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Abstract
This article describes a new adaptive Kriging method combined with adaptive importance sampling approximating the 
optimal auxiliary by iteratively building a Gaussian mixture distribution. The aim is to iteratively reduce both the modeling 
and sampling errors simultaneously, thus avoiding limitations in cases of very rare failure events. At each iteration, a near 
optimal auxiliary Gaussian distribution is defined and new samples are drawn from it following the scheme of adaptive mul-
tiple importance sampling (MIS). The corresponding estimator is provided as well as its variance. A new learning function 
is developed as a generalization of the U learning function for MIS populations. A stopping criterion is proposed based on 
both the modeling error and the variance of the estimator. Results on benchmark problems show that the method exhibits 
very good performances on both efficiency and accuracy.

Keywords  Reliability method · Adaptive Kriging · Multiple importance sampling · Extremely rare failure events · Variance 
reduction

1  Introduction

Industrial projects are subjected to uncertainties regarding 
the state of systems and their forecasted evolution. In turn, 
they induce uncertainties on the performances of the system 
and eventually the occurrence of a failure event. The proba-
bilistic framework approaches such a problem by modeling 
input uncertainties as random variables defined by a joined 
probability distribution. Considering a black-box input–out-
put relationship representing the system (called perfor-
mance function), the output performance is simply a ran-
dom variable, defined as the image of the input distributions 
through the performance function. Given a failure criterion 
associated with the random output variable(s), the failure 

probability is comprehensively defined as the (unknown) 
probability of occurrence of this event. The problem associ-
ated with the evaluation of such a probability is the central 
problem of structural reliability.

Computation methods for structural reliability problems 
stem in two main branches, the simulation and approxima-
tion methods. Sampling methods aim at estimating the fail-
ure probability by estimating the performance of a dedicated 
population of samples. Among the most famous simulation 
methods are the Monte Carlo method as well as advanced 
sampling methods such as: Importance sampling (Melch-
ers 1990), Subset-simulations (Au and Beck 2001), Line 
sampling (Pradlwarter et al. 2005; Schuëller et al. 2004) or 
Directional sampling (Ditlevsen et al. 1986; Nie and Elling-
wood 2000).

The approximation methods reduce the computation cost 
by resolving a simplified problem calibrated to minimize 
the approximation error, well known examples are the first 
and second order reliability methods (FORM and SORM) 
(Hasofer and Lind 1974; Lee et al. 2012; Lemaire 2013). 
For the interested readers, a general overview and discus-
sion on FORM/SORM and their variants can be found 
in the work of Rackwitz (2001). The surrogate modeling 
approach is a type of approximation aiming at calibrating an 
emulator of the system which predicts its behavior without 
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simulating the physics, and thus with only a fraction of the 
computation burden. The calibration of a surrogate model 
requires the definition and evaluation of a calibration dataset 
often called design of experiment (DoE). The advantage of 
this approach is the ability to estimate the performance of 
any population with the expense of evaluating the physi-
cal model only for the samples of the DoE. This general 
framework regroups many types of surrogate strategies, 
among the most popular are: support vector machines (Cor-
tes and Vapnik 1995), polynomial chaos (Crestaux et al. 
2009; Sudret 2008), Neural networks (Hurtado and Alvarez 
2001) and Kriging (Matheron 1973; Bichon et al. 2008). In 
the context of structural reliability, Kriging-based methods 
have become increasingly popular in the past decade. This 
popularity can be related to one of their most appealing fea-
tures, i.e., the estimation of their own localized prediction 
uncertainty in the shape of the posterior standard deviation. 
It allowed the development of the so-called adaptive Kriging 
approach which combine a sampling reliability method with 
an adaptive scheme to iteratively improve the calibration of 
the surrogate.

In an adaptive Kriging scheme both the sampling method 
and the surrogate induce an error, respectively a sampling 
and modeling error. The main goal is then to iteratively build 
a near-optimal DoE minimizing the modeling error. Almost 
all well-known reliability method has been combined with 
adaptive Kriging and the Literature of existing methods 
is very extensive. Among the most successful are Markov 
Chain Monte Carlo (MCMC, see Zhao et al. 2015; Song 
et al. 2019; Wei et al. 2019) and importance sampling. This 
overview is limited to the most common sampling-based 
strategies with a focus on importance-sampling approaches. 
For a wider overview of existing methods the reader can 
refer to Sudret (2012), Teixeira et al. (2021) and Moustapha 
et al. (2021). Most method that fall in that family minimize 
the modeling and sampling errors independently, for exam-
ple by generating beforehand a suitable population, assumed 
to carry a negligible variance of the estimator. Well known 
examples of such methods are AK-MCS (Echard et al. 2011) 
or AK-IS (Echard et al. 2013).

Fewer methods propose to actively reduce both errors 
simultaneously. Dubourg et al. (2013) proposed to use the 
Kriging model to approximate the optimal auxiliary density, 
using MCMC sampling and K-means clustering in method 
called with Meta-IS. In a related method called metaAK-
IS2 Cadini et al. (2014), proposed to combine the work of 
Echard et al. (2013) and Dubourg et al. (2013). Several of 
these methods have in common to iteratively approximate 
the optimal auxiliary importance sampling distribution using 
the Kriging model. Balesdent et al. (2013) proposed to do 
so using the NAIS method (Morio 2011), Liu et al. (2020) 
used the adaptive-linked importance sampling method, 
Razaaly and Congedo (2018) using a Gaussian mixture 

calibrated using K-mean clustering, Yang et al. (2018) with 
kernel-density-estimation or Zhang and Taflanidis (2018) 
using intermediate condition distribution similar to subset 
simulation. Those methods usually then require advanced 
sampling strategies such as MCMC to draw sample from 
the auxiliary. Other related work combining adaptive Krig-
ing with advanced importance sampling include Xiong and 
Tan (2018), Yun et al. (2018), Zhao et al. ( 2015), and Zhang 
et al. (2020).

In this work a related method is proposed where the 
optimal importance sampling distribution is iteratively 
approximated with a Gaussian mixture distribution using a 
scheme that can be related to the adaptive importance sam-
pling (AMIS) and thus avoiding the limitations associated 
with advanced sampling techniques. The Gaussian mixture 
is refined by iteratively adding new normal distributions 
defined as a near-optimal from a variance-reduction point 
of view. The population is also built iteratively by simply 
drawing and adding samples from the last Gaussian distribu-
tion. For convenience, the proposed method will be referred 
to as AK-AMIS for adaptive-Kriging and adaptive multiple 
importance sampling (MIS).

The paper starts describing the method with the failure 
probability estimator in Sect. 2. A dedicated learning func-
tion is developed followed by the description of the itera-
tive auxiliary distribution, defined as a near-optimal from 
a variance reduction perspective. Two stopping parameters 
are proposed based respectively on the expected error and 
the expected variance of the estimator and are combined in 
a single stopping criterion. The method is then validated in 
Sect. 3 through three academic benchmark problems and an 
industrial one highlighting its performances and limitations. 
The results are discussed, and the performances of AK-
AMIS are compared to well established and closely related 
adaptive reliability methods. The paper finally concludes in 
Sect. 4 with some lead to further improve the performances.

2 � The AK‑AMIS method

One limitation of most sampling-based adaptive Kriging 
approaches (such as AK-MCS or AK-IS) is that they rely on 
a given population of samples. The method then adaptively 
minimizes the surrogate modeling error associated with the 
estimator on that given population. Considering that surro-
gate approaches combined with sampling techniques induce 
two types of error, respectively the modeling and sampling 
error, the simple adaptive Kriging scheme focuses on mini-
mizing only the first. The second is considered given and 
comparatively negligible if the population is large enough. 
However, the validity of this hypothesis is usually impos-
sible to evaluate beforehand.
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One way to tackle this limitation is, instead of reasoning 
with a given population and distribution, to iteratively refine 
them according to the kriging surrogate. Several methods 
discussed in the previous section proposed schemes to do so, 
focusing on approximating the optimal distribution and then 
sampling with advanced sample generation techniques. The 
approaches described in this work is a new one falling into 
that category, where the optimal distribution is approximated 
with a Gaussian mixture and the population is generated 
simultaneously. The auxiliary distribution is built iteratively, 
starting from the standard Gaussian distribution at the first 
iteration and adding a new one every iteration. The method 
then relies on iteratively selecting both the best sample to 
enrich the DoE and the best Gaussian distribution to enrich 
the auxiliary mixture distribution.

The Gaussian mixture auxiliary requires to use a dedi-
cated estimator of the failure probability, see Sect. 2.1. The 
sequential DoE relies on the definition of a dedicated learn-
ing function and is discussed in Sect. 2.2. The enrichment 
of the population is based on the scheme of the AMIS as 
proposed by Cornuet et al. (2012), see Sect. 2.3. Finally, 
each part can be associated with a stopping criterion, two 
are proposed and briefly discussed in Sect. 2.4.

2.1 � Multi‑IS estimator

In the proposed approach, the auxiliary population is adap-
tively refined, meaning that the population consists of an 
aggregate of sub-populations each from a different auxiliary 
distribution. The failure probability could be estimated with 
each sub-population directly using the IS estimator. If the 
auxiliary distributions are strictly identical the overall esti-
mator would be the average of the individual IS estimators 
and if the distributions are strictly non-overlapping it would 
be the sum. However, in the general case, the MIS estimator 
requires a dedicated definition. Such an estimator has been 
proposed by Veach and Guibas (1995) and popularized by 
Owen and Zhou (2000). The estimator used in AK-AMIS 
and detailed in this section is a particular case the first and 
is referred to as the multi-sample model (with the balance 
heuristic) in the field of computer graphics (Víctor Elvira 
et al. 2019; Sbert et al. 2016). Notice that in the context of 
AMIS, the set of auxiliary distribution is built sequentially. 
Therefore, each time a set of new samples is generated, the 
weight all samples should be updated, not only the weight 
of the new samples. The procedure could thus be seen as a 
single importance sampling where the auxiliary population 
is drawn from a mixture made of the sum of the auxiliary 
distributions (Cornuet et al. 2012).

Consider a d-dimensional input vector  X with a joint 
probability distribution function f. The reliability prob-
lem can be formulated as the estimation of the probability 

Pf = P(g(�) ≤ 0) with g ∶ ℝ
d
→ ℝ the performance func-

tion of the system such that a negative value indicates the 
failure event. After k iteration(s), the population Sk is com-
posed of 

∑k

i=1
ni ≠ 0 samples, each set of ni samples are 

drawn from an auxiliary distribution hi ∶ ℝ
d
→ ℝ

∗+ . The 
failure probability can then be defined as follows:

with I the classification function such that I(X) = 1 if 
g(X) ≤ 0 , i.e., X is failing and I(X) = 0 otherwise. Each inte-
gral can be approximated by a sum using the Monte Carlo 
estimator to define the following MIS estimator:

with Xj,i the jth sample drawn for the ith distribution, Nk = ∑k

i=1
ni the total number of samples in the population and 

wk(X) =
1

Nk

∑k

i=1
nihi(X) the mixture of the auxiliary distribu-

tions. This latest expression can be simplified further into 
the classical IS estimator by noticing that the aggregated 
population is equivalent to a population of the same size 
directly drawn from the mixture wk (see, e.g., Cornuet et al. 
2012; Victor Elvira et al. 2015):

This formulation holds for any set of (non-zero) auxiliary 
distribution hi . In the context of the AK-AMIS method, we 
will adopt the simple scheme of the mean-shift importance 
sampling and only consider Gaussian distributions with unit 
standard deviation such that hk = �(Mk, 1) with � the prob-
ability distribution function of the standard normal distri-
bution. In addition, the set of auxiliary distributions starts 
with the actual joint distribution of the input parameters, 
i.e., h1 = f .

The variance of this estimator is defined as follows:

(1)

Pf = ∫
ℝd

I(X)f (X)dX

= ∫
ℝd

I(X)f (X)

∑k

i=1
nihi(X)∑k

p=1
nphp(X)

dX

=

k�
i=1

ni∫
ℝd

I(X)
f (X)∑k

p=1
nphp(X)

hi(X)dX

(2)

P̂MIS = 1
Nk

k
∑

i=1

ni
∑

j=1
I
(

Xj,i
)

f
(

Xj,i
)

1
Nk

∑k
p=1nphp

(

Xj,i
)

= 1
Nk

k
∑

i=1

ni
∑

j=1
I
(

Xj,i
)
f
(

Xj,i
)

wk
(

Xj,i
)

(3)P̂MIS =
1

Nk

Nk∑
i=1

I
(
Xi

) f
(
Xi

)

wk

(
Xi

) .
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thus:

2.2 � Definition of the learning function

In the context of reliability analysis, the only modeling 
errors that have an influence on the failure probability esti-
mator are the misclassification of samples. The posterior 
probability of misclassification Φ

(
−|�̂(X)|
�̂(X)

)
 is a good indica-

tor of the individual contribution of each sample to the over-
all modeling error, which is base principle behind U learning 
function of the AK-MCS algorithm.

In the framework of the AK-AMIS method, the learning 
function should also reflect that each sample is associated 
with a weight that affects its contribution to the estimated 
failure probability. It is thus proposed to consider another 
related quantity of interest which is more suited for the MIS 
population previously described: the expected absolute fail-
ure probability error induced by the Kriging misclassifica-
tions: E

(|||ΔPf
|||
)
.

In this section, we are only interested in reducing the 
modeling error, let us then consider a given population 
Sk =

�
Xi, i =

�
1,… ,Nk

�
,Nk =

∑k

i=1
ni

�
 . For each sample, 

the Kriging-based classification function Î
(
Xi

)
 is considered 

as a random variable holding the uncertainty related to the 
Kriging prediction, i.e.:

The expected absolute prediction error can then be devel-
oped as follows:

with P̂MIS
krig

 the MIS estimator associated with the Kriging 
surrogate classification function. Notice that since the popu-
lation is given, the Kriging posterior is the only random 

(4)var
(
P̂MIS

)
=

1

N
var

(
I(X)

f (X)

wk(X)

)

(5)

var
(
P̂MIS

)
=

1

Nk

(
E

(
I2(X)

f 2(X)

w2

k
(X)

)
− E2

(
I(X)

f (X)

wk(X)

))

=
1

Nk

(
E

(
I2(X)

f 2(X)

w2

k
(X)

)
− P2

f

)
.

(6)∀i ∈
�
1,Nk

�⎧⎪⎨⎪⎩

P
�
Î
�
Xi

�
= 1

�
= Φ

�
−�̂(Xi)
�̂(Xi)

�
,

P
�
Î
�
Xi

�
= 0

�
= 1 − P

�
Î
�
Xi

�
= 1

�
.

(7)

E
(

|

|

|

ΔPf
|

|

|

)

= E
(

|

|

|

P̂MIS − P̂MIS
krig

|

|

|

)

= E

(

|

|

|

|

|

|

1
Nk

N
∑

i=1

f
(

Xi
)

wk
(

Xi
)

(

I
(

Xi
)

− Î
(

Xi
)

)

|

|

|

|

|

|

)

variable in Eq. (7). Unfortunately, this quantity does not 
allow us to capture the contribution of each individual sam-
ple to the overall error, which is the goal of the learning 
function. It is therefore proposed to consider instead the fol-
lowing upper bound of the absolute error:

with Lk(X) =
f (X)

wk(X)
Φ
(

−|�̂(X)|
�̂(X)

)
 the proposed learning func-

tion for the AK-AMIS algorithm.
This expression is however prone to overly prioritize 

areas of small posterior variance. This behavior is due to 
the observed tendency of Kriging models to underesti-
mate (respectively overestimate) the variance in regions 
of high (respectively low) variance in noise-free problems. 
In methods considering a given population this behavior 
doesn’t affect the performances significantly since the 
method eventually eliminates all affected samples. How-
ever, in the proposed approach, new samples are iteratively 
added which could lead the algorithm to focus only on 
areas already well calibrated (exploitation) and ignore 
areas poorly calibrated (exploration). The solution chosen 
to counteract this behavior is to introduce a hyperparameter 
p which is simply a power affected to the posterior standard 
deviation in the expression of the learning function:

From the authors experience, the value p = 3 yields sat-
isfactory results and is the value used in the applications 
presented in Sect. 3. As any hyperparameter unrelated to 
interpretable metrics, the choice of p is at least partly arbi-
trary and any hypothetical optimal value would be problem 
dependent. The choice proposed in this article is based on 
the limited empirical knowledge available to the authors, a 
short presentation of them and their interpretation is pro-
posed in Appendix 1.

The best candidate for enriching the DoE X∗ is then 
defined as the sample satisfying:

(8)

E
����ΔPf

���
� ≤ E

�
1

Nk

N�
i=1

f
�
Xi

�

wk

�
Xi

� ���I
�
Xi

�
− Î

�
Xi

����
�

=
1

Nk

N�
i=1

f
�
Xi

�

wk

�
Xi

�E
����I

�
Xi

�
− Î

�
Xi

����
�

=
1

Nk

N�
i=1

f
�
Xi

�

wk

�
Xi

�Φ
⎛
⎜⎜⎝

−
����̂
�
Xj,i

����
�̂
�
Xj,i

�
⎞
⎟⎟⎠

=
1

Nk

N�
i=1

Lk
�
Xi

�

(9)L
p

k
(X) =

f (X)

wk(X)
Φ

(
−||�̂(X)||
�̂p(X)

)
.

(10)X
∗

k
= argmax

X∈Sk

(
L
p

k
(X)

)
.
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2.3 � Adaptive multiple importance sampling 
strategy

As previously mentioned, this algorithm approaches the 
optimal IS auxiliary by iteratively building a Gaussian 
mixture, however the proposed framework is presented 
in a broader context and would apply for a mixture of 
any distribution. The goal is to incrementally reduce the 
variance of the MIS estimator as described in Eq. (5). The 
purpose of this section is thus to find a way to iteratively 
define a set of near-optimal auxiliary distributions from 
a variance reduction perspective without additional calls 
to the performance function. The proposed AK-AMIS 
method uses the general scheme described in Cornuet et al. 
(2012) which reflects in the way the estimator is updated 
as described in Sect. 2.1. However, the sequential defini-
tion of the auxiliary distribution presented in this section 
differs from the AMIS method (Cornuet et al. 2012) and 
instead of minimizing a statistical distance metrics, it is 
proposed to directly minimize the variance of the estimator 
associated with the Kriging surrogate.

Considering k previously computed iterations, the goal 
is to estimate the next near-optimal auxiliary distribution 
hk+1 . Based on the expression of the variance as given in 
Eq. (5), the optimal mixture wk+1 is reached when

thus

One solution for an optimal wk+1 is thus (see, e.g., 
Morio 2011):

By definition of the mixture distribution, we have:

thus, the optimal new auxiliary h∗
k+1

 can be defined as:

Or

(11)var
(
P̂MIS

)
=

1

Nk+1

(
E

(
I2(X)

f 2(X)

w2

k+1
(X)

)
− P2

f

)
= 0

(12)E

(
I2(X)

P2

f

f 2(X)

w2

k+1
(X)

)
= 1.

(13)wk+1(X) =
I(X)f (X)

Pf

.

(14)1

Nk+1

k+1∑
i=1

nihi(X) =
I(X)f (X)

Pf

(15)h∗
k+1

(X) =
Nk+1

nk+1

I(X)f (X)

Pf

−
∑k

i=1

ni

nk+1
hi(X).

Defining such an optimal distribution faces the same 
issue as the classical importance sampling method, which 
is that neither Pf  nor I are known. It is then proposed to 
chose h∗

k+1
 as a near-optimal solution in a similar way as 

the classical mean-shift importance sampling, i.e., a nor-
mal distribution with unit standard deviation and mean 
Mk+1 such that:

Considering that wk , Nk and nk+1 are strictly positive, we 
reach the following equivalent expression:

In order to avoid extra evaluations of the performance 
function, the classification function and failure probability 
are replaced by their surrogate counterpart:

However, doing so induces a major issue that needs to 
be addressed: because of the behavior of Î  , all samples 
outside of the failure domain have a zero-value and cannot 
be sorted. Therefore, at the initial stage, when the Kriging 
model is badly calibrated, Î  may be equivalent to the null 
function over ℝd thus preventing the algorithm from con-
verging. To overcome this limitation, the classification 
function is replaced by the function Φ

(
−�̂(X)

�̂(X)

)
 , which can 

be interpreted as the probability, according to the Kriging 
posterior, that the sample falls in the failure domain. In 
this case, it acts as a sigmoid-like function following the 
trend of the classification function while providing a sort-
able output value. A related issue occurs with P̂MIS

krig
 which 

may be equal to zero at initial stages, the same strategy of 
replacing Î  with Φ

(
−�̂(X)

�̂(X)

)
 is therefore used in the P̂MIS

krig
 

estimator. Mk+1 is finally defined by solving the optimiza-
tion problem defined in Eq. (20).

It is further proposed to choose the last sample added 
to the DoE ( X∗) as the starting point of the optimization 
algorithm. The reason being that, because of the 

(16)h∗
k+1

(X) =
Nk + nk+1

nk+1

I(X)f (X)

Pf

−
Nk

nk+1
wk(X).

(17)M
opt

k+1
= argmax

X∈ℝd

(
Nk + nk+1

nk+1

I(X)f (X)

Pf

−
Nk

nk+1
wk(X)

)
.

(18)M
opt

k+1
= argmax

X∈ℝd

(
I(X)f (X)

Pfwk(X)

)
.

(19)M
opt

k+1
= argmax

X∈ℝd

⎛⎜⎜⎝
Î(X)f (X)

P̂MIS
krig

wk(X)

⎞⎟⎟⎠
.

(20)M
opt

k+1
= argmax

X∈ℝd

⎛⎜⎜⎜⎝

Φ
�

−�̂(X)

�̂(X)

�
f (X)

1

wk(X)

∑N

i=1
Φ
�

−�̂(Xi)
�̂(Xi)

�
f
�
Xi

�
1

wk(Xi)

⎞⎟⎟⎟⎠
.
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computation error, the term Φ
(

−�̂(X)

�̂(X)

)
 may be equal to zero 

for all samples in areas that are both far from the limit-
state and well calibrated. The optimization process might 
then be unable to start if the initial point of the optimiza-
tion algorithm is chosen in such an area. By the definition 
of the learning function, X∗ is a good starting point candi-
date to avoid this issue. In practice the optimization prob-
lem is solved using a global optimization strategy and the 
sequential quadratic programming algorithm.

The behavior of Φ
(

−�̂(X)

�̂(X)

)
 is illustrated in Fig. 1, in the 

context of application of the algorithm to the 4-modes 
benchmark problem presented in Sect. 3.1, for the early and 
late stages of the algorithm. Choosing this function instead 
of an actual sigmoid function or any other analytical equiva-
lent  a l lows us  to  avoid def ining addi t ional 
hyper-parameters.

Finally, it is necessary to define the number of new sam-
ples drawn from the last auxiliary distribution: nk+1 . The 
development presented in this paper did not focus on defin-
ing an adaptive population size for the iterative enrichment. 
It is proposed to use the simple scheme of iteratively add-
ing a fixed number of new samples n1 = ⋯ = nk+1 = n . The 
choice of this parameter has an influence on the performance 
of the method, but it is found that this influence quickly 
decreases as the number of samples increases. Choosing 
a relatively low number of samples is more conservative 
since it ensures the variance-based stopping criterion (see 
Sect. 2.4) does not converge prematurely but can needlessly 
delay the termination of the algorithm. Increasing this 
number may in turn result in a significant computation time 
especially for the calibration of the Kriging model and the 
evaluation of the estimator. A few thousands of samples per 
dimension seems a good compromise for all the problems 
the method has been tested on.

2.4 � Two stopping criteria

The enrichment of the DoE and the population are aimed 
at respectively minimizing the modeling error and the vari-
ance of the estimator. It is thus proposed to define a stopping 
criterion for each process and stop the algorithm when both 
are satisfied simultaneously.

The first criterion is directly related to the learning 
function. The most intuitive way of introducing such a 
criterion would be to set a threshold Lstop for the learning 
function and consider that the algorithm converged if 
L(X∗) ≤ Lstop . However, the convergence of this parameter 
is usually quite noisy and may lead to premature termina-
tion. Therefore, the proposed criterion uses another related 
and more stable quantity: E

(|||ΔPf
|||
)
 , as defined in Eq. (8). 

The first stopping criterion can then be rephased as 
follows:

with Estop a stopping threshold that can then be adjusted to a 
desired level of precision. This criterion is however affected 
by the inaccuracies mentioned in Sect. 2.2 associated with 
regions of high and low posterior variance. It is therefore 
proposed to use the conservative approach of evaluating both 
the expected error related to the unaltered Kriging surrogate 
and considering the power hyperparameters. The error-based 
criterion is then only satisfied when both errors are below 
the threshold:

The second termination criterion is based on the vari-
ance of the estimator as given by Eq. (5). However, since 

(21)
k∑

i=1

ni∑
j=1

L1
k

(
Xj,i

) ≤ Estop

(22)E
(|||ΔPf

|||
)
= max

(
k∑

i=1

ni∑
j=1

L1
k

(
Xj,i

)
,

k∑
i=1

ni∑
j=1

L
p

k

(
Xj,i

)) ≤ Estop.

Fig. 1   Illustration of the 
behavior of Φ

(
−�̂(X)

�̂(X)

)
 compared 

to the classification function on 
the 4-modes benchmark 
problem at a early and b late 
stage of the AK-AMIS 
algorithm
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the classification function I is unknown is it replaced by 
the Kriging surrogate Î :

The related stopping criterion is then simply satisfied 
when the corresponding coefficient of variation crosses a 
threshold value CoVstop corresponding to a desired level 
of confidence, i.e.

Using both criteria simultaneously provides a much 
more robust termination of the algorithm than using them 

(23)v̂ar
(
P̂MIS

)
=

1

Nk

(
E

(
Î2(X)

f 2(X)

w2

k
(X)

)
−
(
P̂MIS
krig

)2

)
.

(24)

√
v̂ar(P̂MIS

k
)

P̂MIS
krig

≤ CoVstop.

individually. The reason is that unexpected termination of 
the error-based criterion can occur when very few samples 
exist in badly calibrated regions. While premature termi-
nation of the variance-based criterion requires the Kriging 
surrogate to significantly underestimate the actual variance 
associated with the given population. Since the variance is 
estimated empirically this event requires that a significant 
part of the population falls in badly calibrated areas. These 
events are clearly mutually exclusive, therefore, if one is 
fooled the other one has to “work as intended”. Since these 
events are expected to occur only at early stages when 
the Kriging model is very badly calibrated, we can expect 
the later to acknowledge either that the modeling error is 
too high or that the population is too scarce to terminate. 
With this stopping strategy the complete flowchart of the 
algorithm can be drawn as illustrated in Fig. 2.

Fig. 2   Flowchart of the AK-AMIS procedure
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As noticed by Wang et al. (2019) estimators directly 
based on the Kriging model as the one proposed above 
usually do not directly correlate with the quantity they are 
intended to measure. This is the reason why they are asso-
ciated with very conservative thresholds. Even though this 
has not been the scope of this work, more sophisticated 
stopping criteria such as the ESC (Wang and Shafieezadeh 
2019; Yi et al. 2020) may improve significantly the robust-
ness of the proposed method.

3 � Applications

For the validation of the proposed approach the results 
will be compared with related methods from the literature 
namely AK-MCS (Echard et al. 2011) or AK-IS (Echard 
et al. 2013) when applicable, meta-AK-IS2 (Cadini et al. 
2014) and MetaAL-OIS (Razaaly and Congedo 2018). The 
first three are chosen because their efficiency have been 
thoroughly proven, meta-AK-IS2 being one of the most 
popular method combining Kriging surrogate with adap-
tive importance sampling. The last is selected because it 
is more recent, exhibits challenging performances on the 
proposed examples and it is closely related to the proposed 
approach. In addition to the main comparative study, addi-
tional performance comparison are provided in Appendix 
2 considering two other reference methods form the lit-
erature: AK-ALIS (Liu et al. 2020) and AKOIS (Zhang 
et al. 2020).

The performances are then compared over four test 
cases, three are challenging analytical examples which are 
standard in the literature of comparable methods. They are 
also the three most challenging of the five examples used 
for the performance validation of MetaAL-OIS, allowing a 
fair comparison between the two methods. These analytical 
examples are also included in the generalized benchmark 
for active learning from Moustapha et al. (2021), which 
aims at providing a broad overview of the performances of 
adaptive-reliability methods and facilitating performance 
comparison in the literature. The last example is an engi-
neering problem in the context of radioactive waste storage 
and associated with extremely rare failure event.

The number of new samples drawn per iteration n was 
set equal to 104 . The stopping criterion is as discussed 
in Sect.  2.4 with Estop = 5% , and CoVstop = 0.4% . It is 
assumed that no primary knowledge is available regarding 
the behavior of the performance functions and the deter-
ministic part of the Kriging model is defined as a constant 
function. The covariance function chosen is anisotropic 
squared exponential. Since the population grows itera-
tively, its size can become an issue for the most challeng-
ing cases (e.g., requiring several hundred of iterations) and 
can significantly slow down the evaluation of the Kriging 

model. Therefore, the population is capped to 106 samples 
per dimensions in the following application, once the cap 
is reached only the DoE keeps being refined.

In all the following applications, the initial DoE nini is 
defined using a Latin hypercube design of size equal to the 
dimension of the problem plus one. As the following sec-
tion aims at demonstrating, the proposed approach is very 
efficient at exploring the input space and does not require 
an extensive initial training set. A sparse initial training set 
is therefore chosen to illustrate that advantage.

The results presented are the number of calls to the per-
formance function (number of iterations + number of sam-
ples in the initial DoE), the estimated failure probability, the 
corresponding relative error and the coefficient of variation 
of the estimator. The results are given for the AK-AMIS 
method in terms of average and extrema over 100 applica-
tions of the algorithm, with the relative error considering the 
Monte Carlo estimation as a reference.

3.1 � A four failure modes function

A well-known 2-D series system with four failure modes 
specifically designed to challenge methods based on loca-
tion a single “design point”. The performance function is the 
following (Razaaly and Congedo 2018):

with x1 and x2 independent standard Gaussian random vari-
ables and k1 , k2 parameters affecting the failure probability. 
Two cases are considered to observe how the algorithm per-
formances scale with the failure probability; the first ( k1 = 3 , 
k2 = 7 ) is associated with reasonable failure probability and 
the second ( k1 = 5.5 , k2 = 11 ) induces extremely low failure 
probability). The first case has been extensively studied in 
the literature and the comparison with reference methods 
will be conducted on this case. The performances of the 
chosen reference methods have not been published for the 
second case and is therefore only used as an illustration of 
performance evolution of the proposed method.

Figure 3 illustrates how the surrogate approximate the 
limit-state on a case of multiple failure regions on both 
cases. It can be observed how the algorithm efficiently 
spends more iterations refining areas based on how signifi-
cant they are for the overall failure probability. This behavior 
leads to observable inaccuracies in areas of low interest but 

(25)

g(X) = min
(

g1(X), g2(X), g3(X), g4(X)
)

,

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

g1(X) = k1 +
(x1−x2)2

10 − 1
√

2

(

x1 − x2
)

,

g2(X) = k1 +
(x1−x2)2

10 + 1
√

2

(

x1 − x2
)

,

g3(X) =
k2
√

2
+ x1 − x2,

g4(X) =
k2
√

2
− x1 + x2,
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represents a good compromise allowing the algorithm to 
quickly terminate while reaching the desired precision level.

Figure 4 illustrates the convergence of the algorithm with 
respect to the failure probability, the error-based criterion 
and the variance-base criterion. The modeling error seem to 
be the limiting criterion on this example, with the variance-
based one being satisfied much earlier. These results can 
be related to the complicated shape of the limit-state and 

the fact that the failure probability is not very low. In addi-
tion, we can observe that both sampling strategies efficiently 
and quickly converge toward the correct failure probabil-
ity. This figure also illustrates the necessity of using both 
of the proposed stopping criteria with the one considering 
only the covariance of the estimator leading to premature 
termination.

Fig. 3   Scatter plot of the limit-state, DoE and population on a case 1 and b case 2 of application 1
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Fig. 4   Convergence figure for application 1 case 1 and 2 of a, d the failure probability, b, e the CoV stopping parameter, and c, f the error stop-
ping parameter. d Histogram of the number of calls to the performance function
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The results of AK-AMIS are given in Table 1 and com-
pared with MCS, AK-MCS, MetaAK-IS2 and MetaAL-
OIS. The variation of performances over the one hundred 
applications of the algorithm are further illustrated on 
Fig. 5. On that example, “design point” based methods 
such as AK-IS would fail at providing an accurate estima-
tion of the failure probability, AK-MCS is therefore used 
as an alternative for reference. The proposed method con-
verges significantly quicker than the selected references, 
with a reduction of about forty percent of the number of 
call compared to MetaAL-OIS. However, the precision 

of the estimation is also lower and interestingly reaches 
on average the error threshold (4%). The error amplitude 
for both cases in Table 1 and histogram on Fig. 5 show 
that some outliers exist in the performances with respec-
tively ten and three applications terminating with an error 
above 10%. While the results illustrate how efficiently the 
algorithm converges, these outliers highlight that there is 
room for improvement with respect to the stopping crite-
ria. The performance evolution between case one and two 
highlights how efficiently the method scales with decreas-
ing failure probabilities with the number of calls being 

Table 1   Reliability results for application 1

a Results from Table 4 in Razaaly and Congedo (2018)

Method MCS AK-MCSa Meta AK-IS2a MetaAL-OISa AK-AMIS

Averaged Amplitude

Case 1: k1 = 3,k2 = 7

 Ncalls 2 × 10
6 96 138 69 36.7 [26, 49]

 P̂f
2.22 × 10

−3
2.23 × 10

−3
2.22 × 10

−3
2.21 × 10

−3
2.15 × 10

−3 [1.85, 2.54] × 10
−3

CoV(%) 1.51 3.12 [2.63, 3.96]

  ΔPf (%) – 1.7 0.10 4.06 [1.48 × 10
−1
, 17.5]

Case 2: k1 = 5.5,k2 = 11

 Ncalls 2 × 10
10 52 [38, 80]

 P̂f
5.95 × 10

−8
5.83 × 10

−8 [4.79, 6.24] × 10
−8

 CoV(%) 2.91 3.69 × 10
−1 [2.76, 3.99] × 10

−1

 ΔPf (%) – 2.45 [2.05 × 10
−2
, 19.5]

Fig. 5   Histogram of a, resp. c 
the number of calls to the per-
formance function and b, resp. 
d the absolute relative error 
over the 100 applications of the 
algorithm for application 1 case 
1, resp. 2
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increased by a factor of less than two for a decrease in 
failure probability from an order 10−3 to 10−8.

3.2 � The modified Rastrigin function

A standard 2-D analytical function with highly non-linear 
behavior known for involving non-convex and isolated 

failure domains. The shape of its limit-state makes this 
example particularly challenging. It is associated with a 
quite high failure probability ( Pf ∼ 7 × 10

−2 ). Consider-
ing the high probability of failure this case is not the kind 
of application AK-AMIS is designed for, allowing us to 
observe the limits of its applicability. The performance func-
tion reads as follows (Razaaly and Congedo 2018):

x1 and x2 are independent standard Gaussian random vari-
ables. Figure 6 illustrates that the algorithm successfully 
discovers and refine the calibration around the complex limit 
state. It is also worth noticing that the mean of the Gaussian 
components stayed quite close to the origin, suggesting that 
there is not a great added value from the population refine-
ment scheme.

The limiting criterion in this application is the modeling 
error as illustrated in Fig. 7 illustrating a second time that 
relying solely on the covariance-based criterion would have 
led to a premature termination of the algorithm. The mod-
eling error successfully converges in all applications of the 
method but the amplitude of variation is quite large and 
noisy even after a large number of iterations, which is prob-
ably linked to the complexity of the limit state geometry. 

(26)g(X) = 10 −

2∑
i=1

(
x2
i
− 5cos

(
2�xi

))
.

Fig. 6   Scatter plot of the limit-state, DoE and population on applica-
tion 2
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Fig. 7   Convergence figure for application 2 of a the failure probability, b the CoV stopping parameter, and c the error stopping parameter. d His-
togram of the number of calls to the performance function

Table 2   Reliability results for 
application 2

a Results from Table 5 in Razaaly and Congedo (2018)

Method MCS AK-MCSa Meta AK-IS2a MetaAL-OISa AK-AMIS

Averaged Amplitude

Ncalls 2 × 10
6 391 480 151 390 [297, 562]

P̂f
7.30 × 10

−2
7.43 × 10

−2
7.35 × 10

−2
7.31 × 10

−2
7.00 × 10

−2 [6.79, 7.90] × 10
−2

CoV(%) 2.51 × 10
−1

3.49 × 10
−1 [3.13, 3.79] × 10

−1

ΔPf (%) – 2.39 2.39 0.10 4.44 [1.11, 8.14]
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Convergence of the other two parameters is overall steady 
but quite slow.

The results, given in Table 2 and illustrated in Fig. 8, 
show that the number of calls before convergence varies 
significantly between 297 and 562 with an average of 390. 
The error stays at satisfactory levels with a maximum of 
8.14% and an average of 4.44. Compared with the reference 
methods the performances are mixed with slower conver-
gence and higher error than MetaAL-OIS, but comparable 
performances as AK-MCS. This result is not particularly 
surprising since this application was designed to challenge 
the proposed method on cases it is not designed for. On this 
application there is very little benefit from the population 
refinement scheme since the limit-state is already well cov-
ered by a reasonable Monte Carlo population. Under those 

circumstances the proposed method simply behaves as AK-
MCS and exhibit relatively similar performances.

3.3 � Dynamic response of a non‑linear oscillator

The last standard function is a dimension six problem with 
a relatively smooth limit-state and reasonable failure prob-
ability. The performance function corresponds to non-lin-
ear undamped single degree of freedom system an reads as 
(Razaaly and Congedo 2018):

with �0 =
√

c1+c2

m
 . The six input parameters are independent 

Gaussian random variables with parameters as detailed in 
Table 3. The random variables are not standard Gaussian; 
however, the problem is solved in the standard space. This 
example is not extremely challenging but allows us to com-
pare the performances on a slightly higher dimension case.

The convergence plots in Fig. 9 illustrate how fast the 
algorithm converges to the failure probability in this exam-
ple with a very narrow amplitude over all applications after 
only twenty iterations. On this example the limiting stopping 
criterion is the one related to the covariance of the estimator 

(27)g
(
c1, c2,m, r, t1,F1

)
= 3r −

|||||
2F1

m�2

0

sin
(�0t1

2

)|||||

Fig. 8   Histogram of a the num-
ber of calls to the performance 
function and b the absolute 
relative error over the 100 
applications of the algorithm for 
application 2
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Table 3   Input distributions and parameters of example 3

Parameter Distribution � �

c1 Normal 1 0.1

c2 0.1 0.01

m 1 0.05

r 0.5 0.05

t1 1 0.02

F1 1 0.02
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Fig. 9   Convergence figure for application 3 of a the failure probability, b the CoV stopping parameter, and c the error stopping parameter. d His-
togram of the number of calls to the performance function
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meaning that relying only on the error-based on would have 
led to termination of the algorithm before convergence of the 
failure probability. This result is the opposite of what was 
observed in the two last example highlighting the necessity 
of both criteria. The results in Table 4 and histograms in 
Fig. 10 highlight very good performances compared to the 
reference methods. It converges on average twice as fast as 
AK-MCS and MetaAL-OIS while providing very satisfac-
tory accuracy with an average error of 2.8%. The histograms 
of performance metrics show that these results are quite con-
sistent, event tough a few outliers exist with 2 of the 100 
simulations reaching an error above 10%.

3.4 � An industrial case with extremely rare failure 
event

The last example is an industrial example based on a finite-
element model in dimension five and associated with an 
extremely rare failure event. The system is a low-alloy steel 
overpack for radioactive waste storage designed for the 
French deep geological repository project in collaboration 
with the French national radioactive waste management 
agency (Andra). The main characteristics of the system are 
discussed below, for more details the reader can refer to Per-
soons et al. (2021).

The overpack is the external part sealing the waste and 
isolating it from the environment during the first few cen-
turies of storage. The part is near cylindrical and is stored 
in horizontal tunnels supported by a cylindrical steel lining 

as illustrated in Fig. 11. The overpack is subjected to uncer-
tain and time-dependent corrosion and uncertain and time-
dependent mechanical loading. Water can accumulate in the 
tunnel by diffusion through the rock environment, creating a 
time-dependent water level Hw in the tunnel and affecting the 
corrosion process. The mechanical loading is composed of 
a constant and deterministic external fluid pressure Ff and, 
after buckling of the liner, a contact pressure with second 
order pressure profile characterized by a time-dependent 
contact angle α.

Five uncertain parameters control the system, four 
describe the corrosion process and one additional for the 
mechanical loading:

•	 Ci
a : initial stage (first century) atmospheric corrosion rate 

(μm/year).
•	 Cf

a : long-term stabilized atmospheric corrosion rate (μm/
year).

•	 Cf
w : long term stabilized corrosion rate in water (μm/

year).
•	 Clin : corrosion rate at the outer surface of the liner (μm/

year). This parameter is related to the buckling date of 
the liner and the start of the external mechanical contact 
pressure applied to the overpack.

•	 Pc : nominal contact pressure at the center of the pressure 
profile (MPa).

Each parameter is associated with independent lognormal 
distributions calibrated from expert’s judgement elicitation. 

Table 4   Reliability results for 
application 3

a Results from Table 7 in Razaaly and Congedo (2018)

Method MCS AK-MCSa MetaAL-OISa AK-AMIS

Averaged Amplitude

Ncalls 2 × 10
7 58 70 24.7 [18, 35]

P̂f
2.83 × 10

−2
2.83 × 10

−2
2.85 × 10

−2
2.87 × 10

−2 [2.50, 3.17] × 10
−3

CoV(%) 1.30 × 10
−1

3.67 × 10
−1 [2.78, 4.00] × 10

−1

ΔPf (%) – 0.1 0.6 2.69 [3.09 × 10
−2
, 12.4]

Fig. 10   Histogram of a the 
number of calls to the perfor-
mance function and b the abso-
lute relative error over the 100 
applications of the algorithm for 
application 3
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The details about the distributions and their parameters are 
detailed in Table 5.

The overpack is considered as failing if it loses its seal-
ing before 500 years either by plastic fracture or corrosion. 
The mechanical behavior of the system is studied through 
a finite element model with elastic–plastic behavior associ-
ated with a Gurson’s plastic degradation model (calibrated 
experimentally). The corrosion is simply considered as a 
time-dependent and non-homogeneous reduction of the 
thickness of the overpack. The continuous variation of the 

a b

c

Fig. 11   Schematic illustration of a a cross section of the corrosion process, and b a cross-section of the mechanical loading, and c the longitudi-
nal geometry of the overpack

Table 5   Input distributions and parameters of industrial case study

Parameter Distribution Mean Standard deviation

Ci
a

Lognormal log
�√

30

�
1

3
log

�√
30 ∗

3

2

�

Cf
a

0 1

3
log(15)

Cf
w

log(10) 1

3
log(3)

Clin log
�

1√
10

�
1

3
log

�
15√
10

�

Fc log(8) 1

3
log(2)
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Fig. 12   Convergence figure for the application 4 of a the failure probability, b the CoV, and c the error stopping parameter
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geometry though time is handled by iteratively solving static 
problems (one per century) corresponding to the state of the 
system at the given date.

Figure 12 illustrates the convergence of the method on 
this case. Due to the high computation time of the model, 
the method has only been applied 5 times which is why the 
convergence plots are much noisier than the previous exam-
ples. We can observe that the failure probability estimate 
clearly converged before termination of the algorithm. On 
that case the variance-based criterion is the limiting one, 
which is explained by the extremely low failure probability.

On the original study of the system AK-MCS was unable 
to estimate the failure probability because no-reasonably 
sized Monte Carlo population contained failing samples. The 
computation time associated with the model makes it impos-
sible to apply classical simulation methods. The results are 
therefore only compared with FORM, see Table 6. It is 
worth mentioning that, in order to save computation time, 
the FORM analysis was initiated with a known failing sam-
ple, previously identified with the AK-AMIS method. The 
number of evaluations of the performance function therefore 
doesn’t account for the extra few iterations generally neces-
sary to locate one when no information is available about 
the system.

We can observe that AK-AMIS provides a failure prob-
ability estimation compatible the FORM approximation 
for a reasonable computation cost (about 50% more evalu-
ations than the search for the design point from FORM). 
The FORM estimation is smaller and very close ( ∼ 6% dif-
ference) with those of AK-AMIS, which suggest that the 
limit-state is concave and quite linear around a unique design 
point.

From previous study of the system, we know that the 
failure is mainly driven by the corrosion process, and from 
observing the results in the 2D space Ci

a
 , Cf

w
 we can see 

a rough estimation of the limit-state in the standard space 
(Fig. 13a) and in the physical space (Fig. 13b). The sys-
tem exhibits two failure regions associated with a case 
of extremely fast early stage atmospheric corrosion and 
extremely fast late-stage corrosion under water. Both can 
be precisely located by solving an optimisation problem and 
their respective local failure probabilities can be estimated 
using FORM as 2.96 × 10

−10 and 4.12 × 10
−13 . The figure 

illustrates that AK-AMIS managed to locate both failure 
modes by efficiently exploring the input space.

4 � Conclusions and discussion

This article aims at describing a new adaptive Kriging 
method combined with adaptive importance sampling, 
reducing both the modeling and sampling errors dynami-
cally. The solution developed with the AK-AMIS method is 
to adaptively build a near optimal auxiliary Gaussian mix-
ture distribution simultaneously as enriching the DoE. To 
do so, AK-AMIS relies on a new scheme combining Adap-
tive Kriging with adaptive multiple importance sampling 
in which a sampling distribution is defined at each iteration 

Table 6   Reliability results for application 4

Method FORM AK-AMIS

Averaged Amplitude

Ncalls > 46 68.8 [55, 78]

P̂f
2.96 × 10

−10
3.13 × 10

−10 [3.09, 3.16] × 10
−2

Fig. 13   Scatter plot of the limit-state, DoE and population on application 4 for the auxiliary distribution strategy a in the and b in the physical 
space
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and new samples are drawn from it before being added to 
the mixture population.

The proposed strategy exhibits very good performances 
especially on cases of low failure probability where it sig-
nificantly outperforms comparable references methods, 
while still providing accurate and reasonably fast estimation 
on challenging cases it is not designed for. Two appealing 
results exhibited are first that even with a very sparse initial 
training dataset, the method is able to efficiently explore the 
input space and converge toward the correct failure prob-
ability. Second, the approach scales very efficiently with 
decreasing failure probabilities. Overall, the optimization-
based sampling strategy performed better on the illustrated 
examples on rare failure events; efficiently exploring the 
input space and providing a comprehensible compromise 
between accuracy and computation time. The method is 
finally tested on an actual engineering case with extremely 
rare failure event, where it managed to efficiently explore the 
input space an locate two failure modes.

The proposed method could still benefit from improve-
ments, the first main limitation being the cases of very high 
dimension, which is a well-known limitation of the Kriging 
models. For these cases, since the covariance function is 
based on Euclidean distance, the posterior standard devia-
tion tends to be very high and roughly equal for all samples 
of the population. This result prevents the learning function 
from providing useful weights for the samples and in turn 
prevents the algorithm from efficiently converging toward 
the limit-state. Some methods exist in the literature to tackle 
this limitation the Kriging models such as additive Gaussian 
process regression models and are planned to be explored in 
future development. Second, the stopping criteria proposed 
are quite basic and, even though their combined usage pro-
vide satisfactory performances, they are not reliably corre-
lated with the quantity they are intended to measure. More 
sophisticated error-based criteria have been explored and 
might provide improved robustness of the result.

Appendix 1: Discussion of the p 
hyperparameter

As mentioned in Sect. 2.2 the choice of the p hyperparameter 
is at least partly arbitrary since it does not directly relate to 
an interpretable performance metric. In order to choose an 
adequate value one can only rely on empirical evidences. A 
good basis for such evidence is to study the sensitivity of 
the performances with respect to the parameter. The results 
of such a study are presented in this Appendix where the 
method is applied on three analytical examples (examples 
one and three from Sects. 3.1 and 3.2 and example four from 
Appendix 2) with varying values of p.

Thirty values of p are tested in the interval p ∈ [1, 6] . 
For each, the method is applied ten times to observe the 
variation of performances (the same ten random number 
regenerator seeds are used for each value of p). The results 
are illustrated in Figs. 14 and 15 presenting respectively the 
mean and amplitude of number of calls to the performance 
function and relative error.

It can be observed from Fig. 14 that, in terms of com-
putation time, there is a tendency for very high values of 
p to perform poorly, especially for the first two examples 
(a) and (b). For p between one and four no strong tendency 
is observable for the last two examples (b) and (c). For the 
first example (a) there seem to be an optimal value between 
p = 3 and p = 4.

In Fig. 15 it can be observed that for the first example (a) 
small values of p induce a higher variance of performance. 
In contrast, on the second example (b), the same tendency 
is observed for high values of p. No strong tendency can be 
observed from example three (c). From Fig. 15a the opti-
mal value seem to be between p = 3 and p = 5 , while for 
Fig. 15b the optimal value seem to be between p = 1 and 
p = 3

From these results, the choice of p = 3 as proposed in 
Sect. 2.2 appears as a reasonable compromise providing satisfy-
ing performances and computation time on all tested examples.
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Fig. 14   Average and extrema of the number of calls to the performance function as a function of the p hyperparameter for a example 1 (case 2), 
b example 3, and c example 4 (see) Appendix 2
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Appendix 2: Additional performance 
comparison

In addition to the four examples presented in Sect. 3 the 
performances of the proposed approach are compared to two 
other relevant methods form the literature, i.e., AK-ALIS 
(Liu et al. 2020) and AKOIS (Zhang et al. 2020). The study 
is limited to the analytical example function presented in 
the respective articles and the reference results are reported 
as published. The performances of the proposed AK-AMIS 
method are studied as described in Sect. 3 and a hundred 
application have been performed on each application.

Overall the proposed AK-AMIS method performs 
very well on these four additional examples and reaches 

satisfying precision on all of them. AK-AMIS converges 
around 25% quicker than AK-ALIS while consistently stay-
ing below 2.4% error (Table 7). On examples six and seven 
AK-AMIS successfully converges but requires about 25% 
more evaluations of the performance function than AK-OIS 
(Tables 8 and 9). On example 8 (Table 10) AK-AMIS con-
verges around 50% faster than AK-OIS while inducing a 
slightly higher error of about 2%.

Case 5: An analytical function from Liu et al. (2020),
Case 6: A bivariate example (Zhang et al. 2020),
Case 7: A polynomial function with multiple MPPs 

(Zhang et al. 2020),
Case 8: A polynomial function with multiple MPPs 

(Zhang et al. 2020).
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Fig. 15   Average and extrema of the failure probability error as a function of the p hyperparameter for a example 1 (case 2), b example 3, and c 
example 4 (see) Appendix 2

Table 7   Results for application 
5 g(X) = 1 −

(x1−1)
2

30
−

(x2−1)
3

36

Method AK-ALIS + U AK-ALIS + H AK-AMIS

Averaged Amplitude

Ncalls 36 38 26.9 [24, 33]

P̂f
1.67 × 10

−5
1.70 × 10

−5
1.64 × 10

−5 [1.62, 1.66] × 10
−5

CoV(%) 2.3 2.5 3.94 × 10
−1 [3.84, 4.00] × 10

−1

ΔPf (%) – – 1.57 [7.19 × 10
−1
, 2.4]

Table 8   Results for application 
6 g(X) =

1

2

(
x1 − 2

)2
−

3

2

(
x2 − 5

)3
− 3

Method AKOIS + U AKOIS + EFF AK-AMIS

Averaged Amplitude

Ncalls 19 20 27.6 [25, 31]

P̂f
2.87 × 10

−5
2.87 × 10

−5
2.87 × 10

−5 [2.85, 2.91] × 10
−5

CoV(%) 0.76 0.94 3.95 × 10
−1 [3.9, 4.00] × 10

−1

ΔPf (%) 0.06 0.13 0.37 [4.87 × 10
−4
, 1.4]
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�
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10
−
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2

�
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�
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2

10
+
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2

�
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