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Abstract
In engineering design optimization, there are often multiple conflicting optimization objectives. Bayesian optimization 
(BO) is successfully applied in solving multi-objective optimization problems to reduce computational expense. However, 
the expensive expense associated with high-fidelity simulations has not been fully addressed. Combining the BO methods 
with the bi-fidelity surrogate model can further reduce expense by using the information of samples with different fidelities. 
In this paper, a bi-fidelity BO method for multi-objective optimization based on lower confidence bound function and the 
hierarchical Kriging model is proposed. In the proposed method, a novel bi-fidelity acquisition function is developed to guide 
the optimization process, in which a cost coefficient is adopted to balance the sampling cost and the information provided by 
the new sample. The proposed method quantifies the effect of samples with different fidelities for improving the quality of the 
Pareto set and fills the blank of the research domain in extending BO based on the lower confidence bound (LCB) function 
with bi-fidelity surrogate model for multi-objective optimization. Compared with the four state-of-the-art BO methods, the 
results show that the proposed method is able to obviously reduce the expense while obtaining high-quality Pareto solutions.

Keywords Bayesian optimization · Bi-fidelity surrogate model · Lower confidence bounds function · Multi-objective 
optimization

List of symbols
CR  Cost ratio of samples with different fidelity
F(x)  Objective of multi-objective optimization
fl(x)  Predicted mean of low-fidelity surrogate model
f
j
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  jTh Pareto solution of the ith objective

fLCB(x)  LCB function at sample x
f l
LCB

(x)  Low-fidelity LCB function at sample x
f h
LCB

(x)  High-fidelity LCB function at sample x
gj(x)  jTh Constrain of multi-objective optimization
H(p)  Hypervolume indicator
I(x)  Improvement function at sample x

ILCB(x)  Improvement of LCB function at sample x 
beyond current Pareto set

Il
LCB

(x)  Improvement of low-fidelity LCB at sample x 
beyond current Pareto set

Ih
LCB

(x)  Improvement of high-fidelity LCB at sample x 
beyond current Pareto set

I(x, t)  The novel improvement function with different 
fidelity

Nl  Quantity of the low-fidelity samples
Nh  Quantity of the high-fidelity samples
R  Covariance matrix of the hierarchical Kriging 

model
Rl  Covariance matrix of the low-fidelity Kriging 

model
s2
l
(x)  Mean-squared error of the low-fidelity Kriging 

model at unobserved points
t  Fidelity level
Xj  jTh Pareto solution
Z(⋅), Zl(⋅)  Gaussian random process
�0,l, �0  Scaling factor of trend model
r  Correlation vector of the hierarchical Kriging 

model
rl  Correlation vector of the low-fidelity Kriging 

model
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�  “Roughness” parameter
�2  Process variance

Subscripts
LCB  Function associated with LCB
l  Low-fidelity value
h  High-fidelity value
lb  Lower bound of the value
ub  Upper bound of the value

Superscripts
h  High-fidelity value
l  Low-fidelity value
�  Value associated with predicted mean

1 Introduction

Simulation models have been widely used in engineering 
design optimization. However, obtaining the Pareto solutions 
of multi-objective optimization problems usually requires 
many evaluations of objective functions. The evaluation 
processes of objective functions rely on time-consuming 
simulation models, which increases the burden of the opti-
mization tasks. To solve this problem, surrogate models, 
such as Kriging models (Jerome et al. 1989; Liu et al. 2018; 
Williams et al. 2021), radial basis function models (Sóbester 
et al. 2005; Zhou et al. 2017), support vector regression 
models (Shi et al. 2020), are commonly adopted to replace 
expensive simulations in engineering design optimization.

Bayesian optimization (Shahriari et al. 2016) is a typi-
cal surrogate-based optimization method, which is able to 
balance the exploitation and exploration by utilizing the 
uncertainty term of the surrogate model with an acquisition 
function (Jeong et al. 2005). Commonly used acquisition 
functions include the probability of improvement (PI) (Ruan 
et al. 2020), expected improvement (EI) (Jones 2001; Zhan 
et al. 2022), and lower confidence bound (LCB) (Srinivas 
et al. 2012; Zheng et al. 2016). In recent years, extend-
ing these single-objective BO methods to multi-objective 
optimization has also gained much attention. For exam-
ple, Knowles (2006) proposed the ParEGO method, which 
extended the EI function to multi-objective optimization. 
Emmerich et al. (2011) combined the hypervolume improve-
ment with the EI function, which clarifies the regions where 
the Pareto frontier can be improved by establishing the 
monotonicity properties. Zhan et al. (2017) expanded the 
EI function into a matrix form (EIM), where the elements of 
the matrix are the EI value corresponding to each objective. 
Shu et al. (2020) defined an acquisition function for multi-
objective optimization problems, considering convergence 
and diversity of the Pareto frontier.

However, these methods only utilize the high-accuracy 
samples to build the surrogate model, which still expends 

much computational cost (Chen et al. 2016). A potential way 
to further reduce the expense is adopting the multi-fidelity 
(MF) surrogate model (Zhang et al. 2018a, b), constructed 
based on a few costly high-fidelity (HF) samples and plenty 
of cheap low-fidelity (LF) samples. There are three main MF 
surrogate modeling methods: the scaling function method 
(Choi et al. 2009; Li et al. 2017), the space mapping method 
(Leifsson et al. 2015), and the Co-Kriging method (Kennedy 
et al. 2000; Perdikaris et al. 2015; Singh et al. 2017). Moreo-
ver, several new MF modeling methods have been proposed 
in the past few years, such as the method proposed by Eweis-
Labolle et al. (2022), which utilizes latent-map Gaussian 
processes and outperforms the space mapping method. With 
above MF surrogate models gaining much attention, several 
multi-fidelity BO methods have been developed. For exam-
ple, Zhang et al. (2018a, b) proposed a multi-fidelity method 
with an extension of Co-Kriging model, hierarchical Kriging 
(HK) model (Han et al. 2012), which avoids the construction 
of cross covariance in Co-Kriging. Jiang et al. (2019) pro-
posed a new method to obtain the new sample and fidelity 
level, extended BO based on the LCB function with MF sur-
rogate model. However, very limited work is accomplished 
for multi-objective optimization with BO based on the MF 
surrogate model. He et al. (2022) introduced a novel method 
for multi-objective problems, combining the HK model and 
EIM method. The blank of the research domain in extending 
BO based on the LCB function with MF surrogate model for 
multi-objective optimization still needs to fill. The bi-fidelity 
(BF) surrogate model is the surrogate model with two differ-
ent fidelities, which is the special case of the MF surrogate 
model and needs to be considered first.

In this paper, a bi-fidelity BO method for multi-objec-
tive optimization is proposed, which utilizes the advan-
tages of the bi-fidelity surrogate model and BO frame-
work to further reduce the expense. In the method, a 
novel acquisition function is developed, in which a cost 
coefficient considering a cost ratio between different fidel-
ity levels is introduced to balance the sampling cost and 
information of the new sample. The proposed method is 
compared with four state-of-the-art BO methods using 
several numerical examples and two engineering design 
optimization problems. The results show that the proposed 
method presents prominent performance in computational 
cost, especially for solving high-dimension problems.

The remainder of the paper is organized as follows. In 
Sec. 2, the technical background of the multi-objective 
optimization, HK model, and Bayesian optimization are 
recalled. Sec. 3 introduces the proposed method in detail. 
In Sec. 4, the results of comparative study between the 
proposed method and other state-of-the-art methods are 
presented. Sec. 5 summarizes this paper with conclusions 
and future work provided.
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2  Background

2.1  Multi‑objective optimization

Multi-objective optimization exists multiple conflicting 
objectives to optimize, and the optimization problem can 
be formulated as follows:

where the dimension of objective functions F(x) is M , 
x = (x1, x2, ..., xN)

T denotes N-dimension design variable vec-
tor with lower/upper bounds of xlb and xub , g = (g1, g2, ..., gq) 
is the constrain vector that can be simple linear or nonlinear.

The multi-objective improvement functions are usually 
employed as acquisition functions in BO for multi-objec-
tive optimization. Euclidean distance improvement func-
tion (Keane 2006), maximin distance improvement function 
(Svenson et al. 2016), and hypervolume (HV) (Yang et al. 
2019) improvement function are three state-of-the-art multi-
objective improvement functions. The Euclidean distance 
improvement function can be expressed as follows:

where f j
i
 is the jth Pareto solution of the ith objective, yi(x) 

is the prediction of the ith objective.
The maximin distance improvement function is expressed 

as follows:

Before the HV improvement function is introduced in 
detail, firstly the concept of the HV should be clarified. With 
a reference point dominated by the Pareto set, the HV of the 
dominated region can be measured as follows:

where p ≺ y ≺ R means the dominated region bounded by 
current Pareto p and the reference point, Volume (·) is the 
HV indicator.

The HV improvement is the difference of the HV indica-
tor between the current Pareto set and Pareto set with the 
next sample. It can be formulated as follows:

where p ∪ y represents the Pareto set obtained by the non-
dominated-sort method after the new sample y added. I(y) 
is the HV improvement beyond the current Pareto set after 

(1)
minF(x) =

{
f1(x), f2(x),… , fi(x),… , fM(x)

}

s.t. gj(x) ≤ 0, j = 1, 2,… , q

xlb ≤ x ≤ xub

(2)I(x) =
k

min
j=1

√√√√
m∑

i=1

(f
j

i
− yi(x))

2

(3)I(x) = −
k

max
j=1

[
m

min
i=1

(yi(x) − f
j

i
)

]

(4)H(p) = Volume(y ∈ ℝ
M|p ≺ y ≺ R)

(5)I(y) = H(p ∪ y) − H(p)

adding a new sample y . Figure 1 presents the 2D example 
of the HV improvement. The light gray area is the HV of 
current Pareto set and the dark gray area illustrates the I(y) . 
A higher HV improvement means a better-quality improve-
ment beyond the current Pareto set.

More information about these improvement functions can 
be consulted in Svenson’s work (2016).

2.2  Hierarchical kriging (HK) model

Kriging model (Williams et al. 2006) is an interpolative sur-
rogate model, which originated from the geostatistics and was 
applied to fit expensive simulation (Jerome et al. 1989).

HK model is a MF surrogate model based on the Kriging 
model, which takes LF prediction as an overall trend of the 
MF model with the HF function adopted to be a correction. 
To build an HF surrogate model for expensive function, first 
we build a Kriging model with LF samples, which is adopted 
thereafter to assist the construction of the MF model. The LF 
Kriging model is expressed as follows:

where �0,l is the mean term and Zl(x) is a random process 
with variance �2 and zero mean. One of the most commonly 
used spatial correlation functions between the error term of 
two points x and x′ , named the Gaussian correlation func-
tion, is given as follows:

where �2 is the variance of the Z(x),d is the dimension of 
design variables, and θ =

{
�1, �2, ..., �d

}
 is a “roughness” 

parameter associated with dimension i.

(6)Yl(x) = �0,l + Zl(x)

(7)cov(Z(x), Z(x�)) = �2 exp

{
−

d∑

i=1

�i
|||xi − x

�

i

|||
2

}

Fig.1  2-dimension example of the HV improvement
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The prediction of mean and mean-squared error (MSE) 
from LF model at any unobserved points can be formulated 
as follows:

respectively, where �0,l = (1TR−1
l
1)−11TR−1

l
fl(x) , fl(x) is 

the LF response of samples x,1 is a vector filled with 1, Rl 
is the covariance matrix with Rl,mn = cov(Z(xm), Z(xn)) as 
elements, and rl is a vector of correlation between the unob-
served point and samples. Above hyperparameters �0,l , �2 , �i 
are calculated by Maximum Likelihood Estimation (MLE).

Taking the predicted value of the LF model to construct 
the prior mean of the HF Kriging model, it will be built as 
follows:

where the ŷl(x) is the prediction of the LF model scaled by a 
constant factor �0 , Z(x) is a random process with zero mean 
and a covariance of cov(Z(x), Z(x�

)).
The prediction of mean value and mean-squared error 

(MSE) of HK model at the unobserved point can be formu-
lated as follows:

respectively, where �0 =
[
fl(x)

TR−1fl(x)
]−1

fl(x)
TR−1fh(x) 

is a scaling factor, and fh(x) is the high-fidelity response of 
sample points x.

More details about hierarchical Kriging model are intro-
duced in Han’s work (2012).

2.3  Bayesian optimization based on the LCB 
function

Bayesian optimization is a type of the surrogate model-
based method for expensive optimization problems. The 
BO method utilizes the uncertainty and prediction infor-
mation from surrogate model to quantify the improvement 
or probability of improvement between new sample and 
current optimum, which can balance the exploitation and 
exploration. EI and LCB functions are commonly used 
acquisition functions (Tran et al. 2019). With the number 
of objectives increased, due to the complexity of the non-
dominated region, a piecewise integral approach is often 

(8)ŷl(x) = 𝛽0,l + rT
l
(x)R−1

l
(fl(x) − 1𝛽0,l)

(9)s2
l
(x) = �2(1 − rT

l
(x)R−1

l
rl(x) +

(1 − 1TR−1
l
rl(x))

2

1TR−1
l
1

)

(10)Y(x) = 𝛽0ŷl(x) + Z(x)

(11)ŷ(x) = 𝛽0ŷl(x) + rT (x)R−1(fh(x) − 𝛽0fl(x))

(12)

MSE{ŷ(x)} = 𝜎2
{
1 − rT (x)R−1r(x)+

[
rT (x)R−1fl(x) − ŷl(x)

][
fl(x)

TR−1fl(x)
]−1[

rT (x)R−1fl(x) − ŷl(x)
]T}

used to calculate the EI value, where the integral region 
is commonly resolved into some regular cells (Zhan et al. 
2017). Hence, such improvement-based acquisition function 
as above multi-objective EI criteria becomes so complicated 
that the EI value is hard to be calculated. On the contrary, 
an outstanding advantage using LCB function is that it is no 
need to calculate such tedious piecewise integral like EI and 
PI function. This property economizes many computational 
resources from the calculation of high-dimension integrals.

Given the samples 
{
x1, x2, ..., xN

}
 and their associated 

response 
{
f1, f2, ..., fN

}
 , LCB function is formulated as 

follows:

where f̂ (x) represents the prediction value of surrogate 
model, s(x) is the square root of uncertainty, k is a parameter 
balanced the exploitation and exploration. In multi-objective 
optimization, the form of LCB function will be a vector (Shu 
et al. 2020):

where M is the number of objectives, each objective is fitted 
by the surrogate model respectively, and si(x) is the square 
root of the posterior predictive variance. A larger value of 
the coefficient ki represents that the algorithm is encouraged 
to search the solution in the uncertain region, conversely a 
small value encourages exploitation in the current optimum 
region.

More information about EI, PI, and other acquisition 
functions can be consulted in following reference papers 
(Jones et al. 1998) (Ruan et al. 2020; Shahriari et al. 2016).

3  Proposed method

In this section, a bi-fidelity BO method for multi-objective 
optimization is proposed. Firstly, the cost and HV improve-
ment after adding a new sample with different fidelity are 
analyzed, then the new acquisition function is introduced in 
detail. Finally, the terminal condition and procedure of the 
method are presented.

3.1  Predicted HV improvement after adding a new 
sample with different fidelities

The LCB function utilizes the predicted mean and uncer-
tainty to measure the worth of each point in the unobserved 
area. The HV improvement function is employed to quan-
tify the predicted quality improvement after adding a new 

(13)fLCB(x) = f̂ (x) − ks(x)

(14)
fLCB(x) =

[
fLCB,1(x), fLCB,2(x), ..., fLCB,M(x)

]

where fLCB,i(x) = f̂i(x) − kisi(x)
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sample in the proposed method, as presented in Eqs. (4) and 
(5). The HV improvement function can be formulated as 
follows:

where the fLCB(x) is the LCB function defined in Eq. (14). 
Figure 2 presents the Pareto set and predicted HV improve-
ment after adding a new sample ( ILCB(x) ) in 2D objective 
space. The red point in Fig. 2 represents the fLCB(x) at sam-
ple x.

Figure 3 presents the HV improvement while the surro-
gate model has two fidelity levels and the HV improvement 
functions are formulated, respectively, as follows:

(15)ILCB(x) = H(p ∪ fLCB(x)) − H(p)

where the Il
LCB

(x) and Ih
LCB

(x) denote the HV improvement 
after adding HF and LF samples, respectively, f l

LCB
(x) and 

f h
LCB

(x) are expressed as follows:

respectively, where

sh
i
(x) is the error term arising from the lack of an HF 

sample in HK model, �0sli(x) is the error of the LF model 
prediction because of the lack of a LF sample (Zhang et al. 
2018a, b).

The light gray area in Fig. 3 is the HV of the current 
Pareto frontier. The blue and dark gray areas represent the 
HV improvement after adding the LF sample ( Il

LCB
(x) ) and 

the HF sample ( Ih
LCB

(x) ) beyond current Pareto set, respec-
tively. It should be noted that the Ih

LCB
(x) includes the blue 

area, which denotes the HV indicator of the region between 
f h
LCB

(x) and the Pareto set. In most circumstances, the Ih
LCB

(x) 
is larger than the corresponding Il

LCB
(x) due to the discrepant 

uncertainty term so that there is a conflict between com-
putational cost and HV improvement of the sample with 
different fidelity.

3.2  The proposed acquisition function

As illustrated in the following Fig. 4, the predicted HV 
improvement can be partitioned into two parts, one from the 
predicted mean and the other from the uncertainty region.

The green region in Fig. 4 means the HV improvement of 
the predicted mean after adding a new sample ( I�

LCB
(x) ) and 

it is expressed as follows:

where f̂i(x) means the prediction mean of each objective. 
The blue and dark gray areas represent the HV improvement 

(16)Il
LCB

(x) = H(p ∪ f l
LCB

(x)) − H(p)

(17)Ih
LCB

(x) = H(p ∪ f h
LCB

(x)) − H(p)

(18)f l
LCB

(x) =
[
f l
LCB,1

(x), f l
LCB,2

(x), ..., f l
LCB,M

(x)
]

(19)f h
LCB

(x) =
[
f h
LCB,1

(x), f h
LCB,2

(x), ..., f h
LCB,M

(x)
]

(20)f l
LCB,i

(x) = f̂i(x) − ki𝛽0s
l
i
(x)

(21)f h
LCB,i

(x) = f̂i(x) − kis
h
i
(x)

(22)I
𝜇

LCB
(x) = H(p ∪ f̂ (x)) − H(p)

(23)f̂ (x) = [f̂1(x), f̂2(x), ..., f̂i(x), ..., f̂M(x)]

Fig.2  2-dimension example of Pareto set and predicted HV improve-
ment

Fig.3  the predicted HV improvement after adding HF and LF sam-
ples
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as the same as shown in Fig. 3, and they can be expressed as 
Il
LCB

(x) and Ih
LCB

(x) calculated by Eqs. (16) and (17).
To balance the cost and improvement of a new sample 

with different fidelity, here a novel improvement func-
tion with different fidelity is introduced, which can be 
expressed as follows:

where t = 1 and t = 2 represent the improvement function 
with low fidelity and high fidelity, respectively, CR(t) is the 
cost coefficient that is formulated as follows:

where c ≥ 1 , which is the ratio of cost between HF and 
LF simulations. With the cost coefficient applied, the HV 
improvement with LF sample is expanded proportionally 
by controlling the computational cost to the same level for 
different fidelities. Thus, the HV improvement with differ-
ent fidelities can be reasonably compared and choose the 
most appropriate one. When the cost ratio c is larger than 
one, it is invidious to compare Il

LCB
(x) with corresponding 

Ih
LCB

(x) after multiplying the cost coefficient CR(t) because 
the predicted mean with all fidelity levels has no discrep-
ancy between each other in BF surrogate model. Hence, the 
effect of the cost coefficient on the HV improvement of the 
predicted mean should be eliminated.

As the cost coefficient CR(t) with HF level is equal to 
1, the term where t = 2 in Eq.  (24) can be regarded as 
follows:

(24)I(x, t) =

{
(Il
LCB

(x) − I
�

LCB
(x)) × CR(t) + I

�

LCB
(x) t = 1

(Ih
LCB

(x) − I
�

LCB
(x)) × CR(t) + I

�

LCB
(x) t = 2

(25)CR(t) =

{
c t = 1

1 t = 2

and the I(x, t) can be simplified as follows:

When the fLCB(x) locates in dominated region, all of terms 
in I(x, t) is equal to zero and it cannot estimate which fidelity 
level is more appropriate. On the other hand, the algorithm 
of optimizing the acquisition function, such as genetic algo-
rithm (GA) (Jin 2011), adopts random sampling to obtain 
the initial population, whereas Pareto solutions usually only 
occupy a narrow region relative to the whole design space. 
Therefore, GA may not be able to acquire a solution located 
in the area of Pareto set during the searching process, which 
leads to the decline of search efficiency in optimization pro-
cess. Figure 5 illustrates the situation that the LCB function 
locates in dominated region of Pareto frontier.

To address this issue, we refer to our previous work 
(Shu et al. 2020), a novel acquisition function is defined 
as follows:

where I(x, t) is Eq. (27), Xi ( i = 1, 2, ..., q ) denotes the cur-
rent Pareto solution, ‖‖fLCB(x) − f (Xi)

‖‖2 means the Euclidean 
distance between fLCB(x) and the Pareto solution Xi . The 
acquisition function makes an encouragement to help GA 
find the solution close to the Pareto frontier so that the opti-
mization efficiency can be improved.

(26)(Ih
LCB

(x) − I
�

LCB
(x)) × 1 + I

�

LCB
(x) = Ih

LCB
(x)

(27)I(x, t) =

{
(Il
LCB

(x) − I
�

LCB
(x)) × CR(t) + I

�

LCB
(x) t = 1

Ih
LCB

(x) t = 2

(28)

a(x, t) =

{
I(x, t), where fLCB is non - dominated

− min
i=1,2,...q

(‖‖fLCB(x) − f (Xi)
‖‖2), where fLCB is dominated

Fig.4  the predicted HV improvement of the predicted mean after 
adding new samples

Fig.5  the LCB function located in dominated region
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3.3  Procedure and termination condition

The proposed method, based on BF model and LCB func-
tion for multi-objective optimization (BF-MOLCB), fol-
lows a process as illustrated in Fig. 6. In the study, the Latin 
hypercube sampling (LHS) (Wang 2003) policy is applied to 
generate two initial sample sets for two fidelity levels. With 
the corresponding responses of initial samples evaluated, the 
current Pareto frontier can be obtained by the non-dominated 
sorting method (Deb et al. 2002).

The procedure of the BF-MOLCB is summarized in the 
flowchart as shown in Fig. 6, includes

Step 1 Generate two sample sets for LF and HF model 
by LHS.
Step 2 Evaluate the true responses of the corresponding 
samples.
Step 3 Construct the LF Kriging models for each objec-
tive utilizing the DACE toolbox (Lophaven et al. 2002).
Step 4 Construct the hierarchical Kriging model based 
on LF Kriging model and HF samples. The initial value 
of the hyperparameter � is set to be 1. The region of � is 
set to be [10−6, 103].
Step 5 Obtain the current Pareto frontier by the non-dom-
inated sorting method.
Step 6 Judge the termination criterion, if it is not satis-
fied, go to step 7. Otherwise, the method is stopped and 
output the solution.

Step 7 Maximize the proposed acquisition function to 
obtain a new sample, turn back to step 2.

A stop criterion is adopted to terminate the optimization 
process after the following two conditions are satisfied:

(1) After the algorithm finds at least 20 solutions, thus, the 
Pareto set will provide enough choice to the decision 
maker; Or the computational expense gets the maxi-
mum budget, defined as 200 in this paper.

(2) The discrepancy of the quality metrics in two adjacent 
iterations represents the variation of the current Pareto 
frontier. Hence, when the ratio of the difference and 
the current HV value is less than a specific value (e.g., 
0.1% in this paper), the algorithm will be terminated, 
which is defined as follows:

where the HVi means the HV value of the ith iteration (Shu 
et al. 2020).

4  Examples and results analysis

In this section, four numerical examples and an engineering 
design problem are adopted to test the efficiency and appli-
cability of the proposed method. The formulations and true 

(29)HVT =
HVi − HVi−1

HVi

Fig.6  the flowchart of the pro-
posed method
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Pareto solutions of the four numerical examples (Shu et al. 
2019) are summarized in Table 1. There are two single-fidel-
ity BO methods (Sun et al. 2021; Zhan et al. 2017) only uti-
lizing HF simulations and other two bi-fidelity BO methods 
(He et al. 2022) to compare with the proposed BF-MOLCB 
method: (1) Euclidean distance-based EIM method (EIMe), 
(2) Euclidean distance-based LCBM method (LCBMe), (3) 
Hypervolume-based VFEIM method (VFEIMh), and (4) 
VFEMHVI method.

4.1  Numerical examples

ZDT1, ZDT2, FON, and POL examples are solved by above 
methods and the results are compared in this part. The cost 
of the initial sample is set as 10*n (n is the dimension of 
design variable), where the cost of the bi-fidelity method is 
formulated by an equivalent calculation as follows:

(30)COST =
Nl

CR
+ Nh

Table 1  The formulation of the four numerical examples

Test function Formulation True Pareto

ZDT1 minimize f1(x) = x1

HF ∶ f2(x) = h(x) × g(x)

LF ∶ f2(x) = (0.8g(x) − 0.2) × (1.2h(x) + 0.2)

where g(x) = 1 +
9

n − 1

n�

i=2

xi

h(x) = 1 −
√
f1(x)∕g(x)

n = 3

0 ≤ xi ≤ 1, i = 1, ..., n  

ZDT2

 

minimize f1(x) = x1

HF ∶ f2(x) = h(x) × g(x)

LF ∶ f2(x) = (1.1h(x) − 0.1) × (0.9g(x) + 1.1)

where g(x) = 1 +
9

n − 1

n∑

i=2

xi

h(x) = 1 − (f1(x)∕g(x))
2

n = 3, 6, 8, 10

0 ≤ xi ≤ 1, i = 1, ..., n  

FON
minimize f1(x) = 1 − exp(−

3�

i=1

(xi −
1
√
3
)2)

HF ∶ f2(x) = 1 − exp(−

3�

i=1

(xi +
1
√
3
)2)

LF ∶ f2(x) = (1 − exp(−(x1 + 0.5)2 − (x2 + 0.55)2−

(x3 + 0.6)2))(1.1 + 0.25 sin x1)

−4 ≤ xi ≤ 4, i = 1, 2, 3  
POL minimize HF ∶ f1(x) = [1 + (A1 − B1)

2 + (A2 − B2)
2]

LF ∶ f1(x) = [1 + (0.9A1 − 1.2B1)
2+

0.9(1.2A2 − 0.9B2)
2]

f2(x) = (x1 + 3)2 + (x2 + 1)2

where A1 = sin 2 − 2 cos 1 + 0.5 sin 1 − 1.5 cos 2

A2 = 2 sin 2 − cos 1 + 1.5 sin 1 − 0.5 cos 2

B1 = 0.5 sin x1 + sin x2 − 2 cos x1 − 1.5 cos x2

B2 = 1.5 sin x1 + 2 sin x2 − cos x1 − 0.5 cos x2

−� ≤ xi ≤ �, i = 1, 2
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where Nl/Nh denotes the number of LF/HF samples. For 
initial sampling, Nl and Nh are set as 5*n*CR and 5*n, 
respectively. The CR is the ratio of cost between LF and HF 
samples, which is set to be 4 in the following numerical test 
problems. To obtain the HV indicator, a reference point is 
set in each test function, as the shown in Table 2.

Firstly, a detailed comparison between these methods is 
demonstrated using the example ZDT1 (dimension n = 3 ). 
Each method is run 10 times, where the statistics of the HV 
indicator and computational expense (COST) are recorded. 
The comparison results of HV and COST using different 
methods are summarized in Table 3, including the mean, 
median value, and STDs of HV and COST from 10 runs. 
The best indicators are shown in bold in the Table. Figure 7 

illustrates the box charts of the HV and COST obtained from 
different methods in ZDT1 problem.

As the HV indicators presented in Table 3, the LCBMe 
method, the VFEMHVI method, and proposed method 
have the most ideal Pareto frontier approximation quality 
according to the HV indicator. Meanwhile, the minimum 
mean and STD value of the COST demonstrate that the pro-
posed method enables to have an ideal performance with 
lowest computational expense simultaneously, in which the 
COST means of the proposed method have 55.67%, 43.74%, 
46.03%, and 28.13% decline over EIMe, LCBMe, VFEIMh, 
and VFEMHVI, respectively. Figure 7 illustrates the com-
parison over different methods intuitively. It can be seen 
that COST indicator of the proposed method has the most 
inconspicuous abnormal value in this box chart.

Table  4 presents the average computational expense 
required to obtain different number of Pareto solutions in 
ZDT1, further comparing the efficiency of finding Pareto 
solutions over these methods. As shown in Table 4, the pro-
posed method always has the lowest value of the average 
computational expense. It is important to find enough Pareto 
solutions to provide adequate options for designers.

Table 2  Reference points to 
calculate HV indicator in each 
test function

Test function Reference point

ZDT1 [11,11]
ZDT2 [11,11]
FON [1.4,1.4]
POL [70,70]

Table 3  The compared results 
of different methods for ZDT1 
problem

Test Method HV COST

Median Mean Std Median Mean Std

ZDT1 EIMe 120.6327 120.6204 0.0287 100.5000 128.8000 61.8310
(n = 3) LCBMe 120.6352 120.6342 0.0037 104.5000 101.5000 18.2041

VFEIMh 120.5979 120.5301 0.1370 84.0000 105.8000 59.1117
VFEMHVI 120.6359 120.6357 0.0017 68.3750 79.4500 36.2950
BF-MOLCB 120.6358 120.6355 0.0021 55.7500 57.1500 4.1820

Fig.7  the box chart of the HV and COST. a HV, b COST
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The quality of Pareto frontier is also a considerable met-
ric in multi-objective optimization problems, which directly 
determines the information provided for designers. Hence, it 
is necessary to compare the quality of Pareto frontier from 
different methods. There are several figures illustrating the 
Pareto frontier with the lowest HV indicator over 10 runs, 
as shown in Fig. 8. In the ZDT1 problem, the most ideal 
Pareto frontier are still obtained by the VFEMHVI method 
and the proposed method, but the advantage is not evident 
enough, in which the difference of the HV means between 
the proposed method and VFEMHVI is lower than 0.01. 
Other methods also have nonnegligible competitiveness in 
this case.

The comparisons of remaining examples are summarized 
in Tables 5 and 6. All these methods present satisfactory 

performance in obtaining the Pareto solutions on FON and 
ZDT2 problems with n = 3 and the proposed method still 
has the lowest computational cost and ideal HV indicators. 
A very diverse phenomenon appears in POL problem. Even 
though the discrepancy of the cost among different methods 
is not significant enough, the cost of the proposed method 
is slightly higher than other single-fidelity methods and 
VFEIMh method. However, the proposed method has the 
highest HV indicator, which means it enables to obtain a 
Pareto set with better quality than other methods. Similar to 
Fig. 8, Fig. 9 illustrates the Pareto frontier with the lowest 
HV indicator in 10 runs on POL problem. It can be seen 
that the Pareto solutions obtained by the proposed method 
uniformly distribute on the true Pareto frontier, which is 
obviously better than VFEIMh and other single-fidelity 
methods. The VFEMHVI method has the same situation 
but its expense is 3.43% higher than the proposed method.

Additionally, there are several high-dimension test 
problems (ZDT2 problem with dimension n = 68, 10 ) 
for measuring the ability to solve the optimization prob-
lems under more complex cases. The proposed method 
reveals a prominent performance in these problems, as 
shown in Table 6. The “/” symbol denotes that the ter-
mination criterion cannot be satisfied when the compu-
tational expense reaches the maximum budget 200. For 

Table 4  The average computational expense required to obtain differ-
ent number of Pareto solutions for ZDT1 problem

Pareto 
solutions 
number

EIMe LCBMe VFEIMh VFEMHVI BF-MOLCB

10 45.00 47.80 49.25 42.83 42.33
15 61.50 72.60 67.40 53.35 49.95
20 128.80 101.50 105.70 79.45 57.15

Fig.8  Pareto frontier with the lowest HV indicator in 10 runs on ZDT1 problem
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these high-dimension problems, the proposed method 
always has the lowest computational expense and ideal 
quality of Pareto frontiers. In the ZDT2 problem with 
n = 6 , single-fidelity methods sometimes fail to obtain 
20 Pareto solutions before the maximum budget reached. 
The performance of the VFEMHVI and the proposed 
BF-MOLCB method has notable improvement, in which 
the COST means of the proposed method have 52.89%, 
62.87%, 60.24%, and 34.70% decline over EIMe, LCBMe, 
VFEIMh, and VFEMHVI, respectively. The VFEMHVI 
method can obtain the largest HV indicator. The proposed 
method can also obtain an ideal Pareto frontier (difference 
of HV between the VFEMHVI and the proposed method 
is less than 0.01% of the whole HV), meanwhile the com-
putational expense of the proposed method is much lower 

than the VFEMHVI. In the test problem with n = 8, 10 , all 
single-fidelity methods cannot meet the termination crite-
rion until the maximum budget 200 reached. The cost of 
the VFEIMh and VFEMHVI method is also unsatisfac-
tory. Especially in ZDT2 with n = 10 , only the proposed 
method can still obtain a satisfactory Pareto frontier with 
controllable computational expense.

Comparing these test problems in terms of the dimen-
sions, low-dimension problems ( n = 2, 3 ) have a smaller dif-
ference in the computational cost between these methods, 
whereas the corresponding discrepancy in high-dimension 
problems is much more noteworthy. Therefore, the bi-fidelity 
surrogate models have better performance than single-fidel-
ity models in approximating the complex problems, which 
confirms the research significance of utilizing bi-fidelity 

Table 5  The compared results 
of different methods for ZDT2 
(n = 3), POL and FON problems

Test Method HV COST

Median Mean Std Median Mean Std

ZDT2 EIMe 120.3054 120.3057 0.0012 66.0000 66.6000 5.7388
(n = 3) LCBMe 120.3064 120.3062 0.0012 67.0000 68.4000 6.5013

VFEIMh 120.3067 120.3064 0.0023 62.2500 64.5000 8.2563
VFEMHVI 120.3084 120.3085 0.0009 64.1250 65.4000 8.4502
BF-MOLCB 120.3078 120.3078 0.0012 59.2500 59.9500 3.5645

POL EIMe 4789.3157 4788.6301 3.2840 47.5000 47.2000 2.1499
LCBMe 4788.6244 4788.7998 2.4318 47.0000 47.5000 1.9003
VFEIMh 4789.5654 4790.4894 2.0784 46.7500 47.3250 2.2362
VFEMHVI 4793.8204 4793.8453 0.1653 53.5000 53.5250 2.1488
BF-MOLCB 4793.9483 4793.8788 0.2598 51.7500 51.7500 1.2802

FON EIMe 1.2609 1.2596 0.0073 69.0000 70.0000 7.6012
LCBMe 1.2629 1.2614 0.0102 68.0000 68.3000 3.4335
VFEIMh 1.2646 1.2634 0.0073 69.2500 70.9000 7.3817
VFEMHVI 1.2707 1.2711 0.0023 71.2500 70.4500 5.0329
BF-MOLCB 1.2728 1.2732 0.0011 66.6250 66.9750 4.1356

Table 6  The compared results 
of different methods for high-
dimension ZDT2 problems

Test Method HV COST

Median Mean Std Median Mean Std

ZDT2 EIMe 120.2893 120.2895 0.0065 210.5000 203.4000 30.6311
(n = 6) LCBMe 120.2841 120.2847 0.0065 260.0000 258.1000 6.0083

VFEIMh 120.2845 120.2481 0.1161 260.0000 241.0250 31.7191
VFEMHVI 120.3073 120.3073 0.0014 134.8750 147.4500 27.2832
BF-MOLCB 120.2990 120.2966 0.0088 91.2500 95.8250 11.5205

ZDT2 EIMe / / / / / /
(n = 8) LCBMe / / / / / /

VFEIMh 120.2775 120.2334 0.1221 280.0000 277.0000 11.1586
VFEMHVI 120.3015 120.3004 0.0047 256.0000 248.2000 37.1296
BF-MOLCB 120.2962 120.2949 0.0060 121.8750 147.5250 47.0816

ZDT2 Others /
(n = 10) BF-MOLCB 120.2922 120.2878 0.0136 212.8750 224.8500 71.6823
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models in BO to solve the multi-objective optimization 
problems.

4.2  Engineering case

In this section, two engineering examples, torque arm and 
honeycomb structure vibration isolator design optimiza-
tion, are adopted to verify the performance of the proposed 
method. The torque arm is fixed at the left end. The load on 
the torque arm, P1 = 8.0kN  and P2 = 4.0kN  , is exerted at 
the right end (Fig. 10).

Fig.9  Pareto frontier with the lowest HV indicator in the 10 runs on POL problem

Fig.10  Parameterization of the 
torque arm (Shu et al. 2020)
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Six design variables are applied for the torque in this 
example, including �, b1,D1, h, t1, t2 , and t2 . The optimiza-
tion problem is expressed as follows:

where V  is the total volume, max _d is the maximum dis-
placement of the torque arm, and the Young’s modulus is 
200 GPa and Poisson’s ratio is 0.3. In this example, the 

(31)

min f1 = V(�, b1,D1, h, t1, t2)

min f2 = max _d(�, b1,D1, h, t1, t2)

where 3 deg ≤ � ≤ 4.5 deg ; 25mm ≤ b1 ≤ 35mm

90mm ≤ D1 ≤ 120mm; 20mm ≤ h ≤ 30mm

12mm ≤ t1 ≤ 22mm; 8mm ≤ t2 ≤ 12mm

reference point is [1000;10] and the cost ratio between high- 
and low-fidelity samples is 4.

Each method is run 10 times, where the average of the 
HV indicator and computational expense is recorded, as 
the shown in Table 7. All of these methods can meet the 
termination condition; thereinto, the proposed method has 
the best performance in the quality of Pareto solutions due 
to the highest HV indicator. However, the cost of the pro-
posed method is higher than other methods. The reason 
why this phenomenon appears is that the non-dominated 
solutions obtained by the single-fidelity methods and the 
VFEIMh method early on have satisfied the termination 
criterion, which leads the method cannot obtain an ideal 
Pareto set. There are some figures in Fig. 11 used to show 
the Pareto frontier with the lowest HV indicator in 10 runs 

Table 7  The comparison with 
different methods for the torque 
arm problem

Test Method HV COST

Median Mean Std Median Mean Std

Torque arm EIMe 5413.7313 5415.6613 28.2935 79.0000 78.6000 6.8346
LCBMe 5421.6972 5417.3965 23.0653 82.0000 81.3000 4.7621
VFEIMh 5473.2851 5469.4519 18.4871 86.7500 87.1250 2.8874
VFEMHVI 5484.5960 5484.4753 2.6605 90.5000 91.2000 5.4439
BF-MOLCB 5488.8273 5488.2470 1.6061 92.7500 95.9250 7.9696

Fig.11  Pareto frontier with the lowest HV indicator in 10 runs on the torque arm problem
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on this torque arm problem. Obviously, the Pareto solutions 
obtained from proposed method distribute uniformly on the 
true Pareto frontier, distinctly better than other single-fidelity 
methods and VFEIMh.

To compare the proposed method with other methods 
more fairly, the same budget is adopted to compare the qual-
ity of the Pareto solution set, which is set 100 in this study. 
Each method works 10 times repeatedly, terminated when 
the cost of optimization process reaches 100, and summa-
rizes the median, mean, and std value of the HV indica-
tor. The results are shown in Table 8. It can be seen that 
the median and mean value of the HV indicator obtained 
by the proposed method are still better than other methods; 

meanwhile, the least std value reveals the stability of the 
proposed method. Even the HV indicators obtained by the 
single-fidelity methods and the VFEIMh method after 100 
iterations are still less than the corresponding value when 
the proposed method has obtained 20 Pareto solutions 
(5488.2470 on average), whereas the proposed method 
only costs 35.93 on average to obtain 20 Pareto solutions 
in optimization process. The VFEMHVI method also has 
a good performance, which has slight discrepancy with the 
proposed method.

Figure 12 intuitionally presents the Pareto frontier of 
the lowest HV indicator with the same budget. The Pareto 
frontiers obtained by the single-fidelity methods are much 
better than before but still distributed unevenly. The diver-
sity of the Pareto solutions is also worser than the proposed 
method obtained, in which a fixed area many non-dominated 
solutions intensively distributed. Compared with other two 
bi-fidelity method, the proposed method still has the best 
performance in the torque arm optimization problem.

In the vibration isolator optimization problem, six design 
variables are applied, including �,D,Rf , L, th , and tl as 
shown in Fig. 13. The ratio of the natural frequency e and 
the Equivalent strain �max are set as the goal of the multi-
objective optimization problem to minimize. The nonlinear 
coefficient � , the transverse-longitudinal stiffness ratio Rk , 

Table 8  The comparison with the same budget for the torque arm 
problem

Test Method HV COST

Median Mean Std Mean

Torque arm EIMe 5469.6338 5466.1356 13.6531 160
LCBMe 5473.9124 5469.9749 11.0629 160
VFEIMh 5487.7229 5483.0587 10.2516 160
VFEMHVI 5492.3657 5491.8646 1.2179 160
BF-MOLCB 5492.5094 5492.6020 1.0337 160

Fig.12  Pareto frontier of the lowest HV indicator with the same budget
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the total height H , and the dimensional coordination condi-
tions Ts are set as the constraints, in which � and Rk should be 
evaluated by computationally expensive simulations while 
the H and Ts can be obtained by mathematical formulas. The 
optimization problem is expressed as follows:

where the parameters are shown in Tables 9, 10, and 11.
The vibration isolator test problem is modeled and 

simulated using ANSYS 18.2, in which high- and low-
fidelity levels are set via adjusting the dimension of the 
mesh division. The number of mesh division of the high-
fidelity analysis model in the direction of inclined beam 
thickness tl is set as 6, and the corresponding number in 

(32)

min e(�,D,Rf ,L, th, tl) =
|

|

|

|

1 −
f
f0

|

|

|

|

�max(�,D,Rf , L, th, tl)

s.t. g1 = 1 − �
0.75

≤ 0, g2 = 1 −
Rk

1.2
≤ 0,

g3 =
H
70

− 1 ≤ 0, g4 = Ts ≤ 0

Fig.13  The vibration isolator and the geometry of a honeycomb cell (Qian et al. 2021)

Table 9  Fixed parameters

Fixed parameters Value

Number of Rows m 2
Number of columns n 4
Density of polyurethane � 1166 kg/m3

Poisson’s ratio � 0.475
Elastic modulus E 33.24 MPa
Rated Load F 50 kgf

Table 10  Physical meaning and ranges of design variables

Design variables Description Ranges

� Oblique angle 4.0–15.0°
D Depth 35.0–100.0 mm
Rf Radius of rounding 3.0–5.0 mm
L Length of oblique bar 15.0–20.0 mm
th Thickness of vertical bar 5.0–10.0 mm
tl Thickness of oblique bar 3.5–10.0 mm

Table 11  Objective and 
constraint functions and their 
boundary conditions

Objectives Description Boundary Condition Whether computa-
tionally expensive 
or not

e =
|||1 −

f

f0

|||
The ratio of the natural frequency f0 = 6 Yes

�max Equivalent strain minimize Yes
Constraints
 g1 ∶ � Minimum value of nonlinear coefficient � ≥ 0.75 Yes
 g2 ∶ Rk Transverse-longitudinal stiffness ratio Rk ≥ 1.2 Yes
 g3 ∶ H Total height of vibration isolator H ≤ 70 No
 g4 ∶ Ts Dimensional coordination conditions Ts ≤ 0 No
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the low-fidelity analysis model is set as 2, as shown in 
Fig. 14. The cost coefficient is set as 3. The penalty func-
tion is used to handle the constraints which are obtained by 
mathematical formulas. For constraints which need time-
consuming simulations to obtain, this paper addresses 
them based on the method proposed by Schonlau (1998), 
which was extended to solve multi-fidelity optimization 
problems in our previous work (Shu et al. 2021). The refer-
ence point is set as [10;0.2].

Each method is run 10 times, where the average of the 
HV indicator and computational expense is recorded, as 
the shown in Table 12. All of these methods can meet the 
termination condition; thereinto, the proposed method has 
the best performance in the quality of Pareto solutions due 
to the highest HV indicator. With regard to the compu-
tational expense, there is only a small variation between 
these methods, in which the EIMe has the lowest cost and 
the VFEMHVI is the highest one. Other three methods are 
almost the same level. However, the proposed method has 
notable advantage in term of the HV indicator, especially 
comparing with the EIMe, the LCBMe, and the VFEIMh 
method. Figure 15 illustrates the Pareto frontier with the 
lowest HV indicator in 10 runs. It can be seen that the 

Pareto frontier obtained from proposed method is better 
than other methods obtained.

5  Conclusion

A bi-fidelity Bayesian optimization method for multi-objec-
tive optimization is proposed. In the proposed method, the 
LCB functions are adopted to utilize the uncertainty of sur-
rogate model. On this basis, a novel acquisition function 
is defined, in which a cost coefficient balances the compu-
tational expense and accuracy of new sample points with 
different fidelity levels. Then, the new sample can be deter-
mined by maximizing the proposed acquisition function.

Four numerical test problems with different dimensions 
and two real-world engineering design optimization prob-
lems are applied to investigate the feasibility and efficiency 
of the proposed method. Some conclusions are drawn as 
follows:

Fig.14  The mesh division for high- and low-fidelity finite element. a Fine mesh. b Coarse mesh (Qian et al. 2021)

Table 12  The comparison 
with different methods for the 
engineering problem

Test Method HV COST

Median Mean Std Median Mean Std

Vibration isolator EIMe 1.7913 1.7861 0.0176 124.0000 126.5000 13.6728
LCBMe 1.7976 1.7940 0.0185 127.0000 130.8000 22.0091
VFEIMh 1.8087 1.8061 0.0122 131.6667 127.1000 13.1600
VFEMHVI 1.8224 1.8222 0.0052 133.0000 132.6333 10.9448
BF-MOLCB 1.8259 1.8260 0.0021 128.1667 130.2333 10.7279
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1) The effect of samples with different fidelities for improv-
ing the quality of the current Pareto set is quantified in 
the proposed method;

2) The proposed method balances the cost and effect of 
samples with different fidelities, which can utilize the LF 
samples to potentially further reduce the computational 
expense;

3) Compared with other two state-of-the-art single-fidel-
ity methods and two bi-fidelity methods, the proposed 
method shows prominent performance in computational 
cost and improving of Pareto solutions, especially for 
solving high-dimension problems.

In the future, several potential directions are worth 
exploring. First, the acquisition function of choosing new 
samples from multiple fidelities (> 2) still remains to be 
researched and tested. Second, combined with the research 
from Foumani et al. (2022), other acquisition functions 
like EI and PI can be utilized in multi-objective optimiza-
tion with multi-fidelity model. Last but not the least, the 
proposed method can be extended to solve multi-objective 
robust optimization problems.
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