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Abstract
In practical engineering problems, random variables may follow a multimodal distribution. Traditional uncertainty propaga-
tion methods may yield poor effectiveness for multimodal distribution problems. In this paper, an uncertainty propagation 
method is proposed for multimodal distributions via a unimodal decomposition strategy. First, a Gaussian mixture model 
is used to build the probability density function of multimodal random variables. Second, a set of unimodal elements is 
constructed based on the decomposed multimodal random variables. In this way, it avoids computing higher-order statistical 
moments and the first 4th-order statistical moments can satisfy the accuracy requirements. Third, the probability density func-
tion of the response function in each element is computed using an arbitrary polynomial chaos expansion and the maximum 
entropy method. Finally, the probability density function of the response function in the complete probability space can be 
obtained by accumulating the probability density functions of the response functions in the elements. Three examples are 
investigated to validate the effectiveness of the proposed method.
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1 Introduction

Uncertainties widely exist in engineering problems, such 
as inhomogeneous materials (Bai and Kang 2021), manu-
facturing errors (Zhao et al. 2019; Qiao et al. 2021), ran-
dom loads (Liu et al. 2021a; Wu and Law 2012), and so 
on. Uncertain parameters can lead to large fluctuations in 
the structural response and lead to reliability problems. 
Therefore, it is necessary to determine the distributional 
properties of the response function and provide the prob-
ability density function of the response function for reli-
ability optimization design (Liu et al. 2021b; Wang and 
Luo 2019; Tian et al. 2022; Tang et al. 2022). Uncertainty 
propagation methods are commonly developed based on 
probability statistics theory, which can obtain the uncer-
tainty information of the response function, such as the 
probability density function (PDF), cumulative distri-
bution function (CDF), mean, and variance. At present, 
numerous significant achievements have been made for 
uncertainty propagation problems, which can be roughly 
divided into two categories: sampling-based methods and 
moment-based methods. The sampling-based methods, 
such as the Monte Carlo simulation (MCS) method (Gri-
goriu 1984; Marseguerra et al. 1998), are extensively used 
in uncertainty propagation. A large number of samples are 
used to compute the response function. They can achieve 
satisfactory computational accuracy, but are relatively less 
computationally efficient. Therefore, they are not suitable 
for practical problems. Some modified methods, such 
as importance sampling methods (Mori and Kato 2003) 
and subset simulation (Au and Beck 2001; Bourinet et al. 
2011), have been proposed to improve the computational 
efficiency of the sampling-based methods. However, the 
low computational efficiency has been a problem for these 
methods. Therefore, the moment-based methods have been 
proposed with satisfactory computational efficiency.

Moment-based methods include numerical integration 
methods, function expansion methods, and local expansion 
methods. Numerical integration methods are used to com-
pute the statistical moments of the response function based 
on a limited number of integration points and weights, 
which include the dimension reduction methods (Rah-
man and Xu 2004; Xu and Rahman 2004) and sparse grid 
methods (Nobile et al. 2008; Wu et al. 2021). Function 
expansion methods, such as polynomial chaos expansion 
(Bhattacharyya 2022, 2020, 2023; Jacquelin et al. 2019; 
Shao et al. 2017; Guo et al. 2019), introduce orthogonal 
polynomials to construct efficient surrogate models of the 
response function. Local expansion methods (Hu et al. 
2021; Breitung 1984) require a first- or second-order Tay-
lor expansion of the response function at the reference 

points to efficiently compute the mean and variance. In 
addition, some PDF approximation methods have been 
proposed based on the statistical moments of the response 
function. They can be divided into five categories: John-
son systems (Trenkler 1994), Pearson family distributions 
(Pearson and I.X.  1916), saddlepoint approximation meth-
ods (Du 2007), generalized lambda distributions (Asquith 
2007), and maximum entropy methods (Livesey and Bro-
chon 1987).

In the above uncertainty propagation analysis, random 
variables are mainly considered as the unimodal distribu-
tions, such as normal, uniform, and Weibull distributions. 
However, random variables may follow multimodal distri-
butions in engineering problems. For example, the fatigue 
lifetimes of safety cut specimens in aircraft structure follow 
a bimodal lognormal distribution after repair (Zeng et al. 
2020). In long-term stress monitoring of steel bridges, the 
stress distribution follows a multimodal distribution (Ni et al. 
2010). In the reliability optimization design, the unimodal 
distribution neglects the features of the multimodal distri-
bution, which leads to insufficient accuracy. In areas with 
strict reliability requirements, such as the nuclear industry 
and the aerospace industry, insufficient accuracy can lead to 
serious disasters. Therefore, it is essential to develop effi-
cient uncertainty propagation methods for multimodal dis-
tributions. There has been a small amount of research work 
on multimodal distribution problems. In terms of computa-
tional accuracy, sampling-based methods have been able to 
achieve satisfactory computational accuracy. However, they 
are widely known to be computationally demanding. As a 
result, they are difficult to apply to engineering problems 
involving complex simulation models. In terms of com-
putational efficiency, moment-based methods have been 
developed. Du (Hu and Du 2018) introduced a first-order 
approximation method for bimodal distributions. The sad-
dlepoint approximation method is used to obtain the reliabil-
ity analysis results. Chen (Li et al. 2021) proposed a novel 
direct probability integration method (DPIM), which can 
be used to calculate the response function’s PDF involved 
multimodal distributions. Zhang (Zhang et al. 2019) pro-
posed a multimodal uncertainty propagation method based 
on univariate dimension reduction method (UDRM). In this 
method, UDRM is used to compute higher-order statistical 
moments. The PDF of the response function is computed 
using an adaptive framework based on the maximum entropy 
method. These methods are computationally efficient com-
pared to sampling-based methods, but they may fail to pro-
vide satisfactory accuracy and efficiency when the response 
function is deeply nonlinear or complex. Thus, it is relatively 
difficult to consider both computational efficiency and accu-
racy at present.
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This study presents a multimodal uncertainty propaga-
tion method that takes into account both computational effi-
ciency and accuracy. Unimodal decomposition strategy and 
arbitrary polynomial chaos expansion improve the computa-
tional accuracy while ensuring computational efficiency. The 
study is organized as follows: In Sect. 2, the probability den-
sity function of multimodal random variables is established. 
In Sect. 3, elements are constructed where input random 
variables are unimodal distributions. In Sect. 4, the PDF of 
the response function in each element is computed and then 
the PDF of the response function in the complete probability 
space is obtained. In Sect. 5, the computational efficiency 
and accuracy of the proposed method are demonstrated by 
examples.

2  Uncertainty modeling of input 
multimodal random variables

Gaussian mixture model (GMM) can be used to determine 
the probability density function of the multimodal random 
variable X , which is expressed as follows (Figueiredo and 
Jain 2002):

where N is the number of Gaussian components, which can 
be obtained by direct observation or integral square differ-
e n c e  ( I S D ) ( V a l v e r d e  e t   a l .  2 0 1 2 ) ; 
� =

(
�1,�1,�2,�2,… ,�N,�N

)
 is the parameter set of 

GMM; �i =
(
�i, �

2
i

)
 represents the mean and variance at the 

ith Gaussian component; �i and �
(
x|�i

)
 denote the coeffi-

cient and probability density function at the ith Gaussian 
component, respectively. �i also satisfies �i ≥ 0 and 
N∑
i=1

�i = 1 . A Gaussian mixture model of a multimodal dis-

tribution with four components is shown in Fig. 1.
Therefore, the parameter set � is required to be computed 

and applied to obtain the probability density function of X . 
Maximum likelihood estimation is a widely used method 
for parameter estimation. A sample set s =

{
s1, s2,… , sh

}
 

is obtained, where a latent variable set � =
{
�1, �2,… , �N

}
 

is introduced for each sample. �i = 1 denotes the sample 
located at the ith Gaussian component and the probability 
of the sample being located at this Gaussian component can 
be written as follows:

Hence, the probability of the sample sj can be expressed 
as follows:

(1)f (x|�) =

N∑
i=1

�i�
(
x|�i

)

(2)p
(
�i = 1

)
= �i

The logarithmic form of the joint probability density 
function for each sample is considered as a log-likelihood 
function:

Set the derivation of Eq. (4) equal to 0, and the parameter 
set Θ is calculated as follows:

In fact, it is difficult to directly calculate � based on the 
formula (5). Therefore, the expectation–maximization algo-
rithm (Castillo-Barnes et al. 2020) is often used to search for 
the local maximum of logL(�).

3  Unimodal decomposition strategy

In early research, a decomposition method is proposed for 
multimodal random variables (Nouy 2010). This method 
decomposed a partition of [0, 1) into multiple discrete inter-
vals and constructed the desired partitions of a multimodal 
random variable based on them. The purpose of the uni-
modal decomposition strategy is also to transform multi-
modal random variables into a set of unimodal random vari-
ables. The difference is that the method is based on a direct 
decomposition of multimodal random variables in terms of 

(3)p
(
sj
)
=

N∑
i=1

p
(
�i
)
p
(
sj|�i

)
=

N∑
i=1

�i�
(
sj|�i

)

(4)logL(�) = log

( h
∏

j=1

N
∑

i=1
�i�

(

sj|�i
)

)

=
h
∑

j=1
log

N
∑

i=1
�i�

(

sj|�i
)

(5)�̂ = argmax
�

{logL(�)}

Fig. 1  Gaussian mixture model of multimodal distribution with four 
components



 B. Xie et al.

1 3

141 Page 4 of 18

minimum points, and it is aimed at the multidimensional 
multimodal random variables. Three steps are involved in 
unimodal decomposition strategy: (i) determining the divi-
sion points of the multimodal random variables, (ii) decom-
posing multimodal random variables by division points and 
constructing unimodal elements, and (iii) computing the 
response function’s PDF.

Division points can be used in the decomposition of mul-
timodal random variables, and the computational accuracy 
of the division points can affect the effect of the decomposi-
tion. The division point is defined at the lowest point between 
two neighboring components of the multimodal distribution. 
The probability density functions of the multimodal random 
variables are treated as objective functions and the division 
points are considered as local minima of them. According to 
the mathematical properties of local minima, the points around 
the division points satisfy the following conditions:

where ∇f  is the derivation of the objective function. a and 
b are the points to the left and right of the division point, 
respectively. The search intervals of the minimum points are 
determined based on Eq. (6), and then the local minimum 
point of each interval is calculated by the univariate optimi-
zation methods. The division points of the multimodal ran-
dom variables are used to define disjoint division intervals. 
Each multimodal random variable X can be decomposed 
into a set of random variables, where each random variable 
follows a unimodal distribution. The decomposition proce-
dure for a multimodal distribution with four components is 
shown in Fig. 2.

(6)∇f (a) < 0, ∇f (b) > 0

This is essential for reconstructing uncertainty propaga-
tion problems after decomposition of multimodal random 
variables. All sets of random variables are chosen to con-
struct elements Bk , each of which contains various independ-
ent random variables. The elements are disjoint and satisfy 
the following conditions:

where Xk,i is a random variable in the ith set and an element 
Bk . d is the number of independent multimodal random vari-
ables. N1 is the number of elements. Thus, N1 disjoint ele-
ments are constructed based on the decomposition of the 
multimodal distribution. The construction of the elements 
in the two-dimensional probability space is described using 
Fig. 3.

The above method transforms the uncertainty propagation 
for multimodal distributions into a set of uncertainty propa-
gation for unimodal distributions. In this way, elements are 
treated as multidimensional uncertainty propagation prob-
lems and PDFs of various response functions are included. 
The PDF of the response function f (y) , for a multimodal 
distribution, can be determined based on the elements. The 
statistical moments of the response function mi are decom-
posed into various statistical moments in the elements and 
the procedure can be stated as follows:

(7)

⎧
⎪⎪⎨⎪⎪⎩

Bk =
�
Xk,1,Xk,2,… ,Xk,d

�

B =

N1�
k

Bk

Bk1
∩ Bk2

= � if k1 ≠ k2

Fig. 2  The decomposition of multimodal distribution
Fig. 3  The construction of elements in a two-dimensional probability 
space
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where P
(
Bk

)
 is the probability of element Bk  . 

X =
(
X1,X2,… ,Xd

)
 denotes the vector of d independent 

multimodal random variables. mk,i is the ith-order statistical 
moment in element Bk . The PDF of the response function in 
each element based on mk,i is estimated using the maximum 
entropy method. Hence, f (y) is decomposed as follows:

where fk(y) is the PDF of the response function in element 
Bk . Let Fk(y) = P

(
Bk

)
fk(y) , and Eq. (9) can be rewritten as 

follows:

The uncertainty propagation based on the unimodal decom-
position strategy is shown in Fig. 4. The random variables 
follow unimodal distributions in each element, and then fk(y) 
can be estimated from the first 4th-order statistical moments. 
Specific computation methods are shown in Sect. 4. Thus, it 
can be found that the first 4th-order statistical moments are 
required to determine f (y) in this method.

Equation (9) indicates that P(Bk) are also required to be 
determined and the computation process is shown as follows: 
First, MCS is used to produce n samples and they can be 
divided into various elements. Second, an indicator function 
IBk

 , which is used to determine whether the samples belong to 
the element Bk , is initially defined for them.

(8)
mi = ∫X

g(x)fX(x)dx =
N1
∑

k=1
P
(

Bk
)

∫Xk

g
(

xk
)

fXk

(

xk
)

dxk

=
N1
∑

k=1
P
(

Bk
)

mk,i

(9)f (y) =

N1∑
k=1

P
(
Bk

)
fk(y)

(10)f (y) =

N1∑
k=1

Fk(y)

It can be found that IBk
= 1 indicates that the sample is 

located at the element Bk . The distribution ratios of the 
samples are considered as P(Bk), and they can be expressed 
as follows:

where nk is the number of samples located at element Bk.

4  Uncertainty propagation in unimodal 
elements

In this section, uncertainty propagation is performed for uni-
modal random variables in each element, where the arbitrary 
polynomial chaos expansion and maximum entropy method 
are involved.

4.1  Calculating the statistical moments 
of the response function

Based on the random variables Xk in the elements, the sur-
rogate model of response function Y=g

(
Xk

)
 can be con-

structed by polynomial chaos expansion (PCE) (Sachdeva 
et al. 2006):

(11)IBk
=

{
1 if xBk

∈ Bk

0 otherwise

(12)P
(
Bk

)
= P

(
IBk

= 1
)
=

nk

n

(13)ĝ
(
Xk

)
≈

P∑
i=0

𝛼k,iΦi

(
Xk

)

Fig. 4  The uncertainty propaga-
tion based on unimodal decom-
position strategy
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where p is the number of truncated expansion terms. �i 
denotes a polynomial coefficient. Φi

(
Xk

)
 stands for the 

multivariable PCE basis, which can be expressed as follows:

where �ij

(
Xk,j

)
 is the one-dimensional orthogonal polyno-

mial chaos basis of the random variable Xk,j . Therefore, �k,i 
and �ij

(
Xk,j

)
 are required to be computed to determine the 

surrogate model ĝ
(
Xk

)
.

A moment-based analysis (Oladyshkin and Nowak 
2012) is used to construct a multivariable PCE basis for 
arbitrary distributions. The kth-order one-dimensional 
orthogonal polynomial chaos basis �(k)

ij

(
Xk,j

)
 can be defined 

as follows:

where �(K)m  are unknown parameters. Xm
k,j

 are mth power of 
Xk,j . �

(K1)
ij

(
Xj

)
 and �(K2)

ij

(
Xk,j

)
 satisfy the following 

requirements:

The Kth-order statistical moment of a random variable 
Xk,j can be expressed as follows:

Equation (16) is transformed into matrix form based on 
Eq. (15) and Eq. (17):

�
(K)

i
 is determined based on Eq. (18) and Φi

(
Xk

)
 can be 

constructed based on Eq. (14).
The polynomial coefficients �k,i can be written as follows:

(14)Φi

(
Xk

)
=

d∏
j=1

�ij

(
Xk,j

)

(15)�
(k)

ij

(
Xk,j

)
=

K∑
m=0

�(K)
m

Xm
k,j

(16)

⟨

�(K1)
ij

(

Xk,j
)

,�(K2)
ij

(

Xk,j
)

⟩

= ∫Xk,j

�(K1)
ij

(

xk,j
)

�(K2)
ij

(

xk,j
)

f
(

xk,j
)

dxk,j

= 0, ∀K1 ≠ K2

(17)�K = ∫Xk,j

xK
k,j
f
(
xk,j

)
dxk,j

(18)

⎡⎢⎢⎢⎢⎢⎣

�0 �1 … �K

�1 �2 … �K+1

⋮ ⋮ ⋮ ⋮

�K−1 �K … �2K−1

0 0 … 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

�
(K)

0

�
(K)

1

⋮

�
(K)

K−1

�
(K)

K

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0

0

⋮

0

1

⎤⎥⎥⎥⎥⎥⎦

(19)�k,i = ∫Xk

g
(
xk

)
Φi

(
xk

)
f
(
xk

)
dxk

Equation (19) is a multivariate integral problem and 
sparse grid method is applied to calculate the multivariate 
integral in this study. It is necessary to determine the inte-
gration points and weights of the random variables. The 
Hankle positive definite matrix H is built from the statisti-
cal moments of the random variables �K ,K = 1, 2,… , 2p1 . 
The upper triangular matrix C is constructed from the 
Cholesky decomposition H = C

T
C:

�
(K)

ij

(
Xk,j

)
,K = 1, 2,… , p1 (Ahlfeld et al. 2016) satisfy 

the following equation:

where the parameters aK and bK are expressed as:

Equation (21) can be rewritten as a positive definite 
symmetric tridiagonal Jacobi matrix J:

The integration points and weights of the random vari-
ables are determined by the eigenvalues and the corre-
sponding normalized eigenvectors of the matrix J , respec-
tively. Special tensor product operations (Smolyak 1963) 
are then performed to determine the configuration points 
and weights used to compute the polynomial coefficients. 
The 1st-order statistical moment can be determined as 
follows:

where �0 is the first polynomial coefficients. The lth-order 
statistical moment E

[
gl
(
Xk

)]
 can also be calculated using 

this equation. Defining formula as follows:

Thus, the lth-order statistical moment of Y = g
(

Xk
)

 
is transformed into the 1st-order statistical moment of 
Y =G

(

Xk
)

.

(20)C =

⎡
⎢⎢⎢⎢⎣

c1,1 c1,2 … c1,p1+1
c2,2 … c2,p1+1

⋱ ⋮

cp1+1,p1+1

⎤
⎥⎥⎥⎥⎦

(21)
Xk,j�

(K)

ij

(
Xk,j

)
= bK−1�

(K−2)

ij

(
Xk,j

)
+ ak,K�

(K−1)

ij

(
Xk,j

)
+ bK�

(K−1)

ij

(
Xk.j

)

(22)

aK =
cK,K+1

cK,K
−

cK−1,K

cK−1,K−1
, bK =

cK+1,K+1

cK,K
, c0,0 = 1, c0,1 = 0

(23)J =

⎡
⎢⎢⎢⎢⎢⎢⎣

a1 b1
b1 a2 b2

b2 a3 b3
⋱ ⋱ ⋱

bp1−2 ap1−1 bp1−1
bp1−1 ap1

⎤⎥⎥⎥⎥⎥⎥⎦

(24)E
[
g
(
Xk

)]
= �k,0

(25)G
(
Xk

)
= gl

(
Xk

)
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4.2  Computing the probability density function 
of the response function

Based on the statistical moments, the PDF of the response 
function in the elements is computed using the maximum 
entropy method. The first 4th-order statistical moments are 
applied to estimate the probability density function of the 
random variable. The entropy value indicates the estima-
tion accuracy of the probability density function. In order 
to estimate a more accurate probability density function, 
the response function Yk needs to be normalized. The con-
strained optimization problem (Sobczyk and Trcebicki 1999) 
can be written as follows:

where �Yk
 and �Yk denote the mean and variance of the 

response function in element Bk , respectively. fk(y) repre-
sents the estimated PDF of the response function. S

(
fk
)
 is 

the entropy value of fk(y):

m′
k,i

 indicates a non-standard central moment that is deter-
mined by the original statistical moment mk,i:

where Cj

i
=

(
i

j − 1

)
 is binomial coefficient. mk,0 represents 

the 0th-order statistical moment in element Bk . c denotes the 
proportional factor of m′

k,i
 . The response function’s PDF can 

be estimated by the constrained optimization problem in 
Eq. (26). After obtaining the response function’s PDF fk(y) 
in all elements, the response function’s PDF f (y) is calcu-
lated by using Eq. (9) and Eq. (12).

4.3  Numerical procedure

In the proposed method, elements are constructed and the 
probabilities of elements are computed in Sect. 3. The PDF 
of the response function in the elements is then computed in 
Sect. 4. The PDF of the response function for the multimodal 
distribution is determined based on the probabilities of the 
elements and the PDF of the response function in the ele-
ments. The numerical procedure of the proposed method is 

(26)

⎧
⎪⎪⎨⎪⎪⎩

max
fk

S
�
fk
�

s.t. ∫Yk

�
y − �Yk

�Yk

�i

fk(y)dy = m�
k,i
, i = 0, 1,… , 4

(27)S
(
fk
)
= ∫Yk

fk(y) ln
(
fk(y)

)
dy

(28)

m�
k,i

=
1

c!

[
i+1∑
j=1

(−1)j+1C
j

i

(
m1

)j−1
mi−j+1

]
, i = 0, 1,… , 4

illustrated in Fig. 5, and the detailed procedure is presented 
below:

Step 1  Determine the number of division points M , the 
total number of elements N1 and initialize the cur-
rent element number k = 0.

Step 2  Decompose the multimodal random variables X 
based on the division points and obtain the uni-
modal random vectors X =

[
X1,X2,… ,XM+1

]
.

Step 3  Construct elements Bk based on Eq. (7).

Step 4  Let k = k + 1.

Step 5  Calculate the probability of the current element 
P
(
Bk

)
 by samples using Eq. (12).

Step 6  Calculate orthogonal polynomial chaos basis 
�
(
Xk

)
 using Eq. (14) and polynomial coefficient 

�k using Eq. (19) in the current element.

Step 7  Calculate the statistical moments of the response 
function mk,i, i = 0, 1,… , 4 in the current element 
using Eq. (24) and Eq. (25).

Fig. 5  Flow chart of the proposed method
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Step 8  Calculate the response function’s PDF fk(y) in the 
current element using Eq. (26) based on statistical 
moments mk,i.

Step 9  If k ≤ N1 , repeat step 2 to step 8. Otherwise, go to 
step 9.

Step 10  Output the response function’s PDF f (y) for the 
multimodal distribution using Eq. (9).

5  Numerical examples

In this section, three examples are used to verify the compu-
tational accuracy and efficiency of the proposed method, and 
MCS is used as a validation method to verify the computa-
tional accuracy and efficiency. The method UDRM (Zhang 
et al. 2019) has the requirement of computing higher-order 
statistical moments. Thus, it is used as a comparison method. 
The relative error (RE) �RE and Kullback–Leibler divergence 
(KLD) �KL are used for accuracy analysis, where RE is defined 
as:

where VMCS is the solution at a certain value of the CDF 
computed by MCS; V  is a solution computed by other 
methods.

�KL is defined as:

where P and Q are the PDFs obtained by MCS and other 
methods, respectively; � is probability space.

(29)�RE =
||V − VMCS

||
VMCS

× 100%

(30)�KL(P||Q) =
∑
x∈�

P(x) log

(
Q(x)

P(x)

)

5.1  Linear elastic cantilever beam force problem

A linear elastic cantilever beam is loaded with one distributed 
load and two concentrated loads as illustrated in Fig. 6. In this 
example, the displacement PDF at point B is determined. The 
displacement at point B is denoted as:

where q is distributed load. F1 and F2 represent various 
concentrated loads. E , I and L denote the elastic modulus 
of material, the moment of inertia of beam section and the 
length of linear elastic cantilever beam, respectively.

F2 , I  , and L are determined parameters that 
F2=100 × 103N , L=3000mm and I= 5.3594 × 108mm4 . q , 
F1 , and E are multimodal random variables. Distributional 
properties of random variables are presented by a large 
amount of observational data. Therefore, a GMM with four 
Gaussian components is used to construct the probability 
density function of multimodal random variables, as illus-
trated in Fig. 7. The distribution parameters of the multi-
modal random variables are listed in Table 1.

Based on the multimodal random variables q , F1 , and 
E , the displacement PDF at point B is computed using the 
proposed method. The decomposition of the multimodal ran-
dom variables into multiple random variables based on the 
division points is illustrated in Fig. 8.

Multimodal random variables are decomposed into four 
random variables. Therefore, three sets of random variables 
are obtained. The random variables are chosen to form the 
elements, and a total of 64 elements are constructed in this 
example. MCS is continuously used to verify the accuracy 
of the proposed method based on a large number of samples 
( 1 × 106 ), which are generated using the probability density 
functions of the multimodal random variables q , F1 , and E.

(31)ΔB = f
(
q,F1,F2,E, I, L

)
=

qL4

8EI
+

5F1L
3

48EI
+

F2L
3

3EI

Fig. 6  Circular section column 
model (Fan et al. 2016)
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The results of uncertainty propagation are determined by 
the proposed method, UDRM, and MCS. They are illus-
trated in Fig. 9. The PDF and CDF obtained by the proposed 
method are very close to MCS. For illustration, the CDF 
values and RE of the proposed method, UDRM, are listed in 
Table 2, where four locations are considered. The frequency 
histograms of the response functions constructed by MCS 
with UDRM and the proposed method are shown in Fig. 10. 
Then, �KL can be calculated by Eq. (30).

It can be found that the proposed method obtains better 
computational accuracy at these locations. The RE of the 
proposed method is considerably lower than that of UDRM. 
The largest RE of the proposed method and the UDRM are 
both located at y = 7.5, with values of 0.0297% and 8.5706%, 
respectively. The KLD of MCS and UDRM is 0.0441. The 
KLD of MCS and the proposed method is smaller, with a 
value of 0.0013. Hence, the proposed method has the best 
computational accuracy among them. Computation of 

Fig. 7  Distribution of multimodal random variables

Table1  Distribution parameters of multimodal random variables

Random variables Coefficients Mean values Standard deviations

q (0.3, 0.2, 0.3, 0.2) (50, 80, 110, 140) (7.5, 7.5, 7, 8)

F1 (0.3, 0.3, 0.2, 0.2)
(
7 × 104, 12 × 104, 17 × 104, 22 × 104

) (
14 × 103, 14 × 103, 14 × 103, 14 × 103

)
E (0.3, 0.2, 0.2, 0.3)

(
26 × 104, 39 × 104, 52 × 104, 65 × 104

) (
312 × 102, 312 × 102, 322 × 102, 318 × 102

)
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higher-order statistical moments not only increases the com-
putational error, but also increases the computational com-
plexity. The proposed method requires the first 4th-order sta-
tistical moments, while UDRM requires the first 12th-order 
statistical moments to construct the PDF of the response 
function. In addition, UDRM needs to call the response 
function to calculate 31 times, the proposed method needs 
to call the response function to calculate 1792 times and 
MCS needs to call the response function to calculate 1 × 106 
times. Therefore, UDRM and the proposed method are more 
computationally efficient than MCS. However, the proposed 

method has the best performance among them, considering 
both computational accuracy and efficiency.

5.2  The uncertainty propagation problem of RV 
reducer

RV reducer are an integral part of industrial robots and are 
widely used in the industrial robotics field. For light indus-
trial robots, the RV reducer only considers the first to the 
fourth joint. However, for heavy industrial robots, all joints 

Fig. 9  The uncertainty propagation results of proposed method, UDRM, and MCS

Table 2  CDF values and RE of 
different locations

y = 7.5(RE, %) y = 10(RE, %) y = 12.5(RE, %) y = 15(RE, %)

Proposed method 0.3373(0.0297) 0.5679(0.0176) 0.7091(0.0141) 0.8179(0.0037)
UDRM 0.3083(8.5706) 0.5491(3.2934) 0.6887(2.8906) 0.8046(1.6225)

Fig. 10  Frequency histograms of MCS with different methods



 B. Xie et al.

1 3

141 Page 12 of 18

of the RV reducer need to be considered. The mechanism of 
the RV reducer mainly includes the central gear with input 
shaft, planetary gear, crank shaft, RV gear, pin gear, pin 
wheel housing, tapered roller bearing, gasket, needle bear-
ing, angular contact ball bearing and output mechanism. The 
structure diagram is illustrated in Fig. 11.

The gear teeth of the planetary gear are required to satisfy 
the contact fatigue strength of the tooth surface. Therefore, 
the response function of the contact fatigue strength of the 
planetary gear teeth is defined as follows:

where d1 , d2 , d3 , and X1 represent modulus, number of cen-
tral gear, number of planetary gear, and width of planetary 
gear, respectively. Parameter d1 , d2 , d3 , and X1 are multi-
modal random variables. Distributional properties of random 
variables are presented by a large amount of observational 
data. Therefore, GMM with two Gaussian components is 
used to construct the probability density function of multi-
modal random variables. Distribution parameters of random 
variables d1,d2,d3 , and X1 are listed in Table 3.

(32)

Y = g(d,X) = 297.6064

√
7161.8144

X1d1d2

(
d2 + d3

)
− 1100

Based on the probability density functions of the mul-
timodal random variables d1 , d2 , d3 , and X1 , the proposed 
method is employed to compute the probability density 
function of the contact fatigue strength of the planetary gear 
tooth Y  . Each multimodal random variable is decomposed 
into two random variables and four sets of random variables 
are constructed, as illustrated in Fig. 12. Thus, a total of 16 
elements are determined in this example.

The computational accuracy of the statistical moments in 
the elements may change with the order of the polynomial 
P . The logRE of the statistical moments with the orders of 
the polynomial P are illustrated in Fig. 13. It follows that 
logRE is extremely large when P = 1 . Then, the logRE 
becomes extremely small and remains stable when P ≥ 2 . 
Therefore, when P=2 , the optimal computational accuracy 
can be achieved with the proposed method.

The results of uncertainty propagation are calculated 
using the proposed method, UDRM, and MCS and are 
illustrated in Fig. 14. It can be found that the PDF and CDF 
obtained by the proposed method are highly close to MCS, 
but the results obtained by UDRM are different from MCS. 
The CDF values and relative errors of the proposed method, 
UDRM, are listed in Table 4, where four locations are con-
sidered. The frequency histogram of the response function 
constructed by MCS with UDRM and the proposed method 
is shown in Fig. 15. Then, �KL can be calculated by formula 
(30).

The RE of the proposed method is less than 1% at these 
locations, with the smallest being 0.0729%. However, the 
RE of UDRM is considerably larger than that of the pro-
posed method, with a minimum of 3.4575%. The KLD of 
MCS and UDRM is 0.0288. The KLD of MCS and the pro-
posed method is smaller, with a value of 0.0018. Hence, 

Fig. 11  RV reducer structure 
diagram (Yang et al. 2021)

Table 3  Distribution parameters of random variables

Random 
variables

Coefficients Mean values Standard deviations

d1 (0.5, 0.5) (1.65, 2.61) (0.16, 0.18)

d2 (0.4, 0.6) (12.5, 17.9) (1.2, 1.3)

d3 (0.4, 0.6) (49.4, 59.4) (2.5, 2.5)

X1 (0.6, 0.4) (4.48, 5.31) (0.15, 0.18)
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the proposed method has the best computational accuracy 
among them. The proposed method and UDRM require the 
first 4th-order statistical moments and first 8th-order statis-
tical moments to construct the PDF of the response func-
tion, respectively. Computing the statistical moments of 
the UDRM is more complicated than the proposed method. 
UDRM needs to call the response function to calculate 41 
times to estimate the PDF, the proposed method needs to 
call the response function to calculate 720 times and MCS 
needs to call the response function to calculate 1 × 106 times 
to compute the PDF. The computational efficiency of the 
proposed method is lower than UDRM but higher than 
MCS. However, the proposed method requires fewer statis-
tical moments. Therefore, the proposed method has the best 
performance among them, considering both computational 
accuracy and efficiency.

5.3  Vehicle collision problem

Lightweight design is employed in the vehicle industry 
and improves the energy consumption performance of the 
vehicle. However, a lightweight design may weaken the 

vehicle’s crashworthiness. Therefore, collision analysis is 
used to verify crashworthiness. The structure diagram and 
simulation model of the vehicle are illustrated in Fig. 16. 
The failure analysis for high-speed frontal impact of a 
vehicle is performed at a speed of 56.4 km/h. In high-
speed collisions, it is necessary to retain a relatively safe 
space to reduce passenger injuries. Hence, the intrusion of 
the marker points under the left back chair IL is a highly 
valuable indicator.

The thickness of the front bumper X1 , the inner plate 
of the anti-collision box X2 , the outer plate of the anti-
collision box X3 , the inner plate of the front longitudinal 
beam X4 , and the outer plate of the front longitudinal 
beam X5 lead to a large influence on the intrusion of the 
marked point IL , which mathematically can be expressed 
as follows:

The response surface of the intrusion quantity for the 
landmark under the left back chair IL is established by 

(33)IL(X) = g
(
X1,X2,X3,X4,X5

)

Fig. 12  The decomposition of multimodal random variables
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Fig. 13  The log RE with the orders of polynomial

Fig. 14  The uncertainty propagation results of the proposed method, UDRM, and MCS
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finite element sampling points and the uncertainty propa-
gation is performed for the intrusion quantity IL in the 
vehicle collision problem:

Random variables are multimodal distributions based on 
observed data, and GMM is used to determine the probabil-
ity density function of multimodal random variables. The 
distribution parameters of X1,X2,X3,X4 , and X5 are listed in 
Table 5

Each multimodal random variable is decomposed into 
two random variables and five sets of random variables are 
constructed. Thus, a total of 32 elements are obtained in 

(34)

I
L
= 51.820X1−9.242X2+8.394X3−79.998X4−64.932X5

−5.156X1X2 + 6.211X2X3 + 14.747X1X5

− 5.878X2X4 − 9.894X2X5 − 8.811X3X4

− 2.477X3X5+7.152X4X5−15.196X
2

1

+6.761X2

2
+20.438X2

4
+7.471X2

5
+275.327

Table 4  CDF values and 
relative errors of different 
locations

y = − 1000(RE, %) y = − 990(RE, %) y = − 980(RE, %) y = − 970(RE, %)

Proposed method 0.3704(0.1886) 0.4632(0.2154) 0.5492(0.0729) 0.6389(0.4086)
UDRM 0.3499(5.7128) 0.4412(4.9548) 0.5262(4.1181) 0.6143(3.4575)

Fig. 15  Frequency histograms of MCS with different methods

Fig. 16  Structure diagram and 
simulation model of vehicle 
(Huang et al. 2016)

Table 5  Distribution parameters of random variables

Random vari-
ables

Weight Mean value Standard deviation

X1 (0.5, 0.5) (2.31, 2.71) (0.09, 0.09)

X2 (0.6, 0.4) (2.03, 2.55) (0.12, 0.13)

X3 (0.4, 0.6) (1.73, 2.13) (0.1, 0.1)

X4 (0.3, 0.7) (2.22, 2.72) (0.11, 0.1)

X5 (0.6, 0.4) (2.12, 2.52) (0.11, 0.1)
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this example. The uncertainty propagation results of the pro-
posed method are illustrated in Fig. 17.

As shown in Fig. 17, the PDF and CDF of the response 
function obtained by the proposed method are very close 
to MCS, but the results obtained by UDRM are different 
from MCS. In addition, the proposed method requires the 
first 4th-order statistical moments and UDRM requires the 
first 8th-order statistical moments to construct the PDF of 
the response function. To illustrate the computational accu-
racy of the proposed method, the relative errors of CDF for 
the proposed method and UDRM are listed in Fig. 18. Four 
locations ( IL=147, 150, 153, 156 ) are used to represent the 
computational accuracy.

The relative errors of the proposed method are smaller 
than that of UDRM in these locations, and their relative 

errors are less than 0.5% in these locations. The highest 
relative error of the proposed method is located at IL=150 , 
and the highest relative error of the UDRM is located at 
IL=147 . The KLD of MCS and UDRM is 0.0085. The 
KLD of MCS and the proposed method is smaller, with 
a value of 0.0004. Hence, the proposed method has the 
best computational accuracy among them. The proposed 
method and UDRM are computationally efficient com-
pared to MCS and they compute the response functions 
for 2112, 51, and 1 × 106 times, respectively. UDRM is the 
most computationally efficient, followed by the proposed 
method and MCS is the least efficient. Therefore, the pro-
posed method has the best performance among them, con-
sidering both computational accuracy and efficiency.

6  Conclusion

This study proposes an uncertainty propagation method for 
multimodal distributions through unimodal decomposition 
strategy. First, the GMM is used to establish the probabil-
ity density functions of the multimodal random variables. 
Second, a unimodal decomposition strategy is proposed 
for uncertainty propagation for multimodal distributions. 
A set of unimodal elements is constructed and the PDF of 
the response function in the elements is estimated using an 
arbitrary polynomial chaos expansion and the maximum 
entropy method. Third, the PDF of the response function 
in the complete probability space is obtained based on 
the elements. The analytical results of the three examples 
demonstrate that the proposed method can accurately and 
efficiently obtain the PDF of the response function for the 

Fig. 17  The uncertainty propagation results of the proposed method, UDRM, and MCS

Fig. 18  Relative errors of CDF of the proposed method and UDRM
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uncertainty propagation of the multimodal distribution. 
The proposed method avoids computing higher-order sta-
tistical moments and the first 4th-order statistical moments 
can meet the engineering requirements. As a result, errors 
in the calculation of higher-order statistical moments can 
be avoided. However, the limitation of this method is that 
more multimodal random variables or modes need to con-
struct more elements. In this way, they lead to a decrease 
in computational efficiency. Further research should be 
done to apply the sensitivity analysis to reduce the number 
of input random variables and improve the computational 
efficiency.
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