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Abstract
This paper adopts importance directional sampling (IDS) and adaptive Kriging model for reliability and global sensitivity 
analysis. IDS is the combination of importance sampling (IS) and directional sampling (DS) by establishing directional vector 
in the importance region, which has the advantages of both IS and DS. A novel stopping criterion which tries to minimize 
the difference between the real failure region and fitted failure region is proposed based on the idea of auxiliary region to 
increase the efficiency of active learning. An improved active learning strategy is proposed based on the combination of 
optimization and learning function to synchronize the calculation process of design point and Kriging model updating, so 
as to ensure the accuracy of both Kriging model and importance directional density function. Different learning functions 
are adopted to select the most suitable active learning function of IDS. The global sensitivity index is calculated through 
failure probability and Bayes theorem based on Gaussian mixture model (GMM). The results show that: Through the pro-
posed auxiliary region-based stopping criterion, the efficiency of active learning in IDS can be improved. The proposed 
active learning strategy can obtain high accuracy importance directional density function and failure probability with lower 
required function calls. Considering the accuracy and robustness of failure probability and global sensitivity index, U and 
EFF functions should be adopted on IDS.

Keywords  Reliability analysis · Global sensitivity analysis · Importance directional sampling · Adaptive Kriging model · 
Auxiliary region · Improved active learning strategy

1  Introduction

Reliability and global sensitivity analysis theory is a very 
important research content, which has been widely used in 
many engineering problems (Rachedi et al. 2021; Hwang 
et al. 2021; Pan et al. 2021; Su et al. 2020; Mansour et al. 
2020). Presently, reliability methods mainly include numeri-
cal simulation methods and moment estimation methods. 
Numerical simulation methods usually require a large 
number of random samples, and the efficiency is quite low. 
Moment estimation methods use the Taylor expansion of the 
limit state function, and the accuracy will be low for high 
nonlinearity problems. Global sensitivity analysis methods 

mainly include variance-based method (Zhang et al. 2017), 
moment independent-based method (Liu and Homma 2010) 
and failure probability-based method (Lu et al. 2008). The 
global sensitivity based on failure probability can more 
comprehensively measure the average impact of the input 
variables on the failure probability when the input variables 
are changed in the entire distribution region (Lemaitre et al. 
2015). Through the global sensitivity analysis, the uncer-
tain factors which significantly affect the failure probability 
can be obtained. Specially, by introducing Bayes theorem 
into failure probability-based global sensitivity analysis, 
the computational cost can be significantly reduced (Wang 
et al. 2019). Since the Bayes method requires the conditional 
probability density function of input variable in the failure 
region, it is usually combined with numerical simulation 
methods for global sensitivity analysis (Guo et al. 2021).

In order to increase the efficiency of numerical simulation 
methods, most researchers use surrogate model to reduce 
the required function calls. The most widely used surrogate 
model is adaptive Kriging model (Zhang et al. 2020; Wang 
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et al. 2021; Xiao et al. 2020a, b; Cadini et al. 2020), as it 
can provide the variance information of the predicted val-
ues and select the most informative samples through learn-
ing function. Notably, AK-MCS (Echard et al. 2011) is a 
milestone in the development of Kriging-based methods, 
as AK-MCS combines the U learning function and Monte 
Carlo (MC) method. Based on the idea of AK-MCS, dif-
ferent learning functions (Bichon et al. 2008; Zhang et al. 
2019; Yang 2015; Lv et al. 2015; Shi et al. 2020; Meng et al. 
2020; Zhou and Li 2023) and stopping criterions (Wang and 
Shafieezadeh 2019a, b) are also proposed. Researchers also 
used MC-based failure probability for global sensitivity 
analysis (Guo et al. 2021). However, a large population of 
candidate samples are required for MC-based active learn-
ing. At least 10M+2, M = 1, 2, ⋅ ⋅ ⋅ samples are required for 
the failure probability with 10−M (Lelièvre et al. 2018), 
where M is the order of magnitude of failure probability. 
For small failure probability problems, MC cannot obtain 
failure samples effectively, which may completely fill the 
computer memory and lead to computing crash.

In order to solve the shortcomings of MC, researchers 
often combine other numerical methods with Kriging model, 
such as importance sampling (IS) (Zhao et al. 2015; Wang 
et al. 2022; Zhou et al. 2015), subset simulation (SS) (Chen 
et al. 2021; Tian et al. 2021), line sampling (LS) (Song et al. 
2021; Papaioannou and Straub 2021), and directional sam-
pling (DS) (Grooteman 2011). This paper mainly focus on 
IS and DS methods. Presently, IS might be the most widely 
used method to improve efficiency. Reference (Echard 
et al. 2013) proposed the famous AK-IS method, in which 
sampling center was transplanted to the design point and 
Kriging model was built through U learning function. Ref-
erence (Dubourg et al. 2013) proposed a metamodel-based 
IS method to approximate the optimal IS density func-
tion. Reference (Zhu et al. 2020) proposed a Meta-IS-AK 
method combining AK-IS and Meta-IS. Reference (Xiao 
et al. 2020a, b) proposed combined meta-model and strati-
fied IS for reliability analysis. Reference (Zhang et al. 2020) 
proposed an improved IS method with multiple sampling 
centers defined by the U learning function. Reference (Yun 
et al. 2020) proposed a radial-based IS method to increase 
the efficiency of AK-MCS, and the U learning function was 
adopted. Reference (Chen et al. 2022) proposed a parallel 
active learning strategy based on K-medoids clustering and 
IS.

Compared with IS, DS can reduce the dimension of 
variable space. Sample points are generated based on the 
directional vector, and the required candidate samples can 
be significantly reduced. Reference (Zhang et al. 2021) 
proposed the AK-DS method, which combined DS and 
adaptive Kriging through U function. The results show 
that the required computational cost and computer mem-
ory of DS are much lower than those of IS. Specially, 

importance directional sampling (IDS) is the combination 
of DS and IS by establishing the directional vector in the 
importance region. Based on DS, IDS can obtain the fail-
ure samples more effectively, and the computational effi-
ciency could be highly improved (Zhang et al. 2022). Ref-
erence (Guo et al. 2020) used the design point-based IDS 
and adaptive Kriging model for reliability analysis. How-
ever, in previous studies, U learning function is often 
adopted for IS- and DS-based Kriging methods. Recent 
study (Yun et al. 2021) has shown that the stopping crite-
rion of U function is too conservative, which may lead to 
many redundant training samples. Moreover, in the design 
point-based IDS method, in addition to the number of IDS 
samples, the main factor that affects the accuracy is 
whether the importance directional density function can 
represent the location of failure region accurately. The 
accuracy of design point will inevitably affect the accuracy 
of the method. Reference (Guo et  al. 2020) used the 
approximate design point to establish importance direc-
tional density function. However, the approximate degree 
is not specified, and the calculation of design point is 
before the establishment of Kriging model through learn-
ing function. The model accuracy is quite low at this time, 
and the precision of the fitted limit state boundary may be 
poor. This may lead to low accuracy of approximate design 
point, which may lead to improper importance directional 
density function. Some researchers suggest that to ensure 
the  accuracy of  des ign point ,  the  condi t ion ‖‖‖�∗i − �∗

i−1

‖‖‖
/‖‖‖�∗i−1

‖‖‖ < 𝛿 , where �∗
i
 is the design point in the 

i-th iteration and � is a small positive constant in standard 
normal space, should be met (Jia and Wu 2022). As IDS 
method also needs to update Kriging model in the sample 
space defined by importance direction density function, 
using this strategy will inevitably generate many redun-
dant training samples around the real design point, thus 
significantly increasing the required function calls.

This paper proposes a novel active learning strategy for 
IDS and adaptive Kriging model for reliability and failure 
probability-based global sensitivity analysis to solve the 
above problems, which is called Adaptive Kriging-Impor-
tance Directional Sampling-Reliability and Global Sen-
sitivity (AK-IDS-RGS) method. First, an improved stop-
ping criterion is proposed based on the idea of auxiliary 
region (Katafygiotis et al. 2007) to solve the problem that 
the stopping criterion of U function is too conservative. 
Then, an improved active learning strategy is proposed 
through the combination of optimization calculation and 
learning function, which realizes the synchronous updat-
ing of importance directional density function and Kriging 
model for the design point-based IDS, so as to ensure the 
accuracy of both Kriging model and importance direc-
tional density function with higher efficiency and avoid the 
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problem of only using approximate design point. Finally, 
the failure probability and failure samples obtained by IDS 
are adopted for variable global sensitivity analysis.

2 � Importance directional sampling

DS is a uniform sampling strategy in the whole sample space. 
If the directional vector is only established in the impor-
tance region, DS will change into IDS. When the input ran-
dom variables are converted to standard normal variables 
� =

(
Y1, Y2, ⋅ ⋅ ⋅, Yn

)
 , the failure probability is calculated by:

where � is the importance direction of � . p�(�) is the impor-
tance directional density function. F�2(⋅) is the cumulative 
distribution function of Chi-square distribution. rb is the 
module of IDS sample point �. f�(�) is the uniform direc-
tional density function, which is expressed as:

The IDS point �i
(
i = 1, 2, ⋅ ⋅ ⋅,NIDS

)
 can be generated 

through p�(�) . Then Eq. (1) is estimated by:

where I(⋅) is the indicator function of r�i . If r�i > 0 , 
I
(
−r�i

)
= 1 , otherwise I

(
−r�i

)
= 0 . I

(
−r�i

)
  is introduced 

here considering that there is no intersection at the limit state 
boundary along the direction of �i under the case of r�i < 0 . 
The variance of ⌢pf  can be obtained by calculating the vari-
ance at both ends of Eq. (3), which is estimated by:

The COV of ⌢pf can be calculated by Cov
(
⌢
pf

)
=

√
Var

(
⌢
pf

)/
⌢
pf

.

(1)pf = ∫�

[
1 − F�2

(
r2
b

)]
f�(�)

p�(�)
p�(�)d�

(2)f�(�) = Γ(n∕2)
/(

2�n∕ 2
)

(3)
⌢

pf =
1

NIDS

NIDS∑
i=1

I
(
−r�i

)[
1 − F𝜒2

(
r2
�i

)] f�
(
�i
)

p�
(
�i
)

(4)

Var

�
⌢

pf

�
= Var

�
1

NIDS

NIDS�
i=1

I
�
−r�i

��
1 − F𝜒2

�
r2
�i

�� f�
�
�i
�

p�
�
�i
�
�

=
1

N2

IDS

NIDS�
i=1

Var

�
I
�
−r�i

��
1 − F𝜒2

�
r2
�i

�� f�
�
�i
�

p�
�
�i
�
�

=
1

NIDS

Var

�
I
�
−r�i

��
1 − F𝜒2

�
r2
�i

�� f�
�
�i
�

p�
�
�i
�
�

=
1

NIDS

Var

�
I
�
−r�

��
1 − F𝜒2

�
r2
�

�� f�(�)
p�(�)

�

≈
1

NIDS − 1

⎧⎪⎨⎪⎩
1

NIDS

NIDS�
i=1

�
I
�
−r�i

��
1 − F𝜒2

�
r2
�i

�� f�
�
�i
�

p�
�
�i
�
�2

−

�
1

NIDS

NIDS�
i=1

I
�
−r�i

��
1 − F𝜒2

�
r2
�i

�� f�
�
�i
�

p�
�
�i
�
�2⎫⎪⎬⎪⎭

=
1

NIDS − 1

�
1

NIDS

N�
i=1

�
I
�
−r�i

��
1 − F𝜒2

�
r2
�i

��2 f�
�
�i
�2

p�
�
�i
�2

�
−

⌢

p
2

f

�

In order to determine p�(�) , the following methodology 
based on the design point could be adopted. In standard nor-
mal space, the tangent plane ZL of the limit state boundary 
Z = g�(�) = 0 at the design point �∗ is expressed as:

where �� is the directional vector at the design point, that 
is, �� = −∇g�(�

∗)
/‖‖∇g�(�∗)‖‖ . � is the reliability index. ‖⋅‖ 

is the norm of vector. For Eq. (5), in order to make ZL < 0 , 
R��

�
� > 𝛽 is required. That is, the directional vector which 

satisfies the condition ��
�
� > 0 can direct to the importance 

region. If  � is obtained, pf  can be approximately calculated 
by pf ≈ Φ(−�) , where Φ(⋅) is the cumulative distribution 
function of standard normal distribution. If only the impor-
tance region with ��

�
� > 0 is considered, submit Φ(−�) 

into Eq. (1), the following integral can be obtained based 
on Eq. (1):

Based on Eq. (6), p�(�) can be selected as:

When the directional vector meets the condition ��
�
� > 0 , 

the generated IDS samples � are all located in the region 
ZL < 0 . If the nonlinearity degree of Z is low, Z can be approx-
imated by ZL around the design point, and Eq. (7) can com-
pletely cover the importance region. If the nonlinearity degree 
of Z at the design point is high, Z cannot be approximated by 
ZL . The region Z < 0 is not completely included in ZL < 0 , and 
the direction ��

�
� < 0 should also be considered. In order to 

ensure that the samples fall into the region ZL ≥ 0 ∩ Z < 0 , 

a combination coefficient p could be adopted to combine 
Eqs. (7) and (2), as shown in Eq. (8):

(5)ZL = ‖‖∇g�(�∗)‖‖
(
� − R��

�
�
)
= 0

(6)∫��
�
�>0

1

Φ(−𝛽)

{
1 − F𝜒2

[
𝛽2
/(

��
�
�
)2]}

f�(�)d� ≈ 1

(7)p�(�) =
1

Φ(−�)

{
1 − F�2

[
�2
/(

��
�
�
)2]}

f�(�)
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by defining p , the application scope of Eq.  (7) can be 
expanded, which makes it more suitable for the limit state 
function with high nonlinearity. p is generally a small con-
stant, which is usually assumed in the interval [0, 0.2] . If the 
nonlinearity degree of limit state function is high, p can be 
appropriately increased. Specially, if p = 0 , all samples are 
located in the region ZL < 0.

In order to generate samples based on Eq. (8), a following 
distribution is defined:

If random samples are generated for variable V  , the direc-
tional vector � +

(
V − ��

�
�
)
�� is distributed on both sides 

of ZL = 0 . In order to generate random sample v , random 
samples u could be generated firstly based on standard uni-
form distribution, and v could be calculated by:

Once v are obtained, the corresponding IDS sample � could 
be obtained, that is:

Then the failure probability could be calculated by Eq. (3).

3 � Global sensitivity analysis based 
on failure probability and Bayes theorem

Based on failure probability, the impact of ith variable Yi is 
measured by:

where pf
(
F|yi

)
 is the conditional failure probability, which 

is defined as:

Based on Bayes theorem, pf
(
F|yi

)
 is rewritten as:

(8)

p�(�) =

{
p +

1 − p

Φ(−�)

{
1 − F�2

[
�2
/(

��
�
�
)2]}

f�(�)

}

(9)FV (v) =

{
pΦ(v) v ≤ 𝛽

pΦ(v) + (1 − p)
[
1 −

Φ(−v)

Φ(−𝛽)

]
v > 𝛽

(10)v =

{
Φ−1(u∕p) u ≤ p,Φ−1(u∕p) ≤ �

−Φ−1
[

Φ(−�)(1−u)

1−p+pΦ(−�)

]
else

(11)� =
[
� +

(
v − ��

�
�
)
��

]/‖‖‖� +
(
v − ��

�
�
)
��

‖‖‖

(12)s
(
yi
)
=
||||
⌢

pf − pf
(
F|yi

)||||

(13)pf
(
F|yi

)
= P

{
g(�) ≤ 0|yi

}

(14)pf
(
F|yi

)
=
(

⌢

pf fYi

(
yi|F

))/
fYi

(
yi
)

where fYi
(
yi|F

)
 is conditional probability density function 

of Yi in the failure region. Then the global sensitivity index 
could be calculated by:

where fYi
(
yi|F

)
 is the conditional probability density func-

tion of Yi . Equation (15) could be calculated by discreting 
fYi

(
yi
)
  and  fYi

(
yi|F

)
 in the entire distribution region of Yi , 

that is:

where Δ(f ) is the width of discrete interval of Yi . Ndis is the 
number of discrete points. fYij

(
yij
)
 and fYij

(
yij|F

)
 are the 

probability density function and the conditional probability 
density function values of Yi  at the j - th discrete point. In 
standard normal space, the distribution region of random 
variables could be defined in the interval of [− 5,5] (Zhang 
et al. 2019). In Refs. (Wang et al. 2019; Guo et al. 2021; Lei 
et al. 2022), kernel density estimation is adopted to build 
fYi

(
yi|F

)
 . However, it has some limitations, such as the 

bandwidth has a great impact on the estimation results, and 
the fitting of edge data is easy to make mistakes. In this 
paper, Gaussian mixture model (GMM) (Lu et al. 2017), 
which has stronger applicability than KDE, is used to fit 
fYi

(
yi|F

)
 . The expression of GMM is:

where N(⋅) is the probability density function of normal dis-
tribution.M is the number of Gaussian distributions. �k is the 

weight, and 
M∑
k=1

�k = 1 . �k, �k are the mean and covariance 

matrix of the kth Gaussian distribution, respectively. In order 
to estimate �k, �k and �k , expectation maximization (EM) 
method is often adopted, as shown in Eqs. (18)–(21).

(15)𝜂i =
1

2 ∫Yi

||||
⌢

pf − pf
(
F|yi

)||||fYi
(
yi
)
dyi =

⌢

pf

2 ∫Yi

|||fYi
(
yi
)
− fYi

(
yi|F

)|||dyi

(16)𝜂i =

⌢

pf

2

Ndis∑
j=1

|||fYij
(
yij
)
− fYij

(
yij|F

)|||Δ(f )

(17)f
(
�i
)
=

M∑
k=1

�kN
(
�i|�k, �k

)

(18)�k
ij
=
[
�jN

(
�i|�j, �j

)]/[
M∑
k=1

(
�i|�k, �k

)]

(19)�k+1
i

=
1

nd

nd∑
j=1

�k
ij

(20)�k+1
i

=

[
nd∑
j=1

(
�k
ij
�j

)]/(
nd∑
j=1

�k
ij

)
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where nd is the number of training samples. Through con-
tinuously iterating, the iteration stops when the variation 
of the likelihood function less than a small constant eps . 
eps = 1e − 12 is adopted to ensure the accuracy. The likeli-
hood function is expressed as:

(21)

�k+1
i

=

{
nd∑
j=1

[
�k
ij

(
�j − �k

i

)(
�j − �k

i

)T]
}/(

nd∑
j=1

�k
ij

)

(22)L(�|�) =
nd∑
i=1

ln

(
K∑
k=1

�kN
(
�k|�k, �k

))

As � is derived from ⌢pf  and random generated failed sam-
ple points, the randomness of � should also be considered. 
Suggested by Refs. (Wang et al. 2019; Zhang et al. 2021), 20 
independent runs of the method could be adopted to estimate 
the mean and standard deviation of � , which are defined as 
�(�) and �(�) respectively. Then COV(�) = �(�)∕�(�) could 
be used to measure the randomness.

4 � Adaptive Kriging model

4.1 � Learning function

This paper adopts the most commonly used adaptive Krig-
ing model as the surrogate model to reduce the required 

function calls of IDS. The concept of Kriging model has 
been described in many previous researches, which will not 
be discussed in this paper. Learning function is the core of 
active learning. Presently, U and EFF are the most commonly 
used learning functions for active learning. Besides, Research-
ers also provided different learning functions, such as REIF 
(Zhang et al. 2019), ERF (Yang 2015) and H (Lv et al. 2015) 
functions. The above learning functions are shown in Eqs. 
(23)–(27). The adding point criterions of the above learning 
functions are �∗ = argmin (U(�)),�∗ = argmax (EFF(�)) , 
�∗ = argmax (REIF(�))  ,  �∗ = argmax (ERF(�))  a n d 
�∗ = argmax (H(�)) respectively.

(23)U(�) =
||||𝜇⌢

g
(�)

||||
/

𝜎⌢
g
(�)

(24)

EFF(�) = 𝜇⌢
g
(�)

⎡
⎢⎢⎣
2Φ

⎛
⎜⎜⎝

−𝜇⌢
g
(�)

𝜎⌢
g
(�)

⎞
⎟⎟⎠
− Φ

⎛
⎜⎜⎝

−2𝜎⌢
g
(�) − 𝜇⌢

g
(�)

𝜎⌢
g
(�)

⎞
⎟⎟⎠
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⎛
⎜⎜⎝
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(�) − 𝜇⌢
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(�)
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⎞
⎟⎟⎠

⎤⎥⎥⎦
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4.2 � Stopping criterion of learning function

In Ref. (Guo et al. 2020), the stopping criterion for U func-
tion is used for IDS. However, this criterion is too conserva-
tive and will introduce many redundant training samples. 
Presently, the error-based stopping criterion has been widely 
used to solve the problems. The size of samples 

⌢

Ss which are 
failed predicted by Kriging model but actually reliable is 
subjected to a normal distribution, that is:

where 
⌢

Ns is the size of reliable samples predicted by Kriging 
model. In addition, the size of samples 

⌢

Sf  which are reliable 
predicted by Kriging model but actually failed can be 
approximately represented by normal distribution with mean 
and standard deviation 𝜇⌢

S f

 and 𝜎⌢

S f

 respectively:

where 
⌢

Nf  is the size of failed samples predicted by Kriging 
model.

In order to ensure the fitting accuracy of Kriging model, 
the difference between 

⌢

Nf  and Nf  should be small enough, 
where Nf  is the size of samples which are actually failed. The 
maximum relative error � between 

⌢

Nf  and Nf  could be calcu-
lated by:

(28)
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⎜⎜⎝
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⎟⎟⎠
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where 
⌢

S

u

f
 and 

⌢

S

u

s
 are the upper bounds of 

⌢

Sf  and 
⌢

Ss respec-
tively. When �thr small enough, the Kriging model is suf-
ficient accuracy.

The error-based stopping criterion has been widely used in 
MC-based Kriging reliability methods. However, there are still 
some limitations. First, researchers have demonstrated that some 
additional samples with low contribution to the Kriging model 
will be introduced (Wang et al. 2022). Second, this criterion 
requires the distributions of both 

⌢

Sf  and 
⌢

Sf  . For IDS method, as 
most of the generated importance directional samples are distrib-
uted in the failure region, establishing the distributions of both  

⌢

Sf  
and 

⌢

Sf considering the number of reliable samples is unnecessary. 
This paper will propose a more concise stopping criterion, which 
is established based on the idea of auxiliary region. As shown 
in Fig. 1, the auxiliary region ΩA is defined as the failure region 
fitted by Kriging model, and the real failure region is defined as 
ΩR . Based on Bayes conditional probability formula, the real 
failure probability pf

(
ΩR

)
 is defined as:

where pf
(
ΩA

)
 is the failure probability in ΩA . The condi-

tional failure probabilities pf
(
ΩR|ΩA

)
 and pf

(
ΩA|ΩR

)
 

depend on the overlapping degree of ΩA and ΩR . Actually, 
the ratio of  pf (ΩR|ΩA)

pf (ΩA|ΩR)
 acts as a correction factor of pf

(
ΩA

)
 to 

decrease the difference between pf
(
ΩR

)
 and pf

(
ΩA

)
 . The 

closer pf (ΩR|ΩA)
pf (ΩA|ΩR)

 to 1 means the lower difference and the 

higher fitting degree of  ΩR and ΩA . Then, pf (ΩR|ΩA)
pf (ΩA|ΩR)

 could be 

adopted to define a stopping criterion for Kriging.
Since the introduction of Eq. (31) is to determine whether 

the failure region can be accurately fitted by Kriging model, 
it is sufficient to ensure that the symbol of IDS samples can 
be judged correctly without real failure probability in this 
step. In regard of this, an estimation method based on the 
number of failure samples located in the corresponding 
region and the prediction uncertainty of Kriging model is 
proposed to estimate pf

(
ΩR|ΩA

)
 and pf

(
ΩA|ΩR

)
 . According 

to Ref. (Yang et al. 2018), the predicted failure region in 
which the sign of performance function remains uncertain 
and the region with large probability to be negative are 
defined as Su

f
 and Sl

f
 respectively:

(30)
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}
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=
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g
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g
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}

Fig. 1   Auxiliary region
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the predicted reliable region in which the sign of perfor-
mance function remains uncertain and the region with 
large probability to be positive are defined as Su

r
 and Sl

r
 

respectively:

�= 1.96 could be adopted in Eqs. (32) and (33) to select 
the samples with large probability (larger than 95%) to be 
negative or positive. Therefore, the predicted failure samples 
distributed in Sl

f
 could be regarded as the real failure sam-

ples. Then pf
(
ΩR|ΩA

)
 can be approximately calculated by 

the ratio of the number of samples falling in the correspond-
ing region to the total number of samples, that is:

where NSl
f
 is the number of samples falling in the region Sl

f
 . 

For pf
(
ΩA|ΩR

)
 , as the number of real failure samples is 

unknown, based on the prediction uncertainty of Kriging 
model, the upper bound of the ratio of the number of sam-
ples in the real failure region to the total number of IDS 
samples can be adopted to define pf

(
ΩA|ΩR

)
 , that is:

where NSu
f
 and NSu

r
 are the numbers of samples falling in the 

regions Su
f
 and Su

r
 respectively. The purpose of introducing 

NSu
r
 is to treat all samples which the sign of performance 

function is uncertain as failure samples, so as to increase the 
sample size in the auxiliary region, and the upper bound of 
pf
(
ΩA|ΩR

)
 could be obtained. Then the auxiliary region-

based stopping criterion is defined as:

�af  is a positive constant with the maximum value of 1. The 
larger �af  means the higher coincidence degree of ΩA and 
ΩR . The purpose of Eq. (36) is to minimize the proportion 
of samples which the sign of performance function has large 
uncertainty in the total failure samples, so as to minimize 
t h e  d i f fe r e n c e  b e t w e e n  ΩA  a n d  ΩR  .  I f 
NSl

f

/(
NSu

f
+ NSl

f
+ NSu

r

)
= 1 , it means that NSu

f
 and NSu

r
 are 

both 0, and  ΩR and ΩA complete overlap.

(33)

Su
r
=

{
𝜇|0 < 𝜇⌢

g
(�) < 𝛿𝜎⌢

g
(�)

}
, Sl

r
=

{
𝜇|𝜇⌢

g
(�) ≥ 𝛿𝜎⌢

g
(�)

}

(34)pf
(
ΩR|ΩA

)
= NSl

f

/
NIDS

(35)pf
(
ΩA|ΩR

) ≤ (
NSu

f
+ NSl

f
+ NSu

r

)/
NIDS

(36)

pf
(
ΩR|ΩA

)

pf
(
ΩA|ΩR

) ≥
(

NSl
f

NIDS

)/(
NSu

f
+ NSl

f
+ NSu

r

NIDS

)

=
NSl

f

NSu
f
+ NSl

f
+ NSu

r

≥ �af

4.3 � The proposed active learning strategy for IDS

As mentioned in Introduction, the approximate design point-
based importance directional density function may be not 
accurate enough. This paper proposes an improved active 
learning strategy. Its main idea is to synchronize the calcula-
tion process of design points and Kriging model updating, 
rather than calculating separately.

Suggested by Ref. (Jia and Wu 2022), the essence of cal-
culating design point in standard normal space is to solve 
the following optimization problems:

where ĝ(�) = 0 is the current limit state boundary. f (�) is the 
joint probability density function of input variables. Equa-
tion (37) could be solved by gradient-based algorithms or 
other evolutionary algorithms. Based on Eqs. (11) and (37), 
the proposed active learning strategy is summarized as fol-
lows: First, calculate the design point through Eq. (37), and 
the obtained design point should be added into the current 
training set of Kriging model. Then, based on this design 
point, establish the importance directional sampling function 
through Eq. (8), and the importance directional samples are 
generated through Eq. (37). Next, take these important direc-
tional samples as current candidate sample set, and Kriging 
model is updated through learning function in the current 
sample space. The updating process stops when the stop-
ping criterion defined by Eq. (36) is satisfied, and the failure 
probability could be obtained through Eq. (7). Finally, use 
Eq. (37) to solve the new design point based on the updated 
Kriging model. Re-build the importance directional density 
function and re-generate importance directional candidate 
sample set. Repeat the above steps and stop calculating when 
the final stopping criterion is satisfied. The final stopping 
criterion is defined as:

where ⌢p
i

f
  is the obtained i-th failure probability. The mean-

ing of Eq. (38) is: when the relative error of failure prob-
ability for three consecutive times is less than � , the accuracy 
is considered to be sufficient, so as to output the final result.

Compared with Ref. (Guo et al. 2020), the major advan-
tage of the proposed active learning strategy is that it realizes 
the synchronization of Kriging model updating and impor-
tance directional density function establishment, rather than 
only establishing the importance directional density function 
through the approximate design point, and it will also not put 

(37)

{
�∗ = argmax f (�)

s.t. ĝ(�) = 0

(38)
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too much computation cost in the process of calculating design 
point. Since the design point has the largest contribution to 
failure probability on limit state boundary, adding the obtained 
design point into the training set is very helpful for the fitting 
of limit state boundary of Kriging model. Also, the candidate 
samples generated by the importance directional density func-
tion can be used to update Kriging model in the current sample 
space through learning function, which can not only improve 
the fitting accuracy of limit state boundary, but also improve 
the accuracy of design point, thus the update of importance 
directional density function in the next iteration is achieved. 
In this way, after satisfying the final stopping criterion, more 
accurate importance directional density function and failure 
probability could be obtained at the same time.

5 � Summarized of the proposed method

Based on previous sections, the steps of the proposed AK-
IDS-RGS method for reliability and global sensitivity analy-
sis are summarized as follows:

Step 1	� Transform the random variables into standard 
normal space, and establish the initial Kriging 
model. Suggested by Ref. (Zhang et al. 2019), the 
samples with the population N = max (12, n) are 
generated by Sobol sequence as the initial train-
ing set in the interval [− 5,5]. Calculate the real 
values of limit state function of these samples. 
Through the initial training set, the initial Kriging 
model is established.

Step 2	� Calculate design point �∗ and direction vector 
�� through the current Kriging model based on 
Eq. (37).

Step 3	� Generate random samples �i, i = 1, 2, ⋅ ⋅ ⋅,Nids and 
ui, i = 1, 2, ⋅ ⋅ ⋅,Nids through standard normal dis-
tribution and standard uniform distribution in the 
interval [0, 1] , respectively.

Step 4	� Calculate IDS samples �i, i = 1, 2, ⋅ ⋅ ⋅,Nids based 
on Eq. (11). The sample set containing all IDS 
samples is defined as the candidate sample set for 
active learning.

Step 5	� Calculate the value of learning function of all 
candidate samples. According to the learning 
function of adaptive Kriging model, the optimal 
sample point is selected and added to the train-
ing set. Calculate the real value of performance 

function of the optimal point, and update the 
Kriging model.

Step 6	� Judge the stopping criterion of Kriging model in 
the current sample space. If the stopping criterion 
defined by Eq. (36) is satisfied, stop the active 
learning process and turn to Step 7. Otherwise, 
return to Step 6 and update the Kriging model. 
In order to ensure the accuracy, �af = 0.98 is 
adopted.

Step 7	� Calculate ⌢pf  and Var
(

⌢

pf

)
 through Eqs. (3) and (4) 

respectively through the Kriging model.

Step 8	� Return to Step 2 and re-calculate �∗ and �� 
through the current Kriging model based on 
Eq. (37). Repeat Step 2-Step 7 until the final stop-
ping criterion defined by Eq. (38) is satisfied. This 
paper adopts � = 0.05 . If the final stopping crite-
rion is satisfied, output ⌢pf  and Var

(
⌢

pf

)
 in the last 

iteration as the final result. Otherwise, return to 
Step 2 and obtain new �∗ and ��.

Step 9	� Judge whether the Cov
(

⌢

pf

)
 meets the accuracy 

requirement. This paper selects 5% as the thresh-
old. If Cov

(
⌢

pf

)
< 5% , output ⌢pf  and Cov

(
⌢

pf

)
 as 

the final results. Otherwise, return to Step 3 to 
expand the candidate sample set.

Step 10	� Select all failure samples. Calculate global sensi-
tivity index  �i for each input variable through 
Eq. (15) based on GMM. Based on Eq. (32), the 
failure samples are distributed in the region Sl

f
.

The proposed AK-IDS-RGS is the further development 
of AK-IDS (Guo et al. 2020). The following major improve-
ments are made: (1) A novel auxiliary region-based stop-
ping criterion is introduced based on the size of failure sam-
ples, which can reduce the number of training samples and 
improve the efficiency of active learning. (2) An improved 
active learning strategy is proposed based on optimization 
and active learning function, which realizes the synchro-
nous updating of importance directional density function 
and Kriging model, instead of only establishing importance 
directional density function through the approximate design 
point. The flow chart of the proposed AK-IDS-RGS is pre-
sented in Fig. 2.
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Fig. 2   Flow chart of AK-IDS-
RGS

Fig. 3   Sample distribution of different methods
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6 � Numerical examples

In this section, five numerical examples are used to illustrate 
the proposed method. MC method is used as the benchmark, 

and the relative error is calculated by 
||||
⌢

pf − pfmc
||||
/

pfmc , 

where pfmc is the failure probability calculated by crude MC. 
Several existing methods are used for comparative calcula-
tion, including AK-MCS, AK-IS, AK-DIS, AK-MCS-ESC-
U, AK-MCS-ESC-EFF and AK-IS-ESC. Each method is 
independently calculated for 20 times, and the mean values 
are taken as the final results. In addition, in order to select 
the optimal active learning strategy, the learning functions 
in Eqs. (23)–(27) are adopted on the proposed AK-IDS-RGS 
respectively, and performance of different learning functions 
will be studied.

6.1 � A simple performance function with two 
random variables

This section studies a bi-dimensional performance function 
(Zhou et al. 2015), as shown in Eq. (39), where x1 and x2 are 
both standard normal variables.

U function is adopted on AK-IDS-RGS firstly. Figure 3 
shows the distribution characteristics of candidate samples 
and the fitting accuracy of limit state boundary of AK-MCS, 
AK-IS and AK-IDS-RGS. The fitting accuracy of limit state 
boundary by Kriging models of the three methods are all rel-
atively high. However, a large number of candidate samples 
are required in AK-MCS. Also, a large number of samples 
fall outside the failure region, which are very far from the 

(39)g1 = exp
(
0.2x1 + 1.4

)
− x2

Table 1   Results of different 
methods in Example 1

Method pf
(
10

−4
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

MC 3.5635 8e6 / 1.87 8e6
AK-MCS 3.5296 22.2 0.95 1.91 8e6
AK-IS 3.6036 21.5 1.13 1.57 2e4
AK-DIS 3.6014 23.5 0.95 1.54 2e3
AK-MC-ESC-U 3.5473 17.8 0.45 1.89 8e6
AK-MC-ESC-EFF 3.5903 22.4 0.75 1.89 8e6
AK-IS-ESC 3.6153 19.6 1.45 1.92 2e4
AK-IDS-RGS 3.5533 21.2 0.29 1.13 2e3

Table 2   Results of AK-IDS-
RGS under different learning 
functions in Example 1

Method pf
(
10

−4
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

AK-IDS-RGS-EFF 3.6009 20.4 1.05 1.16 2e3
AK-IDS-RGS-REIF 3.5745 22.3 0.31 1.17 2e3
AK-IDS-RGS-ERF 3.5706 22.9 0.20 1.14 2e3
AK-IDS-RGS-H 3.6039 19.5 1.13 1.15 2e3

Fig. 4   Results of global sensi-
tivity analysis in Example 1
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limit state boundary. AK-IS method significantly reduces the 
number of candidate samples, but there are still about 50% of 
the points falling outside the failure region. Compared with 
AK-MCS and AK-IS, the required candidate samples in AK-
IDS-RGS-U are much smaller, and most of these samples are 
located in the failure region. Although a few training points 
are distributed far from the limit state boundary, the fitting 
degree of Kriging model is still high, and the total number 
of training points is less than MC and IS methods. Therefore, 
AK-IDS-RGS can effectively obtain the failure samples for 
reliability and sensitivity analysis.

The results of different methods are listed in Table 1. It 
can be seen that the accuracy of these methods is relatively 
high, as the relative error and COV are all less than 2%. 
However, the required computer memory has great differ-
ences. The candidate sample size of AK-IDS-RGS is only 
2e3, while the required candidate samples of MC- and IS-
based Kriging methods are 8e6 and 2e4 respectively. There-
fore, the required computation cost of the proposed method 
is significantly lower than MC and IS.

The results of AK-IDS-RGS under different learning 
functions are shown in Table 2, where “-EFF” means that 
the EFF learning function is adopted. It can be seen that the 
relative errors of the four learning functions are all lower 
that 1.2%, and the required function calls also have little 
difference. Therefore, all learning functions can obtain high 
accuracy failure probability based on the proposed AK-IDS-
RGS method in this example.

The global sensitivity index is calculated based on fail-
ure probability and Bayes theorem through GMM. This 
paper only discusses the results based on AK-IDS-RGS 
under different learning functions, and the index based on 
MC method is used as benchmark. The results are shown 
in Fig. 4. From Fig. 4a, it can be seen shown that x2 is 
more influential than x1 on the failure probability. In AK-
IDS-RGS, all learning functions can judge the relative 
importance of the two variables, and the values of �(�) 

Fig. 5   Aero-engine turbine disk

Table 3   Random variables in 
Example 2

�s � C A HJ w

Mean 2e9 8240 5.67 6.2e−3 1.22e−4 200
COV (%) 10 20 20 10 10 10

Table 4   Results of different 
methods in Example 2

Method pf
(
10

−4
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

MC 2.1320 1e7 / 2.17 1e7
AK-MCS 2.0473 109.4 3.97 2.22 1e7
AK-IS 2.2018 88.9 3.27 2.18 1e4
AK-DIS 2.1702 81.3 1.79 2.32 2e3
AK-MC-ESC-U 2.0835 76.5 2.27 2.26 1e7
AK-MC-ESC-EFF 2.2284 69.2 4.52 2.31 1e7
AK-IS-ESC 2.1085 78.4 1.10 2.36 1e4
AK-IDS-RGS 2.1212 63.7 0.51 1.58 2e3

Table 5   Results of AK-IDS-
RGS under different learning 
functions in Example 2

Method pf
(
10

−4
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

AK-IDS-RGS-EFF 2.1655 59.3 1.57 1.62 2e3
AK-IDS-RGS-REIF 2.1715 77.4 1.85 1.54 2e3
AK-IDS-RGS-ERF 2.1949 62.1 2.95 1.49 2e3
AK-IDS-RGS-H 2.2123 63.9 3.77 1.53 2e3
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calculated by different learning functions also have little 
difference. Therefore, AK-IDS-RGS can effectively obtain 
the failed samples with less candidate samples and com-
puter memory, which is very suitable for failure probabil-
ity-based global sensitivity analysis. From Fig. 4b, it can 
be seen that the COV(�) of all learning functions are lower 
than 3%, which illustrates that the proposed method can 
obtain high robustness global sensitivity index.

6.2 � An aero‑engine turbine disk

The aero-engine turbine disk is studied in this section, as 
shown in Fig. 5 (Yun et al. 2020). The performance func-
tion is defined as:

(40)g2 = �sA −
C(2�w)2

2�
+ 2�(2�w)2HJ

where �s,�,C , A,HJ and w  are the ultimate strength, mass 
density, coefficient, cross-sectional area, cross section 
moment of inertia and rotational frequency, respectively. The 
information of random variables is listed in Table 3, and 
all variables are independent normal variables. The failure 
probabilities are listed in Table 4. Comparing AK-IDS-RGS 
with AK-MCS and AK-IS methods, the number of candidate 
samples of AK-IDS-RGS is only 2e3, and the number of 
required function calls is only 63.7. These illustrate that the 
proposed method has high efficiency with lower computer 
memory. The required function calls of AK-DIS is 81.3, the 
efficiency is much lower than the proposed AK-IDS-RGS. 
The results show that the proposed method can increase the 
efficiency of active learning of IDS.

The results of AK-IDS-RGS under different learning 
functions are listed in Table 5. The number of required func-
tion calls of EFF is 59.3, which the lowest in the five learn-
ing functions. The relative error of H is 3.77%, the accuracy 
is lower than other functions. The relative errors of REIF 

Fig. 6   Iteration curves of performance function values of training points and failure probability in Example 2
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and ERF functions are 1.85% and 2.95% respectively, which 
means that the accuracy of the two functions is also slightly 
lower than EFF and U functions. The iteration curves of the 
performance function values of training points and failure 
probability based on U and EFF learning functions by one 
calculation are shown in Fig. 6. It can be seen that when the 

number of added samples is larger than 20, the performance 
function values of added samples are very close to 0, which 
means that the proposed active learning strategy can effec-
tively obtain the samples around the limit state boundary. In 
addition, the numbers of failure probability calculations for 
the U and EFF functions are 13 and 12 respectively, which 
means that the number of added design point are 13 and 
12 respectively. Therefore, after the design point calcula-
tion is completed, the number of samples added based on 
the current Kriging model is approximately 4–5, and the 
number of training points based on solving design point is 
significantly less than the number of training points based 
on learning function.

The global sensitivity indexes calculated by AK-IDS-
RGS are shown in Fig. 7 The most influential variable is w , 
while the variable with the least impact is C . The learning 
functions of which the variable sensitivity index order is 
consistent with MC are U, EFF and H functions, and the 
COV

(
⌢

𝜂

)
 of all variables are all lower than 5%. This illus-

trates that the proposed AK-IDS-RGS can obtain sensitivity 
indexes with high robustness. Therefore, combining sensitiv-
ity index and failure probability, the suitable learning func-
tions for AK-IDS-RGS should be U, EFF and H functions in 
this example.

6.3 � A conical structure

A conical structure (Huang et al. 2021) is used in this sec-
tion, as shown in Fig. 8.

The performance function of this example is defined as:

the random variables are listed in Table 6. All of them are 
independent normal variables, and the results are shown in 
Table 7. The required candidate samples of AK-IDS-RGS 
are 2e3, which are much lower than MC- and IS-based 

(41)g3 = 1 −

√
3
(
1 − �2

)

�Et2 cos2 �

(
P

2�
+

M

�r1

)

Fig. 7   Results of global sensi-
tivity analysis in Example 2

Fig. 8   Conical structure

Table 6   Random variable parameters in Example 3

Random variable Meaning Mean Standard deviation

E(Pa) Young’s modulus 7e10 3.5e9
t(m) Thickness 0.0025 0.000125
�(rad) Slope angle 0.524 0.01048
r
1
(m) Internal radius 0.9 0.0225

M(N ⋅m) Bending moment 90,000 8000
P(N) Axial load 20,000 1000
� Poisson’s ratio 0.3 0.05
� Experimental coef-

ficient
0.33 0.033

� Experimental coef-
ficient

0.41 0.041
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methods. Therefore, IDS can significantly reduce the candi-
date sample size in active learning. For MC- and IS-based 
methods, the required function calls are all larger than 200. 
In addition, the required function calls of AK-IDS-RGS 
are only 155.7, which is the lowest in the methods listed in 
Table 7. The relative error of AK-IDS-RGS is 1.27%, which 
means that the proposed method also has high accuracy. The 
required function calls of AK-DIS is 441.9, which is much 
higher than AK-IDS-RGS. The results show that the pro-
posed active learning strategy is more suitable for IDS.

The results of AK-IDS-RGS under different learning 
functions are shown in Table 8. The relative error of REIF 
is 6.42%, the accuracy is lower than other learning func-
tions. The required function calls of AK-IDS-RGS under 
REIF is 151.6, which is the lowest in the five learning 
functions, but the relative error is 6.42%, the accuracy is 
the lowest. The relative error of ERF is 2.31%, which is 
slightly larger than U and EFF. The learning function with 
the highest accuracy is EFF, as the relative error is only 
0.42%. Therefore, U, EFF, H and ERF could be adopted on 
AK-IDS-RGS in this example. The iteration curves of the 
performance function values of training points and failure 
probability based on U and EFF learning functions by one 
calculation are shown in Fig. 9. The numbers of failure 
probability calculations are 8 and 9, respectively, which 
are is significantly less than the total number of training 
samples. The results show that the active learning method 
proposed in this paper does not require too much computa-
tion cost in design point calculation.

The results of global sensitivity index are shown in 
Fig. 10. � and t  have the most significant impact on the 
failure probability, while  P and � have little impact. The 
sensitivity indexes obtained by U, EFF and H functions are 
slightly different from those of MC method, while the sen-
sitivity indexes obtained by REIF and ERF functions have 
big difference comparing with MC. From the COV

(
⌢

𝜂

)
 , it 

can be seen that the COV
(

⌢

𝜂

)
 of all variables under U, EFF, 

and H functions are all lower than 5%. Under other learn-
ing functions, the COV

(
⌢

𝜂

)
 of some variables are larger 

than 10% or even 15%. Therefore, combining the results 
of failure probability and global sensitivity index, U, EFF, 
and H functions are suitable for AK-IDS-RGS in this 
example.

6.4 � Automobile front axle beam

The reliability of the automobile front axle beam is studied 
in this section, as shown in Fig. 11. The performance func-
tion is written as:

(42)

g4 = �s −
√
�2 + 3�2

� = M
�
Wx, � = T

�
W�

Wx =
a(h − 2t)3

6h
+

b

6h

�
h3 − (h − 2t)3

�

W� = 0.8bt2 + 0.4
�
a3(h − 2t)

�
t
�

Table 7   Results of different 
methods in Example 3

Method pf
(
10

−5
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

MC 7.7150 2e7 / 2.55 2e7
AK-MCS 8.1330 621.6 5.42 2.51 2e7
AK-IS 7.8751 643.8 2.08 2.33 1e4
AK-DIS 7.9231 441.9 2.70 2.16 2e3
AK-MC-ESC-U 7.9118 337.2 2.55 2.42 2e7
AK-MC-ESC-EFF 7.9284 251.7 2.77 2.38 2e7
AK-IS-ESC 7.5927 273.5 1.59 2.47 1e4
AK-IDS-RGS 7.8127 155.7 1.27 1.98 2e3

Table 8   Results of AK-IDS-
RGS under different learning 
functions in Example 3

Method pf
(
10

−5
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

AK-IDS-RGS-EFF 7.6804 161.8 0.42 2.04 2e3
AK-IDS-RGS-REIF 8.2140 151.6 6.42 2.07 2e3
AK-IDS-RGS-ERF 7.8933 155.3 2.31 1.86 2e3
AK-IDS-RGS-H 7.6241 160.2 1.18 1.95 2e3
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Fig. 9   Iteration curves of performance function values of training points and failure probability in Example 3

Fig. 10   Results of global sensi-
tivity analysis in Example 3
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The information of random variables is listed in Table 9. 
All variables are independent normal random variables. The 
results of failure probability are shown in Table 10. The 
required candidate sample size of AK-IDS-RGS is 2e3, and 
the required function calls and relative error are 37.3 and 
1.02% respectively. The number of required function calls of 
AK-IDS-RGS is the lowest compared with other techniques, 

and the candidate sample size of IDS is much smaller than 
MC and IS. The results show that the efficiency of AK-
IDS-RGS is much higher than MC- and IS-based Krig-
ing method. Compared with AK-IDS-RGS, the number of 
required function calls of AK-DIS is 65.8. Once again, the 
results show that the proposed active learning strategy can 
effectively reduce the number of training samples in IDS.

Fig. 11   Automobile front axle 
beam

Table 9   Random variables 
parameters in Example 4

�s(N ⋅mm) a(mm) b(mm) t(mm) h(mm) M(N ⋅mm) T(N ⋅mm)

Mean 580 12 65 14 85 3.5e6 3.1e6
Standard 

derivation
40 0.06 0.325 0.07 0.425 1.75e6 1.55e5

Table 10   Results of different 
methods in Example 4

Method pf
(
10

−4
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

MC 1.5430 1e7 / 2.55 1e7
AK-MCS 1.4830 77.1 3.89 2.62 1e7
AK-IS 1.4938 71.5 3.19 2.14 1e5
AK-DIS 1.5625 65.8 1.26 2.72 2e3
AK-MC-ESC-U 1.6140 51.2 4.60 2.53 1e7
AK-MC-ESC-EFF 1.5150 48.5 1.81 2.49 1e7
AK-IS-ESC 1.4048 39.4 8.89 1.83 1e5
AK-IDS-RGS 1.5587 37.3 1.02 1.55 2e3

Table 11   Results of AK-IDS-
RGS under different learning 
functions in Example 4

Method pf
(
10

−4
)

Function calls Relative error 
(%)

COV (%) Candidate 
sample size

AK-IDS-RGS-EFF 1.5261 38.5 1.10 1.45 2e3
AK-IDS-RGS-REIF 1.6055 44.8 4.05 1.49 2e3
AK-IDS-RGS-ERF 1.4703 42.7 4.71 1.58 2e3
AK-IDS-RGS-H 1.4688 47.2 4.81 1.51 2e3
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Fig. 12   Iteration curves of 
performance function values of 
training points and failure prob-
ability in Example 4

Fig. 13   Results of global sensi-
tivity analysis in Example 4

Fig. 14   Latch lock mechanism 
of hatch
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The results of AK-IDS-RGS under different learning 
functions are shown in Table 11. The relative error of AK-
IDS-RGS under EFF is 1.10%, while the relative errors 
under REIF, ERF and H functions are both larger than 4%. 
The required function calls of U and EFF also have little 
difference, which are all lower than 40, while the required 
function calls of other three functions are all larger than 40. 
Therefore, in terms of failure probability, U and EFF func-
tions could be adopted on the proposed method in this exam-
ple. The iteration curves of the performance function values 
of training points and failure probability based on U and EFF 
learning functions by one calculation are shown in Fig. 12.

The global sensitivity indexes are shown in Fig. 13. It 
can be seen that  T  and M have the most significant impact 
on the failure probability, while  t and h have little impact. 
The orders of sensitivity indexes under U, EFF, and H func-
tions are same as those of MC. While in other functions, the 
orders of some variables are miscalculating. For instances, 
in REIF, the order of �s and a is opposite. In addition, the 
COV(�) of all variables under U and EFF functions are all 
lower than 5%. However, the COV(�) of some variables 
under other learning functions are higher than 10%, even 
15%. Therefore, comprehensively considering failure prob-
ability and global sensitivity index, the suitable functions 
should be U and EFF in this example.

6.5 � Latch lock mechanism of hatch

A latch lock mechanism of hatch is studied, as shown in 
Fig. 14 (Ling and Lu 2021). Table 12 illustrates the infor-
mation of input variables, which are all independent normal 
variables.

The limit state function of this example is defined as:

where L3 = 270 mm . The results of failure probability are 
shown in Table 13. It can be seen that the failure probability 
of this example is very small, which reaches the level of 
10−7 . 5e9 candidate samples are required in MC to obtain 
a robust failure probability. The efficiency is very low, and 
the required computer memory is very large. Therefore, the 
MC-based Kriging methods are not used for comparison in 
this example. The relative errors of AK-IS and AK-IS-ESC 
are 11.14% and 10.50% respectively, the accuracy of these 
two methods is quite low. Also, the required function calls 
of IS-based method are all larger than 300, the efficiency is 
quite low. For the proposed AK-IDS-RGS, the required func-
tion calls of AK-IDS-RGS and AK-DIS are 46.6 and 253.2 
respectively, and the relative errors are 1.92% and 3.13% 
respectively. Compared with AK-DIS, AK-IDS-RGS can 
significantly reduce the number of required function calls 
without losing accuracy. Therefore, the proposed active 
learning strategy can effectively reduce the required func-
tion calls.

The results of AK-IDS-RGS under different learning func-
tions are shown in Table 14. The required function calls of the 
five learning functions have little difference. However, the 
relative errors under REIF and ERF functions are 11.20% and 

(43)g5 = r cos
(
�1
)
+

√
L2
1
−
(
e − r sin

(
�1
))2

+ L2 − L3

Table 12   Random variable parameters in Example 5

�
1
(◦) r(mm) L

1
(mm) L

2
(mm) e(mm)

Mean 0.7844 44.4162 114 144 41
COV (%) 2 2 2 2 2

Table 13   Results of different 
methods in Example 5

Method pf
(
10

−7
)

Function calls Relative error (%) COV (%) Candidate 
sample size

MC 2.1880 5e9 / 3.20 5e9
AK-IS 2.4317 439.6 11.14 3.41 4e7
AK-DIS 2.1195 253.2 3.13 2.68 5e9
AK-IS-ESC 2.4178 399.5 10.50 3.67 4e7
AK-IDS-RGS 2.2300 46.6 1.92 1.85 4e3

Table 14   Results of AK-IDS-
RGS under different learning 
functions in Example 5

Method pf
(
10

−7
)

Function calls Relative error (%) COV (%) Candidate 
sample size

AK-IDS-RGS-EFF 2.2171 55.7 1.33 1.65 4e3
AK-IDS-RGS-REIF 2.4331 62.5 11.20 1.46 4e3
AK-IDS-RGS-ERF 2.0972 47.8 4.15 1.53 4e3
AK-IDS-RGS-H 2.2261 44.1 1.74 1.48 4e3
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for the reliability problem with small failure probability. The 
iteration curves of the performance function values of training 
points and failure probability based on U and EFF learning 
functions by one calculation are shown in Fig. 15.

Fig. 15   Iteration curves of performance function values of training points and failure probability in Example 4

Fig. 16   Results of global sensi-
tivity analysis in Example 5

4.15% respectively, the accuracy of the two functions is quite 
low. If U, EFF and H functions are used, the accuracy of AK-
IDS-RGS will be very high, as the relative errors are all lower 
than 3%. The results show that AK-IDS-RGS is also suitable 
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The global sensitivity indexes of AK-IDS-RGS are shown 
in Fig. 16. The orders of sensitivity indexes under different 
learning functions are all the same as those of MC. The 
results show that the combination of IDS and failure proba-
bility-based global sensitivity analysis can effectively evalu-
ate the relative importance of random variables. The 
COV

(
⌢

𝜂

)
 of all variables under U and EFF functions are all 

lower than 5%. Therefore, the proposed AK-IDS-RGS can 
effectively and accurately evaluate the global sensitivity 
index under U and EFF learning functions.

6.6 � Discussion about the proposed method

6.6.1 � The derived variance formula of IDS‑based failure 
probability

The variance of failure probability calculated by the design 
point-based IDS method is derived in this paper, and it is 
adopted on the proposed AK-IDS-RGS to calculate COV. 
In Ref. (Guo et al. 2020), the MC-based COV formula is 
directly used for AK-DIS. This section will verify the effec-
tiveness of the derived variance formula. Since the formula 
of failure probability variance is only related to the cal-
culation method, this section will not use Kriging model. 
The failure probability is directly calculated through the 
performance function and the design point is calculated by 
Eq. (37). Based on the candidate sample size defined by 
the derived variance formula, each performance function is 
independently calculated by IDS for 20 times, and the COV 
of failure probability is obtained through statistical analysis. 
The results of the five examples are 1.49%, 1.85%, 2.43%, 
2.48% and 2.58% respectively. It can be seen that the differ-
ence between the results of statistical analysis and derived 
formula is small. In addition, if the MC-based COV formula 
is adopted for IDS, the candidate sample size should be same 
as MC, and the results of COV are 1.85%, 2.21%, 2.51%, 
2.62% and 2.39% respectively, the difference between the 

MC-based formula and the derived formula is also quite 
small. The results show the effectiveness of the derived vari-
ance formula of IDS. Therefore, if MC-based COV formula 
is directly used, it will cause many unnecessary samples.

6.6.2 � The auxiliary region‑based stopping criterion

This section will compare the performance between the 
proposed auxiliary region-based and the existed error-based 
stopping criterions through the optimal U learning function. 
As the difference between different methods in Example 1 
is quite small, only Examples 2–5 are used in this section. 
Suggested by Refs. (Yun et al. 2021), the maximum rela-
tive error is defined as 0.05, and the error-based stopping 
criterion is adopted in the proposed active learning strategy, 
Step 7. Each example is also independently calculated 20 
times, and the mean results are taken as the final results, as 
shown in Table 15. It can be seen that the relative errors of 
the four examples are all lower than 3%, which means that 
the error-based stopping criterion can also obtain high accu-
racy failure probability. However, the number of required 
function calls is much larger than the proposed auxiliary 
region-based stopping criterion, since the required func-
tion calls of auxiliary region are 63.1, 155.7, 37.3 and 46.6 
respectively. Especially in Examples 3 and 5, the number of 
required function calls has increased by nearly 100 times. 
This illustrates that the convergence of the proposed auxil-
iary region-based stopping criterion is significantly higher 
than the existed error-based stopping criterion in IDS.

6.6.3 � The proposed active learning strategy

Besides the auxiliary region-based stopping criterion, the 
purpose of the proposed active learning strategy is to realize 
the synchronization of Kriging model updating and impor-
tance directional density function establishment. It is noted 
that if the condition ‖‖‖�∗i − �∗

i−1

‖‖‖
/‖‖‖�∗i−1

‖‖‖ < 𝛿 is adopted 
firstly before using learning function to update Kriging 

Table 15   Results of AK-IDS-RGS under error-based stopping crite-
rion

Examples pf Function 
calls

Relative 
error 
(%)

COV (%) Candidate 
sample 
size

Example 
2

2.2332e−4 67.5 2.07 1.45 2e3

Example 
3

7.6917e−5 259.5 0.30 1.68 2e3

Example 
4

1.5003e−4 57.4 2.77 1.39 2e3

Example 
5

2.2239e−7 138.7 1.64 1.26 4e3

Table 16   Results of AK-IDS-RGS under segmented learning strategy

Examples pf Function 
calls

Relative 
error 
(%)

COV (%) Candidate 
sample 
size

Example 
2

2.1586e−4 66.7 1.34 1.56 2e3

Example 
3

7.9251e−5 162.8 2.72 1.44 2e3

Example 
4

1.5716e−4 55.0 1.85 1.62 2e3

Example 
5

2.2158e−7 60.3 1.27 1.38 4e3
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model, it will also obtain a precise design point, which can 
also ensure the accuracy of importance directional density 
function. The method of ensuring the accuracy of design 
point firstly and then calculating failure probability is called 
segmented learning strategy in this paper. This section will 
compare the performance between the two strategies. 
� = 0.05 is adopted to ensure the accuracy of design point, 
and the auxiliary region-based stopping criterion is adopted 
in Kriging model updating through U function. The results 
of segmented learning strategy are shown in Table 16. It can 
be seen that the relative errors are all lower than 3%, which 
means that both the two active learning strategies have high 
accuracy. However, in Examples 3–5, the required function 
calls of segmented learning strategy are 162.8, 55 and 60.3 
respectively, which shows that the segmented learning strat-
egy will increase dozens of function calls compared with the 
synchronized learning strategy. Therefore, the proposed 
active learning strategy is more suitable for IDS.

7 � Conclusions

In this paper, an improved active learning Kriging model is 
proposed for IDS reliability and failure probability-based 
global sensitivity analysis, which is called AK-IDS-RGS 
method. A novel auxiliary region-based stopping criterion 
based on the size of failure samples is introduced for IDS to 
accelerate the efficiency of active learning, and an improved 
active learning strategy based on optimization and learn-
ing function, which realizes the synchronization of Kriging 
model updating and importance directional density func-
tion establishment is established. Different learning func-
tions are adopted on AK-IDS-RGS respectively to select the 
most suitable active learning strategy. The failure proba-
bility-based global sensitivity index is calculated through 
Bayes theorem and GMM. Different numerical examples are 
adopted to verify the efficiency and accuracy. The conclu-
sions are summarized as follows:

(1)	 From numerical examples, it can be seen that only 
2e3 candidate samples are required in AK-IDS-RGS 
to obtain a robust failure probability with COV < 3% 
in Examples 1–4, and Example 5 requires only 4e3 
candidate samples. IDS can significantly reduce the 
candidate sample size and the required function calls, 
which is very helpful to improve the efficiency of active 
learning and reduce the required computer memory. 
For the reliability problem with small failure probabil-
ity, AK-IDS-RGS can also obtain high accuracy evalu-
ation results.

(2)	 The proposed auxiliary region-based stopping criterion 
is established based on the proportion of failure sam-
ples in total samples and the prediction uncertainty of 

Kriging model. Compared with the existed error-based 
stopping criterion, the auxiliary region-based stopping 
doesn’t require the probability distribution model of the 
size of failure samples, the form is much simpler. From 
Sect. 6.6.2, it can also be seen that the required function 
calls of auxiliary region-based stopping criterion is also 
smaller than the error-based stopping criterion, which 
means that the proposed criterion is more suitable for 
IDS.

(3)	 Comparing with AK-DIS, the major advantage of the 
proposed segmented learning strategy is that it real-
izes the synchronization of Kriging model updating and 
importance directional density function establishment, 
rather than only establishing the importance directional 
density function through the approximate design point. 
From the numerical examples, it can be seen that the 
proposed method can obtain high accuracy failure 
probability with lower required function calls, the 
efficiency of the proposed method is higher than AK-
DIS. In addition, if an accurate design point is obtained 
through optimization before using learning function to 
update Kriging model, it will also ensure the accuracy 
of importance directional density function. However, 
the required function calls will be much larger than the 
proposed segmented learning strategy.

(4)	 The relative errors of failure probability of AK-IDS-
RGS under U and EFF learning functions in the five 
numerical examples are all lower than 5%, and the 
required function calls of these two learning functions 
are also lower than other functions. From the global 
sensitivity index, the orders of sensitivity indexes under 
U and EFF functions are the same as those of MC 
method, and the COV

(
⌢

𝜂

)
 of all variables under U and 

EFF functions are also lower than 5%. Therefore, U and 
EFF learning functions should be adopted on the pro-
posed AK-IDS-RGS method.
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