∶
x2
8
+ x2

9

x2
11

≤ 1

(13c)g4 ∶
x−2
8

+ x2
10

x2
11

≤ 1

(13d)g5 ∶
x2
11
+ x−2

12

x2
13

≤ 1

(13e)g6 ∶
x2
11
+ x2

12

x2
14

≤ 1

(13f)R3 = x3 = r3(x8, x9, x10, x11) = (x2
8
+ x−2

9
+ x−2

10
+ x2

11
)1∕2

(13g)
R4 = x6 = r4(x11, x12, x13, x14) = (x2

11
+ x2

12
+ x2

13
+ x2

14
)1∕2

xi ≥ 0, ∀i ∈ 3, 6, 8 − 14

as only x3 ’s value is known. Therefore, none of the constraints 
can be decoupled. 

Note that the three heuristic models are arranged based on 
the computational cost needed to solve them, starting with the 
heuristic that has the smallest feasible region, to the heuristic 
model with the largest feasible region (if any exists). This is 
done intentionally to reduce the computational cost required 
to retrieve an updated upper bound for the minimization prob-
lem. In the case that all three heuristic models have an empty 
feasible region, the previous upper bound (for a minimization 
problem) is used.

4.1.3  Results

The numerical model was solved using ATC, AL ATC, 
AL-AD ATC, LR and LR-AL ATC. A comparison of the 
results is provided in Table 1, where the objective value of 
the problem, the computational time, as well as the number 
of iterations, are compared. The purpose of this case study is 

(14a)min f = x2
1
+ x2

2

(14b)s.t.g1 ∶
x−2
3

+ x2
4

x2
5

≤ 1

(14c)g3 ∶
x2
8
+ x2

9

x2
11

≤ 1

(14d)g4 ∶
x−2
8

+ x2
10

x2
11

≤ 1

(14e)g5 ∶
x2
11
+ x−2

12

x2
13

≤ 1

(14f)g6 ∶
x2
11
+ x2

12

x2
14

≤ 1

(14g)R1 = x1 = r1(x3, x4, x5) = (x2
3
+ x−2

4
+ x2

5
)1∕2

(14h)R2 = x2 = r2(x5, x6, x7) = (x2
5
+ x2

6
+ x2

7
)1∕2

(14i)
R3 = x3 = r3(x8, x9, x10, x11) = (x2

8
+ x−2

9
+ x−2

10
+ x2

11
)1∕2

(14j)

R4 = x6 = r4(x11, x12, x13, x14) = (x2
11
+ x2

12
+ x2

13
+ x2

14
)1∕2

xi ≥ 0, ∀i ∈ 1 − 14
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to validate the proposed method using a common numerical 
case study from the MDO literature. The number of itera-
tions is compared for the inner loop as well as the outer loop 
and the total number of iterations is detailed in the table. The 
inner and outer loop definition changes based on the solution 
algorithm used. In ATC, the iterative scheme aims to coordi-
nate the shared values across the decomposed subproblems, 
therefore, it is a single-loop method where the targets for 
variable discrepancies are updated. In the AL ATC method, 
the inner loop coordinates between the different subprob-
lems as in the ATC method. The main difference lies in the 
formulation of the penalty term. so the total number of itera-
tions is equivalent to the number of iterations in the inner 
loop. For the AL-AD ATC method, since the subproblems 
are solved once in each iteration, the number of iterations 
in the outer loop are determined as the number of times 
all three subproblems are solved. As for the LR method, 
it is a single-loop solution scheme (assuming that the UB 
heuristic is not an iterative method) where the value of the 
penalty parameter is updated in each iteration and the new 
upper bound and lower bound values are calculated until the 
termination criteria is reached. The LR-AL ATC method on 
the other hand is a double-loop method where the outer loop 
is the LR loop to update the value of the penalty parameter, 
and the inner loop is an AL ATC loop that aims to reduce 
discrepancies between the decomposed subproblems. The 
computational cost is calculated as the total solution time in 
GAMS modeling software using the Time Elapsed feature.

To compare the results of the proposed algorithm against 
existing methods, the objective function values are com-
pared. In this case, the proposed LR-ALAD ATC solution 
method is able to achieve the same result as the AL ATC 
method, however, only the LR algorithm is able to achieve 
an objective value equivalent to the AAO solution. The ATC 
method attains the worst objective value since it indicates an 
infeasible solution (has an objective value that is lower than 
the optimal value of a minimization problem). The reason 
for the infeasible solution is that the model was terminated at 
300 iterations due to limited computational power. Besides 
the ATC method, all other methods return close to feasible 

solutions, with AL-ATC and ALAD ATC having less opti-
mal results. This is due to the difficulty when coordinat-
ing between the subproblems when strong coupling exists 
between them.

Although the number of iterations is compared in Table 1, 
the computational cost per iteration changes drastically from 
one algorithm to the next. Therefore, the total computational 
time is compared alongside the number of inner and outer 
loop iterations. The computational time recorded is obtained 
from the Time Elapsed feature in GAMS. In this case, the 
computational time is compared for the overall solution 
scheme until convergence or termination of the algorithm. 
The best solution is achieved from the LR model. Not only 
is it able to obtain an optimal solution, but it was also able to 
obtain it within a single iteration and it took a total of around 
1 s. This is much faster than even the AAO solution, even 
for a simple example. Although ATC was able to achieve the 
best results when compared with the rest of the methods, it is 
expected for such a simple example where the entire problem 
can be solved to optimality within 4 s. ATC methods show 
reduced efficiency when compared with relaxation meth-
ods and an AAO approach. This is also expected for such 
a simple problem when introducing an iterative approach, 
since the benefit of decomposition does not outweigh the 
cost introduced by iterating through the method. Moreover, 
this is justified by the fact that a complicating constraint, 
Eqn 7c, exists, where it increases the coupling between the 
subproblems and increases the number of iterations needed 
to reach a feasible solution to the original problem. A clear 
improvement is seen when integrating the relaxation method 
with a decomposition method such as ATC. Although in 
some cases the number of iterations could be higher for the 
integrated approach, such as comparing the total iterations 
for the AL ATC method and that of the LR-ATC method, 
the computational cost for the integrated approach is greatly 
reduced from over 14,000 s to approximately 241 s. This 
is attributed to the fact that a single iteration of the inte-
grated approach is expected to be faster since three simple 
problems are solved as opposed to a single difficult prob-
lem. This improvement is even evident on a simple problem 

Table 1  Comparison of Results 
For Different Solution Schemes

Model Objective Iteration Count Computational

Value Inner Loop Outer Loop Total Time (s)

AAO 17.454 – – – 3.063
ATC 8.232 – 300* 300 327.781
AL ATC 18.611 300* 1 300 14687.75
AL-AD ATC 18.009 – 300* 300 416.455
LR 17.455 – 1 1 1.071
LR-ATC 17.455 300* 2 601 240.755
LR-AL ATC 17.5 9 2 11 10.689
LR-ALAD ATC 17.608 – 18 18 54.918
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such as the numerical example studied here. The benefits 
are expected to be greater for more complicated problem 
structures.

In Table 2, the optimal solution is compared for the differ-
ent approaches. Most of the methods provide solutions close 
to the optimal solution of the original problem, with the LR 
and LR-ATC methods providing optimal solutions. However, 
the ATC, AL-ATC and ALAD ATC methods have a reduced 
efficiency when compared with the other methods. This is 
mostly due to the added coupling between the decomposed 
subproblems that make coordinating between the problems 
difficult and add more constraints to achieving a feasible solu-
tion to the AAO formulation. If we are to take closer look at 
the decision variable results, we could see that for the methods 
with objective function values further from the optimal solu-
tion, the variables that have the biggest discrepancies from 
their optimal values are mostly the shared variables along the 
decomposed problems, x3, x6, x9, x11 . This pattern is evident in 
the results of the ATC method, where x11 has the biggest devia-
tion from the optimal value and it is shared among the three 
decomposed problems and the model had difficulty coordinat-
ing between them. This reinforces the benefit of the proposed 
method, since it can relax complicating, coupling constraints 
to ensure that the embedded decomposition scheme can obtain 
close to optimal solutions for the relaxed problem. Then, the 
relaxed constraints are optimized in the outer loop. Therefore, 
we can see improved solutions for the relaxation schemes that 
are integrated with modified versions of the ATC method.

4.2  Scalability study

The following subsection presents a numerical example to 
study how well the proposed solution scheme scales with 
the uncertainty. The problem formulation is presented in 
Sect. 4.2.1 and the results of the comparison study are pre-
sented in Sect. 4.2.2.

4.2.1  Problem formulation

The proposed numerical problem is presented in Eqns. 15a to 
15i. This numerical formulation has two characteristic problem 
groupings. The proposed decomposition scheme is presented 
in Fig. 8 and the two subproblems are highlighted. The figure 
shows the benefit of component aggregation through relaxa-
tion of complicating constraints and how the relaxation can 
provide a benefit over traditional MDO techniques. 

(15a)min f = x2
1
+ x1x2 + x4x5 + x2

3

(15b)s.t. −
x2
1

5
+

4x1x2

3
−

6x2
2
x1

5
− 6 ≤ 0

(15c)−
4x4x5

3
−

2x2
3

3
−

3x3x4

8
− 5 ≤ 0

(15d)
x1

3
+

x2

2
−

4x3

3
≤ 0

Table 2  Comparison of results 
for the modified numerical 
example

* The maximum number of iterations was set at 300

AAO ATC AL-ATC ALAD ATC LR LR-ATC LR-AL ATC LR-ALAD ATC 

UB – – – – 17.455 17.455 17.5 17.608
LB – – – – 17.455 17.455 11.602 17.455
z 17.4548 8.232 18.611 18.009 17.455 17.455 17.5 17.608
X1 2.8529 2.183 3.472 3.36 2.853 2.852 2.802 2.852
X2 3.0522 1.863 2.561 2.593 3.052 3.052 3.106 3.053
X3 2.418 2.336 3.151 3.151 2.418 2.417 2.356 2.416
X4 0.8409 0.841 0.841 0.841 0.841 0.841 0.841 0.841
X5 0.9371 1.079 0.899 0.904 0.937 0.937 0.942 0.937
X6 2.7731 1.793 2.299 2.326 2.773 2.774 2.815 2.774
X7 0.8647 0.94 0.681 0.704 0.865 0.865 0.915 0.866
X8 1.0014 1.014 0.995 0.994 1.001 1.001 0.993 1.001
X9 0.7859 0.848 0.52 0.523 0.786 0.787 0.843 0.787
X10 0.7895 0.88 0.501 0.532 0.790 0.790 0.827 0.79
X11 1.273 0.358 1.123 1.318 1.273 1.273 1.303 1.274
X12 0.8409 0.481 0.842 0.841 0.841 0.841 0.841 0.841
X13 1.742 1.242 1.495 1.526 1.742 1.742 1.764 1.743
X14 1.5257 0.914 1.237 1.246 1.526 1.526 1.551 1.52
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4.2.2  Results

In order to test the impact of increasing the size of the prob-
lem on the efficiency of the proposed algorithm. The math-
ematical example is used to vary the number of parameters 
in the model as well as decision variables and test how well 
it scales computationally. It is solved with the proposed 
solution scheme and compared with an ATC decomposition 
scheme, an LR solution scheme, and the AAO approach. The 
same set of randomly generated scenarios are used for all the 
problems in order to ensure a fair comparison. Additionally 
the same constraints are relaxed for both LR and the LR-
ATC method. In terms of the decomposition, the scheme 
presented in Sect. 4.2 is used for both the ATC method and 
the proposed LR-ATC method.

(15e)−
x5

2
−

5x3x5

3
− x2

4
− 3 ≤ 0

(15f)x2
5
+ x4 − x3x4 − 2 ≤ 0

(15g)x3 − 10x4 ≥ 2rs
t

(15h)x4 = x5 + 0.6

(15i)x1 = x4 + x5 − x2
3
+ 3

(15j)x1 ≥ 10qs
t

Figure 9 shows the results comparing the proposed solu-
tion method with the All-In-One (AIO) approach, using 
ATC for decomposition and LR for relaxation, separately. 
The results show that as the number of scenarios considered 
for the stochastic parameters increases, so does the computa-
tional benefit of the proposed approach. After 500 scenarios, 
the proposed hybrid approach outperforms the other solution 
methods. The benefit of the proposed scheme becomes more 
evident against the other methods. This is due to the fact 
that the cost of coordinating the subproblems is no longer 
dominating when compared with the benefit of decomposing 
the problem when the size of the problem increases. This 
is for the case where no parallelization is used to solve the 
subproblems. In the case that parallelization is to be used, 
the benefit of the proposed scheme increases drastically.

5  Golinski speed reducer problem

5.1  Problem description

The Golinski Speed Reducer problem is a popular problem 
from the NASA Langley center for MDO problems Ray 
(2003) for which the schematic is shown in Fig. 10. The 
model aims to minimize the volume of the speed reducer, 
while accounting for physical system constraints Tosserams 
et al. (2007). The main design variables considered include 
designing the shaft and gear diameters.

5.2  Problem formulation

The formulation of the problem is extracted from Tosser-
ams et al. (2007), for the multidisciplinary problem. In order 
to solve the MDO problem using a hierarchical solution 
scheme such as ATC, the subproblems have to be linked 
hierarchically. The proposed hierarchical decomposition 
scheme is presented in Fig 11. Here the model consists of 
three levels and each level has only one single subproblem. 
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Fig. 9  Scalability of the proposed solution method with the size of 
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Fig. 8  Decomposition for the numerical example with the numbered 
blocks corresponding to the constraints in Eqns. 15a to 15j
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The decomposition into three subproblems is based on the 
scheme presented in Tosserams et al. (2007) but modified in 
order to be solved hierarchically.

5.3  Results

The Golinski Speed Reducer problem was solved using an 
AAO approach and compared with an ATC solution scheme, 
an AL-ATC solution scheme and an ALAD solution scheme. 
In all cases, the hierarchical structure depicted in Fig 11 is 
utilized. The results are presented in Tables 3 and 4, where 
the objective value, decision variable values and number of 
iterations are compared for each of the methods studied. The 
different models were coded using GAMS modeling soft-
ware and BARON solver was used for Non-linear Program-
ming models. In order to limit the computational time to a 
reasonable time, the maximum number of iterations was set 
to be 300 iterations and the best feasible solution identified 
up to that iteration was used.

Table 3 shows a comparison of ATC methods with 
the AAO formulation for the Golinski Speed Reducer 
problem. As expected, the ALAD ATC method is able 
to reach a solution within only 85 iterations, which is 
greatly reduced as compared with the number of itera-
tions of the ATC and AL-ATC methods. The ATC method 
needed more than 300 iterations to converge, however, the 
results closely matched the AAO results for the Golinski 
Speed Reducer problem. The reduced computation of the 
AL-ATC and ALAD ATC methods have a much reduced 
computational time and are still able to provide results that 
are close to optimal. Not only is the difference in objective 
values over 3.2%, the decision variable results also varied 
drastically for X6 , where the percentage difference was 

Fig. 10  Schematic of the Golinski Speed Reducer from Tosserams 
et al. (2007)

Fig. 11  Hierarchical decomposition scheme for the Golinski Speed 
reducer problem

Table 3  Comparison of Results for the Golinski Speed Reducer Prob-
lem using ATC 

* The maximum number of iterations was set at 300

AAO ATC AL-ATC ALAD ATC 

Objective Value 2894.12 2987.755 2988.361 2988.361
X1 3.5 3.6 3.6 3.6
X2 0.7 0.8 0.7 0.7
X3 17 17.111 17 17
X4 7.3 7.3 7.3 7.3
X5 7.715 7.715 7.715 7.715
X6 2.9 3.349 3.350 3.350
X7 5.287 5.286 5.286 5.287
Iteration Count – 300* 19 18
Computation Time (s) 4.000 393.563 16.109 17.312
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over 20% for all the ATC methods. Although ATC did not 
converge within 300 iterations, its solution more closely 
matched the AAO solution to the problem. Although it 
should be noted that all the results were within 4%.

As for the proposed solution scheme, it was compared 
with the AAO solution for the Golinski Speed Reducer 
problem as well as LR and LR-ATC in Table 4. For the 
LR methods, the same constraint set was relaxed to allow 
for fair comparison of the models. The relaxed constraints 
correspond to constraints g1 and g8 in the formulation of 
the Golinski Speed Reducer problem in Tosserams et al. 
(2007). These constraints are shown in Eqns. 16 and 17, 
since the LR algorithm depicted in Fig 5 provides a lower 
and upper bound, when the algorithm terminates, if the 
lower bound is feasible to the original problem (for a mini-
mization problem), then it is taken as the objective value. 
However, if the lower bound is not feasible, then the upper 
bound (which should always be feasible to the original 
formulation) is taken as the objective value. The results 
of the comparison of LR methods show that LR alone 
needs less iterations than ATC methods, especially since 
only two constraints are relaxed. Combining LR with ATC, 
we see an improvement in the iteration count for ATC, 
however, in this case, the objective value was much lower 
than the objective value for the AAO solution, with some 
discrepancies in the optimal values of the decision vari-
ables. In this case, the use of ATC within the LR scheme 
did not perform better than using LR alone in terms of the 
iteration count and the objective value alone. In fact, the 
difference in the objective value was over 22%.

The results were also compared for the computational 
time for this simple example. It should be noted however, 
that for a small-scale example, we expect the presented 

iterative methods to take less time than the AAO solution. 
However, for a simple solution such as this, we expect that 
the AAO will have the least computation time. We com-
pare the computational time of the algorithms for this small 
example and expect to see an exaggerated trend for larger 
problems. It should also be noted that although the LR-ATC 
method actually needed more iterations to terminate than 
the LR approach, it took less time than LR since a single 
iteration took less time when solving the decomposed ATC 
problem. In fact, the combined LR-ATC method improved 
the computational time by approximately 5%, at the cost of 
a 23% deterioration in the quality of the objective function 
value. The reduced quality of the objective function value is 
overcome by utilizing the proposed LR-ALAD ATC solution 
approach. In this case, the objective function is within 0.2% 
of the optimal solution obtained from the AAO approach. 
Moreover, the computational time is further improved to 
over 91% of the LR method alone.

In terms of the proposed LR-ALAD ATC method, the 
number of iterations is greatly reduced to only 6 iterations as 
compared with 96 iterations by using LR alone. Moreover, 
although the objective function value is not comparable to the 
LR method alone, since the ALAD ATC method embedded 
in LR allows for paralleling the subproblems and decompos-
ing them into smaller problems, one run of LR should be 
faster for the proposed scheme, as evident by the computa-
tional time. In fact, in the worst case, a single iteration of the 
LR-ALAD ATC method should be drastically shorter than a 
single iteration of the LR method, or the problem decomposi-
tion is not optimal. Overall, the proposed method can be seen 
to greatly reduce the number of iterations for the LR method 
while maintaining a close accuracy of the results.

In this case, when comparing the LR-ALAD ATC method 
with the ALAD ATC method, not only is the objective func-
tion value improved slightly (approximately 3%), the num-
ber of iterations is also diminished by over 66.6% and the 
computational time decreased by 41.3%. When comparing 
with AL-ATC, the results follow a similar trend, with an 
equivalent improvement in the objective function value for 
the proposed solution scheme and a time improvement of 
approximately 37%. These results are expected to be even 
more improved for problems with complex structures where 
decomposing the problem should result in drastic improve-
ments on the computational time.

(16)g1 ∶
1

110x3
6

√(
745x4

x2x3

)2

+ 1.69 ∗ 107 − 1

(17)g8 ∶
1.93x3

5

x2x3x
4

7

− 1

Table 4  Comparison of Results for the Golinski Speed Reducer Prob-
lem with LR approaches

AAO LR LR-ATC LR-ALAD ATC 

UB – 2994.267 3538.889 2897.943
LB – 2894.187 2888.522 2897.943
Objective Value 2894.187 2894.187 3538.889 2897.943
X1 3.5 3.5 3.6 3.255
X2 0.7 0.7 0.8 0.700
X3 17 17 17.034 17
X4 7.3 7.3 7.3 7.3
X5 7.715 7.715 7.715 7.715
X6 2.9 2.9 3.349 3.350
X7 5.287 5.287 5.286 5.287
Iteration Count – 96 192 6
Computational 

Time (s)
4.000 113.375 108.282 10.156
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6  Conclusions

A novel hybrid solution scheme the decomposes complex 
constraints across subproblems in MDO problems is pre-
sented for coupled non-decomposable systems. The pro-
posed method integrates the benefits of utilizing an outer 
relaxation solution scheme such as Lagrangian Relaxation 
while leveraging MDO methods such as Analytical Target 
Cascading and its variations to decompose the problem. A 
generalized framework is presented for such problems and 
the proposed methodology has been applied to a numerical 
problem as well as the Golinski Speed Reducer problem 
set provided by NASA Langley. The soltion scheme was 
compared with several variations and hybrid algorithms 
based on LR and ATC and the proposed scheme is shown 
to drastically reduce the computational cost of the solution 
scheme while maintaining close to optimal solutions. An 
advantage of utilizing LR-based schemes is that an opti-
mality gap based on the relaxed formulation can be used to 
provide an estimate of how far the feasible solution is from 
the best possible estimate. Moreover, a major advantage of 
ATC is that the complex system can be decomposed, and 
based on the application and target problem, in some cases 
that could allow for parallelisation when solving the sub-
problems. ALAD ATC also allows odd levels and even levels 
to be parallelised independently. For large applications the 
benefit is expected to be further heightened.

The proposed methodology has some limitations when 
implementing it for real-case studies. One limitation is that 
it is not always straightforward to identify the decompos-
ability of mathematical models with strong coupling. Future 
work includes identifying systematic methods to identify 
different decomposition hierarchies for problems. Another 
limitation of the proposed work is the selection of the MDO 
method used in the proposed integrated scheme. As seen 
in the results, some integration schemes could be less opti-
mal than others. There is a need to identify the best MDO 
solution scheme for different problems to ensure that the 
integrated solution approach is optimal.

For future work, the application of the proposed meth-
odology to a time-staged application should be studied to 
quantify the benefit of the proposed methodology to time 
dependant problems. The decomposition of the problem 
can be made based on the different time-dependant stages, 
where the connection between the different stages can be 
relaxed in the outer loop of the problem. This is contingent 
on an explicit relationship between stages, in the case of 
non-explicit relationships, surrogate modeling could be 
utilized to extract that relationship explicitly. Moreover, 
the proposed methodology should be applied to large-scale 
applications where traditional solution schemes are unable 
to handle the size and complexity of the problem structure. 

Furthermore, it would be interesting to study and introduce 
a metric to measure the benefit of applying the proposed 
methodology to different problem structures. Although 
general guidelines can be set to determine how suitable 
the LR-ALAD ATC scheme is, a quantitative metric could 
be useful to estimate the benefit of using the method with 
only preliminary results.
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