
Vol.:(0123456789)1 3

Structural and Multidisciplinary Optimization (2023) 66:89 
https://doi.org/10.1007/s00158-023-03550-8

RESEARCH PAPER

Flexible‑constrained time‑variant hybrid reliability‑based design 
optimization

Zhonglai Wang1,2   · Dongyu Zhao2 · Yi Guan2

Received: 8 September 2022 / Revised: 9 March 2023 / Accepted: 13 March 2023 / Published online: 29 March 2023 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Only the worst-case scenario is considered in most studies when conducting reliability-based design optimization under 
hybrid uncertainties including epistemic uncertainty and aleatory uncertainty, which will result in waste of resources because 
of the excessive pursuit of higher reliability. In order to quantitatively balance resources and reliability restricted by the 
lower and upper bounds under hybrid uncertainties during the design stage, a novel flexible-constrained time-variant hybrid 
reliability-based design optimization model is proposed in this paper. The infeasible region pruning-based Kriging method 
is proposed to build surrogate models for hard constraints while a combination of Kriging and high-dimensional model 
representation is presented to build surrogate models for flexible constraints to improve the efficiency. In order to build 
the relationship between resources and reliability, the determination method of design preference parameter is provided. 
A metaheuristic framework is finally given to conduct the flexible-constrained time-variant hybrid reliability-based design 
optimization. Two examples are employed to illustrate and validate the effectiveness of the proposed method.

Keywords  Time-variant reliability · Hybrid uncertainties · Flexible constraint · Reliability-based design optimization · 
Surrogate model

1  Introduction

Reliability-based design optimization (RBDO) aims to 
obtain optimal design results under the satisfaction of reli-
ability requirement while minimizing the lifecycle cost of 
products. During the operational stage, time-variant proper-
ties of working conditions, strength degradation and motion 
will greatly affect product reliability under uncertainties, and 
therefore time-variant reliability-based design optimization 
(t-RBDO) methods should be developed to obtain high con-
fidence in design results. Compared with the time-invariant 
RBDO, more computational expenses are needed since 

stochastic processes and their correlations should be consid-
ered in the t-RBDO (Suksuwan and Spence 2018). Efficient 
time-variant reliability analysis methods can increase the 
computational efficiency and several kinds of correspond-
ing methods have been developed, e.g., out-crossing-based 
methods (Jiang et al. 2017a), extreme value-based methods 
(Hu and Du 2013), stochastic process decomposition meth-
ods (Yu et al. 2018), and surrogate model-based methods 
(Tayyab et al. 2020).

Furthermore, time-variant reliability analysis and design 
optimization are nested in the typical t-RBDO, which 
will decrease computational efficiency. To address this 
issue, many studies have been conducted. A time-invariant 
equivalent method is proposed to solve t-RBDO problems 
as a sequence of time-invariant reliability analysis and 
RBDO (Jiang et al. 2017b). A two-step decoupling model 
is constructed to handle the t-RBDO, where a transformed 
time-invariant RBDO is performed in the first step while 
time-invariant reliability analysis and deterministic opti-
mization are alternately conducted in the second step (Shi 
et al. 2020a). For a complicated case of systems with mul-
tiple temporal and spatial parameters, a general decoupling 
method by establishing a mapping between design variables 
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and time-invariant system reliability is presented, which can 
be employed to conduct t-RBDO of systems under time-
varying working conditions (Yu and Wang 2019). A nested 
extreme response surface method where the surrogate model 
is constructed between input variables and extreme time 
response of the performance function is proposed (Wang 
and Wang 2012). A sequential Kriging modeling approach 
is provided, where the surrogate model of the performance 
function of probabilistic constraints is built by a design-
driven adaptive sampling scheme by decomposing sto-
chastic process into random variables (Li and Chen 2019). 
A t-RBDO method is provided by using a simultaneously 
refined Kriging model, which employs a global Kriging sur-
rogate model built in an artificially augmented reliability 
space to approximate the performance function of a proba-
bilistic constraint (Hawchar et al. 2018). A single-loop sur-
rogate method is presented, where only those sample points 
having large contribution to the time-variant limit state sur-
face are selected to enhance the surrogate model, and hence 
the computational efficiency is very high (Hu and Mahade-
van 2016). For more t-RBDO methods, please refer to Jiang 
et al. (2017b), Shi et al. (2020b), and Wang et al. (2019).

In engineering practices, it is usually difficult to build proba-
bilistic models since there are not enough built-in sensors or 
sampling time to collect sufficient data. Therefore, some non-
probabilistic models, e.g., evidence theory (Zhang et al. 2018), 
possibility theory (Mourelatos and Zhou 2005), fuzzy set (Wang 
et al. 2012), and interval variable (Zhao et al. 2021) can be 
implemented. A sequential single-loop procedure is established 
when probability and interval variables are involved in the time-
variant hybrid reliability-based design optimization (t-HRBDO) 
(Wang et al. 2016). While parameters of probability function 
are interval, the incremental shifting vector technique is used to 
transform the nested optimization into equivalent deterministic 
optimization and hybrid reliability analysis to increase the com-
putational efficiency (Huang et al. 2017). An efficient method 
integrating the hybrid perturbation random moment and hybrid 
perturbation inverse mapping is proposed for the t-HRBDO 
problem under probabilistic and interval variables (Xia et al. 
2015). The enhanced chaos control technique is employed for 
the non-probabilistic RBDO based on a convex model, which 
can check and re-update the control factor during the optimiza-
tion process (Hao et al. 2017a). The adaptive-loop approach is 
an improved method of the enhanced chaos control technique for 
the t-HRBDO (Hao et al. 2017b). For a thermal structure under 
random, interval, and fuzzy uncertainties, a non-probabilistic 
RBDO model is established based on an interval ranking strat-
egy, and furthermore the subinterval vertex method is provided 
to improve the computational efficiency (Wang et al. 2017).

For a t-HRBDO problem, only the worst-case scenario is consid-
ered during the design stage in most of the studies to ensure higher 
safety, which will lead to the increase of resources and also the 
decrease of dynamic performance. However, reliability is an interval 

restricted by the lower and upper bound of reliability due to the exist-
ence of hybrid uncertainties. In order to balance the reliability and 
resources effectively within the reliability bounds during the design 
stage, a novel flexible-constrained t-HRBDO framework and cor-
responding algorithms are proposed in this paper. The contributions 
of the paper can be summarized as (1) a novel flexible-constrained 
t-HRBDO framework is presented by accounting for the balance of 
reliability and resources during the design stage, (2) an infeasible 
region pruning-based Kriging surrogate model is built for hard con-
straints under uncertainty to improve the computational efficiency, 
(3) a determination method for the design preference parameter is 
provided to quantitatively build the relationship between reliability 
and resources, and (4) a new metaheuristic algorithm is presented to 
effectively conduct the flexible-constrained t-HRBDO.

The organization of the paper is as follows. The framework 
of the flexible-constrained t-HRBDO model is proposed in 
Sect. 2. Algorithms to solve the flexible-constrained t-HRBDO 
problem are elaborated in detail in Sect. 3. Two examples are 
provided in Sect. 4 to testify and validate the proposed meth-
ods. Conclusions are drawn in Sect. 5.

2 � The framework of the flexible‑constrained 
t‑HRBDO model

In this Section, random variables are employed to describe 
the aleatory uncertainty and interval variables to describe the 
epistemic uncertainty during the construction of the flexible-
constrained t-HRBDO model, since interval variables need 
less data only the upper and lower bounds of variables and 
other non-probabilistic variables can be transformed to interval 
variables easily.

2.1 � The t‑HRBDO model under probabilistic 
and interval uncertainties

The time-variant reliability under the mixture of random and 
interval variables can be expressed by

where g(�,�R,�I,�(t), t) is the time-variant limit state func-
t ion,  � is  the vector of determinist ic var ia-
bles,�R =

[
XR
1
,XR

2
, ...,XR

nx

]
 is the vector of random variables, 

�(t) =
[
Y1(t), Y2(t), ..., Yny(t)

]
 is the vector of stochastic pro-

cesses, �I =
[
XI
1
,XI

2
, ...XI

nI

]
∈
[
�I,�

I
]
 is the vector of inter-

val variables with the lower bound XI and upper bound X
I , 

t ∈ (ts, te) denotes the time. g(�,�R,�I,�(t), t) > 0 denotes 
that the system operates safely while g(�,�R,�I,�(t), t) ≤ 0 
means failure during the time interval t ∈ (ts, te).

Since �I is a vector of interval variables, the time-variant 
reliability R(ts, te) is also interval restricted by the lower and 

(1)R(ts, te) = Pr
{
g(�,�R,�I,�(t), t) > 0,∀t ∈ (ts, te)

}
,
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upper bounds. In engineering applications, the lower bound 
RL(ts, te) and upper bound RU(ts, te) of R(ts, te) can be calcu-
lated based on optimization. Basically, RL(ts, te) reflects the 
worst-case scenario of a system while RU(ts, te) reflects the 
best-case scenario of a system and they can be estimated by

Please refer to Ref. (Zhao et al. 2021) for the estimation 
method of RL(ts, te) and RU(ts, te) . With the estimated lower 
bound RL(ts, te) and upper bound RU(ts, te) , the conservative 
and radical t-HRBDO models are receptively provided by

where �
X
R is the vector of mean values of random variables, 

Rtar
j

 is the target reliability, C(⋅) denotes the cost function, 
and Ωnd and Ωnx are the design domains of � and �

X
R.

For the conservative t-HRBDO in Eq. (3), the higher reli-
ability is ensured with the higher resources while the radi-
cal t-HRBDO in Eq. (4), the resources will be the least but 
the reliability can not be ensured. Therefore it is necessary 
to balance the reliability and cost for a reasonable optimal 
results.

2.2 � The flexible‑constrained t‑HRBDO model

For a system, the lower bound RL(ts, te) and upper bound 
RU(ts, te) depend on the hybrid uncertainties. However, cost 
paid for the same amount of reliability increase may be 
greatly discriminating for different engineering problems. 
It will be not reasonable to conduct conservative t-HRBDO 
when huge cost is needed for a small increment of initial reli-
ability and to conduct the radical t-HRBDO when the higher 
reliability should be ensured. Therefore it is required to com-
bine the lower bound RL(ts, te) and upper bound RU(ts, te) and 

(2)

⎧
⎪⎪⎨⎪⎪⎩

RL(ts, te) = Pr

�
min

X
I∈

�
X
I(L),XI(U)

�
�
min
t∈(ts,te)

g(XR,XI
,Y(t), t) > 0

��

RU(ts, te) = Pr

�
max

X
I∈

�
X
I(L),XI(U)

�
�
min
t∈(ts,te)

g(XR,XI
,Y(t), t) > 0

��

(3)

find �, �
X
R

min C(�, �
X
R)

s.t.RL
j
≥ Rtar

j
, j = 1, 2, ..., nc

�� ≤ � ≤ ��, ��
X
R
≤ �

X
R ≤ ��

X
R
,

� ∈ Ωnd,�
X
R ∈ Ωnx

(4)

find �, �
X
R

min C(�, �
X
R)

s.t.RU
j
≥ Rtar

j
, j = 1, 2, ..., nc

�� ≤ � ≤ ��, ��
X
R
≤ �

X
R ≤ ��

X
R
,

� ∈ Ωnd,�
X
R ∈ Ωnx

,

furthermore the relationship between the reliability and cost 
should be quantified during the design procedure. Different 
from the traditional weight-sum method by combining the 
lower bound RL(ts, te) and upper bound RU(ts, te) directly, 
here we propose a flexible-constrained t-HRBDO model by 
introducing the relationship between the reliability and cost. 
The flexible-constrained t-HRBDO model can be provided 
typically by

where C0 is the cost under the radical design while Ctar is the 
cost under the conservative design, R0 is the lower bound of 
reliability under the radical design, � is the design preference 
parameter. In this model, RU

j
≥ Rtar

j
(j = 1, 2, ..., nc.) is called 

hard constraints under uncertainty, which should be satisfied 

during the optimization process while max

{
Rtar
j
−RL

j

Rtar
j
−R0

}
 is 

designed in the objective as the flexible constraint. The intro-
duction of the flexible constraint into the objective function 
can not only build the relationship between cost and reliabil-
ity by considering the conservative and radical t-HRBDOs 
but also improve the efficiency of the t-HRBDO than being 
as constraints under uncertainties.

3 � Algorithms of the flexible‑constrained 
t‑HRBDO

Reliability analysis will be conducted for uncertain constraints 
in the typical t-HRBDO model while reliability analysis will 
be performed in both uncertain constraints and the objective 
function in the flexible-constrained t-HRBDO model. The 
classification-based surrogate will be built for the hard uncer-
tain constraints and the global approximation-based surrogate 
for the flexible uncertain constraints to improve computational 
efficiency. The determination of the design preference param-
eter will be then made by considering the relationship between 
cost and reliability within the bounds of the time-variant reli-
ability, which will help designers to make a more reasonable 
decision to balance the required reliability and cost for dif-
ferent engineering problems. In order to effectively solve the 
flexible-constrained t-HRBDO model, a metaheuristic algo-
rithm is finally provided.

(5)

find �, �
X
R

min
C(�, �

X
R ) − C0

Ctar − C0

+ � max

{
Rtar
j

− RL
j

Rtar
j

− R0

}

s.t.RU
j
≥ Rtar

j
, j = 1, 2, ..., nc

� ≥ 0

�� ≤ � ≤ ��, ��
X
R
≤ �

X
R ≤ ��

X
R

� ∈ Ωnd, �
X
R ∈ Ωnx

,
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3.1 � Improved infeasible region pruning technology 
for surrogate models of hard uncertain 
constraints

During the procedure of the RBDO, the current design 
point will be judged whether it is feasible or not and then 
substantial reliability analysis evaluations are needed. If 
the relationship between design points and reliability can 
be constructed, the feasibility of the current design point 
will be directly judged to decrease the number of reliability 
analysis evaluations.

For constrained optimization problems, the task is to find 
optimal solutions in the feasible domain. Design points in 
the infeasible domain are usually not to be concerned. In 
order to effectively divide the design domain into feasible 
domain and infeasible domain, the relationship between 
uncertain constraint and design points should be established. 
Here we define HCRj

(�, �
X
R ) = Rj − Rtar , then the uncertain 

constraint can be expressed by

This can be considered as a classification problem. If a 
classification surrogate model is built with less computa-
tional expense, the computational efficiency of reliability 
analysis will be improved greatly. Therefore we propose a 
novel infeasible region pruning technology by changing the 
strategy of selecting new samples.

3.1.1 � Initial surrogate modeling

The sample space of the constrained surrogate model under 
uncertainty is first determined. Samples will be drawn from 
the domain formed by the lower and upper limits of 
Scandi = {�, �

X
R} uniformly. After generating candidate sam-

ples, Nini samples are randomly selected as the set of training 
samples Strain , and the remaining Ntest = Ncandi − Nini samples 
will be used as the set of testing samples Stest . The initial 
surrogate model of the j-th constraint is established by 
[S

j

train(m)
,HCR(S

j

train(m)
)], m = 1, 2, ...,Nini with the Kriging 

method.
For uncertain variables U , the expression of the Kriging 

model can be provided by

where f (U) is the polynomial of U , � is the regression coef-
ficient, z(U) represents the stochastic error at U , f (U)� is 
known as the trend of prediction, z(U) can be fully expressed 
by a correlation function R(Ui,Uj, �) with � being the vector 
of unknown parameters. The vector � can be determined by 
the optimization

(6)HCRj
(�, �

X
R) ≥ 0.

(7)g(U) = f (U)� + z(U),

where � is the standard deviation.

3.1.2 � Infeasible domain pruning

Due to the lack of sufficient data, the prediction accuracy 
of the initial surrogate model may be very poor, which will 
lead to a great error while judging whether the unknown 
design point is feasible or not. Therefore more samples are 
needed to improve the prediction accuracy of the surrogate 
model. Generally, some samples with effective information 
are selected to add into the training set to improve the model 
accuracy. Added samples will be determined based on acqui-
sition functions, which usually cover statistical features of 
the current surrogate model, e.g., predictive mean and pre-
dictive variance.

In the most of current surrogate methods, the acquisition 
function should be evaluated for all testing samples before 
each updating of the set of testing samples and one or more 
testing samples are selected as added samples according to 
a certain rule. However, for a surrogate model with classi-
fication as the goal, one issue may be caused that the newly 
added samples could not provide relevant information on the 
classification boundary, since those samples for updating are 
selected from all testing samples. Meanwhile, the other issue 
is that the computational expense is usually very higher when 
the prediction is repeatedly conducted for all testing samples. 
In order to address the abovementioned issues well, a pruning 
method for the infeasible region sample pool is proposed.

For the current set of testing samples, the minimum 
probability that the set is a feasible point from the surrogate 
model is provided by

where �(Sj
test(∗)

) and �(Sj
test(∗)

) denote the mean value and 
standard deviation of Sj

test(∗)
, respectively.

Error may be produced during the prediction with the sur-
rogate model, but the set of samples with very small values of 
U

j

test(∗)
 are mostly infeasible, which can be further clarified that 

the samples with small probability in Eq. (9) are almost infea-
sible points. Therefore these sets will be directly dropped and 
acquisition function evaluations will be no more required, 
which will further improve the computational efficiency.

At the early stage of the construction of the surrogate 
model, evaluation error is usually very large. In order not 
to omit the potential added samples for a high accuracy and 
meanwhile improve the computational efficiency at the early 
stage, the pruning principle considering dynamic updating 
is proposed. For the surrogate model of the j-the constraint, 
the pruning principle of dynamic updating is provided by

(8)� ∗= argmin
�
(‖R(�)‖)�,

(9)U
j

test(∗)
= �(S

j

test(∗)
)∕�(S

j

test(∗)
),
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where Cutj is the pruning set, Cutj
1
 is the collection of testing 

samples with too small values of Uj

test while Cutj
2
 is the set of 

samples ranked at the back in Cutj
1
 , ΦGaussian(⋅) is the cumu-

lative probability function of standard normal distribution, 
Q

j

Cut1
(⋅) indicates the quantile of Cutj

1
 , �1 and �2 are dynamic 

pruning coefficients.
The pruning coefficients �1 and �2 can dynamically update 

with the augment of the training set of the surrogate model, 
as shown in Fig. 1. The prediction accuracy will be higher 
with the continual updating of the surrogate model. When 
the surrogate model becomes more accurate, �1 and �2 will 
gradually be greater to exclude infeasible samples. But �1 
remains below 0, which indicates the minimum probabil-
ity of becoming a feasible sample in the remaining testing 
samples is still ΦGaussian(0)= 0.5 to reserve the better poten-
tial updating samples when the surrogate model is accurate 
enough. The set of feasible samples FR after pruning is

where ∁
S
j

test
 means the complementary set of Sjtest.

(10)

Cutj =
{
Cut

j

1
∩ Cut

j

2

}

Cut
j

1
=
{
S
j

test

|||U
j

test ≤ �1

}

�1= −
1

2
exp

(
−
Ntrain − Nini

nx

)

Cut
j

2
=
{
S
j

test

|||U
j

test ≤ �2

}

�2 = Q
j

Cut1

[(
ΦGaussian(−

1

2
) − 1

)
exp

(
−
Ntrain − Nini

nx

)
+1

]

,

(11)FR=
nc

∩
j=1

(
∁
S
j

test
Cutj

)
,

3.1.3 � Principles of surrogate model updating

With the reduced set of testing samples by the infeasible domain 
pruning method, the acquisition function is used to select new sam-
ples. Here the acquisition function is employed for the selection.

where dis
(
S
j

test(∗)

)
= min

i=1,2,...,Ntrain

‖‖‖S
j

test(∗)
− S

j

train(i)

‖‖‖ refers to the 

shortest distance between the testing sample and all training 
samples, eps is a minimal positive number. The acquisition 
function can select samples with the largest prediction 
uncertainty and ensure the uniformity between training sam-
ples at the same time. The testing sample with the minimal 
acquisition function value will be selected as the newly 
added sample, which is put into the training set for updating 
of the surrogate model. The procedure is repeated until the 
termination criteria is satisfied

where Niter
FR

 denotes the number of feasible points in the iter-
th iteration. U∗ ≥ 2 is used to control the accuracy of the 
surrogate model while N

iter
FR

−Niter−1
FR

Niter−1
FR

< 𝜓 is employed to ensure 
that the feasible region will not change dramatically and � 
is usually chosen as 0.005.

The proposed surrogate method can effectively construct 
the feasible boundary surrogate model for uncertain 

(12)

Af
(
S
j

test(∗)

)
= U

j

test(∗)
×

max {D} −min {D}

dis
(
S
j

test(∗)

)
−min {D} + eps

D =
{
dis

(
S
j

test(1)

)
, dis

(
S
j

test(2)

)
, ..., dis

(
S
j

test(Ntest)

)} ,

(13)U∗ ≥ 2and
Niter
FR

− Niter−1
FR

Niter−1
FR

< 𝜓 ,

Fig. 1   Dynamic pruning coefficients
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constraints by classification based on Kriging. For the 
RBDO problem, the computational efficiency will increase 
since HCRj

(�, �
X
R ) is directly used to judge whether the 

design point is feasible or not to decrease the number of 
reliability analysis evaluations.

3.1.4 � Kriging‑HDMR‑based surrogate model for flexible 
uncertain constraints

In this paper, the flexible uncertain constraints are converted 

into the objective function as max

{
Rtar
j
−RL

j

Rtar
j
−R0

}
(j = 1, 2, ...nc.) , 

and it is necessary to build the mapping between RL
j
 and 

�, �
X
R based on surrogate methods. For simplicity, (�, �

X
R) 

is denoted as U here. High-Dimensional Model Representa-
tion (HDMR) is used to globally approximate the flexible 
constraint in the objective function. HDMR can decouple 
the high-dimensional model into the combination of low-
dimensional models (Cheng and Lu 2019). For a response 
of g(U) with the input vector U=[U1,U2, ...,Un] , the expan-
sion of g(U) based on the HDMR can be expressed by

where g0 denotes the constant term, gi1(Ui1
) is the first-order 

term, 
∑

1≤i1≤i2≤n
gi1i2(Ui1

,Ui2
) is the interaction term between 

Ui1
 and Ui2

 , 
∑

1≤i1≤i2≤i3≤n
gi1i2i3 (Ui1

,Ui2
,Ui3

) is the interaction 

term among Ui1
 , Ui2

 , and Ui3
 , and g12...n(U1,U2, ...Un) is the 

residual term. Terms in Eq. (14) can be estimated by analysis 
of variance-HDMR (ANOVA-HDMR) method or Cut-
HDMR method. Compared with ANOVA-HDMR, Cut-
HDMR has higher accuracy (Huang et al. 2015) and the 
expressions of terms with the Cut-HDMR with the initial 
point U0=[U0

1
,U0

2
, ...,U0

n
] are

(14)

g(U) = g0 +
∑

1≤i1≤n
gi1 (Ui1

) +
∑

1≤i1≤i2≤n
gi1i2 (Ui1

,Ui2
)

+
∑

1≤i1≤i2≤i3≤n
gi1i2i3 (Ui1

,Ui2
,Ui3

)

+⋯ +
∑

1≤i1≤...≤im≤n
gi1i2...im (Ui1

,Ui2
, ...Uim

)

+ g12...n(U1,U2, ...Un),

(15)

g0 = g(U0)

gi1(Ui1
) = g(U0

1
,U0

2
, ...,U0

i1−1
,Ui1

,U0
i1+1

, ...,U0
n
) − g0

gi1i2 (Ui1
,Ui2

) = g(U0
1
,U0

2
, ...,U0

i1−1
,Ui1

,U0
i1+1

, ...,U0
i2−1

,Ui2
,U0

i2+1
, ...,U0

n
)

−gi1 (Ui1
) − gi2 (Ui2

) − g0

gi1i2i3

(
Ui1

,Ui2
,Ui3

)
= g(U0

1
, ...,Ui1

,U0
i1+1

, ...,Ui2
,U0

i2+1
, ...,Ui3

,U0
i3+1

, ...,U0
n
)

−gi1i2 (Ui1
,Ui2

) − gi1i3 (Ui1
,Ui3

) − gi2i3 (Ui2
,Ui3

) − gi1(Ui1
) − gi2 (Ui2

) − gi3 (Ui3
) − g0

.

For most engineering problems, the accuracy will be 
high enough when g(U) is approximated by the first three 
terms (Rabitz and Aliş 1999). The combination of Kriging 
and HDMR is here presented to build the surrogate model 
of flexible constraint and the procedure is summarized as 
follows:

Step 1 the center point of the design space is selected 
as the cut point U0 , and then the lower bound of reliability 
RL
0
= RL(U0) is evaluated;
Step 2 two sample points Uupper

i
 and Ulower

i
 along 

U
i
 axis at the upper and lower limits of U

i
 are cho-

sen, and corresponding lower and upper bounds 
o f  re l i ab i l i ty  RL

i
(U

upper

i
) = RL

i
(U

upper

i
,Ui

0
) − RL

0
 and 

RL
i
(Ulower

i
) = RL

i
(Ulower

i
,Ui

0
) − RL

0
 are evaluated, and then 

1-Dimension Kriging model R̂L
i
(U

i
) can be constructed;

Step 3 a new point (Ui,Uj,U
ij

0
) is randomly and jointly 

drawn similarly in Step 2, and its lower bound of reliability 
RL(Ui,Uj,U

ij

0
) is evaluated;

Step 4  if 
‖‖‖‖
RL(Ui,Uj,U

ij

0
)−R̂L

i
(U

i
)−R̂L

j
(U

j
)−RL(U0)

RL(Ui,Uj,U
ij

0
)

‖‖‖‖ ≤ 𝜀1 ,  then 

1-Dimension Kriging model R̂L
i
(U

i
) is satisfied and stops; 

otherwise go to the next step, �1 is usually chosen as 0.001;
Step 5 four samples at the lower and upper limits of 

variables Ui and Uj are chosen, their lower bounds of reli-
ability are evaluated and then 2-Dimension Kriging model 
R̂L
i
(Ui,Uj) is built;
Step 6 a new point (Unew

i
,Unew

j
,U

ij

0
) is generated simi-

l a r l y  a s  t h a t  i n  S t e p  3 ,  a n d  c h e c k ‖‖‖‖
R̂L
ij
(Unew

i
,Unew

j
)−RL

ij
(Unew

i
,Unew

j
)

RL
ij
(Unew

i
,Unew

j
)

‖‖‖‖ ≤ 𝜀1 ; if the convergence criterion 

is satisfied and stops; otherwise go to the next step;
Step 7 (Unew

i
,Unew

j
,U

ij

0
) is added to the current set of 

samples, Step 5 and Step 6 are repeated until the conver-
gence criterion is satisfied, the complete Kriging-HDMR 
model of the flexible constraint SCRj

(U) is finally obtained.

3.2 � Determination of the design preference 
parameter

With the constructed surrogate model of hard and flex-
ible uncertain constraints, Eq. (5) can be reformulated as
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where � denotes the design preference parameter to make a 
trade-off between reliability and other objective performance 
(e.g., mass, cost, et. al). The higher � is, the reliability should 
be paid more attention as a prior objective. Specially, when 
� → 0 , the problem degenerates into a radical t-HRBDO 
model; while � → +∞ , the problem will degenerate into 
a conservative t-HRBDO model. Therefore, the flexible-
constrained t-HRBDO model is a general t-HRBDO model. 
Actually, a mapping function between the cost and reliability 
exists in the flexible-constrained t-HRBDO. A determina-
tion procedure of � is proposed by considering lower and 
upper bounds of reliability under hybrid uncertainties to help 
designers to make a reasonable decision.

Step 1 the conservative t-HRBDO in Eq. (3) is con-
ducted and the best objective function value is obtained 
as C(Rtar);

Step 2 the radical t-HRBDO in Eq. (4) is conducted 
and the best objective function value is obtained as C(R0);

Step  3  t he  conser va t ive  t -HRBDO where 
RL
j
−
(
R0 + Rtar

)
∕2 ≥ 0 is considered as a hard constraint 

is handled and the best objective function value is 
obtained as C

((
R0 + Rtar

)
∕2

)
;

Step 4 Eq. (17) is solved for � ∗ , which is defined as 
the breakpoint of �

where a and b , respectively, denote the importance of reli-
ability and cost, which can be determined according to engi-
neering practices. � ∗ can give designers a quantitatively nar-
rowed bound to determine the value of � further considering 
the importance of reliability and cost.

3.3 � A metaheuristic framework 
of the flexible‑constrained t‑HRBDO

With the determined design preference parameter, the 
objective function of the flexible-constrained t-HRBDO 
can be obtained. However the objective function is 
implicit since the expression of the flexible constraint 

(16)

find �, �
X
R

min
C(�, �

X
R) − C0

Ctar − C0

+� max SCRj

s.t.

HCRj
≥ 0, j = 1, 2, ..., nc

� ≥ 0

�� ≤ � ≤ ��, ��
X
R
≤ �

X
R ≤ ��

X
R

� ∈ Ωnd, �
X
R ∈ Ωnx

,

(17)
C
((
R0 + Rtar

)
∕2

)
− C

(
R0

)

C(Rtar) − C
(
R0

) � ∗=
a

b
,

in the objective function is implicit. Because additional 
uncertain constraint evaluations are not needed in the pro-
cedure of the flexible-constrained t-HRBDO where sur-
rogate models are built for uncertain constraints, a popu-
lation metaheuristic algorithm will be implemented for 
this flexible-constrained t-HRBDO. The flowchart of the 
proposed framework for the flexible-constrained t-HRBDO 
is given in Fig. 2.

The metaheuristic algorithm procedure to solve the 
proposed flexible-constrained t-HRBDO is described as 
follows:

(1)	 Npop = 50 × (nd + nx) individuals are generated ran-
domly as the feasible initial population, and the cor-
responding fitness values are evaluated based on the 
objective function;

(2)	 according to the exploration and exploitation rules of 
the algorithm, the initial population is operated to gen-
erate the research direction and offspring population;

(3)	 in the progeny population, the offspring are classified 
into feasible set and infeasible set according to their fea-
sibility; for both the sets, offspring are sorted according 
to their fitness values respectively; the required number 
of offspring are chosen under the regulation of the fea-
sible sample first, but for the infeasible set the better 
fitness first;

(4)	 according to the requirements of different algorithms, 
certain operations are implemented on the offspring 
individuals and the corresponding fitness values are 
calculated;

(5)	 if the termination condition satisfies and stops; other-
wise go to step (2) and repeat the procedure until the 
optimal solution is obtained.

4 � Examples

Two examples including one numerical example and one 
engineering case are employed to elaborate and testify the 
effectiveness of the proposed method. Since the flexible-
constrained t-HRBDO is a newly proposed framework, 
currently no suitable methods but the general nested dou-
ble loop method (GNDLM) can be taken as the reference 
for the accuracy comparison. The relative error of the pro-
posed method and the GNDLM is defined as

where CP and CG are the objective function value from the 
proposed method and GNDLM, respectively.

(18)err =
CP − CG

CG

× 100%,
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4.1 � Numerical example

For this example, two random variables XR
1
 , XR

2
 , whose mean 

values are to be determined during the flexible-constrained 
t-HRBDO, and one interval variable XI

1
 are included. The 

expression of the flexible-constrained t-HRBDO is provided 
by

The bounds of the limit state function at different val-
ues of interval variable are shown in Fig. 3. Meanwhile, the 
bounds of extreme response of the limit state function gL

i
= 0 

and gU
i
= 0 are respectively shown in Fig. 4. From Figs. 3 

and 4, we can see that the first limit state function is highly 
non-linear while the second is linear. 

The surrogate model constructed by the improved infeasi-
ble region pruning technology based on Kriging for the hard 
constraint is provided in Fig. 5, while the surrogate model 
for the flexible constraint constructed by the Kriging-HDMR 
method is provided in Fig. 6.

When a∕b = 1 is assumed in this example, the break-
point of the design preference parameter is obtained by 

(19)

find �
X
R

min C(�
X
R )=

(
uXR

1
− 3.7

)2

+
(
uXR

2
− 4.2

)2

s.t.

P

{
min
X
I

gi(X
R,XI, t) > 0,∀t ∈ (0, 1)

}
≥ Rtar

j
, j = 1, 2

g1(X
R,XI, t) = −XR

1
sin(4XR

1
) − 1.1XR

2
sin(2XR

2
)XI

1
− 1.2t

g2(X
R,XI, t) = XR

1
+ XR

2
− 3tXI

1

0 ≤ uXR
1
≤ 3.7, 0 ≤ uXR

2
≤ 4.2

XI
1
∈ [1, 1.4],XR

1
∼ N(uXR

1
, 0.12),XR

2
∼ N(uXR

2
, 0.12)

Rtar
j

= Φ(2) ≈ 0.9772

.

Design preference 
parameter 

and                from
conservative t-HRBDO

and                from
radical t-HRBDO

Surrogate model for hard constraints

Surrogate model for hard constraints

Flexible-constrained
t-HRBDO

Initial population

Search direction and 
offspring population 

Domain polulation

Offspring evaluation

Satisfy termination
Condition?

Flexible-constrained t-HRBDO model
Optimal design

results

M
E
T
A
H
E
U
R
I
S
T
I
C 

A
L
G
O
R
I
T
H
M

Yes

No

Fig. 2   The proposed framework for flexible-constrained t-HRBDO

Fig. 3   Safety boundaries of limit state function at different interval 
variables
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�∗= 1.1864 . The optimal design results including design 
variables, objective function, function calls for uncertain 
constraints evaluation, and upper/lower bounds of reliabil-
ity for the flexible-constrained t-HRBDO by the proposed 
method and the GNDLM method are given in Table 1.

From Table 1, we can know that the calculated relative 
error is 3.8% of the objective function. For design variables 
and upper/lower bounds of reliability, they are very close 
and therefore the accuracy of the proposed method is very 
high. From the aspect of the computational efficiency, totally 
58 + 91 = 149 function calls are required in the proposed 
method while 654 function calls are needed in the GNDLM 
method. The computational efficiency has improved by over 
77.2%.

Conservative and radical flexible-constrained t-HRBDO 
models are respectively performed in this example. Optimal 
design results from the conservative, radical, and proposed 

Fig. 4   Boundaries of extreme 
response of the limit state 
function

Fig. 5   Surrogate model for the hard constrain

Fig. 6   Surrogate models for 
flexible constraints

Table 1   Optimal design results 
by the proposed method and the 
GNDLM method

Method Design variables Objective function function calls Upper/lower 
bound of reli-
ability

Proposed [2.9029,3.1577] 1.3449 149 0.9827/0.9727
GNDLM [2.8876,3.1438] 1.3983 654 0.9872/0.9736



	 Z. Wang et al.

1 3

89  Page 10 of 14

flexible-constrained t-HRBDO strategies are provided in 
Table 2. From Table 2, we can see that design variables, 
objective function values, and upper/lower bounds of reli-
ability from the proposed flexible-constrained method 
lie in the range bounded by the conservative and radical 
t-HRBDO. The reason is that the proposed method has made 
a balance between reliability and cost, which can suit for 
different engineering problems.

The iteration history of the optimization procedure with 
case a/b = 1 is provided in Fig. 7. For this numerical exam-
ple, only 20 iterations are needed to converge to the globally 
optimal design results.

4.2 � The lower extremity exoskeleton

The lower extremity exoskeleton (LEEX) as a complicated 
engineering case is employed to elaborate and testify the 
proposed method. LEEX is a typical electromechanical sys-
tem, which can be used to assist the disabled to move nor-
mally. The simplified model of the LEEX is given in Fig. 8. 
For the LEEX, the operational reliability when wearing and 

energy consumption should be considered at the early design 
stage. For the LEEX, each joint is similar and therefore the 
unilateral motion of the knee joint in the sagittal plane is 
employed for the flexible-constrained t-HRBDO. The struc-
tural diagram of the knee joint is shown in Fig. 9.

The knee joint is consisted of four links and 
a hydraulic cylinder. The lengths are defined as 
k =

[
k1, k2, k3, k4

]
 .  W h e n  m a n u fa c t u r i n g  e r r o r 

�E =
[
ΔE1,ΔE2,ΔE3,ΔE4

]
 is considered, the lengths 

of links will be randomly distributed and represented by 
� =

[
k1 + ΔE1, k2 + ΔE2, k3 + ΔE3, k4 + ΔE4

]
 , which usu-

ally follow normal distribution. For the hydraulic rod, the 
manufacturing error ΔLknee and the wear wt for t gait cycles 

Table 2   Comparison between different t-HRBDO strategies

Strategy Objective function Upper/lower 
bound of reli-
ability

Conservative 1.4278 0.9912/0.9772
Radical 1.3067 0.9772/0.9207
Flexible ( a∕b = 1) 1.3449 0.9827/0.9727

Fig. 7   Iteration history of optimization with case a/b = 1 for the 
numerical example

Hip joint

Knee joint

Ankle joint

Fig. 8   Simplified model of LEEX

Link 1

Hydraulic 
cylinder

Link 2

Link 3

Link 4

' ( , )knee p tα

( , )knee s tθ

( , )kneeH p t

( )kneeF p

Fig. 9   Diagram of the knee joint
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will be considered during its motion. The expression of the 
actual joint angle �′

knee
 is derived by

The desired length of the hydraulic rod Lknee(k, p, t) is

where p is the percentage of the gait cycle.
The ideal angle �knee(p, t) is fitted from the Clinical Gain 

Analysis (CGA) data, which can be expressed by

where � is a parameter affected by epistemic uncertainty 
for different people, which is considered as an interval vari-
able and � ∈ [−0.20, 0.20] here; al, bl and cl are coefficients, 
which are listed in Table 3.

If the difference between the actual joint angle �′

knee
 and 

the ideal angle �knee(p, t) is less than �knee=6◦∼8◦ , the joint 
is considered to be safe. Then the time-variant reliability 
can be expressed by

(20)

�
�

knee

�
k,�E,ΔLknee,w, p, t

�
= � − tan−1

�
k1 + ΔE1

k2 + ΔE2

�
− tan−1

�
k3 + ΔE3

k4 + ΔE4

�

−cos−1

⎡
⎢⎢⎢⎢⎢⎣

4∑
l=1

�
kl + ΔEl

�2
−
�
Lknee(k, p, t) − wt+ΔLknee

�2

2

�
2∑
l=1

�
kl + ΔEl

�2 4∑
l=3

�
kl + ΔEl

�2

⎤
⎥⎥⎥⎥⎥⎦

.

(21)

Lknee(k, p, t)=

√√√√√ 4∑
l=1

k2
l
− 2

√√√√ 2∑
l=1

k2
l

4∑
l=3

k2
l
cos

(
�knee(k, p, t)

)

(22)�knee(k, p, t)=� − �knee(p, t) − tan−1
k1

k2
− tan−1

k3

k4
,

(23)�knee(p, t) =

∑6

l=1
al sin(blp + cl + 2�t)

180
� + �,

Take k1 + ΔE1, k2 + ΔE2, k3 + ΔE3, k4 + ΔE4 as random 
design variables XR

1
∼ XR

4
 , ΔLknee as the random design 

parameter XR
5
 , and � and w as the interval variables XI

1
 and 

XI
2
 , the time-variant reliability in Eq. (24) can be rewritten by

The lower bound and upper bound of the time-variant 
reliability can be expressed by

The torque required per unit weight Tknee(p, t) can be 
obtained from the CGA data and

(24)

R = Pr
{
𝜀knee −

|||𝛼
�

knee

(
k,�E,ΔLknee,w, p, t

)
− 𝛼knee(p, t)

|||
> 0,∀p ∈ (0, 100% )

}
.

(25)
R = Pr

{
𝜀knee −

|||𝛼
�

knee

(
k,XR,XI , p

)
− 𝛼knee(p)

||| > 0,∀p ∈ (0, 100% )
}
.

(26)

⎧⎪⎪⎨⎪⎪⎩

RL = Pr

�
min
X
I

min
p∈(0,100% )

g
�
k,XR,XI, p

�
> 0

�

RU = Pr

�
max
X
I

min
p∈(0,100% )

g
�
k,XR,XI, p

�
> 0

�

(27)Tknee(p, t)=

6∑
m=1

am sin(bmp + cm + 2�t),

Table 3   Coefficients for al, bl, cl Coefficients l = 1 l = 2 l = 3 l = 4 l = 5 l = 6

al 33.3500 19.0500 23.4000 12.8100 34.0800 34.3400
bl 0.0253 0.1541 0.0712 0.1776 0.2856 0.2835
cl 0.2035 − 2.4590 2.2550 − 0.1569 0.6679 − 2.3840

Table 4   Coefficients for am, 
bm, cm

Coefficients m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

am 0.1080 0.2024 0.2286 0.2036 0.0705 0.1559
bm 0.1748 0.0366 0.2250 0.2538 0.2986 0.0742
cm 0.6861 3.7988 0.5407 2.0397 2.5415 − 1.0247
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where am, bm and cm are coefficients, which are provided in 
Table 4.

The force arm Hknee(k,�
R, p, t) can be further calculated by

Therefore, the force in a gait cycle is

The average driving force in a single gait cycle is approx-
imated to describe the energy consumption, and then the 
objective function can be further simplified as

For this case, t = 105 is used.

(28)
Hknee(k,�

R, p, t)=

�∑2

j=1

�
XR
j

�2 ∑4

j=3

�
XR
j

�2

sin
�
�k(p, t)

�

Lknee(k, p, t)+X
R
5

.

(29)Fknee(k,�
R, p, t)=

Tknee(p, t)

Hknee(k,�
R, p, t)

.

(30)Cknee = ∫
100%

0

Fknee(k,�
R, p, 105)dp.

The flexible-constrained t-HRBDO for the knee joint is 
then written as

In order to illustrate the effect of � on optimal design 
results, a∕b = 0.5, 1, 5, 10 are set during the flexible-con-
strained t-HRBDO. The corresponding optimal design 
results from the proposed method and the GNDLM method 
are, respectively, provided in Tables 5, 6, 7, and 8.

(31)

find �
X
R

min SEknee(�XR)=
Cknee(�XR ) − C0

Ctar − C0

+ �
Rtar − RL(�

X
R )

Rtar − R0

s.t.

RU(�
X
R ) ≥ Rtar

35 ≤ uXR
1
≤ 55, 340 ≤ uXR

2
≤ 380, 40 ≤ uXR

3
≤ 60, 55 ≤ uXR

4
≤ 75

XR
i
∼N

(
uXR

i
, 0.52

)
, i = 1, 2, 3, 4

XR
5
∼N

(
0, 32

)
,XI

1
∈ [−0.2, 0.2],XI

2
∈ [0.5 × 10−5, 1.5 × 10−5]

Rtar = Φ(2) ≈ 0.9772

.

Table 5   Optimal design results 
with case a∕b=0.5

Method Design variables Objective function Function calls

Proposed [54.9948,344.3621,52.9181,55.7019] 2.2723 124
GNDLM [55.0000,345.2673,53.4721,55.0000] 2.2647 5200

Table 6   Optimal design results 
with case a∕b=1

Method Design variables Objective function Function calls

Proposed [49.2418,345.2023,53.5218,55.0000] 2.2861 124
GNDLM [49.9948,345.2673,53.4721,55.0000] 2.2884 2407

Table 7   Optimal design results 
with case a∕b=5

Method Design variables Objective function Function calls

Proposed [51.0485,343.9600,52.5615,55.7753] 2.3006 124
GNDLM [51.0913,342.3750,51.5000,57.0000] 2.3092 2132

Table 8   Optimal design results 
with case a∕b=10

Method Design variables Objective function Function calls

Proposed [52.9892,343.7297,52.1620,55.8451] 2.3054 124
GNDLM [52.0868,340.1816,51.2253,55.2137] 2.3132 2302

Table 9   Comparison of 
accuracy and efficiency with 
different a∕b

a∕b Relative error Efficiency improvement � ∗

0.5 0.3% 97.6% 0.658
1 0.1% 94.8% 1.234
15 0.37% 94.2% 17.91
10 0.34% 94.6% 12.21
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In order to illustrate the accuracy and efficiency of the 
proposed method compared with the GNDLM method, the 
relative error, efficiency improvement, and � ∗ are provided 
in Table 9 for different values of a∕b.

From Tables 5, 6, 7, and 8, we can see that function calls 
for constraints evaluation are the same regardless of a∕b , 
the reason is that function calls used for surrogate models 
of flexible and hard constraints have been determined before 
the optimization. With the increase of a∕b , the value of 
objective function become greater, which indicates that the 
higher reliability requires higher resource expenses. It shows 
that the computational efficiency has a great improvement 
over 94% under the satisfaction of computational accuracy, 
where the maximum error is 0.34% in Table 9.

Conservative, radical, and flexible-constrained t-HRBDO 
are also conducted for this engineering case. The corre-
sponding optimal design results from conservative, radical, 
and proposed flexible-constrained t-HRBDO with a∕b=1 

strategies are provided in Table 10. The same conclusion as 
in the numerical example can be reached that design vari-
ables, objective function values, and upper/lower bounds of 

reliability from the proposed flexible-constrained method 
lie in the interval bounded from the conservative and radical 
t-HRBDO. Therefore, the cost and reliability can be bal-
anced even for the complicated engineering case.

The iteration history of optimization procedure with case 
a/b = 1 is provided in Fig. 10. For this engineering case, 
nearly 140 iterations are needed to converge to the globally 
optimal results.

5 � Conclusions

This paper proposed a novel framework of the t-HRBDO 
by introducing flexible constraints in the objective function, 
which is called flexible-constrained t-HRBDO. Infeasible 
region pruning technique is improved based on the classifi-
cation model to build the surrogate model for hard uncertain 
constraints, while Kriging-HDMR method is presented to 
build the surrogate model for flexible uncertain constraints, 
which increase the computational efficiency greatly. A 
determination method of the design preference parameter 
is provided to quantitatively build the relationship between 
reliability and cost in the flexible-constrained t-HRBDO, 
which can help designers to reasonably balance reliability 
and cost to avoid waste of resources and also risk accord-
ing to engineering requirements during design stage. A new 
metaheuristic framework is given to effectively conduct the 
flexible-constrained t-HRBDO with higher efficiency. The 
results from the two examples show that the proposed frame-
work can effectively balance cost and reliability within the 
lower bound and upper bound of reliability under hybrid 
uncertainties, and the proposed algorithms have the great 
efficiency improvement, e.g., over 77% for the numerical 
example and over 94% for the engineering case under the 
accuracy guarantee.
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tary material available at https://​doi.​org/​10.​1007/​s00158-​023-​03550-8.
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Table 10   Comparison between different t-HRBDO strategies

Strategy Objective function Upper/lower 
bound of reli-
ability

Conservative 2.3063 0.9892/0.9772
Radical 2.2789 0.9772/0.9654
Flexible(a∕b=1) 2.2861 0.9854/0.9730

Fig. 10   Iteration history of optimization with case a/b = 1 for the 
engineering case
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Matlab code is provided as supplementary material. The attached Mat-
lab file named as “main.m” and other function files can be utilized to 
build the model in Example 4.2, where The Kriging surrogate model 
is established by ooDACE toolbox. For replication of the results of 
other cases in the proposed work, information of input variables and 
random process can be modified in the corresponding source codes. 
The detailed instruction is in the function files.
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