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Abstract

This paper aims to represent a multi-objective equilibrium optimizer slime mould algorithm (MOEOSMA) to solve real-world
constraint engineering problems. The proposed algorithm has a better optimization performance than the existing multi-
objective slime mould algorithm. In the MOEOSMA, dynamic coefficients are used to adjust exploration and exploitation
trends. The elite archiving mechanism is used to promote the convergence of the algorithm. The crowding distance method
is used to maintain the distribution of the Pareto front. The equilibrium pool strategy is used to simulate the cooperative
foraging behavior of the slime mould, which helps to enhance the exploration ability of the algorithm. The performance of
MOEOSMA is evaluated on the latest CEC2020 functions, eight real-world multi-objective constraint engineering problems,
and four large-scale truss structure optimization problems. The experimental results show that the proposed MOEOSMA not
only finds more Pareto optimal solutions, but also maintains a good distribution in the decision space and objective space.
Statistical results show that MOEOSMA has a strong competitive advantage in terms of convergence, diversity, uniformity,
and extensiveness, and its comprehensive performance is significantly better than other comparable algorithms.

Keywords Multi-objective equilibrium optimizer slime mould algorithm - CEC2020 functions - Real-world engineering
problems - Truss structure optimization - Metaheuristic algorithm

1 Introduction

In the past decades, metaheuristic algorithms have been
favored by many researchers and successfully applied to
solve real-world optimization problems in various fields
due to their strong search capability, low computational
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complexity and strong generalization capability. Research-
ers have made a lot of efforts to find reasonable and effec-
tive search operators for single-objective optimization
problems (SOPs), to improve the search capability of
metaheuristic algorithms, and to balance the exploration
and exploitation of algorithms, and have achieved more
satisfactory results. Single-objective optimization algo-
rithms have well solved problems such as cluster analy-
sis (Cui et al. 2022), forest fire rescue (Chen et al. 2022)
and crack identification (Benaissa et al. 2021). However,
in the real world, many problems are usually composed
of multiple conflicting objective functions, and they are
called multi-objective optimization problems (MOPs).
Since MOPs are widespread in the real world and diffi-
cult to be solved efficiently, algorithms for dealing with
MOPs have gradually become a popular research topic
(Zeng et al. 2021). Taking the minimization problem as
an example, the mathematical definition of MOPs is pre-
sented in Eq. (1).
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minimize F(x) = [f;(X),f5(X), -+, f3;(X)]
subject to g;(x) <0,i=1,2,-,1]

=0,j= ey
B =0,j=12-.c
with Ib < x;, <ub,k=1,2,-,d.

where x=[x,x,, ,xd]T is the vector of deci-
sion variables, d is the number of decision variables,
fi: RY > R,i=1,2,--,M are the objective functions, M
is the number of objectives, R4 is the d-dimensional solu-
tion space g; : RY > R,i=1,2,--,lare the inequality con-
straints functions, [ is the number of inequality constraints,
h; RY > R,i=1,2,-,care the equality constraints func-
tions, c¢ is the number of equality constraints, b is the lower
bound of decision variables, and ub is the upper bound.

Unlike SOPs, MOPs do not have a global or single opti-
mal solution, but rather have many solutions alternatively
representing the optimal solution. In order to compare
the superiority of solutions during the iteration process
and to provide search agents with environmental selec-
tion pressure, the related concept of Pareto dominance is
introduced (Coello 2009).

Definition 1 (Pareto dominance) Given two solu-
tions x,y € R?, if Vie {1,2,--,M}, fi(x) <f(y), and
di € {1,2,---, M}, such that f;(x) < f;(y), then solution X is
said to dominate y, denoted as x < y.

Definition 2 (Pareto optimality) If x € X c R?, Vy € X,
X <y, then solution x is called the Pareto optimality in the
solution set X.

Definition 3 (Pareto set) Pareto set (PS) is the set of all
Pareto optimal solutions in the solution set X € R¢.

Definition 4 (Pareto front) Pareto front (PF) is the mapping
set of the Pareto set (PS) in the objective space.

A challenging task is the need to consider multiple
conflicting objective functions simultaneously and then
find the best possible trade-off solution that satisfies all
constraints, if any. According to definition 1, the non-
dominated solution should be strictly better than all solu-
tions for one subfunction and not the best solution for the
other subfunctions. The easiest way to deal with MOPs is
to assign a specific weight to each subfunction, convert-
ing multiple objective functions into a single objective. In
practice, this method does not necessarily exist the attain-
ability of design variables for all the objective functions,
which means that the objective function may not represent
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PF correctly and competitiveness may lead to an inappro-
priate Pareto optimal solution (Ali and Shimoda 2022).
An appropriate PF contains a solution x such that for each
subobjective function f;, there exists at least one f] such
that £(X) < ), (i) =)/ (%) = f(¥) < &, where
y € X C R? and ¢ is a scalar larger than 0.

Generally, there are three crucial factors need to be con-
sidered when designing multi-objective optimization algo-
rithms (MOAs): convergence, diversity, and spread (Li and
Zheng 2009). Convergence reflects the distance between the
obtained PF and the true PF; diversity reflects whether the
points on the obtained PF are evenly spaced; and spread
reflects the distribution range of the obtained PF. It is very
challenging to ensure that MOAs find a evenly spaced and
highly convergent PF when solving MOPs (Zhao et al.
2022). MOAs can be classified into three categories based
on the participation of decision makers in in the optimiza-
tion process: the priori method (Jin et al. 2001), posteriori
method (Branke et al. 2004), and interactive method (Kollat
and Reed 2007). In the priori method, the decision maker
provides preference weights in advance, so that multiple
objectives can be combined into a single objective through
weight allocation. In the posteriori method, the decision
maker makes a decision at the end of the optimization and
therefore needs to generate a set of alternative non-domi-
nated solutions under conflicting objectives. Finally, in the
interactive method, the decision maker needs to participate
in the optimization process, so this treatment is less effi-
cient. Compared with the other two methods, the posteriori
method maintains the formulation of MOPs, has a stronger
randomness, does not require too much decision maker inter-
vention, does not depend on specific problems, and has a
stronger generalization capability. Based on these advan-
tages, the posteriori method has become the most popular
multi-objective optimization processing method, and many
multi-objective biologically inspired algorithms belong to
this method. The posteriori method usually employs the
concept of Pareto dominance to evaluate the advantages
and disadvantages of non-dominated solutions, employs a
crowding distance mechanism to improve the distribution
of the PF, and employs an archive to preserve the optimal
Pareto solutions found so far.

When solving MOPs using the multi-objective biologi-
cally inspired algorithms, each candidate solution generates
a new solution through the search operator of the algorithm.
Then the better non-dominated solutions are then selected
to update the archive. There are three main methods for
archive updating: indicator-based, decomposition-based, and
Pareto-based. Indicator-based MOAs use the performance
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indicators (generational distance (GD) (Ayala et al. 2017),
inverted generational distance (IGD) (Champasak et al.
2020) and hypervolume (HV) (Gong et al. 2020) etc.) to
guide the direction of evolution. Indicator-based evolution-
ary algorithm (IBEA) (Zitzler and Kiinzli 2004) is one of
the most famous algorithms, whose main idea is to formalize
preferences by successive generalizations of the dominance
relation, so that two solutions can be directly compared by
the designed indicators. The performance of IBEA depends
on the indicator designed for a certain class of problems, and
its generalization capability is weak. Decomposition-based
MOAs decompose the problem into a set of single-objective
subproblems and optimize each subproblem using neigh-
borhood information. Decomposition-based multi-objective
evolutionary algorithm (MOEA/D) (Zhang and Li 2007) is
a representative algorithm among them. MOEA/D utilizes
an objective aggregation strategy to decompose MOPs into
multiple single-objective subproblems, and each subprob-
lem can be optimized by simply combining the information
of the remaining neighboring subproblems, which reduces
the computational cost. However, breakpoints can lead to
inefficiency of the MOEA/D strategy when solving some
MOPs with discontinuous PFs (Qi et al. 2014). Pareto-based
MOAs utilize the Pareto dominance principle to evaluate the
proximity between the currently obtained PF and the true
PF. Representative algorithms are the non-dominated sorting
genetic algorithm (NSGA-II) (Deb et al. 2002), NSGA-III
(Deb and Jain 2014), Pareto envelope-based selection algo-
rithm (PESA-II) (Corne et al. 2001), strength Pareto evolu-
tionary algorithm (SPEA2) (Zitzler et al. 2001), multi-objec-
tive particle swarm optimizer (MOPSO) (Coello et al. 2004),
multi-objective seagull optimization algorithm (MOSOA)
(Dhiman et al. 2021), multi-objective water cycle algorithm
(MOWCA) (Sadollah et al. 2015), multi-objective grasshop-
per optimization algorithm (MOGOA) (Mirjalili et al. 2018),
multi-objective gradient-based optimizer MOGBO) (Prem-
kumar et al. 2021a), multi-objective artificial bee colony
(MOABC) (Hancer et al. 2015), and so on.

Although researchers have proposed some effective
MOASs to solve MOPs, the no free lunch (NFL) theorem
(Wolpert and Macready 1997) logically proves that no one
algorithm is universally superior in handling all MOPs. That
is, there is no universal criterion for trade-offs between mul-
tiple objectives for different types of problems. In addition,
existing MOAs are usually designed based on the search
framework of the most basic single-objective optimization
algorithms, and their search operators have weak global
search capability in the decision space, which largely affects
the convergence performance of the algorithms in the objec-
tive space. Therefore, the design of efficient MOAS needs to

focus on convergence and diversity in both decision space
and objective space.

Biologically inspired algorithms simulate the collabora-
tive foraging behavior of organisms in nature, with strong
self-organization and adaptive search capability. Many bio-
logical systems are composed of individuals with no intel-
ligence, but these individuals can effectively self-organize
into systems that achieve a good balance between efficiency
and robustness. Slime mould is a promising organism with
strong path planning capability due to its unique oscillatory
foraging behavior. Tero et al. (2010) simulated the foraging
characteristics of the slime mould to design a mathemati-
cal model to map Tokyo subway network. Li et al. (2011)
designed two local routing protocols for wireless sensor
networks using two different mechanisms in the formation
process of slime mould tubular networks. Qian et al. (2013)
designed an ant colony system based on slime mould to solve
the traveling salesman problem. Becker (2015) developed a
slime mould algorithm to solve graph optimization prob-
lem. Subsequently, Li et al. (2020) summarized the previous
design experience and proposed a general global optimiza-
tion algorithm named slime mould algorithm (SMA). SMA
simulates the positive and negative feedback of slime mold
using adaptive weights and has a strong local search capa-
bility. Due to its clear structure and easy implementation,
SMA has received much attention from scholars since its
proposal and has been successfully applied to image thresh-
old segmentation (Naik et al. 2022), photovoltaic parameter
extraction (Liu et al. 2021), power system optimization (Wei
et al. 2021), job shop scheduling (Wei et al. 2022), optimal
economic emission scheduling (Hassan et al. 2021), clas-
sification and diagnosis of diseases (Wazery et al. 2021),
big data forecasting (Chen and Liu 2020), and other optimi-
zation problems. However, SMA has rarely been designed
to deal with MOPs, especially in terms of enhancing the
performance of the basic SMA.

Premkumar et al. (2021b) designed a multi-objective
SMA and evaluated the performance of MOSMA on bench-
mark functions and engineering problems. Subsequently,
Hassan et al. (2021) designed an improved multi-objective
SMA based on the sine cosine algorithm and applied it to
a multi-objective economic emission dispatch problem.
Finally, Houssein et al. (2022) also proposed a multi-objec-
tive SMA and analyzed the performance of MOSMA in the
decision space on CEC2020 functions. There are three main
shortcomings of the existing MOSMA: (1) the existing algo-
rithms do not properly deal with the sorting process in SMA,
and the non-dominated sorting does not well combined with
the fitness weight, leading to poor convergence accuracy
of the algorithm on complex problems; (2) the crowding
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distance mechanism does not maintain the diversity of solu-
tions in the archive well, leading to poor distribution of the
PF. (3) The global search capability of SMA is not improved,
which makes the exploration of MOSMA in the decision
space inadequate.

Due to the weak exploration capability of SMA, exist-
ing MOSMAs usually employ the non-dominated sorting
strategy in NSGA-II to construct the archive. This mainly
enhances the global search of the algorithm in the objec-
tive space, while not improving the algorithm from the
decision space. When dealing with complex MOPs, it not
only leads to slow convergence of MOSMA, but also easy
to fall into local optimum. To improve the search capa-
bility of the algorithm in the decision space, Yin et al.
(2022b) designed an equilibrium optimizer slime mould
algorithm (EOSMA) and revealed the efficiency of the
algorithm by comparing it with the CEC winner. The sig-
nificant advantages of EOSMA on SOPs motivate us to
propose its multi-objective version (MOEOSMA) to solve
more real-world MOPs. The main contributions of this
study are as follows:

1) The elite archive component is applied to EOSMA,
which can store the Pareto optimal solutions found so
far.

2) The equilibrium pool and crowding distance method are
applied to EOSMA to retain the diversity of Pareto opti-
mal solutions.

3) The constant factors in MOEOSMA are replaced by
dynamic exploration and exploitation coefficients to
enhance the exploration and exploitation.

4) The effectiveness of MOEOSMA was verified in the
CEC2020 functions and compared with nine advanced
multi-objective algorithms.

5) The convergence results of MOEOSMA are compared
with eleven algorithms on eight real-world engineering
problems and four truss optimization problems, and the
performance is evaluated using the Hypervolume and
Spacing-to-Extent indicators.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces EOSMA. Section 3 describes
the optimization principle and implementation of MOE-
OSMA. Section 4 analyzes the performance of MOE-
OSMA on CEC2020 functions in the decision space and
objective space. Section 5 evaluates the efficiency of
MOEOSMA on real-world engineering problems and
truss optimization problems. Finally, Sect. 6 concludes
this paper.
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2 Related work

Recently, Yin et al. (2022b) proposed an efficient hybrid
equilibrium optimizer slime mould algorithm (EOSMA)
and verified the algorithm's performance on CEC2019,
CEC2021 test functions, and many real-world engineering
optimization problems. In EOSMA, the EO search operator
(Faramarzi et al. 2020) is used to guide the oscillatory for-
aging behavior of slime mould, which makes the anisotropic
search of slime mould have a specific orientation, resulting
in a better balance between exploration and exploitation.
Moreover, the random differential mutation operator and
greedy selection strategy are integrated into the algorithm’s
search process to enhance the exploration and exploita-
tion capabilities simultaneously. The search principle of
EOSMA is described as follows.

2.1 Population initialization and equilibrium pool

The first phase in the swarm intelligence optimization algo-
rithm is population initialization. EOSMA uses the randomly
generated uniformly distributed positions in the search space
as the population's initial solution. The initialization formula
is shown in Eq. (2).

X;=LB+r - (UB-LB) @

where - indicates Hadamard product, LB = [/, [b,, ---, D]
is the lower bound of variables, UB = [ub,, ub,, ---,ub,] is
the upper bound, X represents the ith initial solution, and r
is the random number vector between [0,1].

To further balance the exploration and exploitation capabil-
ity, EOSMA integrates an equilibrium pool. The equilibrium
pool contains five positions, the first four of which are locally
optimal positions to help exploration and the last one of which
is their average position to help exploitation. The equilibrium
pool is shown in Eq. (3).

T
Xeq = [Xeq,l ’ Xeq,Z’ Xeq,3’ Xeq,4’ Xeq,avg] (3)

where X,,1,X.;2,X,43:Xo04 denotes the four individu-
als with the best fitness in the current population,
Xeq,uvg = (Xeq,l + Xeq,Z + Xeq,S + Xeq,4)/4‘

In the iterative process, a position is randomly selected
from the equilibrium pool X, as the best food source X, to
guide the updating direction of the search agent, enabling
slime mould to utilize multiple food sources at the same
time.
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2.2 Optimization process of EOSMA

According to the foraging behavior of slime mould, the
EOSMA optimization process can be divided into anisotropic
search and vein-like tube formation stages. The anisotropic
search stage is replaced by the search operator of EO and the
venous tube formation stage is updated by the search operator
of SMA. The optimization process can be expressed as Eq. (4).

X,+(X;-X,) F+(G./M)-(1-F) r, <z
X =4X;+vb- (W, Xp — Xp,) n<p @
X, +ve- (W, - Xg — Xp,) others

where - indicates Hadamard product,./ indicates the divi-
sion of the corresponding elements of the matrix, X* denotes
the updated ith solution, i = 1,2, ---, N, N is the population
size, X; denotes the current solution, X, is a solution ran-
domly selected from the equilibrium pool, F is the expo-
nential term coefficient, F = a;sign(r — 0.5) - (e™1 — 1),
t, = (1 —t/max_1)(/ ™) 4 =2 and a, = | are adap-
tive parameters that adjust the exploration and exploitation,
t and max _t denote the number of current and maximum
iterations, G is the mass generation rate, A is a random
number vector between [0,1], W; is the fitness weight of
the ith slime mould individual, vb is a random number vec-
tor between [—a, a], a = atanh(1 — ¢/ max _t), ve decreases
linearly from 1 to 0, | and r, are random numbers between
[0,1], X, and X, represent two randomly selected solutions
from the current population, z = 0.6 is a hybrid parameter,
p = tanh |Fit; — BF|, Fit; denotes the fitness of the ith indi-
vidual, BF is the best fitness. The mass generation rate G is
calculated as shown in Eq. (5).

G={8.5r1-(xb—x-xi)-Frzzo.5 5

others

where r| and r, are random numbers between [0,1]. The
adaptive weight W is calculated as shown in Eq. (6).

1 +r~log<bF_Fit" + l) i<¥
W(Fitldx,) = i ?
1—r~log<m+1> others (6)

Fitldx = sort(Fit)

where Fitldx represents fitness sorted in ascending order,
r is the random number vector between [0,1], bF and wF
are the best and worst fitness values in the current popula-
tion, Fit; represents the fitness of the ith individual, N is the
population size.

After the search agent is updated by Eq. (4), the random
difference mutation mechanism and greedy selection strategy
are employed to enhance the search agent’s exploration and
exploitation capability, helping the search agent to escape the
local optimum. The mathematical formula of the random dif-
ference mutation operator is shown in Eq. (7).

X' =

1

{ X;+ CF(LB+r;(UB-LB))-L r,<gq D

X; + SF(XRI - sz) others

where CF = (1 — ¢/ max _)(“"/ ™) i5 an adaptive com-
pression factor, L is a vector with elements 0 or 1, SF is
a random number between [0.2,1], r; and r, are random
numbers between [0,1], and g = 0.2 is a tunable parameter.
To avoid invalid searches, after updating the location of the
search agent, the solution outside the boundary is updated
using the dichotomy method, as shown in Eq. (8).

(X +ub)./2 X, > ub,
X! =1 (X;+1b)./2 X; < b, @)

*

* others
ij

where i = 1,2,---,N, j=1,2,---,d, N is the population
size, d is the dimension of the decision variable, ubj and lbj
are the upper and lower bounds of the jth decision variable.
After boundary checking, the fitness of each search agent is
evaluated, and a greedy selection strategy is applied to retain
the better individuals, as shown in Eq. (9).

. X FX) < F(X)
X; = { X, others ©)

where F(-) means to evaluate the fitness of an individual,
X represents the current individual, and X; represents the
individual of the previous generation.

In EOSMA, greedy selection strategy and equilibrium
pool are introduced. The greedy selection strategy main-
tains an archive of the same capacity as the population
size, which stores the best solutions that each search indi-
vidual has found so far. After each iteration, the archive
is updated by Eq. (9). The greedy strategy also provides
search agents with a powerful memory, allowing slime
mould to recall successful foraging areas in the past. There
are five solutions in the equilibrium pool, four of which are
local optimal solutions and the other is the central position
of the four local optimal solutions. The equilibrium pool
allows slime mould to develop multiple food sources at
the same time, increasing the probability of obtaining the
global optimal solution. The flow chart and pseudo-code
of EOSMA can be referred to (Yin et al. 2022b).

@ Springer



114 Page 6 of 41

Q.Luoetal.

3 Proposed MOEOSMA
3.1 Pareto archive

The purpose of multi-objective optimization is to present
decision-makers with a large number of Pareto optimal
alternatives. These solutions trade-off between multiple
objectives, and there is no dominant relationship between
them. To design a multi-objective EOSMA, an archive
with a defined maximum capacity, similar to MOPSO
(Coello and Lechuga 2002), is first integrated into the
algorithm. The Pareto dominance operator is employed
during optimization to compare the updated slime mould
position to the position in the archive. If the updated slime
mould individual is not dominated by the individuals in
the archive, it will be preserved; otherwise, it will be
discarded. When the number of solutions in the archive
exceeds the maximum capacity and is not dominant, the
crowding distance and roulette method are used to remove
the solutions in the dense region of the population to
improve the PF distribution.

3.2 Crowding distance
The crowding distance calculation method determines the

selection of the archiving solution and consequently has a sig-
nificant impact on the diversity of the final PF. Three different

AR

Pareto Front

Hybercube
[ /
I
d,
...'..
m d,
..... "l m
............. (]
............ .
................ -
h

Fig. 1 The crowding distance of the Pareto solution
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crowding distances have been proposed in the literature (Mir-
jalili et al. 2017b; Zeng et al. 2021; Houssein et al. 2022). By
combining the characteristics of existing crowding distances,
this study proposes a simple and effective approach for meas-
uring crowding distance. As shown in Fig. 1, the crowding
distance of the slime mould individual m represents the num-
ber of neighborhood solutions in the hypercube centered on
itself. The length of the i™ side of the hypercube is 2d;, and the
distance d, is defined as Eq. (10).

‘max ‘min
e

d; =1,2,,M (10)

where f"** and fimi“ are the maximum and minimum values
of the ith objective function, M is the number of objective
functions and As is the archive size.

As shown in Fig. 1, the non-dominated solutions with
smaller crowding distances are in sparser regions and are
important for approximating the true PF, while the non-dom-
inated solutions with larger crowding distances are in denser
regions and have the least influence on the distribution of PS,
and are given a higher probability to be removed. Therefore,
when the archive is filled, the probability that each solution is
removed from the archive is shown in Eq. (11).

Pi= (11)
where C denotes the sum of the crowding distances of all
solutions in the archive, and N; denotes the crowding dis-
tance of the ith solution.

In this way, MOEOSMA can store better non-dominated
solutions in the archive and constantly improve them dur-
ing iteratives. Using less crowded solutions as food sources
can promote slime mould to find other food sources nearby.
This will naturally attract search agents to regions with fewer
non-dominated solutions in the PF, improving the coverage
of the final obtained PF. It is worth noting that, in contrast
to the existing MOSMA (Premkumar et al. 2021b; Houssein
et al. 2022), the crowding distance used in this research is
a discrete value rather than a continuous value, which not
only preserves the randomness of the solution being selected
in the archive but also facilitates the selection of elite indi-
viduals to simulate the multiple food sources found by slime
mould. In MOEOSMA, the solution in the archive with the
minimum crowding distance is placed in the equilibrium
pool. During the iteration, each slime mould individual
randomly selected a solution from the equilibrium pool as
the food source X, that the current search agent decided to
exploit.
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3.3 Dynamic coefficient

The parameters a; and a, that adjust the exploration and
exploitation in EOSMA are set to fixed values during itera-
tion, which indicates that the algorithm's exploration and
exploitation trend will remain unchanged during optimi-
zation. Based on the improving experience of many algo-
rithms, it can be concluded that the meta-heuristic algorithm
should focus on exploration in the early stage, conducting
a broad exploration of the whole search space, and then
gradually shift to exploitation, searching for more promis-
ing regions. Therefore, during MOEOSMA optimization,
a, and a, are controlled according to the current number of
iterations and randomly generated values, which are then
translated into dynamic coefficients to adjust the exploration
and exploitation trends better. The parameters a, and a, are
calculated as Eq. (12).

a, = <1 +(1- t/max_t)m/max*t> Xr
(12)
a, = <2 -(1- t/max_t)zt/maxfl> X r

where r represents the random number between [0,1],  rep-
resents the current iteration number, and max _f represents
the maximum iteration number.

3.4 Optimization process of MOEOSMA

Based on the foraging behavior of slime mould, the EOSMA
optimization process may be divided into two stages: the
anisotropic search stage and the vein-like tube formation
stage. The anisotropic search stage is replaced by the EO
search operator with the goal to guide the search direction
of the search agents, expanding the search range, and avoid-
ing premature convergence. The vein-like tube formation
stage is updated by SMA's most crucial search operator. It
is worth noting that slime mould in two stages exists in the
population simultaneously, as shown in Eq. (13).

X*={Xb+(xi_xb) ‘F+(G./A)-(1-F) r<z

X, +vb - (W, - Xg, = Xpo) others (13

1
where - indicates Hadamard product,./ indicates the
division of the corresponding elements of the matrix,
X* denotes the updated ith solution, X; denotes the
current solution, X, is a solution randomly selected
from the equilibrium pool, F is the exponential
term coefficient, F=asign(r—0.5)- (e 1),

t, = (1 —t/max_0)(=/ ™) g4 and a, are calculated by
Eq. (12), G is calculated by Eq. (5), A is a random num-
ber vector between [0,1], W, is the fitness weight of the
i™ slime mould individual, vb is a random number vector
between [—a, al], a = atanh(1 — ¢/ max _t), r is a random
number between [0,1], X, and X, represent two randomly
selected solutions from the current population, and z = 0.6 is
an adjustable parameter controlling the balance of explora-
tion and exploitation (Yin et al. 2022b). The adaptive weight
W is calculated as shown in Eq. (14).

1+r-log<w+l> i<¥
W(Fitldx (i) = i ’
1-r-log <er‘ + 1) others  (14)

Fitldx = sort(Fit,), k = rem(t, M) + 1

where - indicates Hadamard product, FitIdx represents fit-
ness sorted in ascending order, rem(-) is the remainder func-
tion, ¢ is the current iteration number, M is the number of
objective functions, r is the random number vector between
[0,1], bF and wF are the best and worst fitness values in
the current population, Fit;, represents the fitness of the k™
objective function of the ith individual, and N is the popula-
tion size.

After updating the location of the slime mould by
Eq. (13), the random difference mutation operator and
greedy selection strategy are introduced to improve the
exploration and exploitation capability, and help the search
agent to escape the local optimum and obtain the solution
with higher accuracy. The mathematical formula of the
mutation operator is shown in Eq. (15).

X =X, + SF(Xg, — Xp) (15)

where X* denotes the updated ith solution, X; denotes the
current solution, SF is a random number between [0.2,1],
X5, and X, represent two randomly selected solutions from
the current population.

To avoid invalid searches, after the location of slime
mould is updated, check whether X* is beyond the search
range and update the location using Eq. (8). Then the fit-
ness is evaluated, and the greedy selection strategy, as
shown in Eq. (9), is implemented to retain the better slime
mould individuals. The pseudo-code of MOEOSMA is
presented in Algorithm 1, and the flow chart is displayed
in Fig. 2.
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Algorithm 1 Pseudo-code of MOEOSMA

Input the parameters z, N,d,max_t, As

Output the PS and its fitness PF

1.

2.

10.

11.
12.

13.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Initialize the locations of the search agent X,(i=1,2,---,N);
while ¢ <max t
Check the boundary by Eq. (8) and calculate the fitness;
Save the Pareto optimal solutions to the archive;
Rank the PS based on the crowding distance;
if Archive overflow
Remove crowded solutions by the roulette method,
Rank the PS based on the crowding distance;

end if

Put the solution with the smallest crowding distance into the equilibrium pool;

Retain better solutions by Eq. (9);

Calculate the fitness weight of the slime mould by Eq. (14);
Calculate the values of adaptive variables q,,a,,t,,a;
Update the random variables A,r,n,r,7,,vb;

for i=1to N

Select a solution as the best food source X, from the equilibrium pool;

if rand < z
Update X using the EO operator;
else
Update X; using the SMA operator;
end if
end for
Check the boundary by Eq. (8) and calculate the fitness;
Save the Pareto optimal solutions to the archive;
Rank the PS based on the crowding distance;
if Archive overflow
Remove more crowded solutions by roulette method;
end if
Retain better solutions by Eq. (9);
Update X by Eq. (15);
t=t+1;

end while
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Initialize parameters, population location and archive

}

Check boundary by Eq. (8) and calculate objective values

}

Update archive using Pareto domination solution

}

Rank Pareto solutions based on crowding distance

Y

Archive overflow?

Use the roulette to remove
crowded solutions

l

Update the equilibrium pool with the solution
with the smallest crowding distance

Rank Pareto solutions based on
crowding distance

l

Save better solutions and objective values by Eq. (9)

l

Sort the fitness and calculate the fitness weights W by Eq. (14)

l

Calculate the values of adaptive parameters ag, ap

|

Randomly select the Xp in equilibrium pool

rand <z

No

A 4

Update Xp using the SMA operator

Update Xp using the EO operator

A

i<N

No

Save better solutions and objective values by Eq. (9)

}

Update Xp using the mutation operator

t<max_t

No

Return the PS and the PF

End

Fig.2 Flow chart of the MOEOSMA
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Table 1 Parameter settings of the comparison algorithms
Algorithms Parameters Values Algorithms Parameters Values
MOEOSMA Hybrid parameter z 0.6 MOEA/D Crossover parameter y 0.5
Generation probability GP 0.5 MOPSO Inertia weight w 0.5
MOSMA Constant z 0.03 Damping rate wd 0.99
MOGWO Grid inflation rate « 0.1 Personal cognition coefficient ¢, 1
Number of grids n 10 Social cognition coefficient ¢, 2
Leader selection pressure 4 Number of grids n 7
Deletion selection pressure y 2 Grid inflation rate o 0.1
MOMVO Minimum probability of wormhole existence 0.2 Leader selection pressure 2
Maximum probability of wormhole existence Deletion selection pressure y 2
PESA-II Number of grids n 7 Mutation rate y 0.1
Inflation factor 0.1 SPEA2 Crossover parameter p 0.7
Leader selection pressure 2 Crossover parameter y 0.1
Deletion selection pressure y Mutation parameter i 0.2
Crossover parameter p 0.5 MOALO Parameter less NA
Crossover parameter y 0.15 MSSA Parameter less NA
Mutation parameter i 0.3

3.5 Computational complexity

The proposed MOEOSMA is mainly made up of the fol-
lowing subcomponents: initialization, position update,
fitness evaluation, fitness sorting, equilibrium pool
update, fitness weight update, greedy selection, archive
update, and mutation operator. Initialization, position
update, mutation operation, and fitness weight update
all have O(N * d) time complexity, fitness sorting has
O(N * log N) time complexity, greedy selection and equi-
librium pool update have O(N) time complexity, and
archive update has O(As® * M) computational complexity.
Therefore, the total time complexity of the algorithm is
O@max _t * (N #+ d + N % logN + F + As> + M)), where F
is the evaluation time of the fitness function, N is the popu-
lation size, As is the archive size, M is the number of objec-
tives, d is the dimensionality of the problem, and max _¢ is
the maximum number of iterations. The space complexity
is O(N * d).

4 Experimental and analysis of test
functions

In order to verify the effectiveness of the proposed MOE-
OSMA, the CEC2020 functions are used to analyze the con-
vergence behavior of the algorithm in the objective space
and decision space. Unlike previous test suites, CEC2020
includes not only the true PF for each test problem, but also
the associated local and global PSs, allowing researchers to
evaluate the algorithm's performance in both the objective

@ Springer

space and decision space. The MATLAB code of CEC2020
benchmark function can be downloaded at https://github.
com/P-N-Suganthan. The specifics of these test functions
were described in (Yue et al. 2019; Liang et al. 2020).

4.1 Experimental setup

To evaluate the performance of MOEOSMA relative to
other competing algorithms, it is compared to nine well-
known MOAs: multi-objective slime mould algorithm
(MOSMA) (Premkumar et al. 2021b), multi-objective ant
lion optimizer (MOALO) (Mirjalili et al. 2017c), multi-
objective grey wolf optimizer (MOGWO) (Mirjalili et al.
2016), multi-objective multi-verse optimization (MOMVO)
(Mirjalili et al. 2017b), multi-objective particle swarm opti-
mizer (MOPSO) (Coello et al. 2004), multi-objective Salp
swarm algorithm (MSSA) (Mirjalili et al. 2017a), MOEA/D
(Zhang and Li 2007), PESA-II (Corne et al. 2001), SPEA2
(Zitzler et al. 2001). The source codes of the comparison
algorithms used in the experiments are available on web-
sites: https://aliasgharheidari.com/SMA .html, https://seyed
alimirjalili.com, and https://yarpiz.com. All algorithms
are executed in MATLAB R2020b under Win 10 OS with
hardware details: AMD A8-7410 APU, AMD Radeon RS
Graphics (2.20 GHz) and 12 GB RAM. For a fair com-
parison, the population size and archiving capacity of all
comparison algorithms are set to 200 X N_ops, with a max-
imum of 10000 X N_ops evaluations, and 21 independent
runs, where N_ops is the number of local and global PS.
The other algorithm parameters set in the original paper are
listed in Table 1.


https://github.com/P-N-Suganthan
https://github.com/P-N-Suganthan
https://aliasgharheidari.com/SMA.html
https://seyedalimirjalili.com
https://seyedalimirjalili.com
https://yarpiz.com
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Table 2 The IGDX values obtained by all comparison algorithms

Functions Index MOEOSMA MOSMA MOALO MOGWO MOMVO MOPSO MSSA  MOEA/D PESA-II SPEA2

MMF1 Mean 0.04568 0.09669  0.17541 022136 0.17675  0.11012 0.24407 022476  0.15678 0.10916
Std.  0.00479 0.01707  0.02889  0.06048  0.03790  0.01706 0.04551 0.04807  0.02437  0.02542
MME2 Mean  0.02009 0.12164  0.12203  0.12385  0.13887  0.16046 0.12860 027163  0.12670 0.07141
Std.  0.01820 0.05735  0.05459 0.08927  0.09981  0.07051 0.06127 0.10658  0.07252 0.04237
MMF4 Mean 0.03325 0.03919  0.17765 039771 037970  0.10995 0.32256 0.24595  0.12352  0.15427
Std.  0.00395 0.00911  0.06583 0.08519  0.05643  0.03373 0.04582 0.06241  0.03840 0.06285
MMEF5 Mean  0.08098 0.14957 032125 057291 033741  0.17858 0.49814 036972  0.22466 0.19295
Std.  0.01007 001836  0.06163 0.11151  0.09744  0.02889 0.07219 0.06586  0.04293  0.03555
MME7 Mean 0.03198 0.05566  0.17005 0.25259  0.19958  0.06824 0.19903 0.13793  0.10601 0.08528
Std.  0.00892 0.00906  0.04268 0.07081  0.04439  0.01251 0.04184 0.03885  0.02296 0.03398
MMES Mean  0.12931 0.19158  0.84525 1.84536 124908 029753 126859 1.05881  1.97001 2.81676
Std.  0.09608 0.08868 059322 1.03616  0.34925  0.18238 027480 032374  0.64195 0.54080
MMEF10 Mean  0.01956 005831  0.11536  0.02871 031266 0.17673 020098 033210  0.01552  0.01403
Std.  0.07846 002726 007306 0.04704  0.09406  0.17344 0.09860 0.10711  0.02487 0.01359
MMF11 Mean  0.00424 001706  0.02153 0.01209  0.01502  0.00861 0.01555 0.01486  0.00975 0.00630
Std.  0.00032 0.00504  0.00813 0.00336  0.00246  0.00093 0.00212 0.00629  0.00341 0.00117
MMF12 Mean  0.00203 001169 001179 0.00421  0.00599  0.00536 0.01054 0.01465  0.00294 0.00245
Std.  0.00022 0.00257  0.00720  0.00159  0.00200  0.00148 0.00286 0.01597  0.00067 0.00071
MMF13 Mean  0.04459 007220  0.10636  0.15352  0.08925  0.10730 0.10061 0.16144  0.14352 0.12418
Std.  0.01252 0.00796 003104 0.03215 001746  0.05151 0.01856 0.04130  0.04604 0.03526
MMF14 Mean  0.06605 0.06376  0.13791 035524  0.29699  0.18942 0.18300 0.17267  0.16975 0.22438
Std.  0.03387 0.00858  0.02520 0.03919  0.01610 0.07775 0.02895 0.04110  0.02526 0.03629
MMF15 Mean  0.04690 0.07321  0.09927 0.17561  0.10111  0.06325 0.10948 0.07530  0.07146 0.06930
Std  0.00223 001248  0.00770  0.02494  0.02554  0.00267 0.01108 0.00720  0.00764  0.00439
MMFl_e  Mean 2.83622 134712 153306  2.62735  3.02363  1.81669 2.41909 333013  2.38024 3.08057
Std.  0.52038 0.52004  0.68605 0.94419 053170  0.87476 0.66831 0.62876  0.98143  0.56592
MMFI14_a  Mean 0.08017 0.12783  0.17652 029992 030352  0.15027 026688 0.19061 023093  0.14412
Std.  0.00830 0.02262  0.02443 0.02227  0.08038  0.00961 0.03372 0.02069  0.05444 0.02987
MMFI5_.a  Mean 0.09106 0.08181  0.12028  0.14691  0.14468  0.08935 0.15058 0.10687  0.10409 0.08637
Std.  0.02127 0.01082  0.01486 0.02460  0.05469  0.00889 0.01289 0.01784  0.01521  0.00597
MMFI0_1  Mean 0.19891 0.19530  0.18297 021067  0.16555 020190 0.14079 0.17413  0.20504 0.20271
Std.  0.00757 0.04187 006674 0.01440  0.04846  0.00435 0.04226 0.03619  0.01157  0.00050
MMFI1_1  Mean 0.24957 024850  0.25893  0.25533  0.25587 025150 025271 0.24538 025770 0.25268
Std.  0.00025 0.00130  0.00268 0.00133  0.00207  0.00107 0.01608 0.03313  0.00458  0.00074
MMFI2_.1  Mean 024515 024204 024995 024628 024734 024477 025316 024982  0.24780  0.24070
Std.  0.00166 0.00842  0.00182 0.00123  0.00073  0.00131 0.01220 0.01469  0.00176 0.02068
MMFI3_1  Mean 0.26837 026901 032531 037788 031235 031054 031638 034235 034269  0.34640
Std.  0.00635 0.00485  0.02715 0.01900  0.02493  0.04928 0.01862 0.02152  0.04216 0.02624
MMFI5S_1  Mean 0.26110 0.24068 027371 036647 030050 027829 031077 029119 026662 0.27070
Std.  0.00183 0.02218  0.02447 0.01778  0.00947  0.00412 0.01976 0.00383  0.02083 0.01257
MMFI5_a_l Mean 0.20894 022855  0.24588 031408  0.28524 024878 029958 0.25261  0.24976  0.24030
Std.  0.01221 0.00695 001608 0.03070  0.04837  0.01287 0.02101 0.00831  0.01087 0.00931
MMFI16_11  Mean 0.15864 0.15740 020755 039586  0.28252 024240 0.24414 022639 023062 0.21505
Std.  0.01246 0.00923 001358 0.02929  0.04364  0.05353 0.01529 0.00822  0.03045 0.01976
MMFI16_12 Mean 0.33235 0.30008 032159 0.43202 037020  0.34790 035706 0.36399 034593  0.33437
Std.  0.00110 0.03031  0.04109 0.01490  0.00921  0.00365 0.02926 0.00362  0.01950 0.01697
MMFI16_13 Mean 0.21376 0.20115 024699  0.46645 035960 027702 028683 027133  0.26874 0.25626
Std.  0.01557 0.00880  0.01217 0.01438  0.06001  0.04621 0.01230 0.01037  0.02452  0.02044
FAR (Rank) 1.77 (1) 292(2)  6.10(6) 846(10) 7.60(9) 448(4) 7.40(8) 656(7) 5.83(5) 3.88(3)

*Bold indicates the optimal result, and FAR stands for Friedman’s average ranking
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Table 3 The IGDF values obtained by all comparison algorithms
Functions Index MOEOSMA MOSMA MOALO MOGWO MOMVO MOPSO MSSA MOEA/D PESA-I SPEA2
MMF1 Mean 0.00193 0.00750  0.01637  0.01779  0.01307  0.00909 0.02428  0.01958  0.01450 0.00666
Std.  0.00011 0.00180  0.00353  0.00403  0.00203  0.00135 0.00246  0.00723  0.00361 0.00054
MMEF2 Mean 0.00233 0.02382  0.03266 0.01364  0.01460  0.07346  0.03091  0.09244  0.02710 0.01243
Std.  0.00017 0.00919  0.00955 0.00485  0.00519  0.02781 0.00792  0.04337  0.00422 0.00515
MMF4 Mean 0.00171 0.00194  0.01673  0.01240  0.01721  0.00873 0.02787  0.00919  0.01115 0.00689
Std.  0.00013 0.00013  0.00395 0.00288  0.00217  0.00198 0.00355 0.00160  0.00221 0.00051
MMF5 Mean 0.00188 0.00704  0.01458 0.01418  0.01176  0.00892 0.02393  0.01661  0.01249  0.00660
Std.  0.00010 0.00150  0.00251  0.00339  0.00167  0.00145 0.00382  0.00794  0.00443 0.00037
MMF7 Mean 0.00193 0.00536  0.02075 0.02169  0.01776 ~ 0.00846 0.02462  0.01201  0.01167  0.00686
Std.  0.00010 0.00150  0.00394  0.00291  0.00377  0.00095 0.00516  0.00261  0.00261 0.00058
MMEF8 Mean 0.00171 0.00520  0.01666  0.00904  0.01339  0.01223 0.02173  0.01193  0.01234  0.00695
Std.  0.00013 0.00281  0.00535 0.00140  0.00163  0.00405 0.00233  0.00637  0.00465 0.00073
MMF10 Mean 0.02428 0.18941  0.22412 0.05744  0.32580  0.17114 0.29168 0.30814  0.03968 0.03362
Std.  0.06343 0.05978  0.07811 0.06138  0.05499  0.14033 0.13370  0.06560  0.03903 0.01669
MMF11 Mean 0.01415 0.05292  0.10159 0.04883  0.05752  0.03394 0.07297 0.23581  0.04027 0.02900
Std.  0.00122 0.01418  0.01904 0.01084  0.00656  0.00281 0.01420  0.12167  0.00781 0.00301
MMF12 Mean 0.00309 0.02965  0.02856  0.00919  0.01238  0.01062 0.02341 0.03306  0.00794 0.00585
Std.  0.00024 0.01070  0.01075 0.00328  0.00399  0.00266 0.00484 0.02211  0.00105 0.00069
MMF13 Mean 0.01741 0.04184  0.12781 0.06521  0.07972  0.04126 0.08631 0.31974  0.04698 0.03644
Std.  0.00099 0.02342  0.03164 0.01241  0.01296  0.00405 0.01921 0.15337  0.00742 0.00413
MMF14 Mean 0.07094 0.09027  0.17354 0.46218  0.21935  0.12537 0.22795 0.15629  0.14666 0.14292
Std.  0.00370 0.01556  0.01370  0.09706  0.03845  0.00456 0.03465 0.00794  0.01165 0.01352
MMF15 Mean 0.09520 0.16077  0.21787  0.45008  0.22548  0.12583 0.23444  0.15988  0.14943 0.14481
Std.  0.00331 0.02901  0.02382  0.09595  0.05824  0.00367 0.02915 0.00954  0.01416 0.01170
MMFI1_e Mean 0.00191 0.04295  0.02558 0.01330  0.01033  0.05322 0.02571  0.04437  0.01720 0.00931
Std.  0.00014 0.01062  0.00862 0.00292  0.00148  0.01492 0.00685 0.02395  0.00603 0.00513
MMF14_a  Mean 0.08666 0.10912  0.18215 0.37598  0.21867  0.13464 0.33758  0.15237  0.15712 0.14980
Std.  0.00580 0.01039  0.02270 0.08946  0.03987  0.00516 0.08293  0.00660  0.00923 0.00987
MMFI5_a  Mean 0.14403 0.13333  0.20944 0.25557  0.21878  0.13945 027295 0.17074  0.16228 0.15413
Std.  0.02073 0.01444  0.01700 0.07785  0.02887  0.00516 0.02690 0.01614  0.01200 0.02174
MMF10_1 Mean 0.18238 025596  0.27901 021962  0.27148  0.20226 0.26622  0.28956  0.22620 0.21405
Std.  0.01419 0.03384  0.04388 0.02127  0.07741  0.01001 0.03502 0.07753  0.02685 0.00847
MMF11_1 Mean 0.09270 0.10769  0.17669  0.12972  0.14068  0.11432 0.15414  0.36828  0.12814 0.11388
Std.  0.00047 0.00707  0.02330 0.01064  0.01196  0.00349 0.01510 0.17527  0.01300 0.00377
MMF12_1 Mean 0.07989 0.09702  0.10207  0.09236  0.08925  0.09160 0.10553 0.11217  0.08970 0.08410
Std.  0.00842 0.01197  0.00804 0.00863  0.00194  0.00539 0.01634 0.01800  0.00906 0.01008
MMF13_1 Mean 0.14344 0.15169 025928  0.19373  0.20725  0.16619 0.20909  0.58981 0.19072  0.18196
Std.  0.00636 0.00394  0.04829 0.01131 0.01644  0.00649 0.01628  0.23681 0.02808 0.01019
MMF15_1 Mean 0.18716 0.20209 028770  0.54525  0.30563  0.22519 034739 025716  0.24020 0.23155
Std.  0.00224 0.01082  0.02625 0.07533  0.03404  0.00587 0.08289 0.00793  0.01152 0.00892
MMFI15_a_1 Mean 0.19521 0.20127  0.25586  0.34355  0.30386  0.22232 036512 0.25769  0.23737 0.22555
Std.  0.01010 0.00690  0.01852  0.07263  0.04040  0.00487 0.07080 0.00987  0.01031 0.00789
MMF16_11 Mean 0.14278 0.15842  0.23937 055515  0.28537  0.19451 0.29920 0.23036  0.22352  0.20732
Std.  0.00292 0.01542  0.02336  0.10338  0.03743  0.00319 0.03381  0.01006  0.02238 0.01105
MMF16_12 Mean 0.23574 0.23534 030704 0.59855  0.34781  0.27260 0.37058  0.31217  0.29817 0.27412
Std.  0.00169 0.00748  0.02340  0.08433  0.02989  0.00530 0.04268  0.00919  0.02126  0.00989
MMF16_13  Mean 0.18270 0.19416  0.26719  0.58961 0.31717  0.22964 0.34974  0.27311  0.26237 0.24465
Std.  0.00456 0.00893  0.01027 0.06495  0.03861  0.00567 0.05248 0.01038  0.01407 0.01046
FAR (Rank) 1.46 (1) 4024) 767@8) 17.02(7) 6.19(6) 3.69(3) 8.94(10) 8.02(9) 521(5) 279(2)

*Bold indicates the optimal result, and FAR stands for Friedman’s average ranking
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Fig.3 The optimal PS obtained by all comparison algorithms on MMF2

4.2 Experimental results and analysis

Since CEC2020 functions contain multiple global optimal
PSs, a good performance of the algorithm in the objective
space does not mean that multiple global optimal PSs can
be found. The IGD (Zhang et al. 2008) in decision space
(IGDX) (Zhou et al. 2009) and objective space (IGDF)
(Zhou et al. 2009) are used to evaluate the quality of the
obtained PS and PF, respectively. In the decision space, the
smaller the IGDX value, the closer the obtained PS is to the
true PS. In the objective space, the smaller the IGDF value,
the closer the obtained PF is to the true PF.

The mean and standard deviation of the IGDX obtained
by MOEOSMA and comparison algorithms are shown in
Table 2. The IGDX value quantifies the convergence of
the obtained PS in the decision space. It can be seen from
Table 2 that MOEOSMA and MOSMA obtained the mini-
mum values on 12 and 8 functions, respectively, while
MSSA, MOEA/D and SPEA2 obtained the best results on
a few functions. Friedman's statistical test results reveal
that MOEOSMA ranks first, and far better than the ranking
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values of other comparison algorithms. By comparing
the IGDX values, it can be seen that MOEOSMA outper-
forms other algorithms in search in decision space and is
able to find multiple global optimal PSs. It is found that
MOEOSMA’s superior performance in decision space is
mainly due to the equilibrium pool in the EOSMA frame-
work, which stores non-dominated solutions with minimum
crowding distance. During the iteration, each slime mould
individual randomly selects a solution from the equilibrium
pool as the current best food source. This expands the search
range of the slime mould in the decision space and ena-
bles the algorithm to explore multiple local optimal regions
simultaneously. The equilibrium pool strategy not only
increases the probability of finding multiple global PSs, but
also helps to improve the distribution of PF. In addition, the
dynamic exploration and exploitation coefficient improves
the search capability of EOSMA, thus improving the con-
vergence accuracy of the algorithm.

Table 3 displays the mean and standard deviation of the
IGDF obtained by MOEOSMA and other comparison algo-
rithms. The IGDF reflects the convergence and diversity
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Fig.4 The optimal PF obtained by all comparison algorithms on MMF2

of the generated PF in the objective space. The results
in Table 3 show that MOEOSMA ranks first on 22 func-
tions and does not reach the minimum on MMF15_a and
MMF16_12, but still achieves good results. Combined with
the statistical results in Table 2, it can be seen that the per-
formance of MOEOSMA is close to MOSMA in the deci-
sion space, but its convergence in the objective space is obvi-
ously better than MOSMA. This indicates that the Pareto
archive and crowding distance evaluation mechanism used
by MOEOSMA are better than MOSMA, which not only
improves the convergence rate of PF, but also maintains the
diversity of PF well. MOEOSMA differs from MOSMA in
terms of archive. Due to the weak exploration capability of
SMA, the existing MOSMA (Premkumar et al. 2021b; Hous-
sein et al. 2022) select archived solutions based on the non-
dominated level, while MOEOSMA selects archived solu-
tions based on crowding distance by sorting solutions with
the highest non-dominated level. The archive of MOSMA is
beneficial to exploration, but good non-dominated solutions
are easily discarded, while the archive of MOEOSMA can
reduce damage to existing archived solutions. As a result,
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MOEOSMA can provide better convergence than MOSMA
and most archive-based MOAs.

Figures 3, 4, 5, and 6 exhibit the best convergence results
of PS and PF obtained by all comparison algorithms on
MMF2 and MMF16_13, respectively. These figures display
only the non-dominated solutions obtained by the compari-
son algorithms, not all the solutions of the final population.
As shown in Figs. 3 and 4, MOEOSMA obtains more non-
dominated solutions on MMF2 and is significantly superior
to other algorithms in terms of convergence and distribu-
tion. Moreover, Fig. 3 shows that MOEOSMA can also find
multiple global PSs, indicating that the algorithm is also
suited for handling multimodal multi-objective optimization
problems.

MMF16_13 is a complex three-objective test function
with the coexistence of local and global PS. Figures 5 and 6
exhibit the comparison algorithm’s search performance on
this function. It can be intuitively seen from the figures that
MOEOSMA obtains the best results among all the com-
parison algorithms. It can not only jump out of the local
PS but also find multiple uniformly distributed global PSs.
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Fig.5 The optimal PS obtained by all comparison algorithms on MMF16_13

The obtained PF is close to the true PF and provides the
decision-maker with more alternative Pareto optimal solu-
tions. In addition, an interesting phenomenon is that the
PS obtained by MOSMA is easily spread near the search
space's boundary, while MOEOSMA solves this problem
well through the improved boundary updating method. In
conclusion, MOEOSMA is highly competitive with other
multi-objective algorithms and can achieve better results.

To further illustrate the MOEOSMA'’s effectiveness
and efficiency, Figs. 7 and 8 show the best PS and PF
obtained by MOEOSMA on all CEC2020 benchmark
functions. As shown in Fig. 7, MOEOSMA can jump out
of the local PS, and the obtained PS can cover the true
global PS uniformly. It shows that MOEOSMA has a pow-
erful search capability in decision space, which provides
a solid platform for solving multimodal multi-objective
optimization problems. As shown in Fig. §, MOEOSMA
can approximate the true PF for various types of PF and
achieves satisfactory results in terms of convergence,
diversity, and uniformity. Overall, MOEOSMA shows
superior search performance on CEC2020 benchmark
functions. It is verified that the equilibrium pool and the
crowding distance can improve the algorithm’s conver-
gence accuracy and speed to obtain well-distributed PS
and PF.

5 Real-world constrained engineering
problems

To test the potential of MOEOSMA, it was applied to
eight real-world constraint engineering problems and four
large-scale truss optimization problems: speed reducer
design, spring design, hydrostatic thrust bearing design,
vibrating platform design, car side impact design, water
resource management, bulk carriers design, multi-product
batch plant, 60-bar truss, 72-bar truss, 200-bar truss, and
942-bar truss optimization problems. These problems
contain 2 to 5 objective functions, 3 to 59 decision varia-
bles, and 5 to 942 constraints, which can comprehensively
analyze the optimization performance of MOEOSMA in
addressing various MOPs.

5.1 Real-world optimization problems

The first multi-objective engineering design problem is
the speed reducer design problem studied by Kurpati et al.
(2002). The objective is to minimize the weight and stress
of the reducer. As indicated in Fig. 9, this problem contains
seven decision variables: the surface width of the gear (b),
the number of pinion teeth (z), the module of teeth (m),
the length of the first and second shafts between bearings

@ Springer
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Fig.6 The optimal PF obtained by all comparison algorithms on MMF16_13

(!, 1), and the diameter of the first and second shafts
(d,, dy). The number of pinion teeth (z) is an integer and
other variables are continuous. This is a mixed integer prob-
lem whose mathematical model is shown in Appendix 1.1
(Dhiman and Kumar 2018).

The second is the spring design problem, as shown in
Fig. 10 (Yin et al. 2022a). The objective of this problem is
to minimize both stress and volume (Tawhid and Savsani
2019). The design variables are the wire diameter (d), the
average coil diameter (D), and the number of active coils
(N). The constraints include outside diameter, shear stress,
fluctuation frequency and minimum deflection. This problem
is unique because all design variables have different charac-
teristics. The number of coil turns can only be taken as an
integer, where the wire diameter is standardized and it must
be selected from the set of available diameters. The average
coil diameter can be considered as a continuous variable.
This problem can be formulated as Appendix 1.2.

Third, the objective of the hydrostatic thrust bearing
design problem is to minimize the power loss of the hydro-
static thrust bearing during operation while satisfying some
constraints (Rao and Savsani 2012; Kumar et al. 2021a). The
hydrostatic thrust bearing must bear a specified load when

@ Springer

providing axial support. In this study, an objective function
is added to minimize the pressure loss of oil inlet and outlet.
As shown in Fig. 11, four design variables are considered
in this problem: oil viscosity (u), oil inlet rate (Q), bear-
ing step radius (R), and recess radius (R,). There are seven
constraints related to minimum load carrying capacity, inlet
oil pressure requirement, oil temperature increase, oil film
thickness, and some physical constraints. It is assumed that
all variables are continuous. The mathematical formula for
this problem is described in Appendix 1.3.

The fourth problem is a modification of the vibration plat-
form design problem proposed by Messac (1996). It was
originally designed as a SOP to maximize the fundamental
frequency, with the estimated cost as one of the constraints.
Here the problem is modified to include cost as a second
objective function and to make the problem combinatorial.
Geometry and materials are synthesized in the design pro-
cess (Narayanan and Azarm 1999). The problem is to design
a platform for mounting the motor, as shown in Fig. 12. The
setup of the machine is simplified to a pin-pin supported
beam bearing the weight. A vibration disturbance is applied
from the motor to the beam, which has a length L and a
width b and is symmetrical around its middle. Variables d,
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Fig.7 The optimal PS obtained by MOEOSMA on all CEC2020 multimodal multi-objective benchmark functions

and d, locate the contact points of materials 1 and 2 and 2 (p), Young's modulus of elasticity (E) and cost per unit vol-
and 3, respectively. Variable d; locates the bottom of the  ume (c) of each material type are shown in Table 4. The
beam. The combined variable M, refers to the type of mate-  objective is to design sandwich beams to minimize the vibra-
rial that can form each layer of the beam. The mass density  tion of the beam due to motor disturbance while minimizing
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Fig.9 Schematic diagram of the speed reducer problem

Fig. 10 Schematic diagram of the spring design problem
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Fig. 11 Schematic diagram of the hydrostatic thrust bearing
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Fig. 12 Schematic diagram of the vibrating platform apparatus

Table 4 Material properties of vibration platform design problem

Material type P (Kg/m3) E (N/m?) ¢ ($/volume)
M;

1 100 1.6 500

2 2770 70 1500

3 7780 200 800

the cost. The complete formulation of the problem is shown
in Appendix 1.4.

Fifth, Jain and Deb (2014) developed the car side impact
design problem. The objective of this problem is to mini-
mize the weight of the car while minimizing the public forces
experienced by the passenger and the average velocity of the
V-pillar responsible for withstanding the impact load. All
three objectives are in conflict with each other. Therefore, it is
expected that there will be a three dimensional trade-off PF.
There are ten constraints in this problem, involving limiting
values of abdominal load, pubic force, velocity of the V-pillar,
rib deflection, etc. There are eleven design variables describ-
ing the thicknesses of the B-pillar, floor, crossmembers, door
beam, roof rail, etc. Its mathematical description is given in
Appendix 1.5.

Sixth, the water resource management is the optimal plan-
ning of storm-drainage systems in urban areas, originally pro-
posed by Musselman and Talavage (1980). The formulation of
this problem essentially consists of a hierarchically structured
linear program with a simulation model as a constraint. It is
assumed that there are three decision variables in the drain-
age system denoting the local detention storage capacity (x;),
maximum treatment rate (x,) and maximum allowable over-
flow rate (x;). The objectives to be optimized are drainage
network cost (f}), storage facility cost (f,), treatment facility
cost (f3), expected flood damage cost (f;) and expected flood
economic loss (f5). There are five objective functions for this
problem, and the performance of MOEOSMA and other com-
parison algorithms can be evaluated on the many-objective
optimization problem. The mathematical model of this prob-
lem is given in Appendix 1.6 (Ray et al. 2001).

Seventh, the bulk carriers design problem is another chal-
lenging constraint optimization problem, extracted from
(Parsons and Scott 2004). The objectives of the problem are
to reduce the transportation cost (f}), to reduce the weight
of the ship (f,) and to increase the annual cargo volume (f3).
The decision variables of this problem are the length (L),
beam (B), depth (D), draft (T'), speed (V,) and block coef-
ficient (Cy) of the ship. The mathematical description of the
problem is shown in Appendix 1.7.

Eighth, the multi-product batch plant problem is a com-
plex scheduling problem. The early design of this type
of problem is generally to reduce the manufacturing cost
and makespan. The multi-product batch plant test problem
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Fig. 13 Schematic diagram of the truss structure. a 60-bar truss, b 72-bar truss, ¢ 200-bar truss, d 942-bar truss

is extracted from (Kumar et al. 2021a), which takes into
account three objective functions at the same time, with ten
decision variables and ten inequality constraints. The math-
ematical formula for this mixed integer linear programming
problem is described in detail in Appendix 1.8.

Finally, four truss optimization problems (60-bar,
72-bar, 200-bar, and 942-bar) are selected from (Pholdee
and Bureerat 2013; Tejani et al. 2019; Chou and Truong
2020; Kumar et al. 2021b; Panagant et al. 2021) for validat-
ing the performance of MOEOSMA in solving large-scale
structural optimization problems. The structural mass and
compliance are specified as objective functions subject to
allowable stress constraints. The truss optimization problem

@ Springer

can be formulated as Eq. (16) (Pholdee and Bureerat 2013;
Panagant et al. 2021).

Consider A = [A,A,, -+ ,A,,]

Minimize f;(A) = )" Ap.L,
i=1

16
f>(A) =u'F (16)
subject to |o;| — 61" < 0 (stress constraint)

AP < A; < A" (side constraint).

where f; denotes the structural mass, f, denotes compliance,
A, is the design variable, p; is the density, L; is the element
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Table 5 Characteristics of real-
world constraint engineering

problems

Problems Objective Variable Constraint
CMOPO1: speed reducer design 2 7 11
CMOPO02: spring design problem 2 3 8
CMOPO3: hydrostatic thrust bearing design 2 4 7
CMOPO4: vibrating platform design 2 5 5
CMOPOS: car side impact design 3 7 10
CMOPO06: water resource management 5 3 7
CMOPO7: bulk carriers design 3 6 9
CMOPO08: multi-product batch plant design 3 10 10
CMOPO09: 60-bar 2D truss optimization 2 25 60
CMOP10: 72-bar 3D truss optimization 2 16 72
CMOP11: 200-bar 2D truss optimization 2 29 200
CMOP12: 942-bar 3D truss optimization 2 59 942

Table 6 Reference points
of real-world engineering

Problems

References points

problems CMOPO1: speed reducer design

CMOPO02: spring design problem

CMOPO3: hydrostatic thrust bearing design
CMOPO4: vibrating platform design

CMOPOS: car side impact design

CMOPO6: water resource management

CMOPO7: bulk carriers design

CMOPO8: multi-product batch plant design
CMOPO09: 60-bar 2D truss optimization
CMOP10: 72-bar 3D truss optimization
CMOP11: 200-bar 2D truss optimization
CMOP12: 942-bar 3D truss optimization

(6.6659849E 403, 1.2068713E +03)
(3.0743229E +01, 2.0764019E + 05)
(1.1177181E+ 04, 4.5169386E — 06)
(—2.8933091E-03, 7.8120924E +02)
(4.6224367E+01, 4.3993211E 400, 1.3734738E+01)

(8.4580225E 404, 1.4845700E 403, 3.1375465E 405,
9.0794428E + 06, 2.7482920E + 04)

(— 8.9553699E + 02, 1.2135542E 404, 4.7147918E +03)
(2.5594278E +05, 4.9671972E 4+ 04, 6.5576579E+03)
(1.1261826E + 04, 9.1297289E + 04)

(3.8673748E + 04, 1.3659625E + 05)

(1.5947404E + 05, 2.6859394E +05)

(1.6090635E + 06, 2.3345349E 4 05)

length, u denotes displacement, F denotes loading, o; is the
element stress, and al?‘“"‘ is the maximum stress occurs on
the element structure.

The displacement and loading vectors in Eq. (16) are
employed from finite element analysis. The material den-
sity, modulus of elasticity, and allowable stress are set as
7850 kg/m?, 200GPa, and 400 MPa, respectively. In prac-
tice, the size of each structural member is usually discrete
design variable due to beam standard sizing; therefore, the
sizing variables are specified as discrete. The structures
of the four trusses are shown in Fig. 13, where 60-bar and
200-bar are planar (2D) trusses and 72-bar and 942-bar
are spatial (3D) trusses. The number of design variables
may not be equal to the number of truss members due
to the presence of grouped design variables. The number
of design variables for 60-bar, 72-bar, 200-bar, and 942-
bar are 25, 16, 29, and 59, respectively. Table 5 depicts
the features of these real-world constraint engineering
problems.

5.2 Constraint handling method

The penalty function is the most popular approach when
dealing with constraints because it provides the uncon-
strained equivalent of the constraint problem. A good
penalty function works in such a way that a feasible solu-
tion should have a smaller penalty function value than an
infeasible solution. For two specific feasible solutions, the
solution with the lower objective function is better. For
two infeasible solutions, the less constraint violations the
better. Therefore, during the optimization process, a par-
ticular penalty value is added to the infeasible solution to
guide the search agent away from the infeasible region, as
shown in Eq. (17) (Savsani and Savsani 2016).

I

0,(x) =f,(X) +w- Z max (0,g,(x)), n= 1,2, ,M (17)
i=1

where O, (x) indicates the nth objective function value,
/,(x) indicates the objective function value without taking
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Table 7 (continued)

60-bar 72-bar 200-bar 942-bar FAR
truss truss truss truss

Multi-

Water Bulk car-
riers

Car side
impact

Hydrostatic  Vibrating

thrust bear-
ing

Spring

Index Speed

Algo-

(Rank)

product

resource

platform

design

reducer

rithms

batch plant

5.75 (6)

2.34E+07 438E+06 5.37E4+09 5.11E4+08 347E+09 3.28E+10 3.04E+11

Mean 1.84E4+06 3.40E+06 4.30E-03 3.57E+00 1.39E+01
8.89E + 04

Std.

PESA-II

5.50 (6)

(Corne
et al.

4.74E — 01 1.57TE+05 3.28E+08 1.52E+07 4.98E+07 3.76E4+08 3.92E+09

247E+03 2.60E4+04 2.52E-03 3.74E-01

2001)
SPEA2

4.75 (5)

229E+07 4.51E4+06 5.09E4+09 545E+08 3.55E+09 3.31E+10 3.08E+11

2.52E+06 9.42E+404

1.41E+01

Mean 1.82E4+06 3.44E+06 3.75E-03 3.67E+00

Std.

417 2)

1.31E+08 7.32E+06 2.74E+07 249E+08 3.64E+09

4.64E — 01

6.38E+03 1.82E4+04 2.22E-03 1.82E-01

(Zitzler
et al.

2001)

*Bold indicates the optimal result, FAR stands for Friedman’s average ranking

the constraints into account, w = 108 represents the static
penalty coefficient.

5.3 Performance metrics

Two performance metrics, the Hypervolume (HV) (Panagant
et al. 2021) and the Spacing-to-Extent (STE) (Tejani et al.
2019), are used to measure the performance of the optimiza-
tion algorithm. HV is used to measure the convergence and
extension of the PF, while STE is the ratio between spacing
and extent of the PF. In this research, the STE value is set to
100 if there is only one solution in the PF; if there are two
solutions in the PF, the STE value is set to 10; otherwise, the
STE value is calculated according to Eq. (18).

STE = Spacing [ Extent
|PF|

—\2
Spacing = ——— d; — d)

M
_ max __ ,min
Extent = Z V’ S
i=1

where |PF| denotes the number of solutions in the obtained
PF, d, is the Euclidean distance between the objective func-
tion vector of the ith solution and its nearest neighbor, dis
the average of all d;, M is the number of objective functions,
S and fl.mi“ are the maximum and minimum values of the
ith objective function in the PF, respectively.

The superior PF has a larger HV value and a smaller STE
value. For the HV metric, the reference point for each test
problem is 1.1 times the maximum objective value of the PF
obtained by 100 independent runs of MOEOSMA, as shown
in Table 6. If all solutions in the PF obtained by the algo-
rithm are dominated by the reference point, the HV value
is set to 0.

5.4 Discussion of results

In order to verify the efficiency of the proposed algorithm,
the results obtained by MOEOSMA were compared with
eleven well-known MOAs, including MOSMA (Premkumar
et al. 2021b), MOALO (Mirjalili et al. 2017¢), MOGWO
(Mirjalili et al. 2016), multi-objective marine predator algo-
rithm (MOMPA) (Zhong et al. 2021), MOMVO (Mirjalili
et al. 2017b), MOPSO (Coello et al. 2004), MSSA (Mirjalili
et al. 2017a), multi-objective dragonfly algorithm (MODA)
(Mirjalili 2016), MOEA/D (Zhang and Li 2007), PESA-II
(Corne et al. 2001), SPEA2 (Zitzler et al. 2001). All algo-
rithms have a population size of 100, an archive capacity of
100, and run 30 times independently. The maximum number
of iterations is 200 for CMOPO1 to CMOPO08 and 500 for the
four truss optimization problems.

@ Springer
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Fig. 14 The box plot of HV values obtained by all comparison algorithms

The mean and standard deviation of HV values obtained
by MOEOSMA and other comparison algorithms on twelve
engineering problems are presented in Table 7 and Fig. 14.
As can be seen from Table 7, MOEOSMA, MOMPA,
MOMVO, and PESA-II obtained the best HV values on 8,
1, 2, and 1 engineering problems, respectively. It is worth
noting that MOEOSMA outperforms other algorithms on
engineering problems with two objective functions, but the

@ Springer

performance in solving engineering problems with more
than two objectives needs to be improved. This is because
MOEOSMA is updated based on the elite Pareto optimal
solution in the equilibrium pool. When solving many-objec-
tive optimization problems, the number of non-dominated
solutions increases exponentially. Due to the low selection
pressure caused by the Pareto dominance relationship, it is
difficult for MOEOSMA to select the elite non-dominated
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Algorithms
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0.006291  0.005345  0.005973 242 (1)
0.001369  0.001552

0.003781

0.004764
0.001658

0.008008  0.007547 0.006792 0.011049
0.003947 0.00165

0.001102

0.011765
0.005599

0.009576 0.088184

Mean 0.0047

SPEA2

442 (2)

0.013364

0.002938  0.12941

0.000975

Std.

(Zitzler
et al.

2001)

*Bold indicates the optimal result, FAR stands for Friedman’s average ranking

solutions. For the three-objective engineering problem,
MOMPA and MOMVO achieved better results, and for
the five-objective engineering problem, PESA-II achieved
the best results, but PESA-II runs 1000 times slower than
MOEOSMA. Although MOEOSMA does not perform best
on problems with more than two objectives, it still has a
strong competitive advantage. In addition, MOEOSMA
performs better than other algorithms on large-scale truss
optimization problems. According to the NFL theorem
(Wolpert and Macready 1997), no algorithm performs best
on all problems, and MOEOSMA is more suitable for solv-
ing real-world engineering problems with two objectives.
In addition, Friedman test results show that MOEOSMA,
MOMPA, and MOMVO are superior to other competitive
algorithms in terms of convergence and diversity of the PF.

For the HV metric, a larger value indicates better conver-
gence and coverage of the PF. As can be seen from Fig. 14,
the minimum HV value obtained by the algorithm is 0, indi-
cating that all solutions obtained by the algorithm are domi-
nated by the reference point of the problem, and this PF is the
worst. In addition, MOEOSMA has the highest box plot with
the least number of outliers and is narrowest, indicating that
the algorithm has good generalization ability and stability.
The performance of MOEOSMA is superior to the current
MOSMA except for the car side impact problem, which veri-
fies the effectiveness of the improved strategy used in this
study. Although MOEOSMA does not obtain the best results
for the many-objective optimization problems, it still remains
at the same level as several state-of-the-art algorithms.

The STE values of PF produced by MOEOSMA and
other comparison algorithms are recorded in Table 8 and
Fig. 15. As shown in Table 8§, MOEOSMA, MOMVO,
MSSA, and SPEA2 obtain the most uniformly distributed
PFon 2, 1, 2, and 7 engineering problems, respectively. The
Friedman statistical test results show that the overall distri-
bution of PF obtained by SPEA2 is the best, followed by
MOEOSMA. The effectiveness and efficiency of the equilib-
rium pool strategy and crowding distance method on various
MOPs are verified. In addition, the Friedman rankings in
Tables 7 and 8 show that MODA, MOSMA and MOEA/D
do not solve these engineering problems well. The search
efficiency of MODA and MOSMA needs to be improved,
while MOEA/D may not be good at handling engineering
problems with constraints.

For the STE metric, smaller values indicate better uni-
formity and extensiveness of the PF. As can be seen from
Fig. 15, the algorithm obtains a maximum STE value of 100.
This situation is because the algorithm obtains a PF with
only one solution and cannot calculate the Spacing. Since
such a PF is the worst, it is set to a relatively large value.
If the obtained PF has only two solutions and also cannot
calculate the Spacing, set its STE value to 10. For PF with
more than two solutions, the STE value (usually less than 1)
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Fig. 15 The box plot of STE values obtained by all comparison algorithms

is calculated by Eq. (18). According to Fig. 15, most algo-
rithms can obtain well-distributed PF. However, MOSMA,
MOPSO, MODA, and MOEA/D perform poorly on some
problems and can only obtain one or two non-dominated
solutions. In addition, SPEA2 obtains the best PF distribu-
tion in many problems, but its convergence accuracy is not

as good as MOEOSMA.

To avoid the influence of randomness, the Wilcoxon rank-
sum test was employed to verify whether the HV and STE
values obtained by the paired algorithms are significantly
different. Tables 9 and 10 show the results of the paired
sample Wilcoxon rank-sum test for MOEOSMA and the
other comparison algorithms. Table 9 reveals that MOE-

OSMA significantly outperforms other algorithms for most

@ Springer
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Table 11 The average number of Pareto solutions obtained by all comparison algorithms

CMOP02 CMOP03 CMOP04 CMOP0O5 CMOPO6 CMOPO7 CMOPOS8 CMOP09 CMOPIO CMOPI1 CMOPI2

CMOPO1

Algorithms

100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

99.10

65.75

1.55
38.95
54.45
61.95
45.70

1.15
33.30

100.00

MOEOSMA

44.65

30.30
85.40

95.55

28.05
87.35

68.40
81.75

1.20
92.95

100.00

1.85

100.00

99.95
100.00

93.65
100.00

10.85
100.00

1.00
90.10

2.50
99.95

MOSMA (Premkumar et al. 2021b)

89.25
97.65
80.55

MOALO (Mirjalili et al. 2017¢)

89.10

99.95 94.15 96.65

100.00

34.15 87.40 99.50
100.00 100.00

76.70
100.00

MOGWO (Mirjalili et al. 2016)

85.05
98.20

95.55

89.80
97.65

99.85 86.75
94.25

96.65 100.00

MOMPA (Zhong et al. 2021)

99.35

41.90 99.95 100.00 100.00 100.00 100.00 99.05
6.20 80.75

95.05
62.05

83.80
43.10

MOMVO (Mirjalili et al. 2017b)

85.65
81.80
38.75

1.00
99.95

100.00 99.95 44.15
100.00 100.00

12.70
100.00

MOPSO (Coello et al. 2004)

50.50
54.40

51.15
59.80

100.00 72.65

100.00

MSSA (Mirjalili et al. 2017a)
MODA (Mirjalili 2016)

91.15 100.00 99.35 93.85 60.85 52.65

3.85
1.40

43.05

64.60

4.30
79.50
100.00

7.05
81.75

100.00

7.45
78.05

100.00

5.65
78.00

100.00

1.70
73.70

99.95

2.40
87.40
100.00

22.85

11.30
98.40

100.00

1.30
73.50

94.30

1.05
66.60
45.90

10

1.

98.20
100.00

MOEA/D (Zhang and Li 2007)

99.50
100.00

PESA-II (Corne et al. 2001)

55.90

SPEA2 (Zitzler et al. 2001)

*Bold indicates the optimal result

optimization problems and outperforms all comparison algo-
rithms for speed reducer, spring design, hydrostatic thrust
bearing, and four large-scale truss optimization problems.
It is verified that the comprehensive performance of MOE-
OSMAA is better than other comparison algorithms, and there
are significant differences.

Table 10 illustrates that in terms of uniformity and exten-
siveness, the PF obtained by MOEOSMA is not significantly
different from MOMPA, MOMVO, and PESA-Il on 9, 5,
and 7 problems, respectively. These algorithms all obtained
well-distributed PF. However, there are significant differ-
ences between MOEOSMA and MOSMA on eleven prob-
lems. As can be seen from Table 8, the STE values of MOE-
OSMA are smaller than that of MOSMA, indicating that
MOEOSMA is significantly better than MOSMA in terms of
uniformity. In addition, MOEOSMA is significantly different
from MOALO, MOGWO, MSSA, MODA, and MOEA/D.
The former obtains better PF distribution, which verifies
the performance of MOEOSMA. When the primary search
operator of MOA s has sufficient exploration capability, the
distribution of PF obtained using the elite archiving mecha-
nism based on the crowding distance (similar to MOPSO) is
more uniform than that of the non-dominated ranking (simi-
lar to NSGA-II). For high-dimensional complex PF, the dis-
tribution does not deteriorate significantly. In contrast, the
archiving mechanism based on the non-dominated ranking
is more suitable to combine with the search operator with
strong exploitation capability, thus improving the explora-
tion capability of MOAs.

In MOPs, the number of non-dominated solutions in the
PS obtained by the algorithm is crucial. It is detrimental for
the user to weigh the decisions if the number of solutions is
too small. Therefore, the number of Pareto optimal solutions
obtained can be regarded as a diversity indicator. Table 11
statistics the average number of Pareto optimal solutions
obtained by all comparison algorithms run 30 times indepen-
dently on each problem. The best results are shown in bold.
Because the archive capacity is set to 100 for all algorithms,
the average number of Pareto optimal solutions in Table 11 is
at most 100. According to Table 11, MOEOSMA obtains the
most non-dominated solutions on twelve engineering prob-
lems, while other algorithms can only obtain more non-dom-
inated solutions on some of the problems. It is demonstrated
that using MOEOSMA to solve real-world MOPs is more
beneficial for users to weigh and select the most satisfactory
solution among multiple objective functions.

The quality measure for PF is very complicated, and there
is no unary quality measure that can indicate that approxi-
mate set A is superior to B (Zitzler et al. 2003). Because the
theoretical PF is usually unknown in real-world optimization
problems, it is challenging to design a satisfactory binary
quality measure. Such a metric also has the disadvantage that
the evaluation is not objective. A direct comparison of PF
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can more accurately demonstrate the advantages of different
algorithms. Figures 15, 16, 17, and 18 present the optimal
PF obtained by all comparison algorithms for the hydrostatic
thrust bearing design, car side impact design, water resource
management, and 60-bar truss optimization problem, respec-
tively. The PF for other engineering problems is shown in
Appendix Figs. 20, 21, 22, 23, 24, 25, 26, and 27.
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As shown in Fig. 16, the PF obtained by MOALO with
MOSMAA is strictly dominated by the PF obtained by MOE-
OSMA on the hydrostatic thrust bearing design problem.
MOSMA and MOPSO can only discover a few non-domi-
nated solutions that satisfy all constraints, whereas MOEA/D
cannot find feasible solutions. It means that the search opera-
tors of these three algorithms are inefficient at solving the
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problem. Compared with other algorithms, MOEOSMA
obtains a more uniform and extensive PF.

The optimal PF of the car side impact design problem,
depicted in Fig. 17, illustrates the search performance of
MOEOSMA in comparison to other algorithms on the three
objective optimization problems. In this instance, the HV
value indicates that MOMVO obtained the best convergence
and diversity of PF, but its distribution is not the most uni-
form, with many non-dominated solutions concentrated in
the same region. As can be seen from Fig. 17, MOPSO,
MOMPA, and SPEA? are the three algorithms with the best
performance, followed by MOEOSMA and PESA-II.

Figure 18 displays the PF distribution of the first three objec-
tive functions of the water resource management problem with
five objectives. The result illustrates that MOPSO, MOE-
OSMA, and MOMPA provide the best PF distribution, but the
HV values of MOMVO and MOSMA are larger, indicating that
the latter has superior convergence and is closer to the true PF.

For the truss optimization problem, taking 60-bar as an
example, Fig. 19 presents the PF obtained by all comparison
algorithms. It can be seen that MOEOSMA demonstrates the
best convergence performance on the 60-bar truss optimiza-
tion problem, and the PF obtained is closer to the true PF.
Moreover, the PF obtained by many algorithms can only
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cover part of the true PF, and only MOEOSMA, MOGWO,
and MOMPA can achieve high coverage.

In summary, MOEOSMA shows the strongest com-
petitiveness in all two-objective engineering problems,
indicating that the multi-objective algorithm proposed in
this research is very efficient in two-objective optimiza-
tion problems. Among them, the dynamic exploration and
exploitation coefficient enhance the search capability of
the algorithm, and the elite archiving mechanism based
on the crowding distance can promote the convergence
and diversity of the PF. For engineering problems with
three objectives and above, MOEOSMA'’s performance
is reduced due to too little selection pressure caused by
Pareto dominance. However, it still has a strong competi-
tive advantage and outperforms most comparable MOAs.

6 Conclusion and future work

This study developed a novel multi-objective version of
the recently proposed EOSMA called MOEOSMA. Here,
EOSMA's superior performance in the decision space is the
primary motivation for developing MOEOSMA. In order
to handle MOPs efficiently, the proposed algorithm intro-
duces three important components. First, dynamic explo-
ration and exploitation coefficients were used to improve
the algorithm's search ability in the decision space. Second,
a rotation method was used designed to sort the fitness of
slime mould individual to evaluate the fitness weight. Then,
a Pareto archive with a fixed capacity was used to store the
good non-dominated solutions obtained so far to improve
the convergence of solutions in the objective space. Finally,
a crowding distance assessment method was developed to
maintain the archive and update the equilibrium pool to
promote the diversity of the solution in the objective space.

The performance of MOEOSMA was verified on
CEC2020 functions, and the convergence of the algorithm
in the decision space and objective space was evaluated
using IGDX and IGDF, respectively. The experimental
results show that MOEOSMA outperforms nine well-known
MOA:. In addition, eight real-world engineering problems
and four truss optimization problems were tested to dem-
onstrate the efficiency and practicality of MOEOSMA. The
convergence, diversity and extensiveness of algorithms
were evaluated by HV and STE, respectively. In terms of
convergence and diversity, MOEOSMA is obviously supe-
rior to other comparison algorithms. In terms of extensive-
ness, MOEOSMA is second only to SPEA2. In addition,
MOEOSMA obtained the largest number of non-dominated
solutions, which can provide more alternatives to decision-
makers. In future research, MOEOSMA can be applied to
more practical optimization problems, such as multi-objec-
tive feature selection problem (Hu et al. 2022) and wing
aeroelastic optimization problem (Wansasueb et al. 2022).
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In addition, the crowding distance method can be further
improved to enhance the performance of MOEOSMA in
solving multimodal multi-objective optimization problems.

Appendix 1. Real-world constraint
engineering design problems

Speed reducer design problem

Consider X =[xy, Xy, X3, %4, X5, Xg, X7] = [b,m, 2,11, 15,d}, dy)
Minimize f| (x) = 0A7854x1x§(14.9334x3 + 3.3333x§ —43.0934)
—1.508x, (xé + x%) + 0.7854(x4x§ + xsxg) +7.4777 ()cg7 + x;)

Hx) = \/(745x4/(x2x3))2 +16.9x 106/(0.1xg)

subject to: g (x) =27/ (x;x;3x3) < 1;8,(x) = 397.5/ (x;x3x3) < 1
83(x) = 1.93x] / (xpx3x}) < 13.g4(%) = 1.93x3 / (r,3359) < 1
85(X) = 103/ 40 < 15 g6(%) = x1/ (12x,) < 1

g7(X%) =5x,/x; < 1;85(x) = (1.5x + 1.9)/x, < 1

8o(x) = (L.1xy + 1.9)/x5 <1 810(x) =f(x)— 1100 < 1

gnx) = \/(745x5/(x2x3))2 +157.5 % 106/(0.1;@) -850<1

with 2.6 <x; £3.6,0.7 < x, £0.8,17 < x3 < 28(integer),

7.3 <x4,x5 £8.3,29 <x, <£3.9,5.0<x;, <5.5.

Spring design problem

Consider: X = [x,x,,x3] = [d, D, N]

Minimize: f;(x) = 0.257%x7x,(x3 + 2)

fr(x) = 8000cyx, / (7x;)

subject to: g;(X) =f1(X) = Vpax £ 0;8,X) =/ (x) =5 <0
83(X) = Iy = Ly <05 84(X) = dpyjy — X1 <0

85(X) = x| + X = Dy £ 0;86(x)=3-C<0

87(x) =0, — 0, <0;83(x) =1.25-700/K <0

where V,

max = 30:8 = 189000 [y = 141 dpyyy = 0.2;
Doy = 350, =650, = 300/ K;

K =Gxt/(8:3x3); G = 11.5x 105;

g =4C- 1)/ (4C—-4)+0.615/C;C = x5/ x;;

I = 1.05x, (x5 +2) + 1000/ K.

with x; € {0.009, 0.0095,0.0104, 0.0118,0.0128, 0.0132,0.014,
0.015, 0.0162,0.0173, 0.018, 0.020, 0.023,0.025,

0.028, 0.032,0.035, 0.041,0.047, 0.054,0.063,

0.072, 0.080,0.092, 0.0105,0.120, 0.135,0.148,
0.162,0.177,0.192, 0.207,0.225, 0.244,0.263,
0.283,0.307,0.331, 0.362, 0.394, 0.4375,0.500},

1 < x, < 30(continuous), 1 < x5 < 32(integer).
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Hydrostatic thrust bearing design problem

Consider: x = [R, R, 4, O]

Minimize: f;(x) = 1—12 < Q(;PO - Ef>
=T L
subject to: g,(x) = W, — W < 0;,(X) = Py — Py <0
§3(X) = AT — AT, < 0;g,(x) = by —h <0
g5(x) =Ry — R < 0; g¢(x) = f,(x) —0.001 <0
g;(x) =W/ (x(R* = Rj)) — 5000 < 0
P, R*—R} 61Q <R>
_.—;Poz—- n{—|»;
2 In(R/R,) zh’ R,
A

22N \> 2zu R —R;
n=(=) =2 \E; =9336Q -y - C- AT;
60 ) E

where W =

AT = 2(10° — 560); P = log,olog;o (8.122 % 10°4 + 0.8) — C,

- ;
y =0.0307;C = 0.5;n = —=3.55; C, = 10.04; W, = 101000;
P, = 1000; AT, = 50:h,;, = 0.001; g = 386.4;N = 750.

with 1 <R, R, 0 <16,1x 1078 <y <16 x 107°,

Vibrating platform design problem

Consider x = [d,,d,,d;, b, L]

Minimize f,(x) = —z / (2L*) - VEI/ u

f(X) =2b-L(cid, — cy(d; — dy) — c3(d, — d))
subject to: g;(x) = uL —2800 < 0;8,(x) =d, —d, <0
§(X)=dy —d; =0.15<0;g4(x) =dy —d3 <0
gs(x)=ds —d, —0.01 <0

where EI = (2b/3)(E,d} — Ey(d} — d3) — E5(d; — d3));
H= 2b(P1d1 - Pz(dl - dz) - P3(d2 - d3))-

with 0.05 < d, <0.5,02 < d, <0.5,02 < d; < 0.6,
035<bh<053<LL6.

Car side impact design problem

Consider X = [x, X,, X3, X4, X5, Xg, X7]

Minimize f;(x) = 4.90x; + 6.67x, + 6.98x; + 4.01x, + 1.78x5
+1075xg +2.73x; + 1.98

H(x) =4.72 — 0.19x,x;3 — 0.50x,

£,(x) =0.50 - (Vypp + Vep)

subject to: g;(x) = 1.16 — 0.0092928x; — 0.3717x,x, < 1
8,(x) = 0.261 — 0.06486x; + 0.0154464x; — 0.0159xx,
—0.019x,x; + 0.0144x3x5 < 0.32

83(x) = 0.214 - 0.0587118x, + 0.018x§ + 0.030408x;
+0.00817x5 + 0.03099x,x5 — 0.018x,x,

—0.00364x5x4 < 0.32

84(x) =0.74 - 0.61x, + 0.227x§ —0.031296x,
—0.031872x; < 0.32

85(x) = 28.98 + 3.818x; + 1.27296x4 — 2.68065x,
—4.2x,x, <32

86(x) = 33.86 — 3.795x, + 2.95x; — 3.4431x; — 5.057x,x,
+1.45728 < 32

g7(x) = 46.36 — 4.4505x; — 9.9x, < 32

gs(x) =f,(x) < 4

8o(X) = Vypp < 9.9

810(X) =Vpp <157

where Vypp = 10.58 — 0.67275x, — 0.674x,x,;

Vip = 16.45 — 0.489x3x; — 0.843x5x.

with 0.5 < x,x3,x, < 1.5,045 <x, <1.35,

0.875 < x5 £2.625,0.4 < x4,x7 < 1.2.

Water resource management problem

Consider x = [x7, X, x3]

Minimize f (x) = 106780.37(x, + x3) + 61704.67
£ (x) = 3000x,

f3(x) = 30570 x 2289x, / (0.06 x 2289)"63

f4(x) =250 x 2289 X exp (2.74 — 39.75x, + 9.9x;)
fs(%) = 25(1.39/ (x,x,) + 4940x; — 80)

subject to: g;(x) = 4.94x; +0.00139/ (x,x,) < 1.08
2(x) = 1.082x5 + 0.000306/ (x,x,) < 1.0986
23(X) = 49408.24x; + 12.307/ (x,x,) < 54051.02
24(x) = 8046.33x; +2.098/ (x,x,) < 16696.71
g5(x) = 7883.39x; + 2.138/ (x,x,) < 10705.04
86(X) = 1721.26x3 + 0.417x x, < 2136.54

g7(X) = 631.13x3 + 0.164/ (x,x,) < 604.48

with 0.01 < x; < 0.45,0.01 < x,,x3 <0.1.
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Bulk carriers design problem

Considerx = [L,B,D, T, V,, Cg]

Minimize f;(x) = (C, + C, + C,)/ C,

Hx) = Wy

Hx) =-C,

subject to: g(x) =—-L/B+6<0

& =L/D-15<0

g3(x)=-L/T—-19<0

g4(x) =T -045D%" <0
gsx)=T-07D-0.7<0
86(X)=F,-032<0

g7(x) = —0.53T — ((0.085Cy — 0.002)32)/ (T - Cg)
+(14+0.52D)+0.07B <0

gg(x) = —-D,,, + 3000 < 0;

8o(x) = D,,, — 500000 < 0

where C, = 2.6(2000W*% + 3500w, + 2400P*%);
C, =40000D%3; C, = (105D,5,; + 6.3D2H)R

wt? wt /7 pa>

C,=D,,R,,:R

cwtMpas Ppa

=350/ (S; + 2(D,,;/ 8000 + 0.5));

Dy = Dy — D (Sy +5) = 2D%3: S, = 5000V / 24;

D, =0.19x 24P/ 1000 +0.2;D,,, = 1.025L-B-T - C — W,;
Wi =W, + W, + W,,; W, = 0.034L7 B D04 93,

W, = Lo.sBoAsDo.scg.l; W, = 0.17P";
2
P=(1.025L-B-T-Cp)3 v,f/(a+b-pn);

F, = 0.5144V; / (9.8065L)";

a = 4456.51 — 8105.61Cy + 4977.06C%;

b = —6960.32 + 12817Cy — 10847.2C2.
with 150.0 < L < 274.32,20.0 < B < 32.31,
13.0 <D <250,100 < T <1171,

14.0 <V, £ 18.0,0.63 < Cp < 0.75.
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Multi-product batch plant problem

Consider x = [N|,N,, N3, V|, V,, V3, T;,, T, B, B,]
M
Minimize f;(x) = 3" a;N;V"

J=1

N
Hx) =65 % +0.080, +0.10,
i=1 i

N

T,.
fo =3 2t

i=1 l

subject to: g,(x) =f3;(X) —H <0

N
X)) =) ;B -V, <0j=1,..M
i=1

&x) =1, -NT,;<0,i=1,..Nj=1,..M
where N =2; M = 3; a; = 250; ﬂj =0.6;

H = 6000; Q, = 40000; Q, = 20000;
Sp=28,=3%83=4

Sy =48y =68 =3;

t =81, =205 =8;

ty = 1651, =4;t,; = 4.

with 1 < N, N,, N3 < 3(integer), 250 < V,, V,, V; < 2500,
6<T,, <20,4<T,, <16,40 < B, <£700,10 < B, <450.

Appendix 2. Pareto fronts obtained by all
comparison algorithms

See Figs. 20, 21, 22, 23, 24, 25, 26, 27
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Fig.22 Vibrating platform
design problem

Fig. 23 Bulk carriers design
problem
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Fig. 24 Multi-product batch
plant design problem

Fig. 25 72-bar 3D truss optimi-
zation problem
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