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Abstract
This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world 
constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-
objective slime mould algorithm. In the MOEOSMA, dynamic coefficients are used to adjust exploration and exploitation 
trends. The elite archiving mechanism is used to promote the convergence of the algorithm. The crowding distance method 
is used to maintain the distribution of the Pareto front. The equilibrium pool strategy is used to simulate the cooperative 
foraging behavior of the slime mould, which helps to enhance the exploration ability of the algorithm. The performance of 
MOEOSMA is evaluated on the latest CEC2020 functions, eight real-world multi-objective constraint engineering problems, 
and four large-scale truss structure optimization problems. The experimental results show that the proposed MOEOSMA not 
only finds more Pareto optimal solutions, but also maintains a good distribution in the decision space and objective space. 
Statistical results show that MOEOSMA has a strong competitive advantage in terms of convergence, diversity, uniformity, 
and extensiveness, and its comprehensive performance is significantly better than other comparable algorithms.

Keywords Multi-objective equilibrium optimizer slime mould algorithm · CEC2020 functions · Real-world engineering 
problems · Truss structure optimization · Metaheuristic algorithm

1 Introduction

In the past decades, metaheuristic algorithms have been 
favored by many researchers and successfully applied to 
solve real-world optimization problems in various fields 
due to their strong search capability, low computational 

complexity and strong generalization capability. Research-
ers have made a lot of efforts to find reasonable and effec-
tive search operators for single-objective optimization 
problems (SOPs), to improve the search capability of 
metaheuristic algorithms, and to balance the exploration 
and exploitation of algorithms, and have achieved more 
satisfactory results. Single-objective optimization algo-
rithms have well solved problems such as cluster analy-
sis (Cui et al. 2022), forest fire rescue (Chen et al. 2022) 
and crack identification (Benaissa et al. 2021). However, 
in the real world, many problems are usually composed 
of multiple conflicting objective functions, and they are 
called multi-objective optimization problems (MOPs). 
Since MOPs are widespread in the real world and diffi-
cult to be solved efficiently, algorithms for dealing with 
MOPs have gradually become a popular research topic 
(Zeng et al. 2021). Taking the minimization problem as 
an example, the mathematical definition of MOPs is pre-
sented in Eq. (1).
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where � = [x1, x2,⋯ , xd]
T is  the vector of deci-

sion variables, d is the number of decision variables, 
fi ∶ ℝ

d
→ ℝ, i = 1, 2,⋯ ,M are the objective functions, M 

is the number of objectives, ℝd is the d-dimensional solu-
tion space gi ∶ ℝ

d
→ ℝ, i = 1, 2,⋯ , l are the inequality con-

straints functions, l is the number of inequality constraints, 
hi ∶ ℝ

d
→ ℝ, i = 1, 2,⋯ , c are the equality constraints func-

tions, c is the number of equality constraints, lb is the lower 
bound of decision variables, and ub is the upper bound.

Unlike SOPs, MOPs do not have a global or single opti-
mal solution, but rather have many solutions alternatively 
representing the optimal solution. In order to compare 
the superiority of solutions during the iteration process 
and to provide search agents with environmental selec-
tion pressure, the related concept of Pareto dominance is 
introduced (Coello 2009).

Definition 1 (Pareto dominance) Given two solu-
tions �, � ∈ ℝ

d , if ∀i ∈ {1, 2,⋯ ,M} , fi(�) ≤ fi(�) , and 
∃i ∈ {1, 2,⋯ ,M} , such that fi(�) < fi(�) , then solution � is 
said to dominate � , denoted as � ≺ �.

Definition 2 (Pareto optimality) If � ∈ � ⊂ ℝ
d , ∀� ∈ � , 

� ≺ � , then solution � is called the Pareto optimality in the 
solution set �.

Definition 3 (Pareto set) Pareto set (PS) is the set of all 
Pareto optimal solutions in the solution set � ⊂ ℝ

d.

Definition 4 (Pareto front) Pareto front (PF) is the mapping 
set of the Pareto set (PS) in the objective space.

A challenging task is the need to consider multiple 
conflicting objective functions simultaneously and then 
find the best possible trade-off solution that satisfies all 
constraints, if any. According to definition 1, the non-
dominated solution should be strictly better than all solu-
tions for one subfunction and not the best solution for the 
other subfunctions. The easiest way to deal with MOPs is 
to assign a specific weight to each subfunction, convert-
ing multiple objective functions into a single objective. In 
practice, this method does not necessarily exist the attain-
ability of design variables for all the objective functions, 
which means that the objective function may not represent 

(1)

minimize F(�) = [f1(�), f2(�),⋯ , fM(�)]

subject to gi(�) ≤ 0, i = 1, 2,⋯ , l

hj(�) = 0, j = 1, 2,⋯ , c

with lb ≤ xk ≤ ub, k = 1, 2,⋯ , d.

PF correctly and competitiveness may lead to an inappro-
priate Pareto optimal solution (Ali and Shimoda 2022). 
An appropriate PF contains a solution � such that for each 
subobjective function fi , there exists at least one fj such 
that fj(�) < fj(�) , (fi(�) − fi(�))

/
(fj(�) − fj(�)) ≤ � , where 

� ∈ � ⊂ ℝ
d and � is a scalar larger than 0.

Generally, there are three crucial factors need to be con-
sidered when designing multi-objective optimization algo-
rithms (MOAs): convergence, diversity, and spread (Li and 
Zheng 2009). Convergence reflects the distance between the 
obtained PF and the true PF; diversity reflects whether the 
points on the obtained PF are evenly spaced; and spread 
reflects the distribution range of the obtained PF. It is very 
challenging to ensure that MOAs find a evenly spaced and 
highly convergent PF when solving MOPs (Zhao et  al. 
2022). MOAs can be classified into three categories based 
on the participation of decision makers in in the optimiza-
tion process: the priori method (Jin et al. 2001), posteriori 
method (Branke et al. 2004), and interactive method (Kollat 
and Reed 2007). In the priori method, the decision maker 
provides preference weights in advance, so that multiple 
objectives can be combined into a single objective through 
weight allocation. In the posteriori method, the decision 
maker makes a decision at the end of the optimization and 
therefore needs to generate a set of alternative non-domi-
nated solutions under conflicting objectives. Finally, in the 
interactive method, the decision maker needs to participate 
in the optimization process, so this treatment is less effi-
cient. Compared with the other two methods, the posteriori 
method maintains the formulation of MOPs, has a stronger 
randomness, does not require too much decision maker inter-
vention, does not depend on specific problems, and has a 
stronger generalization capability. Based on these advan-
tages, the posteriori method has become the most popular 
multi-objective optimization processing method, and many 
multi-objective biologically inspired algorithms belong to 
this method. The posteriori method usually employs the 
concept of Pareto dominance to evaluate the advantages 
and disadvantages of non-dominated solutions, employs a 
crowding distance mechanism to improve the distribution 
of the PF, and employs an archive to preserve the optimal 
Pareto solutions found so far.

When solving MOPs using the multi-objective biologi-
cally inspired algorithms, each candidate solution generates 
a new solution through the search operator of the algorithm. 
Then the better non-dominated solutions are then selected 
to update the archive. There are three main methods for 
archive updating: indicator-based, decomposition-based, and 
Pareto-based. Indicator-based MOAs use the performance 
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indicators (generational distance (GD) (Ayala et al. 2017), 
inverted generational distance (IGD) (Champasak et al. 
2020) and hypervolume (HV) (Gong et al. 2020) etc.) to 
guide the direction of evolution. Indicator-based evolution-
ary algorithm (IBEA) (Zitzler and Künzli 2004) is one of 
the most famous algorithms, whose main idea is to formalize 
preferences by successive generalizations of the dominance 
relation, so that two solutions can be directly compared by 
the designed indicators. The performance of IBEA depends 
on the indicator designed for a certain class of problems, and 
its generalization capability is weak. Decomposition-based 
MOAs decompose the problem into a set of single-objective 
subproblems and optimize each subproblem using neigh-
borhood information. Decomposition-based multi-objective 
evolutionary algorithm (MOEA/D) (Zhang and Li 2007) is 
a representative algorithm among them. MOEA/D utilizes 
an objective aggregation strategy to decompose MOPs into 
multiple single-objective subproblems, and each subprob-
lem can be optimized by simply combining the information 
of the remaining neighboring subproblems, which reduces 
the computational cost. However, breakpoints can lead to 
inefficiency of the MOEA/D strategy when solving some 
MOPs with discontinuous PFs (Qi et al. 2014). Pareto-based 
MOAs utilize the Pareto dominance principle to evaluate the 
proximity between the currently obtained PF and the true 
PF. Representative algorithms are the non-dominated sorting 
genetic algorithm (NSGA-II) (Deb et al. 2002), NSGA-III 
(Deb and Jain 2014), Pareto envelope-based selection algo-
rithm (PESA-II) (Corne et al. 2001), strength Pareto evolu-
tionary algorithm (SPEA2) (Zitzler et al. 2001), multi-objec-
tive particle swarm optimizer (MOPSO) (Coello et al. 2004), 
multi-objective seagull optimization algorithm (MOSOA) 
(Dhiman et al. 2021), multi-objective water cycle algorithm 
(MOWCA) (Sadollah et al. 2015), multi-objective grasshop-
per optimization algorithm (MOGOA) (Mirjalili et al. 2018), 
multi-objective gradient-based optimizer (MOGBO) (Prem-
kumar et al. 2021a), multi-objective artificial bee colony 
(MOABC) (Hancer et al. 2015), and so on.

Although researchers have proposed some effective 
MOAs to solve MOPs, the no free lunch (NFL) theorem 
(Wolpert and Macready 1997) logically proves that no one 
algorithm is universally superior in handling all MOPs. That 
is, there is no universal criterion for trade-offs between mul-
tiple objectives for different types of problems. In addition, 
existing MOAs are usually designed based on the search 
framework of the most basic single-objective optimization 
algorithms, and their search operators have weak global 
search capability in the decision space, which largely affects 
the convergence performance of the algorithms in the objec-
tive space. Therefore, the design of efficient MOAs needs to 

focus on convergence and diversity in both decision space 
and objective space.

Biologically inspired algorithms simulate the collabora-
tive foraging behavior of organisms in nature, with strong 
self-organization and adaptive search capability. Many bio-
logical systems are composed of individuals with no intel-
ligence, but these individuals can effectively self-organize 
into systems that achieve a good balance between efficiency 
and robustness. Slime mould is a promising organism with 
strong path planning capability due to its unique oscillatory 
foraging behavior. Tero et al. (2010) simulated the foraging 
characteristics of the slime mould to design a mathemati-
cal model to map Tokyo subway network. Li et al. (2011) 
designed two local routing protocols for wireless sensor 
networks using two different mechanisms in the formation 
process of slime mould tubular networks. Qian et al. (2013) 
designed an ant colony system based on slime mould to solve 
the traveling salesman problem. Becker (2015) developed a 
slime mould algorithm to solve graph optimization prob-
lem. Subsequently, Li et al. (2020) summarized the previous 
design experience and proposed a general global optimiza-
tion algorithm named slime mould algorithm (SMA). SMA 
simulates the positive and negative feedback of slime mold 
using adaptive weights and has a strong local search capa-
bility. Due to its clear structure and easy implementation, 
SMA has received much attention from scholars since its 
proposal and has been successfully applied to image thresh-
old segmentation (Naik et al. 2022), photovoltaic parameter 
extraction (Liu et al. 2021), power system optimization (Wei 
et al. 2021), job shop scheduling (Wei et al. 2022), optimal 
economic emission scheduling (Hassan et al. 2021), clas-
sification and diagnosis of diseases (Wazery et al. 2021), 
big data forecasting (Chen and Liu 2020), and other optimi-
zation problems. However, SMA has rarely been designed 
to deal with MOPs, especially in terms of enhancing the 
performance of the basic SMA.

Premkumar et al. (2021b) designed a multi-objective 
SMA and evaluated the performance of MOSMA on bench-
mark functions and engineering problems. Subsequently, 
Hassan et al. (2021) designed an improved multi-objective 
SMA based on the sine cosine algorithm and applied it to 
a multi-objective economic emission dispatch problem. 
Finally, Houssein et al. (2022) also proposed a multi-objec-
tive SMA and analyzed the performance of MOSMA in the 
decision space on CEC2020 functions. There are three main 
shortcomings of the existing MOSMA: (1) the existing algo-
rithms do not properly deal with the sorting process in SMA, 
and the non-dominated sorting does not well combined with 
the fitness weight, leading to poor convergence accuracy 
of the algorithm on complex problems; (2) the crowding 
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distance mechanism does not maintain the diversity of solu-
tions in the archive well, leading to poor distribution of the 
PF. (3) The global search capability of SMA is not improved, 
which makes the exploration of MOSMA in the decision 
space inadequate.

Due to the weak exploration capability of SMA, exist-
ing MOSMAs usually employ the non-dominated sorting 
strategy in NSGA-II to construct the archive. This mainly 
enhances the global search of the algorithm in the objec-
tive space, while not improving the algorithm from the 
decision space. When dealing with complex MOPs, it not 
only leads to slow convergence of MOSMA, but also easy 
to fall into local optimum. To improve the search capa-
bility of the algorithm in the decision space, Yin et al. 
(2022b) designed an equilibrium optimizer slime mould 
algorithm (EOSMA) and revealed the efficiency of the 
algorithm by comparing it with the CEC winner. The sig-
nificant advantages of EOSMA on SOPs motivate us to 
propose its multi-objective version (MOEOSMA) to solve 
more real-world MOPs. The main contributions of this 
study are as follows:

1) The elite archive component is applied to EOSMA, 
which can store the Pareto optimal solutions found so 
far.

2) The equilibrium pool and crowding distance method are 
applied to EOSMA to retain the diversity of Pareto opti-
mal solutions.

3) The constant factors in MOEOSMA are replaced by 
dynamic exploration and exploitation coefficients to 
enhance the exploration and exploitation.

4) The effectiveness of MOEOSMA was verified in the 
CEC2020 functions and compared with nine advanced 
multi-objective algorithms.

5) The convergence results of MOEOSMA are compared 
with eleven algorithms on eight real-world engineering 
problems and four truss optimization problems, and the 
performance is evaluated using the Hypervolume and 
Spacing-to-Extent indicators.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces EOSMA. Section 3 describes 
the optimization principle and implementation of MOE-
OSMA. Section 4 analyzes the performance of MOE-
OSMA on CEC2020 functions in the decision space and 
objective space. Section 5 evaluates the efficiency of 
MOEOSMA on real-world engineering problems and 
truss optimization problems. Finally, Sect. 6 concludes 
this paper.

2  Related work

Recently, Yin et al. (2022b) proposed an efficient hybrid 
equilibrium optimizer slime mould algorithm (EOSMA) 
and verified the algorithm's performance on CEC2019, 
CEC2021 test functions, and many real-world engineering 
optimization problems. In EOSMA, the EO search operator 
(Faramarzi et al. 2020) is used to guide the oscillatory for-
aging behavior of slime mould, which makes the anisotropic 
search of slime mould have a specific orientation, resulting 
in a better balance between exploration and exploitation. 
Moreover, the random differential mutation operator and 
greedy selection strategy are integrated into the algorithm’s 
search process to enhance the exploration and exploita-
tion capabilities simultaneously. The search principle of 
EOSMA is described as follows.

2.1  Population initialization and equilibrium pool

The first phase in the swarm intelligence optimization algo-
rithm is population initialization. EOSMA uses the randomly 
generated uniformly distributed positions in the search space 
as the population's initial solution. The initialization formula 
is shown in Eq. (2).

where ⋅ indicates Hadamard product, �� = [lb1, lb2,⋯ , lbd] 
is the lower bound of variables, �� = [ub1, ub2,⋯ , ubd] is 
the upper bound, �i represents the ith initial solution, and � 
is the random number vector between [0,1].

To further balance the exploration and exploitation capabil-
ity, EOSMA integrates an equilibrium pool. The equilibrium 
pool contains five positions, the first four of which are locally 
optimal positions to help exploration and the last one of which 
is their average position to help exploitation. The equilibrium 
pool is shown in Eq. (3).

where �eq,1, �eq,2, �eq,3, �eq,4 denotes the four individu-
als with the best fitness in the current population, 
�eq,avg = (�eq,1 + �eq,2 + �eq,3 + �eq,4)

/
4.

In the iterative process, a position is randomly selected 
from the equilibrium pool �eq as the best food source �b to 
guide the updating direction of the search agent, enabling 
slime mould to utilize multiple food sources at the same 
time.

(2)�i = �� + � ⋅ (�� − ��)

(3)�eq =
[
�eq,1, �eq,2, �eq,3, �eq,4, �eq,avg

]T
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2.2  Optimization process of EOSMA

According to the foraging behavior of slime mould, the 
EOSMA optimization process can be divided into anisotropic 
search and vein-like tube formation stages. The anisotropic 
search stage is replaced by the search operator of EO and the 
venous tube formation stage is updated by the search operator 
of SMA. The optimization process can be expressed as Eq. (4).

where ⋅ indicates Hadamard product,.∕ indicates the divi-
sion of the corresponding elements of the matrix, �∗

i
 denotes 

the updated ith solution, i = 1, 2,⋯ ,N , N is the population 
size, �i denotes the current solution, �b is a solution ran-
domly selected from the equilibrium pool, � is the expo-
nential term coefficient, � = a1sign(� − 0.5) ⋅

(
e−�t1 − 1

)
 , 

t1 = (1 − t∕max _t)(a2t∕max _t) , a1 = 2 and a2 = 1 are adap-
tive parameters that adjust the exploration and exploitation, 
t  and max _t denote the number of current and maximum 
iterations, � is the mass generation rate, � is a random 
number vector between [0,1], �i is the fitness weight of 
the ith slime mould individual, �� is a random number vec-
tor between [−a, a] , a = atanh(1 − t∕max _t) , �� decreases 
linearly from 1 to 0, r1 and r2 are random numbers between 
[0,1], �R1 and �R2 represent two randomly selected solutions 
from the current population, z = 0.6 is a hybrid parameter, 
p = tanh ||��� i − BF|| , ��� i denotes the fitness of the ith indi-
vidual, BF is the best fitness. The mass generation rate � is 
calculated as shown in Eq. (5).

where r1 and r2 are random numbers between [0,1]. The 
adaptive weight � is calculated as shown in Eq. (6).

where ������ represents fitness sorted in ascending order, 
� is the random number vector between [0,1], bF and wF 
are the best and worst fitness values in the current popula-
tion, ��� i represents the fitness of the ith individual, N is the 
population size.

(4)�∗
i
=

⎧
⎪⎨⎪⎩

�b +
�
�i − �b

�
⋅ � + (�.∕�) ⋅ (1 − �) r1 < z

�i + �� ⋅

�
�i ⋅ �R1 − �R2

�
r2 < p

�b + �� ⋅
�
�i ⋅ �R1 − �R2

�
others

(5)� =

{
0.5r1 ⋅

(
�b − � ⋅ �i

)
⋅ � r2 ≥ 0.5

0 others

(6)
�(������i) =

⎧
⎪⎨⎪⎩

1 + � ⋅ log
�

bF−��� i

bF−wF
+ 1

�
i <

N

2

1 − � ⋅ log
�

bF−��� i

bF−wF
+ 1

�
others

������ = sort(���)

After the search agent is updated by Eq. (4), the random 
difference mutation mechanism and greedy selection strategy 
are employed to enhance the search agent’s exploration and 
exploitation capability, helping the search agent to escape the 
local optimum. The mathematical formula of the random dif-
ference mutation operator is shown in Eq. (7).

where CF = (1 − t∕max _t)(a1t∕max _t) is an adaptive com-
pression factor, � is a vector with elements 0 or 1, SF is 
a random number between [0.2,1], r3 and r4 are random 
numbers between [0,1], and q = 0.2 is a tunable parameter. 
To avoid invalid searches, after updating the location of the 
search agent, the solution outside the boundary is updated 
using the dichotomy method, as shown in Eq. (8).

where i = 1, 2,⋯ ,N  , j = 1, 2,⋯ , d , N  is the population 
size, d is the dimension of the decision variable, ubj and lbj 
are the upper and lower bounds of the jth decision variable. 
After boundary checking, the fitness of each search agent is 
evaluated, and a greedy selection strategy is applied to retain 
the better individuals, as shown in Eq. (9).

where F(⋅) means to evaluate the fitness of an individual, 
�∗

i
 represents the current individual, and �i represents the 

individual of the previous generation.
In EOSMA, greedy selection strategy and equilibrium 

pool are introduced. The greedy selection strategy main-
tains an archive of the same capacity as the population 
size, which stores the best solutions that each search indi-
vidual has found so far. After each iteration, the archive 
is updated by Eq. (9). The greedy strategy also provides 
search agents with a powerful memory, allowing slime 
mould to recall successful foraging areas in the past. There 
are five solutions in the equilibrium pool, four of which are 
local optimal solutions and the other is the central position 
of the four local optimal solutions. The equilibrium pool 
allows slime mould to develop multiple food sources at 
the same time, increasing the probability of obtaining the 
global optimal solution. The flow chart and pseudo-code 
of EOSMA can be referred to (Yin et al. 2022b).

(7)�∗
i
=

{
�i + CF

(
�� + r3(�� − ��)

)
⋅ � r4 < q

�i + SF
(
�R1 − �R2

)
others

(8)�∗
ij
=

⎧
⎪⎨⎪⎩

(�ij + ubj).∕2 �∗
ij
> ubj

(�ij + lbj).∕2 �∗
ij
< lbj

�∗
ij

others

(9)�∗
i
=

{
�∗

i
F(�∗

i
) < F(�i)

�i others
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3  Proposed MOEOSMA

3.1  Pareto archive

The purpose of multi-objective optimization is to present 
decision-makers with a large number of Pareto optimal 
alternatives. These solutions trade-off between multiple 
objectives, and there is no dominant relationship between 
them. To design a multi-objective EOSMA, an archive 
with a defined maximum capacity, similar to MOPSO 
(Coello and Lechuga 2002), is first integrated into the 
algorithm. The Pareto dominance operator is employed 
during optimization to compare the updated slime mould 
position to the position in the archive. If the updated slime 
mould individual is not dominated by the individuals in 
the archive, it will be preserved; otherwise, it will be 
discarded. When the number of solutions in the archive 
exceeds the maximum capacity and is not dominant, the 
crowding distance and roulette method are used to remove 
the solutions in the dense region of the population to 
improve the PF distribution.

3.2  Crowding distance

The crowding distance calculation method determines the 
selection of the archiving solution and consequently has a sig-
nificant impact on the diversity of the final PF. Three different 

crowding distances have been proposed in the literature (Mir-
jalili et al. 2017b; Zeng et al. 2021; Houssein et al. 2022). By 
combining the characteristics of existing crowding distances, 
this study proposes a simple and effective approach for meas-
uring crowding distance. As shown in Fig. 1, the crowding 
distance of the slime mould individual m represents the num-
ber of neighborhood solutions in the hypercube centered on 
itself. The length of the ith side of the hypercube is 2di , and the 
distance di is defined as Eq. (10).

where fmax
i

 and fmin
i

 are the maximum and minimum values 
of the ith objective function, M is the number of objective 
functions and As is the archive size.

As shown in Fig. 1, the non-dominated solutions with 
smaller crowding distances are in sparser regions and are 
important for approximating the true PF, while the non-dom-
inated solutions with larger crowding distances are in denser 
regions and have the least influence on the distribution of PS, 
and are given a higher probability to be removed. Therefore, 
when the archive is filled, the probability that each solution is 
removed from the archive is shown in Eq. (11).

where C denotes the sum of the crowding distances of all 
solutions in the archive, and Ni denotes the crowding dis-
tance of the ith solution.

In this way, MOEOSMA can store better non-dominated 
solutions in the archive and constantly improve them dur-
ing iteratives. Using less crowded solutions as food sources 
can promote slime mould to find other food sources nearby. 
This will naturally attract search agents to regions with fewer 
non-dominated solutions in the PF, improving the coverage 
of the final obtained PF. It is worth noting that, in contrast 
to the existing MOSMA (Premkumar et al. 2021b; Houssein 
et al. 2022), the crowding distance used in this research is 
a discrete value rather than a continuous value, which not 
only preserves the randomness of the solution being selected 
in the archive but also facilitates the selection of elite indi-
viduals to simulate the multiple food sources found by slime 
mould. In MOEOSMA, the solution in the archive with the 
minimum crowding distance is placed in the equilibrium 
pool. During the iteration, each slime mould individual 
randomly selected a solution from the equilibrium pool as 
the food source �b that the current search agent decided to 
exploit.

(10)di =
fmax
i

− fmin
i

As
, i = 1, 2,⋯ ,M

(11)Pi =
Ni

C

f1

f2

Hybercube

d1

d2

Pareto Front

m

Fig. 1  The crowding distance of the Pareto solution
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3.3  Dynamic coefficient

The parameters a1 and a2 that adjust the exploration and 
exploitation in EOSMA are set to fixed values during itera-
tion, which indicates that the algorithm's exploration and 
exploitation trend will remain unchanged during optimi-
zation. Based on the improving experience of many algo-
rithms, it can be concluded that the meta-heuristic algorithm 
should focus on exploration in the early stage, conducting 
a broad exploration of the whole search space, and then 
gradually shift to exploitation, searching for more promis-
ing regions. Therefore, during MOEOSMA optimization, 
a1 and a2 are controlled according to the current number of 
iterations and randomly generated values, which are then 
translated into dynamic coefficients to adjust the exploration 
and exploitation trends better. The parameters a1 and a2 are 
calculated as Eq. (12).

where r represents the random number between [0,1], t rep-
resents the current iteration number, and max _t represents 
the maximum iteration number.

3.4  Optimization process of MOEOSMA

Based on the foraging behavior of slime mould, the EOSMA 
optimization process may be divided into two stages: the 
anisotropic search stage and the vein-like tube formation 
stage. The anisotropic search stage is replaced by the EO 
search operator with the goal to guide the search direction 
of the search agents, expanding the search range, and avoid-
ing premature convergence. The vein-like tube formation 
stage is updated by SMA's most crucial search operator. It 
is worth noting that slime mould in two stages exists in the 
population simultaneously, as shown in Eq. (13).

where ⋅ indicates Hadamard product,.∕ indicates the 
division of the corresponding elements of the matrix, 
�∗

i
 denotes the updated ith solution, �i denotes the 

current solution, �b is a solution randomly selected 
from the equilibrium pool, � is the exponential 
t e r m  coe f f i c i en t ,  � = a1sign(� − 0.5) ⋅

(
e−�t1 − 1

)
 , 

(12)
a1 =

(
1 + (1 − t∕max _t)2t∕max _t

)
× r

a2 =
(
2 − (1 − t∕max _t)2t∕max _t

)
× r

(13)�∗
i
=

{
�b +

(
�i − �b

)
⋅ � + (�.∕�) ⋅ (1 − �) r < z

�b + �� ⋅

(
�i ⋅ �R1 − �R2

)
others

t1 = (1 − t∕max _t)(a2t∕max _t) , a1 and a2 are calculated by 
Eq. (12), � is calculated by Eq. (5), � is a random num-
ber vector between [0,1], �i is the fitness weight of the 
ith slime mould individual, �� is a random number vector 
between [−a, a] , a = atanh(1 − t∕max _t) , r is a random 
number between [0,1], �R1 and �R2 represent two randomly 
selected solutions from the current population, and z = 0.6 is 
an adjustable parameter controlling the balance of explora-
tion and exploitation (Yin et al. 2022b). The adaptive weight 
� is calculated as shown in Eq. (14).

where ⋅ indicates Hadamard product, ������ represents fit-
ness sorted in ascending order, rem(⋅) is the remainder func-
tion, t  is the current iteration number, M is the number of 
objective functions, � is the random number vector between 
[0,1], bF and wF are the best and worst fitness values in 
the current population, ��� ik represents the fitness of the kth 
objective function of the ith individual, and N is the popula-
tion size.

After updating the location of the slime mould by 
Eq.  (13), the random difference mutation operator and 
greedy selection strategy are introduced to improve the 
exploration and exploitation capability, and help the search 
agent to escape the local optimum and obtain the solution 
with higher accuracy. The mathematical formula of the 
mutation operator is shown in Eq. (15).

where �∗
i
 denotes the updated ith solution, �i denotes the 

current solution, SF is a random number between [0.2,1], 
�R1 and �R2 represent two randomly selected solutions from 
the current population.

To avoid invalid searches, after the location of slime 
mould is updated, check whether �∗ is beyond the search 
range and update the location using Eq. (8). Then the fit-
ness is evaluated, and the greedy selection strategy, as 
shown in Eq. (9), is implemented to retain the better slime 
mould individuals. The pseudo-code of MOEOSMA is 
presented in Algorithm 1, and the flow chart is displayed 
in Fig. 2.

(14)
�(������(i)) =

⎧
⎪⎨⎪⎩

1 + � ⋅ log
�

bF−��� ik

bF−wF
+ 1

�
i <

N

2

1 − � ⋅ log
�

bF−��� ik

bF−wF
+ 1

�
others

������ = sort(���k), k = rem(t,M) + 1

(15)�∗
i
= �i + SF

(
�R1 − �R2

)
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No

Initialize parameters, population location and archive

rand < z

Calculate the values of adaptive parameters , 

Sort the fitness and calculate the fitness weights W by Eq. (14) 

i < N

Start 

Update ∗ using the EO operatorUpdate ∗ using the SMA operator

Update archive using Pareto domination solution

Update ∗ using the mutation operator

Yes

Yes

No

Update the equilibrium pool with the solution 

with the smallest crowding distance

Rank Pareto solutions based on 

crowding distance

Save better solutions and objective values by Eq. (9)

Archive overflow? Use the roulette to remove 

crowded solutions

Yes

No

Check boundary by Eq. (8) and calculate objective values

Randomly select the in equilibrium pool

Rank Pareto solutions based on crowding distance

Save better solutions and objective values by Eq. (9)

End

t < max_

Return the PS and the PF

Yes

No

Fig. 2  Flow chart of the MOEOSMA
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3.5  Computational complexity

The proposed MOEOSMA is mainly made up of the fol-
lowing subcomponents: initialization, position update, 
fitness evaluation, fitness sorting, equilibrium pool 
update, fitness weight update, greedy selection, archive 
update, and mutation operator. Initialization, position 
update, mutation operation, and fitness weight update 
all have O(N ∗ d) time complexity, fitness sorting has 
O(N ∗ logN) time complexity, greedy selection and equi-
librium pool update have O(N) time complexity, and 
archive update has O(As2 ∗ M) computational complexity. 
Therefore, the total time complexity of the algorithm is 
O(max _t ∗ (N ∗ d + N ∗ logN + F + As2 ∗ M)) , where F 
is the evaluation time of the fitness function, N is the popu-
lation size, As is the archive size, M is the number of objec-
tives, d is the dimensionality of the problem, and max _t is 
the maximum number of iterations. The space complexity 
is O(N ∗ d).

4  Experimental and analysis of test 
functions

In order to verify the effectiveness of the proposed MOE-
OSMA, the CEC2020 functions are used to analyze the con-
vergence behavior of the algorithm in the objective space 
and decision space. Unlike previous test suites, CEC2020 
includes not only the true PF for each test problem, but also 
the associated local and global PSs, allowing researchers to 
evaluate the algorithm's performance in both the objective 

space and decision space. The MATLAB code of CEC2020 
benchmark function can be downloaded at https:// github. 
com/P- N- Sugan than. The specifics of these test functions 
were described in (Yue et al. 2019; Liang et al. 2020).

4.1  Experimental setup

To evaluate the performance of MOEOSMA relative to 
other competing algorithms, it is compared to nine well-
known MOAs: multi-objective slime mould algorithm 
(MOSMA) (Premkumar et al. 2021b), multi-objective ant 
lion optimizer (MOALO) (Mirjalili et al. 2017c), multi-
objective grey wolf optimizer (MOGWO) (Mirjalili et al. 
2016), multi-objective multi-verse optimization (MOMVO) 
(Mirjalili et al. 2017b), multi-objective particle swarm opti-
mizer (MOPSO) (Coello et al. 2004), multi-objective Salp 
swarm algorithm (MSSA) (Mirjalili et al. 2017a), MOEA/D 
(Zhang and Li 2007), PESA-II (Corne et al. 2001), SPEA2 
(Zitzler et al. 2001). The source codes of the comparison 
algorithms used in the experiments are available on web-
sites: https:// alias gharh eidari. com/ SMA. html, https:// seyed 
alimi rjali li. com, and https:// yarpiz. com. All algorithms 
are executed in MATLAB R2020b under Win 10 OS with 
hardware details: AMD A8-7410 APU, AMD Radeon R5 
Graphics (2.20 GHz) and 12 GB RAM. For a fair com-
parison, the population size and archiving capacity of all 
comparison algorithms are set to 200 × N_ops , with a max-
imum of 10000 × N_ops evaluations, and 21 independent 
runs, where N_ops is the number of local and global PS. 
The other algorithm parameters set in the original paper are 
listed in Table 1.

Table 1  Parameter settings of the comparison algorithms

Algorithms Parameters Values Algorithms Parameters Values

MOEOSMA Hybrid parameter z 0.6 MOEA/D Crossover parameter γ 0.5
Generation probability GP 0.5 MOPSO Inertia weight w 0.5

MOSMA Constant z 0.03 Damping rate wd 0.99
MOGWO Grid inflation rate α 0.1 Personal cognition coefficient c1 1

Number of grids n 10 Social cognition coefficient c2 2
Leader selection pressure β 4 Number of grids n 7
Deletion selection pressure γ 2 Grid inflation rate α 0.1

MOMVO Minimum probability of wormhole existence 0.2 Leader selection pressure β 2
Maximum probability of wormhole existence 1 Deletion selection pressure γ 2

PESA-II Number of grids n 7 Mutation rate μ 0.1
Inflation factor 0.1 SPEA2 Crossover parameter p 0.7
Leader selection pressure β 2 Crossover parameter γ 0.1
Deletion selection pressure γ 1 Mutation parameter h 0.2
Crossover parameter p 0.5 MOALO Parameter less NA
Crossover parameter γ 0.15 MSSA Parameter less NA
Mutation parameter h 0.3

https://github.com/P-N-Suganthan
https://github.com/P-N-Suganthan
https://aliasgharheidari.com/SMA.html
https://seyedalimirjalili.com
https://seyedalimirjalili.com
https://yarpiz.com
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Table 2  The IGDX values obtained by all comparison algorithms

*Bold indicates the optimal result, and FAR stands for Friedman’s average ranking

Functions Index MOEOSMA MOSMA MOALO MOGWO MOMVO MOPSO MSSA MOEA/D PESA-II SPEA2

MMF1 Mean 0.04568 0.09669 0.17541 0.22136 0.17675 0.11012 0.24407 0.22476 0.15678 0.10916
Std. 0.00479 0.01707 0.02889 0.06048 0.03790 0.01706 0.04551 0.04807 0.02437 0.02542

MMF2 Mean 0.02009 0.12164 0.12203 0.12385 0.13887 0.16046 0.12860 0.27163 0.12670 0.07141
Std. 0.01820 0.05735 0.05459 0.08927 0.09981 0.07051 0.06127 0.10658 0.07252 0.04237

MMF4 Mean 0.03325 0.03919 0.17765 0.39771 0.37970 0.10995 0.32256 0.24595 0.12352 0.15427
Std. 0.00395 0.00911 0.06583 0.08519 0.05643 0.03373 0.04582 0.06241 0.03840 0.06285

MMF5 Mean 0.08098 0.14957 0.32125 0.57291 0.33741 0.17858 0.49814 0.36972 0.22466 0.19295
Std. 0.01007 0.01836 0.06163 0.11151 0.09744 0.02889 0.07219 0.06586 0.04293 0.03555

MMF7 Mean 0.03198 0.05566 0.17005 0.25259 0.19958 0.06824 0.19903 0.13793 0.10601 0.08528
Std. 0.00892 0.00906 0.04268 0.07081 0.04439 0.01251 0.04184 0.03885 0.02296 0.03398

MMF8 Mean 0.12931 0.19158 0.84525 1.84536 1.24908 0.29753 1.26859 1.05881 1.97001 2.81676
Std. 0.09608 0.08868 0.59322 1.03616 0.34925 0.18238 0.27480 0.32374 0.64195 0.54080

MMF10 Mean 0.01956 0.05831 0.11536 0.02871 0.31266 0.17673 0.20098 0.33210 0.01552 0.01403
Std. 0.07846 0.02726 0.07306 0.04704 0.09406 0.17344 0.09860 0.10711 0.02487 0.01359

MMF11 Mean 0.00424 0.01706 0.02153 0.01209 0.01502 0.00861 0.01555 0.01486 0.00975 0.00630
Std. 0.00032 0.00504 0.00813 0.00336 0.00246 0.00093 0.00212 0.00629 0.00341 0.00117

MMF12 Mean 0.00203 0.01169 0.01179 0.00421 0.00599 0.00536 0.01054 0.01465 0.00294 0.00245
Std. 0.00022 0.00257 0.00720 0.00159 0.00200 0.00148 0.00286 0.01597 0.00067 0.00071

MMF13 Mean 0.04459 0.07220 0.10636 0.15352 0.08925 0.10730 0.10061 0.16144 0.14352 0.12418
Std. 0.01252 0.00796 0.03104 0.03215 0.01746 0.05151 0.01856 0.04130 0.04604 0.03526

MMF14 Mean 0.06605 0.06376 0.13791 0.35524 0.29699 0.18942 0.18300 0.17267 0.16975 0.22438
Std. 0.03387 0.00858 0.02520 0.03919 0.01610 0.07775 0.02895 0.04110 0.02526 0.03629

MMF15 Mean 0.04690 0.07321 0.09927 0.17561 0.10111 0.06325 0.10948 0.07530 0.07146 0.06930
Std 0.00223 0.01248 0.00770 0.02494 0.02554 0.00267 0.01108 0.00720 0.00764 0.00439

MMF1_e Mean 2.83622 1.34712 1.53306 2.62735 3.02363 1.81669 2.41909 3.33013 2.38024 3.08057
Std. 0.52038 0.52004 0.68605 0.94419 0.53170 0.87476 0.66831 0.62876 0.98143 0.56592

MMF14_a Mean 0.08017 0.12783 0.17652 0.29992 0.30352 0.15027 0.26688 0.19061 0.23093 0.14412
Std. 0.00830 0.02262 0.02443 0.02227 0.08038 0.00961 0.03372 0.02069 0.05444 0.02987

MMF15_a Mean 0.09106 0.08181 0.12028 0.14691 0.14468 0.08935 0.15058 0.10687 0.10409 0.08637
Std. 0.02127 0.01082 0.01486 0.02460 0.05469 0.00889 0.01289 0.01784 0.01521 0.00597

MMF10_l Mean 0.19891 0.19530 0.18297 0.21067 0.16555 0.20190 0.14079 0.17413 0.20504 0.20271
Std. 0.00757 0.04187 0.06674 0.01440 0.04846 0.00435 0.04226 0.03619 0.01157 0.00050

MMF11_l Mean 0.24957 0.24850 0.25893 0.25533 0.25587 0.25150 0.25271 0.24538 0.25770 0.25268
Std. 0.00025 0.00130 0.00268 0.00133 0.00207 0.00107 0.01608 0.03313 0.00458 0.00074

MMF12_l Mean 0.24515 0.24204 0.24995 0.24628 0.24734 0.24477 0.25316 0.24982 0.24780 0.24070
Std. 0.00166 0.00842 0.00182 0.00123 0.00073 0.00131 0.01220 0.01469 0.00176 0.02068

MMF13_l Mean 0.26837 0.26901 0.32531 0.37788 0.31235 0.31054 0.31638 0.34235 0.34269 0.34640
Std. 0.00635 0.00485 0.02715 0.01900 0.02493 0.04928 0.01862 0.02152 0.04216 0.02624

MMF15_l Mean 0.26110 0.24068 0.27371 0.36647 0.30050 0.27829 0.31077 0.29119 0.26662 0.27070
Std. 0.00183 0.02218 0.02447 0.01778 0.00947 0.00412 0.01976 0.00383 0.02083 0.01257

MMF15_a_l Mean 0.20894 0.22855 0.24588 0.31408 0.28524 0.24878 0.29958 0.25261 0.24976 0.24030
Std. 0.01221 0.00695 0.01608 0.03070 0.04837 0.01287 0.02101 0.00831 0.01087 0.00931

MMF16_l1 Mean 0.15864 0.15740 0.20755 0.39586 0.28252 0.24240 0.24414 0.22639 0.23062 0.21505
Std. 0.01246 0.00923 0.01358 0.02929 0.04364 0.05353 0.01529 0.00822 0.03045 0.01976

MMF16_l2 Mean 0.33235 0.30008 0.32159 0.43202 0.37020 0.34790 0.35706 0.36399 0.34593 0.33437
Std. 0.00110 0.03031 0.04109 0.01490 0.00921 0.00365 0.02926 0.00362 0.01950 0.01697

MMF16_l3 Mean 0.21376 0.20115 0.24699 0.46645 0.35960 0.27702 0.28683 0.27133 0.26874 0.25626
Std. 0.01557 0.00880 0.01217 0.01438 0.06001 0.04621 0.01230 0.01037 0.02452 0.02044

FAR (Rank) 1.77 (1) 2.92 (2) 6.10 (6) 8.46 (10) 7.60 (9) 4.48 (4) 7.40 (8) 6.56 (7) 5.83 (5) 3.88 (3)
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Table 3  The IGDF values obtained by all comparison algorithms

*Bold indicates the optimal result, and FAR stands for Friedman’s average ranking

Functions Index MOEOSMA MOSMA MOALO MOGWO MOMVO MOPSO MSSA MOEA/D PESA-II SPEA2

MMF1 Mean 0.00193 0.00750 0.01637 0.01779 0.01307 0.00909 0.02428 0.01958 0.01450 0.00666
Std. 0.00011 0.00180 0.00353 0.00403 0.00203 0.00135 0.00246 0.00723 0.00361 0.00054

MMF2 Mean 0.00233 0.02382 0.03266 0.01364 0.01460 0.07346 0.03091 0.09244 0.02710 0.01243
Std. 0.00017 0.00919 0.00955 0.00485 0.00519 0.02781 0.00792 0.04337 0.00422 0.00515

MMF4 Mean 0.00171 0.00194 0.01673 0.01240 0.01721 0.00873 0.02787 0.00919 0.01115 0.00689
Std. 0.00013 0.00013 0.00395 0.00288 0.00217 0.00198 0.00355 0.00160 0.00221 0.00051

MMF5 Mean 0.00188 0.00704 0.01458 0.01418 0.01176 0.00892 0.02393 0.01661 0.01249 0.00660
Std. 0.00010 0.00150 0.00251 0.00339 0.00167 0.00145 0.00382 0.00794 0.00443 0.00037

MMF7 Mean 0.00193 0.00536 0.02075 0.02169 0.01776 0.00846 0.02462 0.01201 0.01167 0.00686
Std. 0.00010 0.00150 0.00394 0.00291 0.00377 0.00095 0.00516 0.00261 0.00261 0.00058

MMF8 Mean 0.00171 0.00520 0.01666 0.00904 0.01339 0.01223 0.02173 0.01193 0.01234 0.00695
Std. 0.00013 0.00281 0.00535 0.00140 0.00163 0.00405 0.00233 0.00637 0.00465 0.00073

MMF10 Mean 0.02428 0.18941 0.22412 0.05744 0.32580 0.17114 0.29168 0.30814 0.03968 0.03362
Std. 0.06343 0.05978 0.07811 0.06138 0.05499 0.14033 0.13370 0.06560 0.03903 0.01669

MMF11 Mean 0.01415 0.05292 0.10159 0.04883 0.05752 0.03394 0.07297 0.23581 0.04027 0.02900
Std. 0.00122 0.01418 0.01904 0.01084 0.00656 0.00281 0.01420 0.12167 0.00781 0.00301

MMF12 Mean 0.00309 0.02965 0.02856 0.00919 0.01238 0.01062 0.02341 0.03306 0.00794 0.00585
Std. 0.00024 0.01070 0.01075 0.00328 0.00399 0.00266 0.00484 0.02211 0.00105 0.00069

MMF13 Mean 0.01741 0.04184 0.12781 0.06521 0.07972 0.04126 0.08631 0.31974 0.04698 0.03644
Std. 0.00099 0.02342 0.03164 0.01241 0.01296 0.00405 0.01921 0.15337 0.00742 0.00413

MMF14 Mean 0.07094 0.09027 0.17354 0.46218 0.21935 0.12537 0.22795 0.15629 0.14666 0.14292
Std. 0.00370 0.01556 0.01370 0.09706 0.03845 0.00456 0.03465 0.00794 0.01165 0.01352

MMF15 Mean 0.09520 0.16077 0.21787 0.45008 0.22548 0.12583 0.23444 0.15988 0.14943 0.14481
Std. 0.00331 0.02901 0.02382 0.09595 0.05824 0.00367 0.02915 0.00954 0.01416 0.01170

MMF1_e Mean 0.00191 0.04295 0.02558 0.01330 0.01033 0.05322 0.02571 0.04437 0.01720 0.00931
Std. 0.00014 0.01062 0.00862 0.00292 0.00148 0.01492 0.00685 0.02395 0.00603 0.00513

MMF14_a Mean 0.08666 0.10912 0.18215 0.37598 0.21867 0.13464 0.33758 0.15237 0.15712 0.14980
Std. 0.00580 0.01039 0.02270 0.08946 0.03987 0.00516 0.08293 0.00660 0.00923 0.00987

MMF15_a Mean 0.14403 0.13333 0.20944 0.25557 0.21878 0.13945 0.27295 0.17074 0.16228 0.15413
Std. 0.02073 0.01444 0.01700 0.07785 0.02887 0.00516 0.02690 0.01614 0.01200 0.02174

MMF10_l Mean 0.18238 0.25596 0.27901 0.21962 0.27148 0.20226 0.26622 0.28956 0.22620 0.21405
Std. 0.01419 0.03384 0.04388 0.02127 0.07741 0.01001 0.03502 0.07753 0.02685 0.00847

MMF11_l Mean 0.09270 0.10769 0.17669 0.12972 0.14068 0.11432 0.15414 0.36828 0.12814 0.11388
Std. 0.00047 0.00707 0.02330 0.01064 0.01196 0.00349 0.01510 0.17527 0.01300 0.00377

MMF12_l Mean 0.07989 0.09702 0.10207 0.09236 0.08925 0.09160 0.10553 0.11217 0.08970 0.08410
Std. 0.00842 0.01197 0.00804 0.00863 0.00194 0.00539 0.01634 0.01800 0.00906 0.01008

MMF13_l Mean 0.14344 0.15169 0.25928 0.19373 0.20725 0.16619 0.20909 0.58981 0.19072 0.18196
Std. 0.00636 0.00394 0.04829 0.01131 0.01644 0.00649 0.01628 0.23681 0.02808 0.01019

MMF15_l Mean 0.18716 0.20209 0.28770 0.54525 0.30563 0.22519 0.34739 0.25716 0.24020 0.23155
Std. 0.00224 0.01082 0.02625 0.07533 0.03404 0.00587 0.08289 0.00793 0.01152 0.00892

MMF15_a_l Mean 0.19521 0.20127 0.25586 0.34355 0.30386 0.22232 0.36512 0.25769 0.23737 0.22555
Std. 0.01010 0.00690 0.01852 0.07263 0.04040 0.00487 0.07080 0.00987 0.01031 0.00789

MMF16_l1 Mean 0.14278 0.15842 0.23937 0.55515 0.28537 0.19451 0.29920 0.23036 0.22352 0.20732
Std. 0.00292 0.01542 0.02336 0.10338 0.03743 0.00319 0.03381 0.01006 0.02238 0.01105

MMF16_l2 Mean 0.23574 0.23534 0.30704 0.59855 0.34781 0.27260 0.37058 0.31217 0.29817 0.27412
Std. 0.00169 0.00748 0.02340 0.08433 0.02989 0.00530 0.04268 0.00919 0.02126 0.00989

MMF16_l3 Mean 0.18270 0.19416 0.26719 0.58961 0.31717 0.22964 0.34974 0.27311 0.26237 0.24465
Std. 0.00456 0.00893 0.01027 0.06495 0.03861 0.00567 0.05248 0.01038 0.01407 0.01046

FAR (Rank) 1.46 (1) 4.02 (4) 7.67 (8) 7.02 (7) 6.19 (6) 3.69 (3) 8.94 (10) 8.02 (9) 5.21 (5) 2.79 (2)
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4.2  Experimental results and analysis

Since CEC2020 functions contain multiple global optimal 
PSs, a good performance of the algorithm in the objective 
space does not mean that multiple global optimal PSs can 
be found. The IGD (Zhang et al. 2008) in decision space 
(IGDX) (Zhou et al. 2009) and objective space (IGDF) 
(Zhou et al. 2009) are used to evaluate the quality of the 
obtained PS and PF, respectively. In the decision space, the 
smaller the IGDX value, the closer the obtained PS is to the 
true PS. In the objective space, the smaller the IGDF value, 
the closer the obtained PF is to the true PF.

The mean and standard deviation of the IGDX obtained 
by MOEOSMA and comparison algorithms are shown in 
Table 2. The IGDX value quantifies the convergence of 
the obtained PS in the decision space. It can be seen from 
Table 2 that MOEOSMA and MOSMA obtained the mini-
mum values on 12 and 8 functions, respectively, while 
MSSA, MOEA/D and SPEA2 obtained the best results on 
a few functions. Friedman's statistical test results reveal 
that MOEOSMA ranks first, and far better than the ranking 

values of other comparison algorithms. By comparing 
the IGDX values, it can be seen that MOEOSMA outper-
forms other algorithms in search in decision space and is 
able to find multiple global optimal PSs. It is found that 
MOEOSMA’s superior performance in decision space is 
mainly due to the equilibrium pool in the EOSMA frame-
work, which stores non-dominated solutions with minimum 
crowding distance. During the iteration, each slime mould 
individual randomly selects a solution from the equilibrium 
pool as the current best food source. This expands the search 
range of the slime mould in the decision space and ena-
bles the algorithm to explore multiple local optimal regions 
simultaneously. The equilibrium pool strategy not only 
increases the probability of finding multiple global PSs, but 
also helps to improve the distribution of PF. In addition, the 
dynamic exploration and exploitation coefficient improves 
the search capability of EOSMA, thus improving the con-
vergence accuracy of the algorithm.

Table 3 displays the mean and standard deviation of the 
IGDF obtained by MOEOSMA and other comparison algo-
rithms. The IGDF reflects the convergence and diversity 
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Fig. 3  The optimal PS obtained by all comparison algorithms on MMF2
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of the generated PF in the objective space. The results 
in Table 3 show that MOEOSMA ranks first on 22 func-
tions and does not reach the minimum on MMF15_a and 
MMF16_l2, but still achieves good results. Combined with 
the statistical results in Table 2, it can be seen that the per-
formance of MOEOSMA is close to MOSMA in the deci-
sion space, but its convergence in the objective space is obvi-
ously better than MOSMA. This indicates that the Pareto 
archive and crowding distance evaluation mechanism used 
by MOEOSMA are better than MOSMA, which not only 
improves the convergence rate of PF, but also maintains the 
diversity of PF well. MOEOSMA differs from MOSMA in 
terms of archive. Due to the weak exploration capability of 
SMA, the existing MOSMA (Premkumar et al. 2021b; Hous-
sein et al. 2022) select archived solutions based on the non-
dominated level, while MOEOSMA selects archived solu-
tions based on crowding distance by sorting solutions with 
the highest non-dominated level. The archive of MOSMA is 
beneficial to exploration, but good non-dominated solutions 
are easily discarded, while the archive of MOEOSMA can 
reduce damage to existing archived solutions. As a result, 

MOEOSMA can provide better convergence than MOSMA 
and most archive-based MOAs.

Figures 3, 4, 5, and 6 exhibit the best convergence results 
of PS and PF obtained by all comparison algorithms on 
MMF2 and MMF16_l3, respectively. These figures display 
only the non-dominated solutions obtained by the compari-
son algorithms, not all the solutions of the final population. 
As shown in Figs. 3 and 4, MOEOSMA obtains more non-
dominated solutions on MMF2 and is significantly superior 
to other algorithms in terms of convergence and distribu-
tion. Moreover, Fig. 3 shows that MOEOSMA can also find 
multiple global PSs, indicating that the algorithm is also 
suited for handling multimodal multi-objective optimization 
problems.

MMF16_l3 is a complex three-objective test function 
with the coexistence of local and global PS. Figures 5 and 6 
exhibit the comparison algorithm’s search performance on 
this function. It can be intuitively seen from the figures that 
MOEOSMA obtains the best results among all the com-
parison algorithms. It can not only jump out of the local 
PS but also find multiple uniformly distributed global PSs. 
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Fig. 4  The optimal PF obtained by all comparison algorithms on MMF2
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The obtained PF is close to the true PF and provides the 
decision-maker with more alternative Pareto optimal solu-
tions. In addition, an interesting phenomenon is that the 
PS obtained by MOSMA is easily spread near the search 
space's boundary, while MOEOSMA solves this problem 
well through the improved boundary updating method. In 
conclusion, MOEOSMA is highly competitive with other 
multi-objective algorithms and can achieve better results.

To further illustrate the MOEOSMA’s effectiveness 
and efficiency, Figs. 7 and 8 show the best PS and PF 
obtained by MOEOSMA on all CEC2020 benchmark 
functions. As shown in Fig. 7, MOEOSMA can jump out 
of the local PS, and the obtained PS can cover the true 
global PS uniformly. It shows that MOEOSMA has a pow-
erful search capability in decision space, which provides 
a solid platform for solving multimodal multi-objective 
optimization problems. As shown in Fig. 8, MOEOSMA 
can approximate the true PF for various types of PF and 
achieves satisfactory results in terms of convergence, 
diversity, and uniformity. Overall, MOEOSMA shows 
superior search performance on CEC2020 benchmark 
functions. It is verified that the equilibrium pool and the 
crowding distance can improve the algorithm’s conver-
gence accuracy and speed to obtain well-distributed PS 
and PF.

5  Real‑world constrained engineering 
problems

To test the potential of MOEOSMA, it was applied to 
eight real-world constraint engineering problems and four 
large-scale truss optimization problems: speed reducer 
design, spring design, hydrostatic thrust bearing design, 
vibrating platform design, car side impact design, water 
resource management, bulk carriers design, multi-product 
batch plant, 60-bar truss, 72-bar truss, 200-bar truss, and 
942-bar truss optimization problems. These problems 
contain 2 to 5 objective functions, 3 to 59 decision varia-
bles, and 5 to 942 constraints, which can comprehensively 
analyze the optimization performance of MOEOSMA in 
addressing various MOPs.

5.1  Real‑world optimization problems

The first multi-objective engineering design problem is 
the speed reducer design problem studied by Kurpati et al. 
(2002). The objective is to minimize the weight and stress 
of the reducer. As indicated in Fig. 9, this problem contains 
seven decision variables: the surface width of the gear ( b ), 
the number of pinion teeth ( z ), the module of teeth ( m ), 
the length of the first and second shafts between bearings 
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Fig. 5  The optimal PS obtained by all comparison algorithms on MMF16_l3
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( l1, l2 ), and the diameter of the first and second shafts 
( d1, d2 ). The number of pinion teeth ( z ) is an integer and 
other variables are continuous. This is a mixed integer prob-
lem whose mathematical model is shown in Appendix 1.1 
(Dhiman and Kumar 2018).

The second is the spring design problem, as shown in 
Fig. 10 (Yin et al. 2022a). The objective of this problem is 
to minimize both stress and volume (Tawhid and Savsani 
2019). The design variables are the wire diameter ( d ), the 
average coil diameter ( D ), and the number of active coils 
( N ). The constraints include outside diameter, shear stress, 
fluctuation frequency and minimum deflection. This problem 
is unique because all design variables have different charac-
teristics. The number of coil turns can only be taken as an 
integer, where the wire diameter is standardized and it must 
be selected from the set of available diameters. The average 
coil diameter can be considered as a continuous variable. 
This problem can be formulated as Appendix 1.2.

Third, the objective of the hydrostatic thrust bearing 
design problem is to minimize the power loss of the hydro-
static thrust bearing during operation while satisfying some 
constraints (Rao and Savsani 2012; Kumar et al. 2021a). The 
hydrostatic thrust bearing must bear a specified load when 

providing axial support. In this study, an objective function 
is added to minimize the pressure loss of oil inlet and outlet. 
As shown in Fig. 11, four design variables are considered 
in this problem: oil viscosity ( � ), oil inlet rate ( Q ), bear-
ing step radius ( R ), and recess radius ( Ro ). There are seven 
constraints related to minimum load carrying capacity, inlet 
oil pressure requirement, oil temperature increase, oil film 
thickness, and some physical constraints. It is assumed that 
all variables are continuous. The mathematical formula for 
this problem is described in Appendix 1.3.

The fourth problem is a modification of the vibration plat-
form design problem proposed by Messac (1996). It was 
originally designed as a SOP to maximize the fundamental 
frequency, with the estimated cost as one of the constraints. 
Here the problem is modified to include cost as a second 
objective function and to make the problem combinatorial. 
Geometry and materials are synthesized in the design pro-
cess (Narayanan and Azarm 1999). The problem is to design 
a platform for mounting the motor, as shown in Fig. 12. The 
setup of the machine is simplified to a pin-pin supported 
beam bearing the weight. A vibration disturbance is applied 
from the motor to the beam, which has a length L and a 
width b and is symmetrical around its middle. Variables d1 
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Fig. 6  The optimal PF obtained by all comparison algorithms on MMF16_l3
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and d2 locate the contact points of materials 1 and 2 and 2 
and 3, respectively. Variable d3 locates the bottom of the 
beam. The combined variable Mi refers to the type of mate-
rial that can form each layer of the beam. The mass density 

( � ), Young's modulus of elasticity ( E ) and cost per unit vol-
ume ( c ) of each material type are shown in Table 4. The 
objective is to design sandwich beams to minimize the vibra-
tion of the beam due to motor disturbance while minimizing 
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Fig. 7  The optimal PS obtained by MOEOSMA on all CEC2020 multimodal multi-objective benchmark functions
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Fig. 8  The optimal PF obtained by MOEOSMA on all CEC2020 multimodal multi-objective benchmark functions



Multi‑objective equilibrium optimizer slime mould algorithm and its application in solving…

1 3

Page 19 of 41 114

the cost. The complete formulation of the problem is shown 
in Appendix 1.4.

Fifth, Jain and Deb (2014) developed the car side impact 
design problem. The objective of this problem is to mini-
mize the weight of the car while minimizing the public forces 
experienced by the passenger and the average velocity of the 
V-pillar responsible for withstanding the impact load. All 
three objectives are in conflict with each other. Therefore, it is 
expected that there will be a three dimensional trade-off PF. 
There are ten constraints in this problem, involving limiting 
values of abdominal load, pubic force, velocity of the V-pillar, 
rib deflection, etc. There are eleven design variables describ-
ing the thicknesses of the B-pillar, floor, crossmembers, door 
beam, roof rail, etc. Its mathematical description is given in 
Appendix 1.5.

Sixth, the water resource management is the optimal plan-
ning of storm-drainage systems in urban areas, originally pro-
posed by Musselman and Talavage (1980). The formulation of 
this problem essentially consists of a hierarchically structured 
linear program with a simulation model as a constraint. It is 
assumed that there are three decision variables in the drain-
age system denoting the local detention storage capacity ( x1 ), 
maximum treatment rate ( x2 ) and maximum allowable over-
flow rate ( x3 ). The objectives to be optimized are drainage 
network cost ( f1 ), storage facility cost ( f2 ), treatment facility 
cost ( f3 ), expected flood damage cost ( f4 ) and expected flood 
economic loss ( f5 ). There are five objective functions for this 
problem, and the performance of MOEOSMA and other com-
parison algorithms can be evaluated on the many-objective 
optimization problem. The mathematical model of this prob-
lem is given in Appendix 1.6 (Ray et al. 2001).

Seventh, the bulk carriers design problem is another chal-
lenging constraint optimization problem, extracted from 
(Parsons and Scott 2004). The objectives of the problem are 
to reduce the transportation cost ( f1 ), to reduce the weight 
of the ship ( f2 ) and to increase the annual cargo volume ( f3 ). 
The decision variables of this problem are the length ( L ), 
beam ( B ), depth ( D ), draft ( T  ), speed ( Vk ) and block coef-
ficient ( CB ) of the ship. The mathematical description of the 
problem is shown in Appendix 1.7.

Eighth, the multi-product batch plant problem is a com-
plex scheduling problem. The early design of this type 
of problem is generally to reduce the manufacturing cost 
and makespan. The multi-product batch plant test problem 

1

1

 2

 2

Fig. 9  Schematic diagram of the speed reducer problem

Fig. 10  Schematic diagram of the spring design problem

ℎ

Thrust load

Lubricant in

Lubricant out

1

0

0

Fig. 11  Schematic diagram of the hydrostatic thrust bearing

Vibrating motor

Fig. 12  Schematic diagram of the vibrating platform apparatus

Table 4  Material properties of vibration platform design problem

Material type 
Mi

ρ (Kg/m3) E (N/m2) c ($/volume)

1 100 1.6 500
2 2770 70 1500
3 7780 200 800
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is extracted from (Kumar et al. 2021a), which takes into 
account three objective functions at the same time, with ten 
decision variables and ten inequality constraints. The math-
ematical formula for this mixed integer linear programming 
problem is described in detail in Appendix 1.8.

Finally, four truss optimization problems (60-bar, 
72-bar, 200-bar, and 942-bar) are selected from (Pholdee 
and Bureerat 2013; Tejani et al. 2019; Chou and Truong 
2020; Kumar et al. 2021b; Panagant et al. 2021) for validat-
ing the performance of MOEOSMA in solving large-scale 
structural optimization problems. The structural mass and 
compliance are specified as objective functions subject to 
allowable stress constraints. The truss optimization problem 

can be formulated as Eq. (16) (Pholdee and Bureerat 2013; 
Panagant et al. 2021).

where f1 denotes the structural mass, f2 denotes compliance, 
Ai is the design variable, �i is the density, Li is the element 

(16)

Consider � = [A1,A2,⋯ ,Am]

Minimize f1(�) =

m∑
i=1

Ai�iLi

f2(�) = �T�

subject to ||�i|| − �max
i

≤ 0 (stress constraint)

Alb
i
≤ Ai ≤ Aub

i
(side constraint).

(a)  60-bar truss                                                         (b)  72-bar truss

(c)  200-bar truss                                                        (d)  942-bar truss

-3 -2 -1 0 1 2 3
X (m)

-3

-2

-1

0

1

2

3

Y
(m

)

0

1

3

2

32

Y (m)

3

Z
(m

)

2

X (m)

1

4

1

5

0 0

6

0 10 20 30
X (m)

-5

0

5

10

15

20

25

30

35

40

45

50

Y
(m

)

0

10

10

10

Y (m)

20

0

X (m)

0

30

-10 -10

40

50

Z
(m

)

60

70

80

90

Fig. 13  Schematic diagram of the truss structure. a 60-bar truss, b 72-bar truss, c 200-bar truss, d 942-bar truss



Multi‑objective equilibrium optimizer slime mould algorithm and its application in solving…

1 3

Page 21 of 41 114

length, u denotes displacement, F denotes loading, �i is the 
element stress, and �max

i
 is the maximum stress occurs on 

the element structure.
The displacement and loading vectors in Eq. (16) are 

employed from finite element analysis. The material den-
sity, modulus of elasticity, and allowable stress are set as 
7850 kg/m3, 200GPa, and 400 MPa, respectively. In prac-
tice, the size of each structural member is usually discrete 
design variable due to beam standard sizing; therefore, the 
sizing variables are specified as discrete. The structures 
of the four trusses are shown in Fig. 13, where 60-bar and 
200-bar are planar (2D) trusses and 72-bar and 942-bar 
are spatial (3D) trusses. The number of design variables 
may not be equal to the number of truss members due 
to the presence of grouped design variables. The number 
of design variables for 60-bar, 72-bar, 200-bar, and 942-
bar are 25, 16, 29, and 59, respectively. Table 5 depicts 
the features of these real-world constraint engineering 
problems.

5.2  Constraint handling method

The penalty function is the most popular approach when 
dealing with constraints because it provides the uncon-
strained equivalent of the constraint problem. A good 
penalty function works in such a way that a feasible solu-
tion should have a smaller penalty function value than an 
infeasible solution. For two specific feasible solutions, the 
solution with the lower objective function is better. For 
two infeasible solutions, the less constraint violations the 
better. Therefore, during the optimization process, a par-
ticular penalty value is added to the infeasible solution to 
guide the search agent away from the infeasible region, as 
shown in Eq. (17) (Savsani and Savsani 2016).

where On(�) indicates the nth objective function value, 
fn(�) indicates the objective function value without taking 

(17)On(�) = fn(�) + w ⋅

l∑
i=1

max
(
0, gi(�)

)
, n = 1, 2,⋯ ,M

Table 5  Characteristics of real-
world constraint engineering 
problems

Problems Objective Variable Constraint

CMOP01: speed reducer design 2 7 11
CMOP02: spring design problem 2 3 8
CMOP03: hydrostatic thrust bearing design 2 4 7
CMOP04: vibrating platform design 2 5 5
CMOP05: car side impact design 3 7 10
CMOP06: water resource management 5 3 7
CMOP07: bulk carriers design 3 6 9
CMOP08: multi-product batch plant design 3 10 10
CMOP09: 60-bar 2D truss optimization 2 25 60
CMOP10: 72-bar 3D truss optimization 2 16 72
CMOP11: 200-bar 2D truss optimization 2 29 200
CMOP12: 942-bar 3D truss optimization 2 59 942

Table 6  Reference points 
of real-world engineering 
problems

Problems References points

CMOP01: speed reducer design (6.6659849E + 03, 1.2068713E + 03)
CMOP02: spring design problem (3.0743229E + 01, 2.0764019E + 05)
CMOP03: hydrostatic thrust bearing design (1.1177181E + 04, 4.5169386E − 06)
CMOP04: vibrating platform design (− 2.8933091E-03, 7.8120924E + 02)
CMOP05: car side impact design (4.6224367E + 01, 4.3993211E + 00, 1.3734738E + 01)
CMOP06: water resource management (8.4580225E + 04, 1.4845700E + 03, 3.1375465E + 05, 

9.0794428E + 06, 2.7482920E + 04)
CMOP07: bulk carriers design (− 8.9553699E + 02, 1.2135542E + 04, 4.7147918E + 03)
CMOP08: multi-product batch plant design (2.5594278E + 05, 4.9671972E + 04, 6.5576579E + 03)
CMOP09: 60-bar 2D truss optimization (1.1261826E + 04, 9.1297289E + 04)
CMOP10: 72-bar 3D truss optimization (3.8673748E + 04, 1.3659625E + 05)
CMOP11: 200-bar 2D truss optimization (1.5947404E + 05, 2.6859394E + 05)
CMOP12: 942-bar 3D truss optimization (1.6090635E + 06, 2.3345349E + 05)
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the constraints into account, w = 108 represents the static 
penalty coefficient.

5.3  Performance metrics

Two performance metrics, the Hypervolume (HV) (Panagant 
et al. 2021) and the Spacing-to-Extent (STE) (Tejani et al. 
2019), are used to measure the performance of the optimiza-
tion algorithm. HV is used to measure the convergence and 
extension of the PF, while STE is the ratio between spacing 
and extent of the PF. In this research, the STE value is set to 
100 if there is only one solution in the PF; if there are two 
solutions in the PF, the STE value is set to 10; otherwise, the 
STE value is calculated according to Eq. (18).

where |PF| denotes the number of solutions in the obtained 
PF, di is the Euclidean distance between the objective func-
tion vector of the ith solution and its nearest neighbor, d is 
the average of all di , M is the number of objective functions, 
fmax
i

 and fmin
i

 are the maximum and minimum values of the 
ith objective function in the PF, respectively.

The superior PF has a larger HV value and a smaller STE 
value. For the HV metric, the reference point for each test 
problem is 1.1 times the maximum objective value of the PF 
obtained by 100 independent runs of MOEOSMA, as shown 
in Table 6. If all solutions in the PF obtained by the algo-
rithm are dominated by the reference point, the HV value 
is set to 0.

5.4  Discussion of results

In order to verify the efficiency of the proposed algorithm, 
the results obtained by MOEOSMA were compared with 
eleven well-known MOAs, including MOSMA (Premkumar 
et al. 2021b), MOALO (Mirjalili et al. 2017c), MOGWO 
(Mirjalili et al. 2016), multi-objective marine predator algo-
rithm (MOMPA) (Zhong et al. 2021), MOMVO (Mirjalili 
et al. 2017b), MOPSO (Coello et al. 2004), MSSA (Mirjalili 
et al. 2017a), multi-objective dragonfly algorithm (MODA) 
(Mirjalili 2016), MOEA/D (Zhang and Li 2007), PESA-II 
(Corne et al. 2001), SPEA2 (Zitzler et al. 2001). All algo-
rithms have a population size of 100, an archive capacity of 
100, and run 30 times independently. The maximum number 
of iterations is 200 for CMOP01 to CMOP08 and 500 for the 
four truss optimization problems.

(18)

STE = Spacing∕Extent

Spacing =
1

|PF| − 1

|PF|∑
i=1

(
di − d

)2

Extent =

M∑
i=1

|||f
max
i

− fmin
i

|||
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The mean and standard deviation of HV values obtained 
by MOEOSMA and other comparison algorithms on twelve 
engineering problems are presented in Table 7 and Fig. 14. 
As can be seen from Table  7, MOEOSMA, MOMPA, 
MOMVO, and PESA-II obtained the best HV values on 8, 
1, 2, and 1 engineering problems, respectively. It is worth 
noting that MOEOSMA outperforms other algorithms on 
engineering problems with two objective functions, but the 

performance in solving engineering problems with more 
than two objectives needs to be improved. This is because 
MOEOSMA is updated based on the elite Pareto optimal 
solution in the equilibrium pool. When solving many-objec-
tive optimization problems, the number of non-dominated 
solutions increases exponentially. Due to the low selection 
pressure caused by the Pareto dominance relationship, it is 
difficult for MOEOSMA to select the elite non-dominated 
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Fig. 14  The box plot of HV values obtained by all comparison algorithms
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solutions. For the three-objective engineering problem, 
MOMPA and MOMVO achieved better results, and for 
the five-objective engineering problem, PESA-II achieved 
the best results, but PESA-II runs 1000 times slower than 
MOEOSMA. Although MOEOSMA does not perform best 
on problems with more than two objectives, it still has a 
strong competitive advantage. In addition, MOEOSMA 
performs better than other algorithms on large-scale truss 
optimization problems. According to the NFL theorem 
(Wolpert and Macready 1997), no algorithm performs best 
on all problems, and MOEOSMA is more suitable for solv-
ing real-world engineering problems with two objectives. 
In addition, Friedman test results show that MOEOSMA, 
MOMPA, and MOMVO are superior to other competitive 
algorithms in terms of convergence and diversity of the PF.

For the HV metric, a larger value indicates better conver-
gence and coverage of the PF. As can be seen from Fig. 14, 
the minimum HV value obtained by the algorithm is 0, indi-
cating that all solutions obtained by the algorithm are domi-
nated by the reference point of the problem, and this PF is the 
worst. In addition, MOEOSMA has the highest box plot with 
the least number of outliers and is narrowest, indicating that 
the algorithm has good generalization ability and stability. 
The performance of MOEOSMA is superior to the current 
MOSMA except for the car side impact problem, which veri-
fies the effectiveness of the improved strategy used in this 
study. Although MOEOSMA does not obtain the best results 
for the many-objective optimization problems, it still remains 
at the same level as several state-of-the-art algorithms.

The STE values of PF produced by MOEOSMA and 
other comparison algorithms are recorded in Table 8 and 
Fig.  15. As shown in Table  8, MOEOSMA, MOMVO, 
MSSA, and SPEA2 obtain the most uniformly distributed 
PF on 2, 1, 2, and 7 engineering problems, respectively. The 
Friedman statistical test results show that the overall distri-
bution of PF obtained by SPEA2 is the best, followed by 
MOEOSMA. The effectiveness and efficiency of the equilib-
rium pool strategy and crowding distance method on various 
MOPs are verified. In addition, the Friedman rankings in 
Tables 7 and 8 show that MODA, MOSMA and MOEA/D 
do not solve these engineering problems well. The search 
efficiency of MODA and MOSMA needs to be improved, 
while MOEA/D may not be good at handling engineering 
problems with constraints.

For the STE metric, smaller values indicate better uni-
formity and extensiveness of the PF. As can be seen from 
Fig. 15, the algorithm obtains a maximum STE value of 100. 
This situation is because the algorithm obtains a PF with 
only one solution and cannot calculate the Spacing. Since 
such a PF is the worst, it is set to a relatively large value. 
If the obtained PF has only two solutions and also cannot 
calculate the Spacing, set its STE value to 10. For PF with 
more than two solutions, the STE value (usually less than 1) Ta
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is calculated by Eq. (18). According to Fig. 15, most algo-
rithms can obtain well-distributed PF. However, MOSMA, 
MOPSO, MODA, and MOEA/D perform poorly on some 
problems and can only obtain one or two non-dominated 
solutions. In addition, SPEA2 obtains the best PF distribu-
tion in many problems, but its convergence accuracy is not 
as good as MOEOSMA.

To avoid the influence of randomness, the Wilcoxon rank-
sum test was employed to verify whether the HV and STE 
values obtained by the paired algorithms are significantly 
different. Tables 9 and 10 show the results of the paired 
sample Wilcoxon rank-sum test for MOEOSMA and the 
other comparison algorithms. Table 9 reveals that MOE-
OSMA significantly outperforms other algorithms for most 
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Fig. 15  The box plot of STE values obtained by all comparison algorithms
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optimization problems and outperforms all comparison algo-
rithms for speed reducer, spring design, hydrostatic thrust 
bearing, and four large-scale truss optimization problems. 
It is verified that the comprehensive performance of MOE-
OSMA is better than other comparison algorithms, and there 
are significant differences.

Table 10 illustrates that in terms of uniformity and exten-
siveness, the PF obtained by MOEOSMA is not significantly 
different from MOMPA, MOMVO, and PESA-II on 9, 5, 
and 7 problems, respectively. These algorithms all obtained 
well-distributed PF. However, there are significant differ-
ences between MOEOSMA and MOSMA on eleven prob-
lems. As can be seen from Table 8, the STE values of MOE-
OSMA are smaller than that of MOSMA, indicating that 
MOEOSMA is significantly better than MOSMA in terms of 
uniformity. In addition, MOEOSMA is significantly different 
from MOALO, MOGWO, MSSA, MODA, and MOEA/D. 
The former obtains better PF distribution, which verifies 
the performance of MOEOSMA. When the primary search 
operator of MOAs has sufficient exploration capability, the 
distribution of PF obtained using the elite archiving mecha-
nism based on the crowding distance (similar to MOPSO) is 
more uniform than that of the non-dominated ranking (simi-
lar to NSGA-II). For high-dimensional complex PF, the dis-
tribution does not deteriorate significantly. In contrast, the 
archiving mechanism based on the non-dominated ranking 
is more suitable to combine with the search operator with 
strong exploitation capability, thus improving the explora-
tion capability of MOAs.

In MOPs, the number of non-dominated solutions in the 
PS obtained by the algorithm is crucial. It is detrimental for 
the user to weigh the decisions if the number of solutions is 
too small. Therefore, the number of Pareto optimal solutions 
obtained can be regarded as a diversity indicator. Table 11 
statistics the average number of Pareto optimal solutions 
obtained by all comparison algorithms run 30 times indepen-
dently on each problem. The best results are shown in bold. 
Because the archive capacity is set to 100 for all algorithms, 
the average number of Pareto optimal solutions in Table 11 is 
at most 100. According to Table 11, MOEOSMA obtains the 
most non-dominated solutions on twelve engineering prob-
lems, while other algorithms can only obtain more non-dom-
inated solutions on some of the problems. It is demonstrated 
that using MOEOSMA to solve real-world MOPs is more 
beneficial for users to weigh and select the most satisfactory 
solution among multiple objective functions.

The quality measure for PF is very complicated, and there 
is no unary quality measure that can indicate that approxi-
mate set A is superior to B (Zitzler et al. 2003). Because the 
theoretical PF is usually unknown in real-world optimization 
problems, it is challenging to design a satisfactory binary 
quality measure. Such a metric also has the disadvantage that 
the evaluation is not objective. A direct comparison of PF Ta
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can more accurately demonstrate the advantages of different 
algorithms. Figures 15, 16, 17, and 18 present the optimal 
PF obtained by all comparison algorithms for the hydrostatic 
thrust bearing design, car side impact design, water resource 
management, and 60-bar truss optimization problem, respec-
tively. The PF for other engineering problems is shown in 
Appendix Figs. 20, 21, 22, 23, 24, 25, 26, and 27.

As shown in Fig. 16, the PF obtained by MOALO with 
MOSMA is strictly dominated by the PF obtained by MOE-
OSMA on the hydrostatic thrust bearing design problem. 
MOSMA and MOPSO can only discover a few non-domi-
nated solutions that satisfy all constraints, whereas MOEA/D 
cannot find feasible solutions. It means that the search opera-
tors of these three algorithms are inefficient at solving the 

Fig. 16  The optimal PF 
obtained by all comparison 
algorithms on the hydrostatic 
thrust bearing design problem
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Fig. 17  The optimal PF 
obtained by all comparison 
algorithms on the car side 
impact design problem
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problem. Compared with other algorithms, MOEOSMA 
obtains a more uniform and extensive PF.

The optimal PF of the car side impact design problem, 
depicted in Fig. 17, illustrates the search performance of 
MOEOSMA in comparison to other algorithms on the three 
objective optimization problems. In this instance, the HV 
value indicates that MOMVO obtained the best convergence 
and diversity of PF, but its distribution is not the most uni-
form, with many non-dominated solutions concentrated in 
the same region. As can be seen from Fig. 17, MOPSO, 
MOMPA, and SPEA2 are the three algorithms with the best 
performance, followed by MOEOSMA and PESA-II.

Figure 18 displays the PF distribution of the first three objec-
tive functions of the water resource management problem with 
five objectives. The result illustrates that MOPSO, MOE-
OSMA, and MOMPA provide the best PF distribution, but the 
HV values of MOMVO and MOSMA are larger, indicating that 
the latter has superior convergence and is closer to the true PF.

For the truss optimization problem, taking 60-bar as an 
example, Fig. 19 presents the PF obtained by all comparison 
algorithms. It can be seen that MOEOSMA demonstrates the 
best convergence performance on the 60-bar truss optimiza-
tion problem, and the PF obtained is closer to the true PF. 
Moreover, the PF obtained by many algorithms can only 

Fig. 18  The optimal PF 
obtained by all compari-
son algorithms on the water 
resource management problem
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Fig. 19  The optimal PF 
obtained by all comparison 
algorithms on the 60-bar truss 
optimization problem
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cover part of the true PF, and only MOEOSMA, MOGWO, 
and MOMPA can achieve high coverage.

In summary, MOEOSMA shows the strongest com-
petitiveness in all two-objective engineering problems, 
indicating that the multi-objective algorithm proposed in 
this research is very efficient in two-objective optimiza-
tion problems. Among them, the dynamic exploration and 
exploitation coefficient enhance the search capability of 
the algorithm, and the elite archiving mechanism based 
on the crowding distance can promote the convergence 
and diversity of the PF. For engineering problems with 
three objectives and above, MOEOSMA’s performance 
is reduced due to too little selection pressure caused by 
Pareto dominance. However, it still has a strong competi-
tive advantage and outperforms most comparable MOAs.

6  Conclusion and future work

This study developed a novel multi-objective version of 
the recently proposed EOSMA called MOEOSMA. Here, 
EOSMA's superior performance in the decision space is the 
primary motivation for developing MOEOSMA. In order 
to handle MOPs efficiently, the proposed algorithm intro-
duces three important components. First, dynamic explo-
ration and exploitation coefficients were used to improve 
the algorithm's search ability in the decision space. Second, 
a rotation method was used designed to sort the fitness of 
slime mould individual to evaluate the fitness weight. Then, 
a Pareto archive with a fixed capacity was used to store the 
good non-dominated solutions obtained so far to improve 
the convergence of solutions in the objective space. Finally, 
a crowding distance assessment method was developed to 
maintain the archive and update the equilibrium pool to 
promote the diversity of the solution in the objective space.

The performance of MOEOSMA was verified on 
CEC2020 functions, and the convergence of the algorithm 
in the decision space and objective space was evaluated 
using IGDX and IGDF, respectively. The experimental 
results show that MOEOSMA outperforms nine well-known 
MOAs. In addition, eight real-world engineering problems 
and four truss optimization problems were tested to dem-
onstrate the efficiency and practicality of MOEOSMA. The 
convergence, diversity and extensiveness of algorithms 
were evaluated by HV and STE, respectively. In terms of 
convergence and diversity, MOEOSMA is obviously supe-
rior to other comparison algorithms. In terms of extensive-
ness, MOEOSMA is second only to SPEA2. In addition, 
MOEOSMA obtained the largest number of non-dominated 
solutions, which can provide more alternatives to decision-
makers. In future research, MOEOSMA can be applied to 
more practical optimization problems, such as multi-objec-
tive feature selection problem (Hu et al. 2022) and wing 
aeroelastic optimization problem (Wansasueb et al. 2022). 

In addition, the crowding distance method can be further 
improved to enhance the performance of MOEOSMA in 
solving multimodal multi-objective optimization problems.

Appendix 1. Real‑world constraint 
engineering design problems

Speed reducer design problem

Spring design problem

Consider � = [x1, x2, x3, x4, x5, x6, x7] = [b,m, z, l1, l2, d1, d2]

Minimize f1(�) = 0.7854x1x22(14.9334x3 + 3.3333x23 − 43.0934)

−1.508x1
(

x26 + x27
)

+ 0.7854
(

x4x26 + x5x27
)

+ 7.4777
(

x36 + x37
)

f2(�) =
√

(

745x4
/

(x2x3)
)2 + 16.9 × 106

/

(0.1x36)

subject to: g1(�) = 27
/

(x1x3x22) ≤ 1; g2(�) = 397.5
/

(x1x22x
2
3) ≤ 1

g3(�) = 1.93x34
/

(x2x3x46) ≤ 1; g4(�) = 1.93x35
/

(x2x3x47) ≤ 1

g5(�) = x2x3
/

40 ≤ 1; g6(�) = x1∕ (12x2) ≤ 1

g7(�) = 5x2∕ x1 ≤ 1; g8(�) = (1.5x6 + 1.9)
/

x4 ≤ 1

g9(�) = (1.1x7 + 1.9)
/

x5 ≤ 1; g10(�) = f2(�) − 1100 ≤ 1

g11(�) =
√

(

745x5
/

(x2x3)
)2 + 157.5 × 106

/

(0.1x37) − 850 ≤ 1

with 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28(integer),

7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

Consider: � = [x1, x2, x3] = [d,D,N]

Minimize: f1(�) = 0.25�2x21x2(x3 + 2)

f2(�) = 8000cf x2
/

(�x31)

subject to: g1(�) = f1(�) − Vmax ≤ 0; g2(�) = f2(�) − S ≤ 0

g3(�) = lf − lmax ≤ 0; g4(�) = dmin − x1 ≤ 0

g5(�) = x1 + x2 − Dmax ≤ 0; g6(�) = 3 − C ≤ 0

g7(�) = �p − �pm ≤ 0; g8(�) = 1.25 − 700∕K ≤ 0

where Vmax = 30; S = 189000; lmax = 14; dmin = 0.2;

Dmax = 3; �pm = 6; �p = 300∕K;

K = Gx41
/

(8x32x3);G = 11.5 × 106;

cf = (4C − 1)∕ (4C − 4) + 0.615∕C;C = x2∕ x1;

lf = 1.05x1(x3 + 2) + 1000∕K.

with x1 ∈ {0.009, 0.0095, 0.0104, 0.0118, 0.0128, 0.0132, 0.014,

0.015, 0.0162, 0.0173, 0.018, 0.020, 0.023, 0.025,

0.028, 0.032, 0.035, 0.041, 0.047, 0.054, 0.063,

0.072, 0.080, 0.092, 0.0105, 0.120, 0.135, 0.148,

0.162, 0.177, 0.192, 0.207, 0.225, 0.244, 0.263,

0.283, 0.307, 0.331, 0.362, 0.394, 0.4375, 0.500},

1 ≤ x2 ≤ 30(continuous), 1 ≤ x3 ≤ 32(integer).
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Hydrostatic thrust bearing design problem

Vibrating platform design problem

Consider: � = [R,R0,�,Q]

Minimize: f1(�) =
1

12

(
Q × P0

0.7
+ Ef

)

f2(�) =
�

g ⋅ P0

⋅

Q

2�Rh

subject to: g1(�) = Ws −W ≤ 0; g2(�) = P0 − Pmax ≤ 0

g3(�) = ΔT − ΔTmax ≤ 0; g4(�) = hmin − h ≤ 0

g5(�) = R0 − R ≤ 0; g6(�) = f2(�) − 0.001 ≤ 0

g7(�) = W
/(

�
(
R2 − R2

0

))
− 5000 ≤ 0

where W =
�P0

2
⋅

R2 − R2
0

ln
(
R
/
R0

) ;P0 =
6�Q

�h3
⋅ ln

(
R

R0

)
;

h =
(
2�N

60

)2

⋅

2��

Ef

⋅

R4 − R4
0

4
;Ef = 9336Q ⋅ � ⋅ C ⋅ ΔT;

ΔT = 2
(
10P − 560

)
;P =

log10 log10
(
8.122 × 106� + 0.8

)
− C1

n
;

� = 0.0307;C = 0.5; n = −3.55;C1 = 10.04;Ws = 101000;

Pmax = 1000;ΔTmax = 50; hmin = 0.001; g = 386.4;N = 750.

with 1 ≤ R,R0,Q ≤ 16, 1 × 10−6 ≤ � ≤ 16 × 10−6.

Consider � = [d1, d2, d3, b, L]

Minimize f1(�) = −�
�
(2L2) ⋅

√
EI∕�

f2(�) = 2b ⋅ L
�
c1d1 − c2(d1 − d2) − c3(d2 − d3)

�
subject to: g1(�) = �L − 2800 ≤ 0; g2(�) = d1 − d2 ≤ 0

g3(�) = d2 − d1 − 0.15 ≤ 0; g4(�) = d2 − d3 ≤ 0

g5(�) = d3 − d2 − 0.01 ≤ 0

where EI = (2b∕3)(E1d
3
1
− E2(d

3
1
− d3

2
) − E3(d

3
2
− d3

3
));

� = 2b(�1d1 − �2(d1 − d2) − �3(d2 − d3)).

with 0.05 ≤ d1 ≤ 0.5, 0.2 ≤ d2 ≤ 0.5, 0.2 ≤ d3 ≤ 0.6,

0.35 ≤ b ≤ 0.5, 3 ≤ L ≤ 6.

Car side impact design problem

Water resource management problem

Consider � = [x1, x2, x3, x4, x5, x6, x7]

Minimize f1(�) = 4.90x1 + 6.67x2 + 6.98x3 + 4.01x4 + 1.78x5

+10−5x6 + 2.73x7 + 1.98

f2(�) = 4.72 − 0.19x2x3 − 0.50x4

f3(�) = 0.50 ⋅ (VMBP + VFD)

subject to: g1(�) = 1.16 − 0.0092928x3 − 0.3717x2x4 ≤ 1

g2(�) = 0.261 − 0.06486x1 + 0.0154464x6 − 0.0159x1x2

−0.019x2x7 + 0.0144x3x5 ≤ 0.32

g3(�) = 0.214 − 0.0587118x1 + 0.018x2
2
+ 0.030408x3

+0.00817x5 + 0.03099x2x6 − 0.018x2x7

−0.00364x5x6 ≤ 0.32

g4(�) = 0.74 − 0.61x2 + 0.227x2
2
− 0.031296x3

−0.031872x7 ≤ 0.32

g5(�) = 28.98 + 3.818x3 + 1.27296x6 − 2.68065x7

−4.2x1x2 ≤ 32

g6(�) = 33.86 − 3.795x2 + 2.95x3 − 3.4431x7 − 5.057x1x2

+1.45728 ≤ 32

g7(�) = 46.36 − 4.4505x1 − 9.9x2 ≤ 32

g8(�) = f2(�) ≤ 4

g9(�) = VMBP ≤ 9.9

g10(�) = VFD ≤ 15.7

where VMBP = 10.58 − 0.67275x2 − 0.674x1x2;

VFD = 16.45 − 0.489x3x7 − 0.843x5x6.

with 0.5 ≤ x1, x3, x4 ≤ 1.5, 0.45 ≤ x2 ≤ 1.35,

0.875 ≤ x5 ≤ 2.625, 0.4 ≤ x6, x7 ≤ 1.2.

Consider � = [x1, x2, x3]

Minimize f1(�) = 106780.37(x2 + x3) + 61704.67

f2(�) = 3000x1
f3(�) = 30570 × 2289x2

/

(0.06 × 2289)0.65

f4(�) = 250 × 2289 × exp
(

2.74 − 39.75x2 + 9.9x3
)

f5(�) = 25
(

1.39∕ (x1x2) + 4940x3 − 80
)

subject to: g1(�) = 4.94x3 + 0.00139∕ (x1x2) ≤ 1.08

g2(�) = 1.082x3 + 0.000306∕ (x1x2) ≤ 1.0986

g3(�) = 49408.24x3 + 12.307∕ (x1x2) ≤ 54051.02

g4(�) = 8046.33x3 + 2.098∕ (x1x2) ≤ 16696.71

g5(�) = 7883.39x3 + 2.138∕ (x1x2) ≤ 10705.04

g6(�) = 1721.26x3 + 0.417x1x2 ≤ 2136.54

g7(�) = 631.13x3 + 0.164∕ (x1x2) ≤ 604.48

with 0.01 ≤ x1 ≤ 0.45, 0.01 ≤ x2, x3 ≤ 0.1.
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Bulk carriers design problem

Consider � = [L,B,D,T ,Vk ,CB]

Minimize f1(�) = (Cc + Cr + Cv)
/

Ca

f2(�) = Wls

f3(�) = −Ca

subject to: g1(�) = −L∕B + 6 ≤ 0

g2(�) = L∕D − 15 ≤ 0

g3(�) = −L∕T − 19 ≤ 0

g4(�) = T − 0.45D0.31
wt ≤ 0

g5(�) = T − 0.7D − 0.7 ≤ 0

g6(�) = Fn − 0.32 ≤ 0

g7(�) = −0.53T − ((0.085CB − 0.002)B2)
/

(T ⋅ CB)

+(1 + 0.52D) + 0.07B ≤ 0

g8(�) = −Dwt + 3000 ≤ 0;

g9(�) = Dwt − 500000 ≤ 0

where Cc = 2.6(2000W0.85
s + 3500Wo + 2400P0.8);

Cr = 40000D0.3
wt ;Cv = (105DcSd + 6.3D0.8

wt )Rtpa;

Ca = DcwtRtpa;Rtpa = 350
/(

Sd + 2(Dcwt
/

8000 + 0.5)
)

;

Dcwt = Dwt − Dc(Sd + 5) − 2D0.5
wt ; Sd = 5000Vk

/

24;

Dc = 0.19 × 24P∕1000 + 0.2;Dwt = 1.025L ⋅ B ⋅ T ⋅ CB −Wls;

Wls = Ws +Wo +Wm;Ws = 0.034L1.7B0.7D0.4C0.5
B ;

Wo = L0.8B0.6D0.3C0.1
B ;Wm = 0.17P0.9;

P = (1.025L ⋅ B ⋅ T ⋅ CB)
2
3 V3

k

/

(a + b ⋅ Fn);

Fn = 0.5144Vk
/

(9.8065L)0.5;

a = 4456.51 − 8105.61CB + 4977.06C2
B;

b = −6960.32 + 12817CB − 10847.2C2
B.

with 150.0 ≤ L ≤ 274.32, 20.0 ≤ B ≤ 32.31,

13.0 ≤ D ≤ 25.0, 10.0 ≤ T ≤ 11.71,

14.0 ≤ Vk ≤ 18.0, 0.63 ≤ CB ≤ 0.75.

Multi‑product batch plant problem

Appendix 2. Pareto fronts obtained by all 
comparison algorithms

See Figs. 20, 21, 22, 23, 24, 25, 26, 27

Consider � = [N1,N2,N3,V1,V2,V3, TL1, TL2,B1,B2]

Minimize f1(�) =

M∑
j=1

𝛼jNjV
𝛽j

j

f2(�) = 65

N∑
i=1

Qi

Bi

+ 0.08Q1 + 0.1Q2

f3(�) =

N∑
i=1

QiTLi

Bi

subject to: g1(�) = f3(x⃗) − H ≤ 0

g2(�) =

N∑
i=1

SijBi − Vj ≤ 0, j = 1, ...,M

g3(�) = tij − NjTLi ≤ 0, i = 1, ...,N;j = 1, ...,M

where N = 2;M = 3; 𝛼j = 250; 𝛽j = 0.6;

H = 6000;Q1 = 40000;Q2 = 20000;

S11 = 2; S12 = 3; S13 = 4;

S21 = 4; S22 = 6; S23 = 3;

t11 = 8; t12 = 20; t13 = 8;

t21 = 16; t22 = 4; t23 = 4.

with 1 ≤ N1,N2,N3 ≤ 3(integer), 250 ≤ V1,V2,V3 ≤ 2500,

6 ≤ TL1 ≤ 20, 4 ≤ TL2 ≤ 16, 40 ≤ B1 ≤ 700, 10 ≤ B2 ≤ 450.
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Fig. 20  Speed reducer design 
problem
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Fig. 21  Spring design problem
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Fig. 22  Vibrating platform 
design problem
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Fig. 23  Bulk carriers design 
problem

0

5000

10000
-500

f3

10000

f2

-1000

f1

15000

-1500
5000 -2000

MOEOSMA

MOSMA

MOALO

2000

3000

10000 -500

f3
4000

f2

-1000

f1

5000

-1500
5000 -2000

MOGWO

MOMPA

MOMVO

2000

3000

10000 -500

f3

4000

f2

-1000

f1

5000

-1500
5000 -2000

MOPSO

MSSA

MODA

2600

10000
-1000

2800

f3

f2

3000

f1

-1500

5000 -2000

MOEA/D

PESA-II

SPEA2



Multi‑objective equilibrium optimizer slime mould algorithm and its application in solving…

1 3

Page 37 of 41 114

Fig. 24  Multi-product batch 
plant design problem
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Fig. 25  72-bar 3D truss optimi-
zation problem
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Fig. 26  200-bar 2D truss opti-
mization problem
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Fig. 27  942-bar 3D truss opti-
mization problem
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