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Abstract
To learn the effect of interested distribution parameter, also the design variable of random input vector, on time-dependent 
failure probability, and to decouple time-dependent reliability-based design optimization (T-RBDO), estimating time-depend-
ent failure probability function (T-FPF), a relation of time-dependent failure probability varying with the distribution param-
eter in interested design region, is necessary. However, estimating T-FPF is time-consuming and a challenge at present. Thus, 
this paper proposes a novel single-loop meta-model importance sampling with adaptive Kriging model (SL-Meta-IS-AK) to 
estimate T-FPF efficiently. In SL-Meta-IS-AK, for estimating the T-FPF by single-loop simulation, an optimal importance 
sampling probability density function (IS-PDF), which can envelope the interested distribution parameter region and be 
free of the distribution parameter, is constructed by an integral operation. After the Kriging model is adaptively constructed 
for time-dependent performance function to approach optimal IS-PDF for T-FPF by quasi-optimal one, a simple sampling 
strategy is designed to extract the samples of quasi-optimal IS-PDF, and a time-dependent misclassification probability 
function is derived to update the Kriging model adaptively until it can accurately recognize the states of all extracted sam-
ples, on which the T-FPF at the whole interested distribution parameter region can be estimated as a byproduct. Due to the 
single-loop simulation aided by the IS-PDF covering the interested distribution parameter region but free of the distribution 
parameter, the efficiency of estimating T-FPF is improved by the proposed SL-Meta-IS-AK, which is verified by presented 
numerical and aviation engineering examples including a wing structure and a turbine shaft structure.

Keywords Time-dependent failure probability function · Adaptive Kriging · Time-dependent misclassification probability 
function

1 Introduction

Under universal uncertainty environment in engineering 
application, the safety degree of structure should be quanti-
fied by reliability and failure probability, in order to improve 
the performance of structure under ensuring the reliability of 
structure. The reliability-based design optimization (RBDO) 
(Chaudhuri et  al. 2020; Cheng et  al. 2021; Gasser and 
Schuëller 1997; Enevoldsen and Sørensen 1994) is proposed 
to replace the traditional deterministic design optimization 
in past decades. In RBDO, reliability constraint analysis is 

coupled in design variable optimization, and the design vari-
able, which is varying in the designable region determined 
by manufacturing capability, or assembly limitation, etc., is 
generally the interested distribution parameter of the random 
input vector. Due to the coupling of the interested distribu-
tion parameter, i.e., the design variable, parameter optimiza-
tion and reliability constraint evaluation in RBDO, solving 
RBDO is more time-consuming than solving the traditional 
deterministic optimization. To reduce the computational cost 
of solving RBDO, researchers developed lots of decoupling 
methods, among which estimating the failure probability 
function (FPF), a relation of failure probability varying 
with the interested distribution parameter � in the inter-
ested design region [�L,�U] , in advance of solving RBDO 
is a direct decoupling method. In fact, estimating FPF not 
only helps to simplify the solution of RBDO (Yuan 2013; 
Ling et al. 2020; Yuan 2020), but also provides the effect 
of the interested distribution parameter on structure failure 

Responsible Editor: Byeng D Youn

 * Zhenzhou Lu 
 zhenzhoulu@nwpu.edu.cn

1 School of Aeronautics, Northwestern Polytechnical 
University, Xi’an 710072, Shaanxi, China

http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-023-03523-x&domain=pdf
http://orcid.org/0000-0002-5263-5767


 Y. Lu, Z. Lu 

1 3

79 Page 2 of 20

probability; therefore, it is worth studying. Actually, due 
to the working environment, the applied load, the material 
properties and the structural geometries affected by fatigue 
and corrosion during the service, etc. are time dependent; 
time-dependent reliability is more universal than the time-
independent one. Thus, in order to decouple the design vari-
able optimization and time-dependent reliability constraint 
evaluation in the time-dependent RBDO (T-RBDO) (Jiang 
et al. 2017; Yu and Wang 2019; Shi et al. 2020) for reducing 
the computational complexity of solving T-RBDO, and to 
learn about the effect of the interested distribution parameter 
on the time-dependent failure probability, it should study 
efficient algorithm for estimating the time-dependent FPF 
(T-FPF). Because T-FPF is more difficult to be estimated 
than time-independent FPF, and there lacks efficient esti-
mation, this paper focuses on the algorithm of efficiently 
estimating T-FPF.

At present, several methods are developed to solve the 
time-independent FPF, among which the most direct method 
is double-loop Monte Carlo simulation (DLMCS). In 
DLMCS, the time-independent FPF is obtained by interpo-
lating the pairs of distribution parameter and corresponding 
failure probability estimated by MCS one by one. Obviously, 
the computational cost of DLMCS is unaffordable for engi-
neering application with time-demanding performance func-
tion. In order to reduce the computational cost of estimating 
FPF by DLMCS, Gasser and Schuëller (1997) proposed to 
use quadratic function to approximate the logarithmic FPF, 
and Jensen (2005) adopted a linear function to approximate 
the FPF. When estimating the failure probability at the inter-
polation point, efficiently adaptive Kriging model methods 
can be used; for example, a moving-zone renewal strategy-
based adaptive Kriging combined with truncated importance 
sampling method proposed by Zhang et al. (2022a) can be 
used to estimate the failure probability, and an active Kriging 
model combined with reducing candidate sample pool and 
adaptive importance sampling method (Zhang et al. 2023) 
can also be employed to estimate the failure probability. It 
should be noted that these methods of estimating FPF need 
select a fixed interpolation function form; thus, the flexibility 
of these interpolation-based methods is limited. Au (2005) 
proposed a single-loop method to estimate the FPF based 
on Bayes inference. In this method, the FPF is transformed 
into the ratio of the product of augmented failure probabil-
ity and conditional probability density function (PDF) of 
distribution parameter on failure domain to an assigned 
prior PDF of distribution parameters. Based on the sample 
information produced in estimating the augmented failure 
probability, the conditional PDF of distribution parameter 
in the method of Au (2005) can be obtained by use of his-
togram (Au 2005) or maximum entropy principle (Ching 
and Hsieh 2007). Thus, the Bayes inference-based method 
for estimating FPF only needs one reliability analysis for 

estimating the augmented failure probability. It should be 
noted that the Bayes inference-based method needs failure 
sample information for estimating the required conditional 
PDF of distribution parameter; thus, it should use numerical 
simulation to estimate the augmented failure probability and 
produce failure sample to fit the conditional PDF of distribu-
tion parameter. In order to improve the efficiency of estimat-
ing the augmented failure probability by numerical simula-
tion and finally improve the efficiency of estimating FPF, 
Ling et al. (2020) combined adaptive Kriging model with 
MCS to estimate the augmented failure probability and to 
obtain the FPF finally. Yuan (2013) proposed some weighted 
methods to rewrite the failure probability and then effec-
tively estimate FPF, and Yuan et al. (2020) also proposed an 
augmented space integral method to obtain the FPF. Li et al. 
(2020) proposed an estimation method to solve FPF based on 
Bayes theorem and copula. Dang et al. (2021) proposed an 
active learning-augmented probabilistic integration.

The above studies are mainly concerning the time-inde-
pendent FPF. Comparing with estimating the time-inde-
pendent FPF, estimating the T-FPF is more time-consum-
ing due to the time factor increases the computational cost. 
Similar to the time-independent FPF, T-FPF is defined 
as the relation of the time-dependent failure probability 
varying with the distribution parameter in the interested 
region. Several methods are developed to solve the time-
dependent reliability analysis, such as single-loop Krig-
ing model (Hu and Mahadevan 2016), equivalent sto-
chastic process transformation method (Wang and Chen 
2016), the nested extreme value response surface method 
(Wang and Wang 2015), the active extremum Kriging-
based multi-level linkage method (Zhang et al. 2022b), 
etc. However, there are few methods to study T-FPF. It is 
inefficient to use the double-loop strategy directly with 
the existing time-dependent reliability analysis methods 
to estimate T-FPF. To improve the efficiency of esti-
mating T-FPF, based on Bayes inference similarly used 
in estimating time-independent FPF, Feng et al. (2019) 
proposed an adaptive Kriging model combined with con-
ditional PDF fitting method (AK-MCS-Bay) to estimate 
the T-FPF. However, the common conditional PDF fit-
ting methods required by AK-MCS-Bay generally have 
the defects of low precision at the edges of the interested 
distribution parameter region. Moreover, the PDF fitting 
precision decreases as the dimensionality increasing of 
the distribution parameter, which results this kind method 
to be difficultly applied to the case of multidimensional 
distribution parameter. The other disadvantage of existing 
AK-MCS-Bay is that the direct MCS based on the PDF 
of random input vector is used to analyze the augmented 
time-dependent failure probability. Since AK-MCS-Bay is 
based on the joint PDF in the augmented space spanned by 
the random input and the interested distribution parameter, 
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the sampling efficiency is low and a large size of candi-
date sample pool is required to get a convergent estimation 
of augmented time-dependent failure probability, which 
sequentially affects the efficiency of estimating T-FPF.

In order to improve the computational efficiency of solv-
ing T-FPF, a novel single-loop meta-model importance 
sampling combined with adaptive Kriging (SL-Meta-IS-
AK) method is proposed in this paper. In SL-Meta-IS-AK, 
the theoretical optimal importance sampling PDF (IS-PDF) 
is used to replace the joint PDF in AK-MCS-Bay, which 
improves the efficiency of estimating T-FPF due to the vari-
ance reduction resulted by the importance sampling. For 
extracting the samples of IS-PDF, an adaptive Kriging model 
of the time-dependent performance function is constructed 
for approaching the optimal IS-PDF by the quasi-optimal 
one, and a simple sampling strategy can be employed to 
extract the samples of the quasi-optimal IS-PDF by design-
ing an acceptance domain. In this step of SL-Meta-IS-AK, 
the main novelty is constructing the quasi-optimal IS-PDF, 
and it is free of the distribution parameter but enveloping 
the whole interested region of the distribution parameter. 
It is even more important to emphasize that the introduced 
quasi-optimal IS-PDF in this paper improves the sampling 
efficiency and avoids the PDF fitting required by AK-MCS-
Bay. This novelty of SL-Meta-IS-AK makes it applicable to 
arbitrary dimensionality and region size of the distribution 
parameter. After the samples of the quasi-optimal IS-PDF 
are extracted, a misclassification probability function is 
derived to adaptively update the Kriging model to converge, 
on which it can complete the T-FPF estimation at any reali-
zation of the distribution parameter by same group sample 
of the quasi-optimal IS PDF.

The main contributions of this work can be summarized 
as follows:

① By constructing an approximate optimal importance 
sampling probability density function (IS-PDF), this 
paper proposes an importance sampling strategy com-
bining with adaptive Kriging model to reduce the esti-
mation variance of the time-dependent failure probabil-
ity function (T-FPF).

② By introducing an integral operation with respect to 
the concerned distribution parameter in the interested 
region, the IS-PDF, which is free of the distribution 
parameter and envelopes the whole interested region of 
the distribution parameter, is constructed to efficiently 
estimate the T-FPF in the proposed SL-Meta-IS-AK.

③ Due to the property of the IS-PDF being free of the dis-
tribution parameter and enveloping the whole interested 
range, the information of the same group sample of the 
IS-PDF can be shared to simultaneously estimate the 
T-FPF at arbitrary distribution parameter realization in 
the whole interested region.

④ By introducing the Kriging model of time-dependent 
performance function and designing a simple sampling 
strategy, the difficulty of efficiently extracting the sam-
ple of the constructed IS-PDF is solved in the proposed 
SL-Meta-IS-AK.

The rest of the paper is organized as follows. Section 2 
introduces the definition of T-FPF. Section 3 gives the basic 
theory and the detailed implementation steps of the proposed 
SL-Meta-IS-AK method. Section 4 provides several examples 
to verify the effectiveness of the SL-Meta-IS-AK, and Sect. 5 
gives the conclusion.

2  Definition of the T‑FPF

For a general time-dependent performance function 
g�−�−t(�, �(t), t) including random variable vector � , stochas-
tic process vector �(t) and time t , the spectral representation 
method (Li and Der Kiureghian 1993; Zhang and Ellingwood 
1994; Huang et al. 2001) is usually used to transform �(t) 
into a series of independent random variables and time. In this 
paper, the expansion optimal linear estimation (EOLE) (Li and 
Der Kiureghian 1993) is used to transform �(t) by Eq. (1),

where r is the number of eigenvalues used to represent the 
stochastic process. �k and �k(k = 1, 2,⋯ , r) are the eigen-
values and eigenvectors of the correlation matrix of �(t) , 
respectively. �k(k = 1, 2,⋯ , r) are independent standard 
normal random variables. ��(t) and ��(t) are the mean func-
tion and the standard deviation function of the stochastic 
process, respectively. �t,tk

(t) = {�(t, t0), �(t, t1),⋯ , �(t, tp)}
T 

is the correlation coefficient vector, and p is the number of 
the time realizations.

After the transformation of Eq. (1), the time-dependent 
performance function g�−�−t(�, �(t), t) including stochastic 
process can be transformed into g(�, �, t) = g(X, t) without 
stochastic process, where X = [�, �]T . According to the trans-
formed time-dependent performance function g(X, t) with 
n-dimension random input vector X = (X1,X2, ,Xn)

T , the 
time-dependent failure probability Pft within the interested 
time interval [t0, te] can be given as follows:

(1)𝛽(t) = 𝜇𝛽(t) + 𝜎𝛽(t)

r�
k

𝜉k√
𝜆k

�T
k
�t,tk

(t)

(2)

Pft = P{g(x, t) ≤ 0,∃t ∈ [t0, te]}

= P{Ft∈[t0,te]
} = �Ft∈[t0,te ]

f
X
(x|�)dx

= � IFt
(x)f

X
(x|�)dx
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where Ft∈[t0,te]
= {x|g(x, t) ≤ 0,∃t ∈ [t0, te]} represents the 

t i m e - d e p e n d e n t  f a i l u r e  d o m a i n ;  I
F
t

(x) ={
0,∀t ∈ [t0, te] g(x, t) > 0

1,∃t ∈ [t0, te] g(x, t) ≤ 0
 is the indicator function of time-

dependent failure domain Ft∈[t0,te]
 . P{⋅} is the probability 

operator. fX(x|�) is the joint PDF of the random input vector 
at given � , and � = (�1, �2,⋯ , �m)

T  is the concerned m
-dimensional distribution parameter vector.

From Eq. (2), it can be observed that Pft varies with the 
distribution parameter vector � , and it is named as T-FPF and 
denoted by Pft(�) , i.e., Pft(�) = ∫ IFt

(x)fX(x|�)dx.
The basic idea of solving the T-FPF Pft(�) by Monte Carlo 

simulation (MCS) is employing the double-loop MCS to esti-
mate the time-dependent failure probability at each discrete 
point of � one by one. The discrete points are generated by 
discretizing the distribution parameter vector � in the inter-
ested region [�L,�U] uniformly. The computational cost of the 
direct double-loop MCS is usually unaffordable for engineer-
ing application with time-consuming time-dependent perfor-
mance function, especially for the small T-FPF at the inter-
ested distribution parameter region. Although it can improve 
the computational efficiency by replacing direct MCS with 
some advanced time-dependent reliability analysis methods, 
such as single-loop Kriging model (Hu and Mahadevan 2016), 
equivalent stochastic process transformation method (Wang and 
Chen 2016), the nested extreme value response surface method 
(Wang and Wang 2015), etc., to estimate the time-dependent 
failure probability at the realization �i of � ∈ [�L,�U] , it can-
not change the property of double-loop analysis for T-FPF and 
may result the computational cost far away from the ideal state. 
To complete the T-FPF with the single-loop simulation and 
reduce the computational cost as much as possible, the follow-
ing section proposes a method abbreviated as SL-Meta-IS-AK 
to efficiently estimate T-FPF, in which not only the double-
loop simulation is replaced by the single-loop one, but also the 
importance sampling technique based on the meta-model is 
organized into the proposed method to improve the sampling 
efficiency and reduce the T-FPF estimation variance.

3  The SL‑Meta‑IS‑AK for solving the T‑FPF

The basic idea of SL-Meta-IS-AK is introducing an IS-PDF 
hX(x) for estimating the T-FPF. By the introduced hX(x) , T-FPF 
can be rewritten in Eq. (3), and the value of T-FPF correspond-
ing to arbitrary realization �j ∈ S� can be simultaneously esti-
mated by the N-size sample set Sh

x
= {xh

1
, xh

2
,⋯ , xh

N
}T of hX(x) 

in Eq. (4).

(3)Pft(�) = ∫
IFt

(x)fX(x|�)
hX(x)

hX(x)dx

From Eq. (4), it can be observed that the introduced IS-
PDF hX(x) should satisfy the following requirements. Firstly, 
hX(x) should be free of the distribution parameter but envel-
oping the interested region of the distribution, which is the 
basic condition that the proposed SL-Meta-IS-AK realizes 
the single-loop simulation of estimating T-FPF. Secondly, 
hX(x) should be selected to reduce the variance of T-FPF 
estimation as much as possible. To satisfy these two require-
ments for improving the efficiency under acceptable preci-
sion, the proposed SL-Meta-IS-AK starts from the optimal 
IS-PDF hX(x|�∗) for estimating the time-dependent failure 
probability Pft(�

∗) at the realization �∗ of the distribution 
parameter; then, an integral operation for hX(x|�∗) over the 
interested region [�L,�U] is carried out to construct the IS-
PDF hX(x) for estimating T-FPF. Since the optimal IS-PDF 
hX(x|�∗) concerns the time-dependent performance function, 
usually in an implicit state, and T-FPF also needs estimat-
ing IFt

(xh
i
) (i = 1, 2,⋯ ,N) in Eq. (4) for finally estimating 

T-FPF, the meta-model is used to help dealing with the 
computational cost resulted from implicit time-dependent 
performance function. The concept schematic flow chart of 
the proposed SL-Meta-IS-AK method is shown in Fig. 1.

3.1  Strategy for constructing IS‑PDF for T‑FPF

The optimal IS-PDF hopt
X
(x) for T-FPF can be constructed by 

the integration shown in Eq. (5) over the interested region 
[�L,�U] of distribution parameter �,

(4)P̂ft(�j) =
1

N

N∑
i=1

IFt
(xh

i
)fX(x

h
i
|�j)

hX(x
h
i
)

Start

Construct IS-PDF and extract the

candidate sample pool of IS-PDF

Construct initial Kriging model for

time-dependent performance function

Update the Kriging model in the

candidate sample pool of IS-PDF

Estimate T-FPF by the Kriging

model and IS-PDF sample

End

Fig. 1  Concept schematic flow chart of SL-Meta-IS-AK
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where ��(�) is the assigned PDF of the distribution param-
eter � over [�L,�U] and ��(�) is usually selected as uniform 
distribution in [�L,�U] . hopt

X
(x|�) is the optimal IS-PDF for 

estimating time-dependent failure probability at distribution 
parameter realization �.

Theoretically, it is well known that optimal IS-PDF 
h
opt

X
(x|�) , which can minimize the variance of the esti-

mated time-dependent failure probability P̂ft(�) at � , can 
be derived by Eq. (6) (Dubourg et al. 2013).

Since time-dependent failure probability Pft(�) at � 
is unknown and IFt

(x) is generally related to the implicit 
time-dependent performance function g(x, t) . It is difficult 
to obtain hopt

X
(x|�) analytically and generate the sample of 

h
opt

X
(x|�) in Eq. (6). In order to solve the difficulty of sam-

pling hopt
X
(x|�) and further sampling hopt

X
(x) in Eq. (5), the 

Kriging model gK(x, t) is established for the time-depend-
ent performance function g(x, t) , on which a quasi-optimal 
IS-PDF hX(x|�) shown in Eq. (7) can be constructed to 
replace hopt

X
(x|�) at distribution parameter realization �.

where �Ft
(x|�) is the probability classification function of 

time-dependent failure domain determined by gK(x, t) , and 
it is shown in Eq. (8). P̂ft(�) is named as an extended time-
dependent failure probability at � for normalization shown 
in Eq. (9).

By substituting hX(x|�) in Eq. (7) to replace hopt
X
(x|�) 

into Eq. (5), the quasi-optimal IS-PDF denoted as hX(x) for 
estimating T-FPF can be expressed in Eq. (10).

After the quasi-optimal IS-PDF hX(x) is obtained by 
Eq. (10), the following work is how to adaptively update 
gK(x, t) for approaching hopt

X
(x) by hX(x) and extract-

ing sample of hX(x) as well as how to use the samples 
of hX(x) to finally complete T-FPF estimation, and these 

(5)h
opt

X
(x) = ∫ h

opt

X
(x|�)�

�
(�)d�,

(6)h
opt

X
(x|�) = IFt

(x)fX(x|�)
Pft(�)

.

(7)hX(x|�) =
𝜋Ft

(x|�)fX(x|�)

P̂ft(�)

(8)�Ft
(x|�) = P

{
min
t∈St

gK(x, t) ≤ 0

}

(9)P̂ft(�) = ∫ 𝜋Ft
(x|�)fX(x|�)dx

(10)hX(x) = ∫
𝜋Ft

(x|�)fX(x|�)

P̂ft(�)
𝜑�(�)d�

two following works are illustrated, respectively, in Sub-
sects. 3.2 and 3.3.

3.2  Strategy of updating gK(x, t) for approaching 
h
opt

X
(x) by hX(x) and extracting samples of hX(x)

In this subsection, an initial Kriging model gK(x, t) is firstly 
constructed for g(x, t) to obtain the quasi-optimal IS-PDF 
hX(x) and extract the sample of hX(x) . Since the initial 
gK(x, t) may not represent g(x, t) well to approach hopt

X
(x) 

by hX(x) , it is necessary to adaptively update gK(x, t) to get 
the aim of approximating hopt

X
(x) with hX(x) as accurately as 

possible. Thus, the following parts illustrate the strategy of 
extracting sample of hX(x) based on gK(x, t) and that of adap-
tively updating gK(x, t) . About the basic theory of Kriging 
(Echard et al. 2011), it is given in Appendix 1.

3.2.1  Strategy of constructing initial gK (x , t) for g(x , t) 
and the numerical solution of hX (x)

To obtain the quasi-optimal IS-PDF hX(x) for estimating 
T-FPF, the initial gK(x, t) should be constructed for the time-
dependent performance function g(x, t) . For ensuring the 
initial gK(x, t) representing g(x, t) over � ∈ [�L,�U] and 
t ∈ [t0, te] ,  a n  NT - s i z e  i n i t i a l  t r a i n i n g  s e t 
ST
x
= {xT

1
, xT

2
,⋯ , xT

NT
}T of the random input vector X is ran-

domly generated by fX(x|�) with � ∈ [�L,�U] , i.e., xT
i
∈ ST

x
 

is generated from the PDF ∫ fX(x|�)��(�)d� , where ��(�) 
is usually an assigned PDF of � ∈ [�L,�U] , and ��(�) is 
taken as uniform distribution over the interested region 
[�L,�U] .  About the NT -size initial training set 
ST
t
= {tT

1
, tT
2
,⋯ , tT

NT
}T of the time variable t , tT

i
∈ ST

t
 is uni-

formly generated in the interested time interval [t0, te] . By 
evaluating g(xT

i
, tT
i
) , the initial training set T can be formed 

as follows:

By the training set T , the Kriging model gK(x, t) of g(x, t) 
can be established, and gK(x, t) follows Gaussian distribution 
with prediction mean �gK

(x, t) and prediction variance 
�2
gK
(x, t) , i.e.,

Based on gK(x, t) , the numerical simulation solution of 
hX(x|�k)(�k ∈ S� ) and hX(x) can be given by ĥX(x|�k) and 
ĥX(x) , respectively, as follows:

(11)
T =

{(
(xT

1
, tT
1
), g(xT

1
, tT
1
)
)
,
(
(xT

2
, tT
2
), g(xT

2
, tT
2
)
)
,⋯ ,

(
(xT

N
T

, tT
N
T

), g(xT
N
T

, tT
N
T

)

)}T

(12)gK(x, t) ∼ N(�gK
(x, t), �2

gK
(x, t))

(13)ĥX(x|�k) =
𝜋Ft

(x|�k)fX(x|�k)

P̂ft(�k)
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where N� is the size of the sample �k(k = 1, 2,⋯ ,N�) 
extracted from ��(�) . P̂ft(�k) is the estimation of the 
extended time-dependent failure probability at �k based on 
the current gK(x, t) , and it can be estimated as follows,

where  x
f

i
|�k  i s  t he  i - t h  e l ement  o f  S

f |�
k

x
=

{x
f

1
|�

k
, x

f

2
|�

k
,⋯ , x

f

N�
|�

k
}T , an N�-size candidate sample set 

extracted from fX(x|�k).
Since gK(x, t) follows Gaussian distribution with predic-

tion mean �gK
(x, t) and prediction variance �2

gK
(x, t) , 

�Ft
(x

f

i
|�k) = P{min

t
gK(x

f

i
|�k, t) ≤ 0} can be approximately 

estimated by Eq. (16).

where tf
i
|�k is approximated by tf

i
|�k = argmin

t∈St
�gK

(x
f

i
|�k, t) , 

and St = {t1, t2,⋯ , tNt
} is an Nt-size candidate sample set 

extracted from the interested interval [t0, te] of t . Φ(⋅) is the 
cumulative distribution function (CDF) of a standard normal 
distribution.

3.2.2  Extracting samples of ĥX (x) and ĥX (x|�k) based 
on the current gK (x , t)

Based on the current Kriging model gK(x, t) of g(x, t) , an 
acceptance domain Ω shown in Eq. (17) can be employed to 
filter the sample of fX(x|�k) to obtain the sample of ĥX(x|�k) . 
It can be proved theoretically that the sample screened from 
those of fX(x|�k) by Ω accurately follows PDF ĥX(x|�k) , 
i.e., the sample screened from those of fX(x|�k) by Ω are 
definitely the sample of ĥX(x|�k) shown in Eq. (13).

where p ∼ U[0, 1] is a standard uniform random variable. c is 
a constant that should satisfy inequality 0 ≤ c�Ft

(x|�k) ≤ 1 , 
and c = 1 satisfies the inequality due to 0 ≤ �Ft

(x|�k) ≤ 1.
Appendix 2 lists the proof that the sample screened from 

that of fX(x|�k) by the acceptance domain in Eq. (17) fol-
lows the PDF ĥX(x|�k) . The detailed steps of extracting the 
sample of ĥX(x) can be organized as follows based on the 
sample of ĥX(x|�k).

Firstly, generate Nĥ-size sample �i(i = 1, 2,⋯ ,Nĥ) ( Nĥ is 
the preset number of the sample of ĥX(x) ) by ��(�) . 

(14)ĥX(x) =
1

N�

N�∑
k=1

ĥX(x|�k) =
1

N�

N�∑
k=1

𝜋Ft
(x|�k)fX(x|�k)

P̂ft(�k)

(15)P̂ft(�k) =
1

N𝜀

N𝜀∑
i=1

𝜋Ft
(x

f

i
|�k)

(16)�Ft
(x

f

i
|�k) = Φ

(
−
�gK

(x
f

i
|�k, t

f

i
|�k)

�gK (x
f

i
|�k, t

f

i
|�k)

)

(17)Ω =
{
p − c�Ft

(x|�k) ≤ 0
}
,

Secondly, generate one sample xĥ
i
 of ĥX(x|�i) corresponding 

to each �i (i = 1, 2,⋯ ,Nĥ) by using the acceptance domain 
Ω in Eq. (17) to screen the sample of fX(x|�i) . Finally, an Nĥ

-size sample set Sĥ
x
= {xĥ

1
, xĥ

2
,⋯ , xĥ

Nĥ

}T of ĥX(x) can be con-

structed by xĥ
i
 (i = 1, 2,⋯ ,Nĥ) taken from the Nĥ-size sam-

ple pair set (�i, x
ĥ
i
) (i = 1, 2,⋯ ,Nĥ).

3.2.3  Strategy of adaptively updating gK(x, t) to approach 
h
opt

X
(x) by ĥX (x)

Since the initial Kriging model gK(x, t) may not approach 
g(x, t) well, the sample set Sĥ

x
 obtained by the initial gK(x, t) 

may not well approximate that of the optimal IS-PDF for 
estimating T-FPF either. Thus, gK(x, t) needs to be updated 
adaptively to make ĥX(x) close to the theoretical optimal 
IS-PDF hopt

X
(x) as much as possible.

In order to realize the purpose of approaching hopt
X
(x) 

by ĥX(x) based on gK(x, t) with preset precision, the center 
points obtained from the cluster analysis with respect to Sĥ

x
 

should be added to the training set T for updating the Krig-
ing model gK(x, t) adaptively. By K-means (Zhu et al. 2020) 
clustering the sample in Sĥ

x
 iteratively and adding the clus-

tering center points to the training set to update gK(x, t) , the 
quasi-optimal IS-PDF ĥX(x) based on gK(x, t) can gradually 
approach hopt

X
(x) . For constructing the convergence crite-

rion of adaptively updating gK(x, t) to approach hopt
X
(x) , the 

convergence index �acc in Eq. (18) may be introduced. �acc 
expresses the accuracy of the current Kriging model gK(x, t) 
predicting the time-dependent failure domain indicator func-
tion IFt

(x).

According the cross-validation method (Stone 1974), the 
estimated value �̂�accL of �acc can be given in Eq. (19) by the 
leave-one method.

where NT is the size of the training set T . �Ft ,T∕x
T
i
(⋅) repre-

sents the probability classification function established by 
the Kriging model gK,T∕xT

i
(x, t) , where T∕xT

i
 means the cor-

responding Kriging model gK,T∕xT
i
(x, t) is constructed by the 

training set T  without the i  th training point 
((xT

i
, tT
i
), g(xT

i
, tT
i
)).

In this paper, �̂�accL ∈ [0.1, 10] is taken as the conver-
gence criterion according to Refs. (Dubourg et al. 2013; 

(18)�acc =
IFt

(x)

�Ft
(x)

(19)

�̂�accL =
1

N
T

N
T∑

i=1

IFt
(xi)

𝜋Ft ,T∕x
T

i
(xi)

=
1

N
T

N
T∑

i=1

IFt
(xi)

Prob

{
min
ti∈St

gK,T∕xT
i
(xi, ti) ≤ 0

}
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Zhu et al. 2020). After the Kriging model gK(x, t) satisfies 
�̂�accL ∈ [0.1, 10] , it is considered that ĥX(x) can approach 
h
opt

X
(x) with the preset precision. Then the work of adap-

tively updating gK(x, t) for approaching hopt
X
(x) by ĥX(x) and 

extracting the sample of ĥX(x) is completed. The following 
task is estimating T-FPF by using the sample set Sĥ

x
 of ĥX(x).

3.3  Strategy of estimating T‑FPF based on Sĥ
x
 

of ĥX(x)

According to Eq. (4), it is shown that the whole T-FPF at 
arbitrary realization of � can be simultaneously estimated by 
the same candidate sample set Sĥ

x
 of ĥX(x) , after the time-

dependent failure domain indicator function IFt
(xĥ

i
) with 

xĥ
i
∈ Sĥ

x
 is estimated accurately. The task of accurately esti-

mating IFt
(xĥ

i
) with xĥ

i
∈ Sĥ

x
 can be efficiently completed by 

sequentially updating Kriging model gK(x, t) in Sĥ
x
.

For adaptively updating gK(x, t) to be convergent for accu-
rately and efficiently estimating IFt

(xĥ
i
) with xĥ

i
∈ Sĥ

x
 , this 

paper proposes a time-dependent misclassification probabil-
ity Pe(xĥi ) learning function to adaptively select the training 
point to update gK(x, t) . Pe(xĥi ) is proposed to measure the 
capability of the candidate point xĥ

i
∈ Sĥ

x
 to improve the 

accuracy of gK(x, t) predicting IFt
(xĥ

i
) , and Pe(xĥi ) is defined 

as the probability of the sign of the minimum prediction 
gKmin(x

ĥ
i
) = min

t∈St
gK(x

ĥ
i
, t) of the time-dependent Kriging 

model gK(xĥi , t) is different from the sign of the minimum 

prediction mean 𝜇gKmin
(xĥ

i
) = E

[
min
t∈St

gK(x
ĥ
i
, t)

]
 at xĥ

i
 , i.e.,

Since 𝜇gKmin
(xĥ

i
) = E

[
min
t∈St

gK(x
ĥ
i
, t)

]
 is used to recognize 

the structure state at xĥ
i
 , i.e., 𝜇gKmin

(xĥ
i
) > 0 indicating safety 

state with IFt
(xĥ

i
) = 0 and 𝜇gKmin

(xĥ
i
) ≤ 0 meaning failure state 

w i t h  IFt
(xĥ

i
) = 1  ,  t h e  e v e n t  o f 

(20)Pe(x
ĥ
i
) = P

{
sign[gKmin(x

ĥ
i
)] ≠ sign[𝜇gKmin

(xĥ
i
)]
}

{
sign[gKmin(x

ĥ
i
)] ≠ sign[𝜇gKmin

(xĥ
i
)]
}

 represents that the 

time-dependent Kriging model gK(xĥi , t) misclassifies the 
structure state at xĥ

i
 . Thus, the larger the misclassification 

probability Pe(xĥi ) at the candidate sample xĥ
i
∈ Sĥ

x
 is, the 

larger the contribution of adding xĥ
i
 to the training set is to 

improve precision of the time-dependent Kriging model 
gK(x

ĥ
i
, t) predicting the time-dependent failure domain 

indicator.
Since the misclassification probability Pe(xĥi ) is defined 

by Eq. (20), Pe(xĥi ) can be estimated by Eq. (21).

In  o rder  to  es t imate  P
{
gKmin(x

ĥ
i
) > 0

}
 and 

P
{
gKmin(x

ĥ
i
) ≤ 0

}
 to obtain Pe(xĥi ) , the following derivation 

is given by use of the property of the time-dependent Krig-
ing model gK(x, t).

where 𝜑
Nt
(�gK

(xĥ
i
, t),�gK

(xĥ
i
, t)) is an Nt-dimensional nor-

mal PDF with mean vector �gK
(xĥ

i
, t) and covariance matrix 

�gK
(xĥ

i
, t) as follows:

where �titj (i ≠ j, i, j = 1, 2,⋯ ,Nt) is the correlation coeffi-
cient of gK(xĥi , ti) and gK(xĥi , tj) in �gK

(xĥ
i
, t) , and �titj can be 

provided by the current gK(xĥi , t).
All terms concerned in Eqs. (23) and (24) for solving 

P
{
gKmin(x

ĥ
i
) > 0

}
 can be given by the DACE toolbox based 

(21)Pe(x
ĥ
i
) =

⎧
⎪⎨⎪⎩

P
�
gKmin(x

ĥ
i
) > 0

�
𝜇gKmin

(xĥ
i
) < 0

P
�
gKmin(x

ĥ
i
) ≤ 0

�
𝜇gKmin

(xĥ
i
) ≥ 0

(22)

P
�
gKmin(x

ĥ
i
) > 0

�
= P

⎧
⎪⎨⎪⎩

�
tj∈St

[gK(x
ĥ
i
, tj) > 0]

⎫
⎪⎬⎪⎭

= ∫
+∞

0

⋯

�����
Nt layer

∫
+∞

0

𝜑
Nt
(�gK

(xĥ
i
, t),�gK

(xĥ
i
, t))dt1dt2 ⋯ dtNt

(23)�gK
(xĥ

i
, t) = [𝜇gK

(xĥ
i
, t1),𝜇gK

(xĥ
i
, t2),⋯ ,𝜇gK

(xĥ
i
, tNt

)]T

(24)�gK
(xĥ

i
, t) =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜎2

gK
(xĥ

i
, t1)

∏
k=[1,2]

𝜎gK (x
ĥ
i
, tk)𝜌t1t2 ⋯

∏
k=[1,Nt]

𝜎gK (x
ĥ
i
, tk)𝜌t1tNt∏

k=[2,1]

𝜎gK (x
ĥ
i
, tk)𝜌t2t1 𝜎2

gK
(xĥ

i
, t2) ⋯

∏
k=[2,Nt]

𝜎gK (x
ĥ
i
, tk)𝜌t2tNt

⋮ ⋮ ⋮∏
k=[Nt ,1]

𝜎gK (x
ĥ
i
, tk)𝜌tNt t1

∏
k=[Nt ,2]

𝜎gK (x
ĥ
i
, tk)𝜌tNt t2

⋯ 𝜎2

gK
(xĥ

i
, tNt

)

⎤⎥⎥⎥⎥⎥⎥⎦
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on the current gK(x, t) . So far, the misclassification probabil-
ity Pe(xĥi ) at xĥ

i
∈ Sĥ

x
 can be obtained, and the training point 

x∗ of the random input vector can be adaptively selected by 
Eq. (25).

The training point t∗ of the time variable can be selected 
by U-learning function UgK

(x∗, t) (Echard et al. 2011) at x∗ 
as follows:

Then, the training set T can be updated as:

Update the training set until the average misclassification 
probability satisfies the inequality in Eq. (28), then gK(x, t) 
is considered to be convergent to accurately estimate IFt

(xĥ
i
) 

at xĥ
i
∈ Sĥ

x
.

After the convergent gK(x, t) can accurately identify the 
time-dependent failure domain indicator function IFt

(xĥ
i
) 

with xĥ
i
∈ Sĥ

x
 , the T-FPF Pft(�) can be estimated by P̂ft(�) 

in Eq. (29).

where � can take any realization in the interested region 
[�L,�U] , and ÎFt

(xĥ
i
) is the time-dependent failure domain 

indicator function estimated by the convergent gK(x, t) as 
follows:

3.4  Detailed steps of the SL‑Meta‑IS‑AK 
for analyzing T‑FPF

According to the above demonstration, the detailed steps of 
SL-Meta-IS-AK analyzing T-FPF are given as follows, and 
the corresponding flow chart is shown in Fig. 2.

Step 1 Construct an initial time-dependent Kriging model 
gK(x, t).

(25)x∗ = arg max
xĥ
i
∈Sĥ

x

Pe(x
ĥ
i
)

(26)t∗ = argmin
t∈St

UgK
(x∗, t) = argmin

t∈St

|�gK
(x∗, t)|

�gK (x
∗, t)

(27)T = T ∪ {((x∗, t∗), g(x∗, t∗))}

(28)1

Nĥ

Nĥ∑
i=1

Pe(x
ĥ
i
) ≤ 50∕0

(29)P̂ft(�) =
1

Nĥ

Nĥ∑
i=1

ÎF(x
ĥ
i
)fX(x

ĥ
i
|�)

ĥX(x
ĥ
i
)

(30)ÎFt
(xĥ

i
) =

{
0𝜇gKmin

(xĥ
i
) > 0

1𝜇gKmin
(xĥ

i
) ≤ 0

Step 2 Generate an NT-size initial training point set 
ST
x
= {xT

1
, xT

2
,⋯ , xT

NT
}T  a n d  a n  NT - s i z e  o n e 

ST
t
= {tT

1
, tT
2
,⋯ , tT

NT
}T for random input vector X and 

time variable t , respectively, by ∫ fX(x|�)��(�)d� and 
uniformly discretizing [t0, te].

Step 3 Construct the training set T as follows by estimating 
g(x, t) at x ∈ ST

x
 and t ∈ ST

t
.

Step 4 Construct the initial Kriging model gK(x, t) of g(x, t) 
by T.

Step 5 Update gK(x, t) to approach hopt
X
(x) and extract IS-

PDF candidate sample pool Sĥ
x
.

Step 6 Generate the IS-PDF candidate sample pool 
Sĥ
x
= {xĥ

1
, xĥ

2
,⋯ , xĥ

Nĥ

}T of ĥX(x) by the current gK(x, t) 
and the designed acceptance domain Ω in Eq. (17).

Step 7 Execute the K-means clustering analysis, and esti-
mate �̂�accL by Eq. (19).

Step 8 If �̂�accL ∈ [0.1, 10] and the size NT of the training set 
is greater than 30 (Zhu et al. 2020), the Kriging model 
gK(x, t) can be viewed as convergence and execute step 
3. Otherwise, add the center points of K-mean cluster-
ing into the training set T to update the Kriging model 
gK(x, t) , and return to Step 2.1.

Step 9 Update gK(x, t) in Sĥ
x
 to identify ÎFt

(xĥ
i
) and estimate 

T-FPF.
Step 10 Generate an Nt-size candidate sample set 

St = {t1, t2,⋯ , tNt
}T by uniformly discretizing t ∈ [t0, te].

Step 11 Estimate the misclassification probability Pe(xĥi ) at 
xĥ
i
∈ Sĥ

x
 according to Eq. (21), and find the new training 

point x∗ and t∗ by Eqs. (25) and (26), respectively.
Step 12 If the average misclassification probability satisfies 

1

Nĥ

Nĥ∑
i=1

Pe(x
ĥ
i
) ≤ 50∕0 , the Kriging model gK(x, t) can be 

viewed as convergence to identify ÎFt
(xĥ

i
) with xĥ

i
∈ Sĥ

x
 

accurately and T-FPF can be accurately estimated. If 
1

Nĥ

Nĥ∑
i=1

Pe(x
ĥ
i
) > 50∕0 , add (x∗, t∗) into the training set T to 

update the Kriging model gK(x, t) , and return to Step 3.2.

4  Case study

In this section, the SL-Meta-IS-AK is used to estimate 
T-FPF of several examples, in which other three methods 
including the Monte Carlo simulation (MCS), the single-
loop Kriging model (SILK) (Hu and Mahadevan 2016) and 
the adaptive Kriging-MCS combined with Bayes formula 

T =
{(

(xT
1
, tT
1
), g(xT

1
, tT
1
)
)
,
(
(xT

2
, tT
2
), g(xT

2
, tT
2
)
)
,

⋯ ,

(
(xT

N
T

, tT
N
T

), g(xT
N
T

, tT
N
T

)

)}T
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Fig. 2  Flow chart of the SL-Meta-IS-AK
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(AK-MCS-Bay) (Feng et al. 2019) are compared with the 
SL-Meta-IS-AK under the similar variation coefficient of 
the T-FPF estimation. In the MCS and SILK, the region of 
the design parameter � is discretized as �i (i = 1, 2,⋯ ,N�) at 
first. Then, the double-loop Monte Carlo simulation and the 
single-loop Kriging model are employed, respectively, in the 
MCS and SILK to estimate the time-dependent failure prob-
ability for each discrete point �i (i = 1, 2,⋯ ,N�) , on which 
the T-FPF can be obtained by the interpolation method. In 
the AK-MCS-Bay, the Bayes formula is employed to trans-
form the T-FPF into three components, i.e., the assigned 
PDF of � , the conditional PDF of � on the time-dependent 
failure domain, and the augmented time-dependent failure 
probability in the space spanned by the random input vector 
and distribution parameter. Then, the T-FPF can be obtained 
by constructing a single-loop Kriging model to estimate the 
augmented time-dependent failure probability and obtain 
the conditional PDF by the kernel density estimation on the 
basis of the failure samples provided in estimating the aug-
mented time-dependent failure probability.

In order to compare the accuracy of three compared meth-
ods in estimating T-FPF, the mean relative error (MRE) is 
defined as follows,

where N� is the number of discrete points of � . P(i)

f
 represents 

the failure probability estimated by the MCS method, and 
P̂
(i)

f
 represents the failure probability estimated by three com-

pared methods including the SILK, the AK-MCS-Bay and 
SL-Meta-IS-AK.

(31)MRE =
1

N�

N�∑
i=1

|P̂(i)

f
− P

(i)

f
|

P
(i)

f

4.1  Numerical example

Consider the following time-dependent performance func-
tion g(X, t).

where t  is the time variable. X1 and X2 are two inde-
pendent random inputs with normal distribution, i.e., 
X1 ∼ N(�X1

, 0.42) and X2 ∼ N(4, 0.42) . The mean value 
of X1 is taken as the concerned distribution parameter in 
[3.5, 4.5] , i.e., � = �X1

∈ [3.5, 4.5] . The interval of the design 
parameter �X1

 is discretized uniformly into 10 points. The 
interested interval of t is taken as t ∈ [0, 5] , and the interval 
of t is discretized uniformly into 500 points.

At first, MCS is employed to estimate the T-FPF, and 10 
time-dependent reliability analyses at the discrete point of 
�X1

 are needed in estimating T-FPF. In each time-dependent 
reliability analysis, the size of the input vector sample set is 
105 . Thereof, the total number of model evaluations for MCS 
in estimating the T-FPF is 5 × 108 . Then, SILK, AK-MCS-
Bay and SL-Meta-IS-AK are employed to estimate T-FPF. 
The size of the initial training sample sets of these methods 
is 10. The size of the candidate sample pool of SILK and 
AK-MCS-Bay is 105 , and the total numbers of model evalu-
ations for SILK and AK-MCS-Bay are 43 and 40, respec-
tively. The size of the importance sample pool of SL-Meta-
IS-AK is 500, and the total number of model evaluations for 
SL-Meta-IS-AK is 30. The extreme limit states of Kriging 
model constructed by SILK, AK-MCS-Bay and SL-Meta-IS-
AK compared with the real extreme limit state are shown in 
Fig. 3, respectively. From Fig. 3, it can be seen that the real 
extreme limit state and the extreme limit states of Kriging 
model constructed by SILK, AK-MCS-Bay and SL-Meta-
IS-AK are almost superposed, while only 30 times of the 
model evaluations are required to construct the convergent 
Kriging model in SL-Meta-IS-AK. The T-FPF curves and 
the variation coefficient curves, respectively, obtained by 

(32)g(X, t) = X2
1
X2 − 5X1t + (X2 + 1)t2 − 20

1 2 3 4 5 6 7 8 9 10
0

1

2
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4
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9
Importance samples
Training samples
Real extreme limit state
Approximate extreme limit state (SL-Meta-IS-AK)

1x1x1x

2x2x2x

Fig. 3  Extreme limit states of Kriging model compared with the real extreme limit state
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MCS, SILK, AK-MCS-Bay and SL-Meta-IS-AK method are 
shown in Fig. 4. The MRE and computational cost of several 
compared methods are listed in Table 1.

From Fig. 4, it is shown that the T-FPF curve estimated 
by SL-Meta-IS-AK is consistent with the T-FPF curve esti-
mated by MCS method under the similar variation coeffi-
cient, while the T-FPF curve estimated by AK-MCS-Bay 
method has a large error at both ends of the concerned distri-
bution parameter region. The error of AK-MCS-Bay method 
is caused by the low accuracy of PDF fitting. In addition, it 
can be concluded from Table 1 that SL-Meta-IS-AK is more 
efficient than the two existing meta-models in estimating 
T-FPF under the similar T-FPF estimation precision. Since 
SILK has to estimate the time-dependent failure probability 
at each distribution parameter realization, more number of 
model evaluation is needed; the efficiency of SILK is lower 
than others.

(a) The T-FPF curves of example 4.1 (b) The variation coefficient curves of example 4.1

Fig. 4  T-FPF curves and the variation coefficient curves of numerical example

Table 1  MRE and computational cost of the four compared methods 
of numerical example

a Represents the number of calling performance function

Method MRE Ncalla Time/s

MCS 0 5 × 108 –
SILK 0.013 43 107316.15
AK-MCS-Bay 0.088 40 3710.73
SL-Meta-IS-AK 0.022 30 1330.52

(a) The Rack-and-Pinion Steering Linkage structure (b) The Rack-and-Pinion Steering Linkage model

Fig. 5  Structure and the model of the rack-and-pinion steering linkage

Table 2  Distribution parameters of the rack-and-pinion steering link-
age

Variable Mark Distribution Mean Variation 
coefficient

La(mm) X1 Normal �La
0.1

Lt(mm) X2 Normal 283.5 0.1
Wt(mm) X3 Normal 650.24 0.1
H(mm) X4 Normal 83.5 0.1
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4.2  Rack‑and‑pinion steering linkage

A rack-and-pinion steering linkage (Huang and Zhang 
2010) shown in Fig. 5a is employed to verify the effec-
tiveness of the SL-Meta-IS-AK in engineering application 
with one concerned distribution parameter. The motion 
behavior of the mechanism is represented by the simplified 
model shown in Fig. 5b. La = L1 = L4 is the length of the 
steering arms (1) and (4). Lt = L2 = L3 is the length of the 
steering linkages (2) and (3). Wt is the length of the wheel 
track, and H is the distance between the front axle ( X axle) 
and rack axis (5). As shown in Fig. 5a, the horizontal dis-
placement of the frame shaft D ∈ [−50, 50] mm is viewed 
as time variable, and the rotation degrees �1 and �4 of the 
left and right steering arm, respectively, are viewed as the 
time-dependent output. Regard X = (La, Lt,Wt,H)T as the 
random input vector, and the distribution parameters are 
shown in Table 2.

� = (�1,�2,�3,�4)
T  shown in Fig.  5b is the output 

vector. The closed-loop equation of the mechanism is 
obtained from Fig. 5b as,

in which �1 is the concerned output, and its expression is 
given as follows,

(33)

⎧⎪⎪⎨⎪⎪⎩

La cos�1 + Lt cos�2 −Wt∕2 − D = 0

La sin�1 + Lt sin�2 − H = 0

(−Wt∕2 + D) + Lt cos�3 − La cos�4 = 0

H + La sin�3 − Lt sin�4 = 0

(34)y(X,D) = �1 = 2 arctan
−B ±

√
B2 − 4AC

2A

w h e r e  A =
(

Wt

2
+ D + La

)2

+ H2 − L2
t
 ,  B = −4HLa  , 

C =
(

Wt

2
+ D − La

)2

+ H2 − L2
t
 . When taking the time-

dependent y(�X,D) at the mean vector �X of X as the ideal 
one, the time-dependent performance function of this mech-
anism can be expressed as:

where � = 0.4◦ is the allowable threshold of the difference 
between y(X,D) and its ideal y(�X,D).

The mean of La is taken as the concerned distribution 
parameter at the interested region, i.e., � = �La

∈ [106, 110] . 
The interval of �La

 is discretized uniformly into 10 points. 
The interested interval of the time variable t , i.e., D , is taken 
as t = D ∈ [−50, 50] , and the interval of t is discretized uni-
formly into 100 points.

Firstly, MCS is used to estimate the T-FPF, and the size 
of the input variables set is 107 in estimating T-FPF. The 
total number of model evaluations for MCS in estimating 
the T-FPF is 1010 . Next, SILK, AK-MCS-Bay and SL-Meta-
IS-AK are employed to estimate T-FPF. The size of the can-
didate sample pool of SILK and AK-MCS-Bay is 107 . The 
total number of model evaluations for SILK is 63, i.e., 12 
initial samples and 51 updating samples. As for AK-MCS-
Bay, the initial sample size is 12 and the updating samples 

(35)g(X,D) = y(X,D) − y(�X,D) + �

(a) The T-FPF curves (b) The variation coefficient curves

Fig. 6  T-FPF curves and the variation coefficient curves of the rack-and-pinion steering linkage

Table 3  MRE and computational cost of the four compared methods

Method MRE Ncall Time/s

MCS 0 1010 –
SILK 0.049 63 124891.96
AK-MCS-Bay 0.096 59 40284.19
SL-Meta-IS-AK 0.048 34 23184.44
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47. The size of the importance sample pool of SL-Meta-IS-
AK is 1000, and the total number of model evaluations for 
SL-Meta-IS-AK is 34, i.e., 12 initial samples and 22 updat-
ing samples. The T-FPF curves and the variation coefficient 
curves, respectively, obtained by MCS, SILK, AK-MCS-Bay 
and SL-Meta-IS-AK method are shown in Fig. 6. The MRE 
and computational cost of several compared methods are 
listed in Table 3. From Fig. 6, it can be seen that the T-FPF 
curve estimated by SL-Meta-IS-AK is almost coincides to 
that by MCS method. The accuracy of SL-Meta-IS-AK is 

the highest among the compared methods since the MRE of 
the SL-Meta-IS-AK is the smallest one, which is listed in 
Table 3. From Table 3, it can be observed that the efficiency 
of SL-Meta-IS-AK is highest and the computational time is 
shortest among the compared methods, which verifies the 
accuracy and efficiency of the proposed SL-Meta-IS-AK.

4.3  Wing structure

A typical wing structure (Ling et al. 2019) shown in Fig. 7 
is considered to verify the effectiveness of the proposed 

Fig. 7  Wing structure

Table 4  Distribution parameters of the wing structure

Variable Distribution Mean Variation 
coefficient

Pr(N/m
3) Extreme-I 4.53 × 103 0.05

�f (N/m
2) Normal 5.03 × 108 0.05

cr(m) Normal �cr
0.01

c0∕cr Normal 0.4 0.01
h∕c Normal 0.12 0.01
T(m) Normal �T 0.1

(a) The T-FPF surface of the MCS and SL-Meta-IS-AK (b) The T-FPF curves of four methods 

Fig. 8  T-FPF surface and T-FPF curve of wing structure

Table 5  MRE and computational cost of the four compared methods 
of the wing structure

Method MRE Ncall Time/s

MCS 0 1010 –
SILK 0.044 172 1085490.55
AK-MCS-Bay 0.089 141 319284.92
SL-Meta-IS-AK 0.051 103 173605.57
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SL-Meta-IS-AK in engineering application with two con-
cerned distribution parameters. The cross section of the 
wing is shown in Fig. 7a, where T  is the thickness, h is the 
height of the wing, and c is the chord length. The top view 
of the wing is shown in Fig. 7b, where b = 40m is the wing-
span of the wing. The load distribution on the wing is given 
in Fig. 7c. In Fig. 7c, it is shown that the position on the x 
axis is regarded as the time variable t in this example, and 
t ∈ [0, b∕2]m = [0, 20]m is the interested interval of t . Regard 
X = [Pr, �f , cr, c0∕cr, h∕c,T]

T as the random input vector, and 
the distribution types and parameters are shown in Table 4. 
The time-dependent performance function of the wing struc-
ture is shown as follows:

where M(X, t) = 4P
r
c
r
b

[(
c0

cr

)
t
4

12b2
+
(
1 − 2

c0

cr

)
t
5

20b3
+
(
c0

cr

− 1

)
t
6

30b4

]
 

denotes the moment. Pr denotes the distributed load. 
IZ(X, t) =

1

2
c(X, t)Th2(X, t) represents the rotational inertia. 

c(X, t) = cr

[(
c0

cr

)
+
(
1 −

c0

cr

)
t

b∕2

]
 is the chord length. 

h(X, t) = cr
h

c

[(
c0

cr

)
+
(
1 −

c0

cr

)
t

b∕2

]
 is the wing height. �f  

represents the threshold of the stress.
The mean values of cr and T  are taken as the con-

cerned distribution parameters, i.e., � = [�cr
,�T ] , and 

their interested regions are, respectively, �cr
∈ [6, 8] , and 

�T ∈ [8.7 × 10−3, 9.1 × 10−3] . Each parameter is discretized 
into 10 points. The interested interval of t is taken as [0, 20] , 
and the interval is discretized into 100 points. The T-FPF sur-
faces obtained by MCS and SL-Meta-IS-AK are, respectively, 
shown in Fig. 8a, and the T-FPF curves estimated by the four 
methods are shown in Fig. 8b (for visualization comparison, a 
diagonal line of the T-FPF surface is selected to illustrate the 
accuracy of the compared methods). The MRE and computa-
tional cost are listed in Table 5.

At first, MCS is adopted to estimate the T-FPF, and 
the size of the input variables set is 106 in estimating 
T-FPF. The total number of model evaluations for MCS in 

(36)g(X, t) = �f −
M(X, t)(h(X, t)∕2)

IZ(X, t)

estimating the T-FPF is 1010 . In SILK and AK-MCS-Bay, 
the size of the candidate sample pool is 106 . The total num-
ber of model evaluations for SILK is 172 including 25 ini-
tial samples and 147 updating samples. As for AK-MCS-
Bay, the initial samples are 25 and the updating samples 
116. The size of the importance sample pool of SL-Meta-
IS-AK is 5000, and the total number of model evaluations 
for SL-Meta-IS-AK is 103. From Table 5, it is obviously 
that SL-Meta-IS-AK takes least computation time than 
other compared methods, which shows the efficiency of 
the proposed SL-Meta-IS-AK. It can be seen from Fig. 8a 
that the T-FPF surface estimated by the proposed SL-Meta-
IS-AK is consistent with that by MCS method, which veri-
fies the accuracy of the proposed SL-Meta-IS-AK. From 
the T-FPF diagonals obtained by the four methods shown 
in Fig. 8b, it can be seen that the T-FPF curve of proposed 
SL-Meta-IS-AK method coincides with that of MCS, while 
the T-FPF results at both ends of the interested distribution 
parameter regions by AK-MCS-Bay are inaccurate due to 
the error of density fitting.

4.4  A corroded bending beam involving stochastic 
load

A corroded bending beam (Hu and Du 2015) shown in Fig. 9 is 
employed to verify the effectiveness of the proposed SL-Meta-
IS-AK in engineering application including stochastic process 
with four distribution parameters. The time-dependent perfor-
mance function is defined as follows:

where X = (�u, a0, b0)
T  is the random input vector. �u 

denotes the ultimate strength, a0 is the width of the beam, 
and b0 is the height of the beam. �st = 7.84 × 104kg/m3 is 
the density. k = 5 × 10−5m/year is the corrosion coefficient. 
L = 5m is the length of the beam. F(t) is a stochastic process 
modeled by,

(37)

g(X, Y(t), t) =
(a0 − 2kt)(b0 − 2kt)2�u

4
−

(
F(t)L

4
+

�sta0b0L
2

8

)

(38)F(t) = 6500 +

7∑
i=1

�i

(
7∑
j=1

aij sin(bijt + cij)

)

Fig. 9  Corroded bending beam
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where �i(i = 1, 2,⋯ , 7) are seven independent random vari-
ables, and aij , bij , cij(∀i, j = 1, 2,⋯ , 7) are the coefficients of 
the sine wave basis functions, i.e.,

(39)a =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.13 0.36 0.14 3.07 0.17 0.13 0.12

0.02 0.18 0.09 0.13 0.69 0.04 0.27

0.08 0.29 0.14 3.09 0.05 0.37 0.13

0.03 0.06 0.01 0.04 0.63 0.30 0.06

0.03 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.01 0.00 0.00 0.00 0.00 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Table 6  Distribution parameters of the corroded bending beam

Variable Distribution Mean Standard 
deviation

�u(Pa) Normal ��u
��u

a0(m) Normal �a0
0.01

b0(m) Normal �b0
0.004

�1 Normal 0 100
�2 Normal 0 50
�3 Normal 0 98
�4 Normal 0 121
�5 Normal 0 227
�6 Normal 0 98
�7 Normal 0 121

(a) The T-FPF curves of (b) The T-FPF curves of 

(c) The T-FPF curves of (d) The T-FPF curves of 

Fig. 10  T-FPF curves of the corroded bending beam
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(40)b =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.06 0.31 0.15 0.28 0.24 0.44 0.48

0.38 0.15 0.40 0.06 0.42 0.09 0.01

0.10 0.33 0.03 0.29 0.11 0.26 0.38

0.28 0.07 0.59 0.55 0.42 0.23 0.29

0.52 0.00 0.00 0.00 0.00 0.00 0.00

0.77 0.00 0.00 0.00 0.00 0.00 0.00

0.91 0.00 0.00 0.00 0.00 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

By transforming the input stochastic process F(t) into 
Eq. (38), time-dependent performance function is trans-
formed into g(X, t) , and X is enlarged to a 10-dimensional 
random input vector with distribution parameters listed in 
Table 6.

The mean values of �u , a0 , b0 and the standard deviation 
of �u are taken as four concerned distribution parameters, 
i.e., � = [��u

,�a0
,�b0

, ��u] , and their interested regions 
a r e  ��u

∈ [2.25 × 108, 2.35 × 108] ,  �a0
∈ [0.15, 0.25] , 

�b0
∈ [0.04, 0.05] , and ��u ∈ [0.04, 0.06] , respectively. 

The region of each parameter is uniformly discretized into 
10 points. The interested interval of t  is taken as [0, 35] , 
and the interval is uniformly discretized into 350 points. 
Since the density fitting method is difficult to apply in this 
4-dimensional problem, only MCS method and SILK are 

(41)

c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2.91 −2.34 −2.43 −2.82 −2.15 0.47 2.90

−2.91 2.21 −0.97 0.98 −1.03 −3.81 −0.35

1.25 0.52 2.62 0.23 0.91 −1.39 −2.45

0.73 0.00 −0.45 −0.50 1.93 −3.64 −3.00

0.18 0.00 0.00 0.00 0.00 0.00 0.00

−1.71 0.00 0.00 0.00 0.00 0.00 0.00

−2.46 0.00 0.00 0.00 0.00 0.00 0.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Table 7  MRE and computational cost of the three compared methods 
of the corroded bending beam

Method MRE Ncall Time/d

MCS 0 3.5 × 1013 -
SILK 0.029 403 15.39
SL-Meta-IS-AK 0.040 175 2.40

(a) The turbine shaft (b) The finite element model

Fig. 11  Turbine shaft structure

Table 8  Distribution parameters 
of the turbine shaft

Variable Distribution Parameter 1 Parameter 2 Autocorrelation function

r(mm) Normal �r � = 0.015 –
h(mm) Uniform low = 3.90 up = 4.10 –
D(mm) Normal �D � = 0.76 –
�(rad/s) Normal � = 1124 � = 33.72 –
E(GPa) Normal � = 146 � = 4.38 –
� Extreme-I � = 0.325 � = 0.0065 –
T(t)(N ⋅m) Gaussian � = 1800 � = 54 exp( − Δ�2∕20)
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used as the methods compared with the proposed method. 
Note that the T-FPF is the function of the four-dimensional 
distribution parameters which can be estimated by the pro-
posed method but cannot be visualized by the diagram. We 
only visualize in Fig. 10 the T-FPF with respect to each 
parameter by keeping the residual 3 concerned distribu-
tion parameters at their midpoint of the interested ranges. 
The MRE and computational cost of different methods are 
listed in Table 7.

Firstly, MCS is used to estimate the T-FPF, and the total 
number of model evaluations for MCS in estimating the 
T-FPF is 3.5 × 1013 . Next, SILK is employed to estimate 
T-FPF and the size of the candidate sample pool of SILK 

is 107 . The total number of model evaluations for SILK is 
403, i.e., 50 initial samples and 353 updating samples. As 
for SL-Meta-IS-AK, the size of the importance sample 
pool of SL-Meta-IS-AK is 10000, and the total number 
of model evaluations for SL-Meta-IS-AK is 175 includ-
ing 50 initial samples and 125 updating samples. From 
the T-FPF curves in Fig. 10(a)-(d), respectively, it can be 
seen that T-FPF obtained by SL-Meta-IS-AK coincides 
with that of MCS. The estimation efficiency of SL-Meta-
IS-AK is higher than that of SILK, as the SL-Meta-IS-AK 
only needs 2.40 days and SILK needs 15.39 days to obtain 
the result. The result indicates the accuracy and efficiency 
applicability of the proposed SL-Meta-IS-AK to multiple 
distribution parameters including the mean and the stand-
ard deviation.

4.5  Turbine shaft structure

A turbine shaft shown in Fig. 11a is used to verify the 
effectiveness of the proposed SL-Meta-IS-AK in engi-
neering application with finite element model determining 

Fig. 12  Result of the finite ele-
ment analysis

Table 9  Computational cost of the three compared methods of the 
turbine shaft

Method Ncall Time/d

SILK 217 21.28
AK-MCS-Bay 176 5.69
SL-Meta-IS-AK 109 2.81

(a) The T-FPF with respect to (b) The T-FPF with respect to 

Fig. 13  T-FPF curves of the turbine shaft
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the time-dependent performance function. The finite ele-
ment model of the turbine shaft is shown in Fig. 11b and it 
includes connecting holes, grooves, splines, vents, flanges, 
etc. The factors that affect the turbine shaft including the 
radius r of hole at the spline, the distance h between the hole 
and the bottom of the spline, the diameter D of the inner wall 
of the spline, the elastic modulus E of the turbine shaft, and 
the Poisson's ratio � and rotational speed � are assumed as 
independent random variables. The torque T(t) is independ-
ent stochastic process. The distribution parameters of these 
inputs are given in Table 8, and the time interval of interest 
is t ∈ [0, 24].

The failure state of the turbine shaft corresponds to the 
maximum displacement Δmax exceeds the given thresh-
old Δallow = 0.415mm . The displacement nephogram of 
the turbine shaft analyzed by finite element analysis in 
ABAQUS at the random input vector taking their mean 
vector is shown in Fig. 12.

The mean values of r and D are taken as the concerned 
distribution parameters, i.e., � = [�r,�D] , and their 
interested regions are, respectively, �r ∈ [0.7, 0.8] , and 
�D ∈ [38, 40] . The region of each parameter is uniformly 
discretized into 10 points. The interested interval of t  is 
taken as [0, 24] , and the interval is uniformly discretized 
into 500 points. The T-FPF curves obtained by SILK, AK-
MCS-Bay and SL-Meta-IS-AK method are, respectively, 
shown in Fig. 11. Note that the T-FPF with respect to one 
distribution parameter is shown at the other one is fixed at 
the midpoint value of the interested region. Computational 
cost of several compared methods is listed in Table 9.

Since the computational cost by MCS is huge, it is hard 
to obtain the result by the MCS. Figure 13 and Table 9 only 
give the results obtained by the SILK, AK-MCS-Bay and 
the SL-Meta-IS-AK. In this example, the results obtained 
by the SILK at the discrete points of � can be viewed as the 
reference solution. At first, SILK is adopted to estimate the 
T-FPF, and the size of the candidate sample pool is 5 × 105 
in estimating T-FPF. The total number of model evaluations 
for SILK is 217 including 50 initial samples and 167 updat-
ing samples, and it costs 21.28 days to obtain the T-FPF 
from Table 9. In AK-MCS-Bay, the size of the candidate 
sample pool is 5 × 105 . The total number of model evalua-
tions for AK-MCS-Bay is 176 including 50 initial samples 
and 126 updating samples, and it costs 5.69 days to obtain 
the T-FPF. As for the proposed SL-Meta-IS-AK, the size of 
the importance sample pool is 2000, and the total number of 
model evaluations is only 109 including 50 initial samples 
and 59 updating samples. Besides, it only costs 2.81 days 
for the proposed SL-Meta-IS-AK to obtain the T-FPF. From 
Fig. 13, it can be seen that in results of SILK and those 
of SL-Meta-IS-AK are close to each other. This example 

verifies the accuracy and efficiency of the proposed method 
SL-Meta-IS-AK in solving the T-FPF of engineering appli-
cation with the complex finite element determined perfor-
mance function and stochastic process input.

5  Conclusion

In order to efficiently estimate the time-dependent failure 
probability function (T-FPF), this paper proposes a novel 
single-loop meta-model importance sampling with adaptive 
Kriging model (SL-Meta-IS-AK) method. In SL-Meta-IS-
AK, an optimal importance sampling probability density 
function (IS-PDF) is constructed to estimate T-FPF. Since 
the constructed IS-PDF includes variance reduction tech-
nique, and it envelopes the interested distribution param-
eter region and is free of the distribution parameter, the 
T-FPF can be estimated by single-loop analysis efficiently. 
For alleviating the difficulty of extracting the samples of 
the constructed IS-PDF, an adaptive Kriging model of the 
time-dependent performance function is constructed for 
approaching the optimal IS-PDF by the quasi-optimal one, 
and a simple sampling strategy is designed to extract the 
samples of quasi-optimal IS-PDF. After the samples are 
extracted for the IS-PDF, the Kriging model of the time-
dependent performance function is updated sequentially by 
an analytically derived time-dependent misclassification 
probability function until it can accurately recognize the 
states of all extracted IS-PDF samples, on which the T-FPF 
at arbitrary realization of the distribution parameter in the 
whole interested region can be estimated simultaneously by 
the same group of the IS-PDF samples.

Numerical and complex aviation engineering examples 
are introduced to verify the effectiveness of the proposed 
SL-Meta-IS-AK. The results illustrate that the proposed 
SL-Meta-IS-AK possesses high computational efficiency 
under the acceptable precision, and it has no limits on the 
dimensionality or interested region of the concerned dis-
tribution parameter vector. However, due to the limitation 
of Kriging model suffering from the curse of random input 
dimensionality, the concerned distribution parameter dimen-
sionality of the random input vector is limited dependently.

Appendix 1: Kriging surrogate model

Selec t  t ra in ing  se t  T = {(x1, g(x1)), (x2, g(x2)),⋯ ,

(xNt
, g(xNt

))}T ( Nt is the size of the training set) by a design 
of experiment (DOE) for performance function Y = g(x) . 
Then, the Kriging model gK(x) of g(x) can be established by 
Kriging toolbox as:
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w h e r e  fT (x)�  i s  t h e  r e g r e s s i o n  m o d e l . 
f (x) = [f1(x), f2(x),⋯ , fn(x)]

T  is the basis vector of the 
regression function, and n represents the number of basis 
functions. � = (�1, �2,⋯ , �n)

T is the coefficient vector of 
the regression function. Z(x) is a Gaussian process with a 
mean of zero and a standard deviation of � . Its covariance 
matrix is:

where R(xi, xj) is the correlation function of any two sample 
points, and it has many expressions. In this paper, the fol-
lowing Gaussian form is adopted,

where x(k)
i

 represents the k-dimensional component of the 
sample xi . � = (�1, �2,⋯ , �n)

T is an unknown correlation 
parameter vector, and it can be obtained by maximum like-
lihood estimation as follows,

The regression coefficient vector � and the variance �2 
of the Gaussian process can be obtained from the training 
points shown in Eqs. (46) and (47), respectively,

where F is an Nt × n regression matrix shown as follows:

R is an Nt × Nt correlation matrix in Eq. (49).

According to the principle of Kriging model, the pre-
dicted value at any untried point x follows the Gaussian 
distribution with a mean of �̂�gK

(x) and a variance of �̂�2
gK
(x) ; 

(42)gK(x) = fT (x)� + Z(x)

(43)Cov[Z(xi), Z(xj)] = �2R(xi, xj)

(44)R(xi, xj, �) = exp

(
−

n∑
k=1

�k
|||x

(k)

i
− x

(k)

j

|||
2

)

(45)�̂ = argmin
�

[|R|1∕Nt �̂�2
]

(46)�̂ =
(
FTR−1F

)−1
FTR−1y

(47)�̂�2 =
1

Nt

(
y − F�̂

)T
R−1

(
y − F�̂

)

(48)F =

⎡⎢⎢⎢⎢⎣

f1(x1)f2(x1)⋯ fn(x1)

f1(x2)f2(x2)⋯ fn(x2)

⋮⋮⋱⋮

f1(xNt
)f2(xNt

)⋯ fn(xNt
)

⎤⎥⎥⎥⎥⎦

(49)R =

⎡
⎢⎢⎢⎢⎢⎣

R(x1, x1)R(x1, x2)⋯R(x1, xNt
)

R(x2, x1)R(x2, x2)⋯R(x2, xNt
)

⋮⋮⋱⋮

R(xNt
, x1)R(xNt

, x2)⋯R(xNt
, xNt

)

⎤⎥⎥⎥⎥⎥⎦

namely, ĝ(x) ∼ N
(
�̂�gK

(x), �̂�2
gK
(x)

)
 . �̂�gK

(x) and �̂�2
gK
(x) are 

shown in Eqs. (50) and (51), respectively,

where r(x) is the correlation coefficient vector between train-
ing sample and predicted points. r(x) and u(x) are shown in 
Eqs. (52) and (53), respectively.

Appendix 2: the proof of the importance 
samples

Suppose that the cumulative distribution function of the 
random vector X is F

X
(a) = P{X1 ≤ a1,X2 ≤ a2,⋯ ,X

n
≤ a

n
} =

P{X < a} . Then,

Under the condition of the acceptance domain 
o f  Ω = {p − c�Ft

(x|�) ≤ 0} ,  w h e r e  p ∼ U[0, 1] , 
x ∼ fX(x|�) and c�Ft

(x|�) ≤ 1 , the conditional CDF 
FX|Ω(a) = P{X < a|p < c𝜋Ft

(x|�)} of vector X on Ω can be 
estimated as follows:

where fP(p) =

{
1, 0 ≤ p ≤ 1

0, else
 is PDF of the standard uni-

form random variable p.

(50)�̂�gK
(x) = fT (x)�̂ + rT (x)R−1(y − F�̂)

(51)
�̂�2
gK
(x) = �̂�2[1 + uT (x)(FTR−1F)−1u(x) − rT (x)R−1r(x)]

(52)r(x) = [R(x, x1),R(x, x2),⋯ ,R(x, xNt
)]T

(53)u(x) = FTR−1r(x) − f (x)

(54)

F
X
(a) = P{X < a} = �

a

−∞

⋯� ĥ
X
(x|�)dx

=
∫ a

−∞
⋯ ∫ 𝜋

F
t

(x|�)f
X
(x|�)dx

P
ft𝜀(�)

(55)

F
X|Ω(a) = P{X < a|p < c𝜋Ft

(x|�)}

=
P{X < a, p < c𝜋Ft

(x|�)}

P{p < c𝜋Ft
(x|�)}

=
∫ a

−∞
⋯ ∫ ∫ c𝜋Ft (a)

0
fP(p)fX(x|�)dpdx

∫ +∞

−∞
⋯ ∫ ∫ c𝜋Ft (a)

0
fP(p)fX(x|�)dpdx

=
∫ a

−∞
⋯ ∫ 𝜋Ft

(x|�)f
X
(x|�)dx

∫ +∞

−∞
⋯ ∫ 𝜋Ft

(x|�)f
X
(x|�)dx

=
∫ a

−∞
⋯ ∫ 𝜋Ft

(x|�)f
X
(x|�)dx

Pft𝜀(�)
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According to Eqs. (54) and (55), it is obvious that 
Fh̃
X
(a) = F

f

X|Ω(a) . Therefore, the samples generated from the 
acceptance domain Ω are those generated from ĥX(x|�).
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