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Abstract
Multi-fidelity surrogate models fusing data from different fidelity systems can significantly reduce the computational cost 
while ensuring the model accuracy. The focus of this paper is on the sequential design for multi-fidelity models for expen-
sive black-box problem. A Co-kriging-based multi-fidelity sequential optimization method named proportional expected 
improvement (PEI) is proposed with the objection to be more efficient for global optimization and to be more reasonable 
to evaluate the costs and benefits of candidate points from different levels of fidelity. The PEI method is an extension of 
expected improvement (EI) and uses an integrated criterion to determine both location and fidelity level of the subsequent. 
In the integrated criterion, a proportional factor which is adaptively adjusted according to the sample density is added in 
EI to adjust the tendency between exploration and exploitation during the search process. Meanwhile, Kullback–Leibler 
divergence is used to measure the credibility of a point from system with different fidelities, and the cost and constraint 
of different fidelities are also considered. The effectiveness and advantage of the proposed method were demonstrated by 
seven analytical functions and then applied to the aerodynamic shape optimization of NACA0012 airfoil. Experiments show 
that the proportional factor makes the proposed algorithm better search for the global optimum, and the KL divergence can 
describe the relationship between high and low fidelity more significantly.

Keywords  Co-Kriging · Multi-fidelity · Expected improvement · Sequential sampling · Kullback–Leibler divergence

1  Introduction

Bayesian optimization is a powerful global optimization 
method for solving expensive black-box problems (Greenhill 
et al. 2020; Shahriari et al. 2015), especially when the objec-
tive function is non-convex and expensive to explore. Com-
pared with other black-box optimization algorithms, such as 
genetic algorithm (GA) (Holland 1975) and particle swarm 
optimization algorithm (PSO) (Kennedy and Eberhart 1995), 
Bayesian optimization is a surrogate model-based method, 
which enables to search the global optimum with much less 
number of expensive evaluation points. The surrogate model 

and the acquisition function are the two cores of Bayes-
ian optimization. The surrogate model providing a basic 
model hypothesis of the system is constructed and updated 
iteratively. The most popular surrogate model by far is the 
Gaussian Process (GP) model(Santner et al. 2018), thus 
Bayesian optimization with GP model is also often referred 
to as sequential Kriging optimization (SKO) (Huang et al. 
2006a) and efficient global optimization (EGO). The acquisi-
tion function guides the selection rule of the next sampling 
point. Under a GP model, the commonly used acquisition 
functions include expected improvement method (EI) (Jones 
et al. 1998), probability improvement method (PI) (Jones 
2001), upper confidence bound method (UCB) (Srinivas 
et al. 2018), and knowledge gradient method (Frazier et al. 
2008). Among them, EI is the most popular method due 
to its closed-form acquisition function. The core idea of 
EI is that if a certain point can bring the greatest expected 
improvement to the current best point, it will be selected as 
the next sample point. However, EI is very greedy, it tends 
to over exploit the fitted GP model, and it is very easy to fall 
into the local optimum (Qin et al. 2017; Bull 2011). Some 
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recent efforts are developed to remedy the greediness of EI, 
including Snoek et al. (2012), Chen et al. (2017), and so on. 
But such methods diminish a key advantage of EI: efficient 
queries via a closed-form criterion. Chen et al. (2020) pro-
posed a hierarchical EI (HEI) criterion by modifying the 
prior distribution and increasing the variance, the method 
corrects the greediness of EI while preserving a closed-form 
acquisition function.

Yet, in many practical instances, the evaluation of a real 
system of interest is too expensive, and one may consider 
drawing data from surrogate experiment systems with lower 
cost. For example, the computer simulations can be used to 
approximate physical experiments; the numerical simula-
tion might involve simplifying the mathematical model of 
the physical reality, and it can be run at different levels of 
complexity. We call these systems “low-fidelity systems” 
(LFMs) and the real systems the “highest-fidelity systems” 
(HFMs).

Multi-fidelity models (MFMs) combine both HFMs and 
LFMs in order to achieve the desired accuracy at lower cost, 
and it attracted much attention from uncertainty quantifica-
tion or optimization. MFMs involve generally construction 
of surrogate models by using variable-fidelity data. Fernán-
dez-Godino et al. (2016) reviewed a large variety of MFM 
implementations, and classified it as multi-fidelity surrogate 
models (MFSMs) and multi-fidelity hierarchical models 
(MFHMs). The main concept of multi-fidelity surrogate 
models (MFSMs) is to use an algebraic surrogate model to 
correct the LFMs using HFMs. Four main correction meth-
ods are space mapping, multiplicative correction, additive 
correction, and comprehensive correction. The key idea of 
space mapping is the generation of an appropriate trans-
formation of the vector of fine model parameters xHF to the 
vector of coarse model parameters xLF , that is xLF = F(xHF) , 
and this technique allows the vectors xHF and xLF to have 
different dimensions. The latter three methods can be uni-
formly described as ŷHF(x) = 𝜌(x) ⋅ yLF(x) + 𝛿(x) , the dif-
ferences among those methods are the treatment of �(x) and 
�(x) . When multiple fidelity levels are involved, Loïc et al. 
(2020) reviewed the fusion frameworks based on Gauss-
ian Process (GP) and classified them into four types: linear 
model of coregionalization (LMC), classical auto-regressive 
(AR1), nonlinear auto-regressive multi-fidelity Gaussian 
process (NARFGP), and multi-fidelity Deep Gaussian Pro-
cess (MF-DGP). AR1 model is widely used in engineering 
design field, and the first Co-Kriging model developed by 
Kennedy and O’Hagan (2000) for multi-fidelity computer 
experiments is just based on this framework. The Co-Krig-
ing method assumed that the covariance structure of the 
observed data has Markov properties and the relationship 
between adjacent level of fidelity has an autoregression 
structure. It provides a closed form of prediction uncertainty 
in addition to its predictive ability. Most development in the 

literature were within Kennedy and O’Hagan’s framework, 
including Higdon et al. (2004), Reese et al. (2004), Qian 
and Wu (2008), Le Gratiet and Garnier (2014), and Le Gra-
tiet (2013). Besides, Han and Stefan (2012) proposed the 
hierarchical Kriging, in the hierarchical Kriging model, the 
low-fidelity Kriging model is directly used as the trend of the 
multi-fidelity model to avoid nested sample points. Tuo et al. 
(2013) proposed a class of non-stationary Gaussian Process 
models to link the output from different fidelity levels.

The sequential sampling strategy of multiple fidelity data 
has also received great interest for the purpose of construct-
ing a sufficiently global accurate metamodel (Xiong et al. 
2009; Jin et al. 2002; Le Gratiet and Cannamela 2015) or for 
optimization. This article focuses on the latter. Currently, the 
multi-fidelity Bayesian optimization still mainly focused on 
the expansion of EI criterion, PI criterion, and UCB crite-
rion. In the early days, Xiong et al. (2008) applied the confi-
dence boundary as the acquisition function of the bi-fidelity 
model in sequence sampling. Xf et al. (2020) proposed a var-
iable-fidelity probability of improvement method. Among 
the extended methods of EI, Huang et al. (2006b) proposed 
an augmented EI criterion based on Co-Kriging and called it 
MFSKO. The method uses the correlation between different 
fidelities to measure the credibility, and then integrates the 
correlation and the evaluation cost with the EI acquisition 
function to determine the location and the fidelity level. As 
this criterion is based on EI, thus it is unavoidable from the 
greedy nature of EI and the samples generated may cluster 
within a certain area and reduce the efficiency of global opti-
mization. He et al. (2017) proposed the EQIE criterion by 
dividing the EI acquisition function by a cost factor to make 
the cost within the consideration range of the acquisition 
function. Kim et al. (2018) used EI acquisition function for 
the hierarchical kriging model. However, those methods do 
not take into account the accuracy of the fidelity and the cost 
issue between different fidelities, thus the lower-fidelity sam-
ples are preferred since it is computationally cheaper. Liu 
et al. (2018) introduced a sample density function into the 
acquisition function proposed by Huang et al. and proposed 
an enhanced Co-Kriging based sequential optimization 
method to reduce the computational cost. Zhang et al. (2018) 
proposed a multi-fidelity global optimization method based 
on the hierarchical Kriging model to extend the MFEI. Shu 
et al. (2021) used the hierarchical Kriging method and pro-
posed the expectation to further improve acquisition criteria.

The focus of this paper is on the sequential design for 
multi-fidelity models. Since compared with other methods, 
Co-Kriging can better quantify the relationship between dif-
ferent fidelities, and it is better at dealing with problems 
with random errors, so as to select new sampling points. 
We select the similar MFSMs of Huang et al. (2006b). The 
objective of this article is to develop a sequential sampling 
strategy such that (1) the method should be more efficient 
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for global optimization, as most of the current multi-fidelity 
sequential optimization methods in literatures tend to the 
local optimum, the reason is that those method is based on 
classical EI or PI, and the surrogate model is not globally 
accurate. In this paper, we will firstly develop the revised 
expected improvement method to strike the correct balance 
between accurate global surrogate model and high probabil-
ity of improvement. The proposed method may adaptively 
adjust the right tendency between exploration and exploita-
tion during the search process; (2) the method should adap-
tively add sampling points from different levels of fidelity, 
thus, an effective criterion is required to evaluate the costs 
and credibility of candidate points from different levels of 
fidelity. In this paper, the Kullback–Leibler divergence is 
used to measure the credibility of a point from system with 
different fidelities.

The paper is organized as follows: in Sect. 2, the opti-
mization problem and the adopted Co-Kriging method 
are described, after that the prediction uncertainty of the 
metamodel is discussed. In Sect. 3, the proposed sequential 
sampling strategy, especially the PEI criterion is presented 
and then the convergence property of PEI based method is 
discussed. In Sect. 4, seven analytical functions are used 
to compare the proposed method with MFSKO, and then 
the proposed method is applied to the aerodynamic shape 
optimization of NACA0012 airfoil. Concluding remarks are 
given in Sect. 5.

2 � Background

2.1 � The optimization problem

Suppose there are currently m systems with different fideli-
ties (including the real system) to obtain the estimate of the 
same real system. We consider the systems as black boxes. 
Denote the input vector as x , and the output of those systems 
in increasing order of fidelity by f1(x), f2(x),⋯ , fm(x) . The 
goal is to optimize the response of the real system within 
the feasible region 𝜒 ⊂ Rd and under some constraints, i.e.,

where gi(x) denotes the constraint function, whose closed 
form maybe known or unknown, NC is the number of con-
straints. Each system is associated with a cost-per-evalua-
tion denoted by C1,C2,… ,Cm respectively. And there is an 
assumption that even a lower-fidelity evaluation is expen-
sive and it is cheaper than a higher-fidelity evaluation, 
i.e., C1 < C2 < ⋯ < Cm . Thus it is necessary to generate 

(1)
min
x∈�

fm(x)

s.t. gi(x) ≤ 0, i = 1,⋯ ,NC

a surrogate model (for example a Kriging model) in order 
to quickly determine the next search region or for other 
purposes.

2.2 � Co‑Kriging for multiple fidelity systems

Kennedy and O’Hagan (2000) proposed a Co-Kriging 
model based on autoregressive assumption. In this paper, 
we adopt the simple version method of Huang et  al. 
(2006b), that is

w h e r e  �l(x), l = 1, 2, 3…m  i s  i n d e p e n d e n t  o f 
f1(x), f2(x),… , fm(x) , and for convenience let f1(x) = �1(x) . 
�l(x) is thought of as the “discrepancy” between a lower-
fidelity system and the next higher-fidelity system. The rea-
son is that in engineering practice, the results of equivalent 
experiments will be translated into condition of the real 
experiment firstly, and then the “discrepancy” between those 
systems is analyzed and quantified. Quantization of uncer-
tain discrepancy is important and difficult, here we use GP 
or Kriging model to metamodel the discrepancy. As �l(x) is 
usually small in scale as compared to fl(x) . In Kriging meta-
modeling, �l(x) is described as

where bl(x)T  and �l are the basis function and its coeffi-
cient, Zl(x), is a stationary Gaussian Process and �l is used 
to describe random error with variance �2

�,l
 . In engineering 

practice, any physics system will have random error, and 
a computer experiment has no random error. Generally, a 
comprehensive test will start from computer simulation with 
lower fidelity and then maybe simulation with higher fidel-
ity, and as followed as physical equivalent test and real test.

The basis functions are often selected as polynomials. 
In order to simplify the calculation, the constant term is 
generally selected. Zl(x) is often assumed to be a stationary 
Gaussian Process with zero-mean, and generally taken a 
Gaussian kernel function. Then the covariance between 
two point x = (x1, x2 ⋯ xd) and x� = (x�

1
, x�

2
⋯ x�

d
) in system 

l is described as

where �l,j is a “roughness” parameter in the kernel func-
tion when a higher value implies lower spatial correlation in 
dimension j, and �2

Z,l
 denotes the variance of the stochastic 

process. Based on equation (4), the covariance between a 
point x from system l and another point x′ from system l′ 
can be derived as

(2)fl(x) = fl−1(x) + �l(x), l = 2, 3…m

(3)�l(x) = bl(x)
T�l + Zl(x) + �l, l = 2, 3…m

(4)cov[�l(x), �l(x
�)] = �2

Z,l
exp

[
−

d∑
j=1

�l,j(xj − x�j)
2

]
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Assume we got observations Y1, Y2,⋯ , Yn from n points 
x1, x2,⋯ , xn located in system indexes l1, l2,⋯ , ln, respec-
tively. Let yT = [Y1, Y2,⋯ , Yn] , and �̂ = [𝛽1, 𝛽2,⋯ , 𝛽m]

T  , 
hl(x) = [b1(x)

T , b2(x)
T ,⋯ , bl(x)

T , 0,⋯ , 0]T . The best linear 
prediction (BLP) of � and fm(x) can be given by

where

Let f p
l
(x) be the posterior distribution of the system response 

of input x from the real system, thus, the posterior mean 
of f p

l
(x) is equal to the BLP predictor in (7). The posterior 

covariance between different points from different fidelities 
is

when l = l� and x = x� , then (8) is an estimate of the variance 
of a certain estimated point.

2.3 � Estimation of the hyper‑parameters

As to estimate the hyper-parameters �l,j and �2
Z,l

 , in order to 
reduce the amount of calculation, it is acceptable to estimate 
the hyper-parameters for each individual system, and once 
the hyper-parameters of the low-fidelity system are esti-
mated, we assume they are fixed and the data from systems 
above are ignored.

For instances, when there are only two fidelities, and 
the basis function is a constant, then hl(x) = [1, 0] or 
hl(x) = [1, 1] . Let At(xi, xj) = exp{−bt(xi − xj)

T (xi − xj)} , and 
A1(D1) denote the covariance matrix of the lower-fidelity 

(5)cov[fl(x), fl� (x
�)] =

min(l,l�)∑
i=1

cov[�i(x), �i(x
�)]

(6)�̂ =(HTV−1H)−1HTV−1y

(7)f̂m(x) =hm(x)
T �̂ + tm(x)

TV−1(y −𝐇�̂)

H =

⎡

⎢

⎢

⎢

⎢

⎣

hl1(x)
T

hl2(x)
T

⋮
hln(x)

T

⎤

⎥

⎥

⎥

⎥

⎦

V = [cov(Yi, Yj)]1≤i,j≤n
= [cov(fli(xi), flj (xj))]1≤i,j≤n + [�2

�,l�ij]1≤i,j≤n

tl(x) =
[

cov(fl1(x1), fl(x)),⋯ cov(fln(xn), fl(x))
]T

(8)

cov
[
f
p

l
(x), f

p

l�
(x�)

]
= cov

[
fl(x), fl� (x

�)
]

−
[
hl(x)

T , tl(x)
T
][ 0 HT

H V

]−1[
hl� (x

�)

tl� (x
�)

]

sampling point, then �l,j is referred to as b1 and �2
Z,l

 is referred 
to as �2

1
 , b1 and �2

1
 can be estimated by minimizing the fol-

lowing negative log likelihood function

For higher-fidelity system with A2(D2) as the covariance 
matrix, we define d2 = y2 − f1(D2) , where f1(D2) denotes the 
output from f1(⋅) at points in D2 . Then b2, �2

2
 are estimated 

by minimizing the following function

For more than two levels of fidelity, the hyper-parameters are 
estimated sequentially, and as the input space of the latter 
layer is smaller, it is much easier to solve.

2.4 � Discussion about the prediction uncertainty

Let sm(x) be the standard deviation of the estimation, which 
can be calculated by the following formula

Based on equation (8) and (11), the posterior mean and vari-
ance of f p

l
(x) are obtained. As we all know, the posterior 

variance is also used as a measure of prediction uncertainty, 
the smaller the variance, the narrower the confidence inter-
val. A domain with high certainty means less opportunity 
to be explored in the EI sampling criterion. However, as 
the hyper-parameters of the Gaussian Process are estimated 
from limited numbers of observations by maximum likeli-
hood estimation, when the observations do not carry enough 
information about f, the estimation of hyper-parameters will 
lead to very disappointing results. Thus, as the variance of 
the f p

l
(x) is estimated by limited numbers of observations 

and we have enough reasons to make a proportional revise 
of the variance and make

That is to say, if 𝜆 > 1 , the confidence interval of the esti-
mated value in the actual problem should be larger than the 
confidence interval estimated by the surrogate model.

3 � The proposed approach

In this part, we explain in detail the multi-fidelity sequential 
optimization method we proposed.

(9)
log |A1(D1)| + n1 log 𝜎

2
1

+ (y1 − �̂11n1 )
T
{
𝜎2
1
A1(D1)

}−1
(y1 − �̂11n1)

(10)
log |A2(D2)| + n2 log 𝜎

2
2

+ (d2 − �̂21n2 )
T
{
𝜎2
2
A2(D2)

}−1
(d2 − �̂21n2)

(11)sm(x) =

√
cov[f

p

l
(x), f

p

l
(x)]

(12)sP
m
(x) = sm(x) ⋅ 𝜆, 𝜆 > 0
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3.1 � Multi‑fidelity sequential optimization 
framework

The framework of the proposed multi-fidelity sequential 
optimization employing Co-Kriging in conjunction with the 
proposed PEI criterion is illustrated in Fig. 1.

The step-by-step description of the proposed method is 
as follows:

Step 1 Initial design. Compared with the traditional 
method, the proposed method has a greater error tolerance 
rate in experimental design. In this paper, Latin hypercube 
design(Michael 1987) is adopted in low or lower fidelity, the 
high-fidelity points are not needed to be the subset of low 
fidelity. But the optimal Latin hypercube design method is 
chosen in high or higher fidelity to ensure a uniformly dis-
tributed test point design combination.

Nevertheless, it is often difficult to choose a suitable ini-
tial design in practice, especially the sample size for different 
fidelities, the initial design of multi-fidelity is still an area 
worthy of further research.

Step 2 Construct the Co-Kriging model for multiple fidel-
ity systems.

Here, we select the method illustrated in Sect. 2.2 to con-
struct the Kriging meta-models for multiple fidelity systems.

Step 3 Sequential sampling strategy.
In the following paper, we will propose a new sequen-

tial sampling criterion called PEI(x, l) , and the location and 
fidelity level of the next evaluation are selected by maximiz-
ing PEI(x, l) , that is

(13)
(
xn+1, ln+1

)
= argmax

x,l

PEI(x, l)

Fig. 1   Sequential optimization 
framework of the proposed 
method
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Step 4  Stopping criterion.
In the setting of the stopping criterion, we believe that 

the stopping criterion needs to be adapted to the magnitude 
of the data.

 The optimization process stops when

In addition, it is required that the point that meets the stop-
ping criterion must be on the highest fidelity. If the point 
that meets the stopping criterion is not the point on the high-
est fidelity, the highest-fidelity point closest to the stopping 
criterion is taken as the optimal value. Generally, we use 
(15) as the stop criterion. However, in Sect. 4.2, in order to 
compare the efficiency of the proposed method and MFSKO, 
we also use iteration numbers as the stopping criterion.

3.2 � The proposed sequential sampling strategy

The standard EGO method employs an expected improve-
ment (EI) function to select a new sample point in single-
fidelity optimization. Huang et al. (2006b) adopted an aug-
mented EI function to select the location and fidelity level 
of the next evaluation. However, both methods are based 
on classical EI function, and are unavoidable to the greedy 
drawback of EI. And in fact, we found that the samples 
generated by augmented EI function tend to stuck in local 
optima and fail to converge to a global optimum. To address 
this, we propose a new acquisition function called Propor-
tional EI (PEI), which encourages exploration by increasing 
model uncertainty.

Proportional EI (PEI) acquisition function is defined as 
follows to determine the location and the fidelity level of the 
next sample point.

As shown in equation (16), PEI is an acquisition function 
composed of five items: revised expected improvement, 
Kullback–Leibler divergence-based model difference, ratio 
of cost, random errors, and constraint handling item. The 
next five subsections will discuss these five items, respec-
tively. Compared with Huang’s (2006b) augmented EI 
function, the PEI method is improved from three espects. 
Firstly, in order to avoid the greediness of EI, revised 
expected improvement function EIP(x) is proposed, where 
the proportional factor is used to balance exploration and 
exploitation. Secondly, to measure differences in posterior 
distribution between system m and system l, Kullback–Lei-
bler divergence-based model difference �1(x, l) is used to 
replace the correlation. Besides, we add a new term �4(x, l) 

(14)Δs = max(Y1, Y2,⋯, Yn) −min(Y1, Y2,⋯, Yn)

(15)max
x,l

PEI(x, l) < 𝛼 ⋅ Δs

(16)PEI(x, l) = EIP(x) ⋅ �1(x, l) ⋅ �2(l) ⋅ �3(x, l) ⋅ �4(x, l)

to handle constraints, so that the PEI method can be applied 
to optimization problem with unknown constraint scenarios. 
As for �2(l) and �3(x, l) , they are the same as described in 
augmented EI function.

3.2.1 � The revised expected improvement

In (16), what we concern is the expected improvement of 
the highest fidelity and the expectation can be calculated 
as follows:

 where � and Φ are the standard normal probability density 
and cumulative distribution function, respectively. x∗ is the 
current optimal solution, and x∗ = arg

x∈{x1,x2,⋯xn}

max[u(x)] , 

and u(x) is called utility function; in our method, we make 
u(x) = −f̂m(x) − sm(x).

In (17), according to (12), the measure of uncertainty 
changed. In Appendix A, we will prove that for a given index 
� , there exists a corresponding � called proportional factor 
satisfying

And the monotonous trend of � is consistent to � . In the fol-
lowing section, we will further discuss the influence of the 
value of � to the searching process and will adaptively adjust 
the value of � by the sample density.

3.2.2 � Kullback–Leibler divergence‑based model difference

In (16), �1(x, l) is the measure of the credibility or informa-
tion contribution of a point from system with different fideli-
ties, so as to control the number of low-fidelity samples. In 
many relevant literatures, it was computed by the correlation 
between the posterior estimate of point x from system l to the 
posterior estimate of point x from system m, see Huang et al. 
(2006b), that is

(17)

EIP(x) =
(
f̂m(x

∗) − f̂m(x)
)
Φ

(
f̂m(x

∗) − f̂m(x)

sP
m
(x)

)

+ sP
m
(x)𝜙

(
f̂m(x

∗) − f̂m(x)

sP
m
(x)

)

(18)

EIP(x) =
(
f̂m(x

∗) − f̂m(x)
)
Φ

(
f̂m(x

∗) − f̂m(x)

sm(x)

)

�������������������������������������������������������
exp loitation

+ 𝛾sm(x)𝜙

(
f̂m(x

∗) − f̂m(x)

sm(x)

)

�������������������������������������
exp loration
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But in our test, we found that as the point is very close to the 
observed point, the denominator is close to 0, and the values 
of points far away from the samples are nearly the same. Our 
idea is to use the posterior distribution difference between 
system l and system m located at x to measure the credibil-
ity or the information contribution. That is if the posterior 
distribution of system l is the same as system m at location 
x , then the contributions should be the same. The larger the 
posterior distribution difference, the lower the contribution 
of the point (x, l) . There are many ways to measure differ-
ences in distribution, such as the Kullback–Leibler (KL) 
divergence (Gultekin and Paisley 2017), Jensen-Shannon, 
Wasserstein distance, and so on. Here, we use KL divergence 
to quantify the posterior distribution differences. Given the 
probability density function p and q, as the KL divergence 
is asymmetric, the symmetrized KL divergence is defined as

where DKL(p|q) =
+∞

∫
−∞

p(x) ⋅ log
p(x)

q(x)
dx . Specializing to nor-

mal distribution p ∼ N
(
f̂m(x), sm(x)

)
 and q ∼ N

(
f̂l(x), sl(x)

)
 , 

then the KL divergence is given by

The smaller the KL divergence is, the closer the distribution 
is. KL divergence is equal to 0 if and only if they are identi-
cally distributed. Then we define

in which � and � are parameters that are used to control the 
change rate. Obviously, as DKL(p, q) ≥ 0 , 0 < 𝛼1(x, l) ≤ 1 . 
If the distribution of system l is exactly the same as system 
m at location x , then it is regarded as equal to the real sys-
tem. If l = m , for any x , �1(x,m) = 1 , it stands that the point 
from the highest-fidelity system owns the highest credibility. 
Generally speaking, the credibility of the surrogate system 
will gradually decrease with the increase of the distribution 
difference, which indicates that the greater the difference 
between the distribution of the surrogate system and the dis-
tribution of the real system, the smaller the chance the point 
located to that surrogate system, this is intuitive. Specially, 
if a point (x, l) or (x,m) has been evaluated, sl(x) = 0 , or 
sm(x) = 0 , we directly define �1(x, l) = 0 , that is to say that 
the point (x, l) won’t be select again. That is consistent to the 
common sense, if observation is done at a certain location in 
any higher fidelity, adding new lower-fidelity observation at 

�1(x, l) = corr
[
f
p

l
(x), f p

m
(x)

]

(19)DKL(p, q) =
1

2
DKL(p|q) + 1

2
DKL(q|p)

(20)DKL(p, q) = ln
sm(x)

sl(x)
+

(f̂m(x) − f̂l(x))
2
+ s2

l
(x)

2s2
m
(x)

−
1

2

(21)�1(x, l) =
1

1 + �
(
DKL(p, q)

)�

the same location contributes very few to the improvement 
of PEI. Thus, for any x , �1(x, l) ∈ [0, 1] . The values of � and 
� together with �2(l) will decide the level index of the next 
point, and we should decide their values according to actual 
situation.

3.2.3 �  Ratio of cost

In (16), �2(l) is used to control the cost of evaluations. If the 
cost of evaluation from system l is represented by Cl , then 
take �2(l) =

Cm

Cl

 . If l = m , �2(l) = 1 . If l ≠ m , 𝛼2(l) > 1 , thus 
the inclusion of �2(l) tends to select a point from the cheapest 
system.

If there are no random errors and do not con-
sider the constraints, �1(x, l) and �2(l) together 
decide the fidelity level. If at all locations x, we have 
𝛼1(x, l) ∗ 𝛼2(l) < 1 = 𝛼1(x,m) ∗ 𝛼2(m) , then all points are 
selected in the highest fidelity. If at all locations x , we have 
𝛼1(x, l) ∗ 𝛼2(l) > 1 = 𝛼1(x,m) ∗ 𝛼2(m) , then no point will 
be selected from the highest fidelity. That is not what we 
want, as the cost factor �2(l) is often known to us. For the 
case where the algorithm time is complex and unknown, 
we need to run the computer code with different fideli-
ties to get an approximate estimate of the cost. In (16), we 
should set suitable values of � and � to make ∀x, l satisfying 
�1(x, l) ∗ �2(l) ∈ [i, 1] ∪ [1, j].

3.2.4 �  Consideration of random errors

In (16), the existence of �3(x, l) is to adjust EIP(x) if the out-
put of system l contains random errors, as more replicates 
are added, the posterior standard deviation will reduce. Like 
the work of Huang et al. (2006b), the following penalization 
function is introduced to limit replications.

And if the variance of the random error is 0, then �3(x, l) = 1.

3.2.5 � Constraint handling

The constraints in engineering optimization can be divided 
into two categories: known constraints and unknown con-
straints. The former is easy, a penalty function approach is 
used to handle the known constraints. The later is much 
more complex, and after constructing a Kriging model, the 
prediction of g(x) obeys a normal distr ibution 
g(x) ∼ N

(
ĝ(x), s2

g
(x)

)
 , then the probability of satisfying the 

constraint is

(22)
�3(x, l) = 1 −

��,l√
s2
l
(x) + �2

�,l
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Thus, in (16), �4(x, l) can be defined as

3.3 � Further discussion about the revised expected 
improvement criterion

In this part, we will further discuss the value of � to the 
optimum and to the iterative numbers of PEI(x, l).

3.3.1 � The impact of 
 to the optimum

In (18), we can see that EI is a tradeoff between exploita-
tion (optimization of the predictor) and exploration (seeking 
areas of maximum uncertainty), while PEI introduces a coef-
ficient � to adjust the trend to exploitation or exploration. In 
particular, we will record EIP(x) as EIP(x, �) in the following 
section. Clearly, if � = 1 , PEI is just the standard EI.

If 𝛾 > 1 , like the work of Johns et al. (1998), one can get 
the partial derivative of EIP(x, �) with respect to sm , here 
recorded I(x) = f̂m(x

∗) − f̂m(x) , as � and Φ are the standard 
normal probability density and cumulative distribution func-
tion, the result is

If 𝛾 > 1 , then 𝜕EIP(x,𝛾)
𝜕sm(x)

> 𝜙(
I(x)

sm(x)
) =

𝜕EI(x)

𝜕sm(x)
 . That is to say as � 

increases, under the same uncertainty, the improvement of 
EIP(x, �) is larger, 𝛾 > 1 will yield to explore more, and can 
help the multi-fidelity acquisition function jump out of the 
local optimum and tend to choose more “exploratory” 
points, which helps preventing falling into a local optimum 
while 𝛾 < 1 will yield to exploit more.

(23)p
[
g(x) ≤ 0

]
= Φ

(
−ĝ(x)

s2
g
(x)

)

(24)

�4(x, l) = p
[

g(x) ≤ 0
]

=

⎧

⎪

⎨

⎪

⎩

1, if known g(x) ≤ 0
0, if known g(x) > 0

Φ
(

−ĝ(x)
s2g(x)

)

, if unknown g(x)

(25)

�EIP(x, �)

�sm(x)
= −

(
I(x)

sm(x)

)2

�

(
I(x)

sm(x)

)
+ ��

(
I(x)

sm(x)

)

− �

(
I(x)

sm(x)

)
��

(
I(x)

sm(x)

)

= −

(
I(x)

sm(x)

)2

�

(
I(x)

sm(x)

)
+ ��

(
I(x)

sm(x)

)

+ �

(
I(x)

sm(x)

)2

�

(
I(x)

sm(x)

)

=

[
� + (� − 1)(

I(x)

sm(x)
)
2
]
⋅ �

(
I(x)

sm(x)

)

3.3.2 � The impact of 
 to the numbers of iterations

Obviously, any 𝛾 > 1 weakens the inf luence of [
f̂m(x

∗) − f̂m(x)
]
 on PEI(x) , while I(x) = f̂m(x

∗) − f̂m(x) > 0 
means the improvement of the objective function, itself is 
positively related to the stopping rule, we prove that when 
𝛾 > 1 , the iterative steps will increase. One can get several 
terms that cancel and then the partial derivative of I(x) to 
(18) is

For I(x) = f̂m(x
∗) − f̂m(x) > 0 , then I(x)

sm(x)
𝜙
(

I(x)

sm(x)

)
> 0 . Thus, 

if 𝛾 > 1 , we have 𝜕EIP(x,𝛾)
𝜕I(x)

<
𝜕EI(x)

𝜕I(x)
 , and as � increases, �EIP(x,�)

�I(x)
 

decreases.
As �EI(x)

�I(x)
≅

ΔEI(x)

ΔI(x)
 ,  thus ,  for  the  same ΔI(x) , 

ΔEIP(x, 𝛾) < ΔEI(x)  ,  a n d  i f  𝛾1 > 𝛾2  ,  we  h ave 
ΔEIP(x, 𝛾1) < ΔEIP(x, 𝛾2) . EIP(x, �) with a lager � improve 
less can lead to the same improve of I(x) . Assume the real 
optimum is x∗∗ , that is to say gap between f̂m(x∗) and f̂m(x∗∗) 
is given. Then as the iterative optimization goes on, accord-
ing to the iterative stopping criteria, EIP(x, �) will be slow 
to stop, and the sampling points will cluster.

That is consistent to our experiments, and it was found 
through experiments that when � is large enough, the 
improvement of the results will be indistinctive and the 
points cluster seriously, and when 𝛾 < 1 , the iterative will 
stop fast but easy to fall into the local optimum. We suggest 
select the value of � between [0.1, 10].

3.3.3 �  Adaptive adjust of 
 by the sample density

A larger � yield to sample at the location with high uncer-
tainty and contribute well to the modeling accuracy, thus at 
the initial stage of sampling, which is appropriate to choose a 
larger value of � , it will avoid early stop of iteration because 
of low modeling accuracy. However, at the end of the itera-
tion, a larger � may lead to the clustering of samples and 
large iteration numbers. As the computational cost is very 
expensive but the accuracy of the results improved very lit-
tle, it is not cost-effective. In order to solve that problem, we 
suggest that the proportional factor � should be adaptively 
adjusted during the iteration.

The adaptive criteria can be varied. This paper proposes an 
adaptive criterion based on the sample density, with “exploi-
tation-exploration-exploitation” as the search mode. We select 
three levels 𝛾1 < 𝛾2 < 𝛾3 . They, respectively, indicate active 

(26)

�EIP(x, �)
�I(x)

=Φ
(

I(x)
sm(x)

)

+
I(x)
sm(x)

�
(

I(x)
sm(x)

)

+ ��′
(

I(x)
sm(x)

)

=Φ
(

I(x)
sm(x)

)

+ (1 − �)
I(x)
sm(x)

�
(

I(x)
sm(x)

)

=
�EI(x)
�I(x)

+ (1 − �)
I(x)
sm(x)

�
(

I(x)
sm(x)

)
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exploitation, balanced exploration and exploitation, and active 
exploration. � will be valued by the following criteria:

(1) When PEI(x, l) increase in successive iterations keeps 
getting smaller, it means that the current exploitation is suf-
ficient. Then we should switch from �1 to �2 in order to increase 
the exploratory.

(2) When maxPEI(x, l) < k𝛼Δs , that means the expected 
improvement may be very small, we should convert from �2 
to �3 , and turn to active exploration. In this paper, we adopt 
k = 10, �1 = 0.5, �2 = 1, �3 = 2.

(3) The expected improvement in successive iterations has 
been increasing, which means that we have discovered new 
peaks through increasing exploration. At this time, in order to 
avoid sampling too densely, we should convert from �3 to �1 in 
order to hurry up the iteration process. In this paper, when the 
number of iterations is 1.5 times of the initial design number, 
we let �1 = 0.5.

Above all, our method can be summarized in Algorithm 1.

4 � Test cases of analytical functions 
and application

In this section, the effectiveness of the proposed multi-fidel-
ity sequential optimization method will be verified by test 
functions and an engineering application example. Obvi-
ously, the difference between the optimization result and the 

real optimum is an important index to measure the quality 
of the sequential optimization design method. On the other 
hand, as compared with the complex and time-consuming 
finite element simulation, the computational amount of 
sequential optimization algorithm is relatively small, so the 
evaluation cost (the number of high- and low-fidelity test 
samples) is also considered here.

4.1 � An illustrative example

In this subsection, the proposed multi-fidelity sequential 
optimization method is illustrated with a one-dimensional 
method. Firstly, we use a couple of test functions created by 
(Sasena et al. 2002):

 As Sasena function is also used by Huang et al. (2006b) to 
explain MFSKO method, here we will draw a comparison 
between PEI method and MFSKO method.

Here, the initial design of the test is six points located 
at x = {0, 2, 4, 6, 8, 10} in low fidelity, and two points at 
x = {3.5, 6.5} in high fidelity. Fig. 2 shows the optimiza-
tion result of the proposed method by letting � = 1 , which 
is similar to Huang’s MFSKO method. We can see that the 
search scope of MFSKO is only around the left local opti-
mal peak and stop searching after four times iterations. The 
global optimum of the right peak is not found. Fig. 3 shows 
the searching result of the proposed method by letting � = 2 , 
the method jumps out of the local optimal, and successfully 
finds the global optimum. A series of examples listed below 
will further demonstrate that the proposed PEI method with 
adaptive value of � is indeed helpful to explore the global 
optimum.

The reason for this is that the EI function itself has a 
tendency to fall into a local optimum, that is the greediness 
of the EI. So a single-fidelity optimization example is given. 
We choose the high-fidelity Sasena function above as test 
function. The initial design is x = {1, 4, 6, 9} . EI function 
and Revised EI with � =2 are adopted as acquisition func-
tions. As shown in Fig. 4, the EI function itself has a ten-
dency to fall into the local optimum, and this shortcoming 
can be avoided by Revised EI.

To help understanding each item in equation (16), Fig. 5 
displays the breakdown of PEI just after the initial design. 
EIp(x) in equation (16) incorporates the prediction mean and 
the prediction uncertainty, while the proportion between 
exploitation and exploration is adjusted during the search 
process, this term is independent of the fidelity level, we can 
see that the left domain of the searching space is preferred. 

fh(x) = − sin(x) − exp(x∕100) + 10, (0 < x < 10)

fl(x) = − sin(x) − exp(x∕100) + 10.3 + 0.03 × (x − 3)2

(0 < x < 10)
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Here, the value of �1(x, 1) is based on the distribution dif-
ference of different fidelities, and it measures the credibility 
of expected improvement when a lower-fidelity evaluation 
is added. Here, � and � in equation (21) are set as 0.5 and 
1, respectively. As the random error and the constraint are 
not considered, �3(x, l) ⋅ �4(x, l) = 1 , based on the costs of 
evaluation, let �2(1) = 4 and �2(2) = 1 . The PEI values of 
different fidelities are shown in Fig. 5.

Fig. 6 shows the value of �1(x, 1) from the 9th to the 14th 
iteration; according to the figure, the values are very small 
near the tested points, and after six iterations, the values 
in the whole design space of lower fidelity are too small 
to be selected as the next sample points, which is consist-
ent with the expectation of Bayesian optimization that the 

sample points in the later stage of optimization are all in 
high fidelity.

4.2 � Other numerical tests

In this subsection, a series of test functions from literature 
will be used to further investigate the properties of the pro-
posed PEI method. Seven tests are conducted as listed in 
Table 1. The first five test functions are unconstrained, the 
sixth one is constrained, and the seventh one is a three-fidel-
ity function (Xiao et al. 2002).

Fig. 2   Search pattern for Sasena function when � = 1

Fig. 3   Search pattern for Sasena function when � = 2
Fig. 4   contrastive test to explain the greediness of EI
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4.2.1 � Contrast of optimization result

In this subsection, we focus on the optimization results of 
the test functions. In all of the test, Latin hypercube is used 
to generate the initial design.

Specially, the search pattern of Case 4 is shown in 
Fig. 7, from which we can see after 1 time of high fidel-
ity and 3 times of low-fidelity search, the peak where the 
optimal value located is successfully searched. Within that 
peak, after 5 times of high fidelity and 8 times of low-fidel-
ity search, the iteration stops and the optima is searched.

Case 6 is a multi-fidelity optimization problem with 
unknown constraint. Fig. 8 displays the contour map of 

MFSM after optimization and the sample points. The 
points without labels are the initial design, including 9 
high-fidelity points and 15 low-fidelity points. After 3 
times of low-fidelity observations and 5 times of high-
fidelity observations, the search stops and got optimal 
value as (0.75, 1.75) and optimum fh(xbest) = 3.2344 . If 
there is no constraint, the best advantage should be (0.1, 
0.1), so the constraint comes into play.

Case 7 is a three-fidelity optimal problem, where l1 repre-
sents first-low fidelity, l2 represents second-low fidelity, and 
h represents the high fidelity. We set Cm/Cl2

 =2 and Cm/Cl1
=4. 

The initial design is x = {0.1, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 1} 
at first-low fidelity, x = {0.2, 0.4, 0.6, 0.8} at second-low 

Fig. 5   The PEI function of initial design

Fig. 6   The values of �1(x, l) during the 9th–14th iteration
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Table 1   Test functions source Description of functions

Case 1 fl(x) = − sin(x) − exp(x∕100) + 10 + k ⋅
(
0.3 + 0.03 × (x − 3)2

)
fh(x) = − sin(x) − exp(x∕100) + 10

x ∈ [0, 10]

Case 2 fl =
sin(20×x)∕(1+x)+3×x2×cos(5x)+10×(x−0.5)2−0.6

2
+

sin(15�×(x+0.1))

5

fh =
sin(20×x)∕(1+x)+3×x2×cos(5x)+10×(x−0.5)2−0.6

2

x ∈ [0, 1]

Case 3 fl = 0.5 × (6x − 2)2 × sin(12x − 4) + 10 × (x − 0.5) + 5

fh = (6x − 2)2 × sin(12x − 4)

x ∈ [0, 1]

Case 4 fl = −(x2 + 47) × sin(
�

� x1
2
+ x2 + 47�) − x1 × sin(

√�x1 − x2 − 47�) + 20 ∗ sin[4�(
x1

150
+

x2

150
)]

fh = −(x2 + 47) × sin(
�

� x1
2
+ x2 + 47�) − x1 × sin(

√�x1 − x2 − 47�)
x1, x2 ∈ [−75, 75]

Case 5
fh = −

4∑
i=1

ci exp[−
3∑
j=1

aij(xj − pij)
2]

fl = −
4∑
i=1

ci exp[−
3∑
j=1

aij(xj − pij)
2] +MA3(x).

MA3(x) = 0.585 − 0.324x1 − 0.379x2 − 0.431x3 − 0.208x1x2 + 0.326x1x3 + 0.193x2x3
+0.225x2

1
+ 0.263x2

2
+ 0.274x2

3

A =

⎛⎜⎜⎜⎝

3 10 30

0.1

3

10

10

35

30

0.1 10 35

⎞⎟⎟⎟⎠
,C =

⎛⎜⎜⎜⎝

1

1.2

3

3.2

⎞⎟⎟⎟⎠
,P =

⎛⎜⎜⎜⎝

0.3689 0.1170 0.2673

0.4699

0.1091

0.4387

0.8732

0.7470

0.5547

0.03815 0.5743 0.8828

⎞⎟⎟⎟⎠
Case 6 fh(x) = 4x1

2 + x3
2
+ x1x2

gh(x) = 1∕x1 + 1∕x2 − 2

fl(x) = 4(x1 + 0.1)2 + (x2 − 0.1)3 + x1x2 + 0.1

gl(x) = 1∕x1 + 1∕(x2 + 0.1) − 2 − 0.001

x1, x2 ∈ [0.1, 10]

Case 7 fl1 = 0.5 × (6x − 2)2 × sin(12x − 4) + 10 × (x − 0.5) + 5

fl2 = 0.4 × (6x − 2)2 × sin(12x − 4) − x − 1

fh = (6x − 2)2 × sin(12x − 4)

x ∈ [0, 1]

Fig. 7   The search process of Case 4
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fidelity, and x = {0.35, 0.65} at high fidelity. As shown in 
Fig. 10, it is obvious that the Co-kriging model is closer to 
the real function compared with that in Fig. 9 and the PEI 
method finds the optimal value -6.02 after 13 iterations.

Table 2 shows the results of PEI and MFSKO for the 
former five test functions. From Table 2, we can see that 
PEI can jump out of the local optimum. When both methods 
search into the peak of the real optimum, the results of PEI 
are still closer to the real optima than the results of MFSKO. 
When the observations especially the high-fidelity observa-
tions are inadequate or the observations are worse space-
filling, there is insufficient information to metamodel the 
real system, and the expected improvement deduced by the 
constructed MFSM is sometimes underestimated and hence 
causes premature stopping. Toward the introduction of � and 
selecting a large value of it, the probability of exploration 
will increase, then PEI can jump out of local optimum and 
have the chance to get a better point.

Besides, to verify the efficiency and accuracy of the 
algorithm, we use the same number of iterations as the 
stopping criterion. As shown in Table 3, PEI can find 
the optima more accurate. Even when the accuracy is 
the same, PEI saves the cost, such as Case 3 and Case 4, 
because the different choices of two algorithms for high 
or low fidelity lead to different cost. For example, in Case 
3, the total number of searches for both algorithms is 24, 

but the high-fidelity number of PEI is 9, which is less than 
that of MFSKO.

4.2.2 � Contrast of test cost

In this part, the performances of PEI method and MFSKO 
method are compared when the cost ratio changes are com-
pared. Fig. 12 shows the cost change process in the search 

Fig. 8   The search process of Case 6

Fig. 9   Initial design of Case 7
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process of former five test functions, where the abscissa 
is the cost currently spent, and the ordinate is the optimal 
value observed so far. By comparison, we found that both 
the search process of PEI method and MFSKO method will 
change when the cost ratio changes. And as the cost ratio 
increases from 4:1 to 20:1, the cost increase of each step of 
both methods becomes slower, that means more observa-
tions on low-fidelity systems are carried out. Fig. 11 also 
reflects the higher optimization accuracy of PEI method 
than MFSKO method. The reason for this is that the KL 
divergence is more significant than correlation in describing 
the relationship between high and low fidelity, which is not 
affected by the cost ratio.

Table 4 shows the total cost of the MFSKO and PEI as 
cost ratio changes and the details for high- and low-fidel-
ity sample can refer to Table B1 in Appendix B. Due to 
the increase of exploratory nature, one may consider the 
total cost of PEI criterion may increase compared with the 
MFSKO method; however, from Table 4, we can see it is not 
always true, especially when the convergence accuracy is the 
same, the cost of PEI is smaller than that of MFSKO. We 
attribute this to the adjustment of proportional factor � dur-
ing the sampling process. In this paper, we adopted a simple 
adjustment method, and we believe that a better adaptive 
criterion of � will lead to the improvement of PEI method to 
achieve high accuracy and considerable cost.

4.2.3 � Discussion of ̨ 1(x, 1)

This section focuses on discussing the value of �1(x, 1) in 
multi-fidelity sequential criteria. We want to know as the 
difference between low fidelity and high fidelity increases, 
what will happen to the value of �1(x, 1) . Here, we use Case 
1 as test function and take the value of k as 1, 3, and 5, and 
the value curves of �1(x, 1) are shown in Fig. 12. According 
to Fig. 12, as the value of k increases, i.e., the difference 
between low fidelity and high fidelity increases, the gen-
eral trend of the curve will not change, but the overall value 
will always be smaller, that means on the same condition, 
the probability of point from lower fidelity will be selected 
reduces. This is consistent with the intuition.

�1(x, 1) measures the credibility of fidelity level and KL 
divergence method is used in this paper. From Fig. 12 and 
Fig. 6, we can see that the value curve of �1(x, 1) is basi-
cally continuous and valued as 0 at the test points. �1(x, 1) 
measures the credibility of fidelity level. That is similar to 
using the correlation, but we think it is more explanatory as 
it is based on the distribution difference. Furthermore, the 
method is more flexible as we can change the value of �, � 

Fig. 10   The search process of Case 7 by PEI method

Table 2   The optimization results of the former five test functions

In the optimal peak? Gap to real optima

real optima MFSKO PEI MFSKO 
(%)

PEI 
(%)

Case 1 7.9189 Yes Yes 0.03 0.03
Case 2 − 1.0391 Yes Yes 1.27 0.19
Case 3 − 6.0167 Yes Yes 0.19 0
Case 4 − 126.3537 Yes Yes 1.50 0.40
Case 5 − 3.8627 No Yes 3.72 1.46

Table 3   The optimization results and total cost of the former five test 
functions when the stop criterion is iteration number

(1) The second column of the table shows the number of initial 
designs, for example, 6+2 represents 6 low-fidelity samples and 2 
high-fidelity samples
(2) cost-per-evaluation of real system is 1
(3) The stop criterion is set as two times for initial design

Gap to real optima Total cost

initial MFSKO (%) PEI (%) MFSKO PEI

Case 1 6+2 0.03 0 15+9 11+13
Case 2 6+2 0.14 0 13+11 14+10
Case 3 6+2 0 0 14+10 15+9
Case 4 18+6 0 0 30+42 44+28
Case 5 25+9 0.04 0 60+42 37+65
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Fig. 11   Computational cost changes as iterations proceed of PEI and MFSKO
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together with the cost ratio to meet the preference of fidelity 
level. For instanse, the parameters are set as � = 2, � = 0.5 
in case 2 and � = 2, � = 1 in case 3.

4.3 � Application to air drag minimization 
of the NACA 0012 airfoil

Aerodynamic shape optimization design of airfoil is one of 
the key problems in aircraft design. With the development of 
CFD Technology and optimization algorithms, the optimiza-
tion design of aerodynamic shape has made great progress. 
In particular, the high-efficiency computer has shortened 
the cost of optimization design. However, a high-accuracy 
simulation still takes a long time. So, two major problems in 
aerodynamic shape optimization design should be consid-
ered: on the one hand, how to design an optimization algo-
rithm that can quickly and accurately find the global optimal 
solution; on the other hand, in many practical instances, the 
evaluation of a real system of interest is too expensive, and 
one may consider drawing data from surrogate experiment 
systems with lower cost. Here, we will apply the proposed 
PEI method to optimize the NACA0012 airfoil.

The airfoil profile needs to be parameterized before opti-
mizing. An excellent method of parameterized characteriza-
tion of airfoil is to use as few design variables as possible 

to represent the design space with given constraints, so as 
to effectively reduce the computational cost. At present, the 
commonly used methods for the parametric characterization 
of airfoil include linear function perturbation method, char-
acteristic parameter description method, and Class-Shape 
Function Transformation (CST) method (Ivanov et al. 2017), 
which is adopted in this paper.

The mathematical expression of CST parameterization 
method of NACA0012 airfoil is

in which x represents the dimensionless coordinate value 
in the chord direction of the airfoil, y represents the dimen-
sionless coordinate value in the thickness direction of the 
airfoil, zte is the half thickness of the trailing edge, and S(x) 
represents the shape function, which is usually expressed by 
the N-order Bernstein polynomial given by

where Si(x) = Ci
N
xi(1 − x)N−i =

N

i!(N−i)!
xi(1 − x)N−i  .  For 

n-order Bernstein polynomials, the upper and lower surfaces 
of NACA0012 airfoil have a total of N + 1 design variables, 
which are A0,A1,⋯ ,AN . However, since the design variable 
positions on the upper and lower surfaces of the leading edge 
position are the same, there are 2N + 1 design variables that 
need to be optimized. In this example, the Bernstein poly-
nomial order N is selected as 5, so the airfoil optimization 
design problem involves 11 design variables. The three most 
important design variables were screened out through sen-
sitivity analysis, and were denoted as a1 , a2, and a3 . The 
other eight design variables were fixed to optimize the air-
foil. The value ranges of the three design variables are 
a1 ∈ [0.153849, 0.188038] , a2 ∈ [0.139910, 0.171001], and 
a3 ∈ [0.143035, 0.1748200].

(27)y = (x0.5 × (1 − x)) ⋅ S(x) + x ⋅ zte

(28)S(x) =

N∑
i=0

Ai ⋅ Si(x)

Fig. 12   the value of �1(x, 1) as k changes in Case 1

Table 4   The total cost of the former five test functions

(1) Intial design is the same as Table 3
(2) cost-per-evaluation of real system is 1

Cm∕Cl = 4 Cm∕Cl = 20

MFSKO PEI MFSKO PEI

Case 1 12.75 12.75 10.15 7.85
Case 2 10 11 7.85 7.7
Case 3 9.75 9.0 6.4 8.65
Case 4 19 17 11.15 11.35
Case 5 26.25 33 11.2 18.9
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The work aims at minimizing the air drag of the 
NACA0012 airfoil at a free-stream Mach number 
M� = 0.8 and an angle of attack � = 0◦ , Reynolds number 
Re = 6.5 × 106 . When the Mach number is 0.8, the com-
pressibility effect of the gas makes strong positive shock 
waves form on the airfoil surface, and then shock resist-
ance is generated. This drag can be significantly reduced by 
changing the geometry of the airfoil, so airfoil drag reduc-
tion design examples at transonic speeds are often used to 
verify the algorithm. In our work, CFD is employed for aero-
dynamic analysis and a C-type grid is generated to divide the 
computing domain as shown in Fig. 13. Two kinds of grids 
with different sparsity, respectively, are 321× 65 and 193× 33 
which are used to simulate and obtain high- and low-fidelity 
data for the NACA0012 airfoil. And the simulation time of 
high fidelity and low fidelity is treated as the cost, which is 
nearly 4:1. The CFD simulation is built by us, for details 
refer to (Duan et al. 2012, 2019).

We obtain 25 low-fidelity and 9 high-fidelity initial sam-
ples by using the Latin hypercube design. Table 5 shows 
the last 9 samples before stopping, and the right column 
of the table gives the airfoil drag value. It can be seen that 
the proposed PEI method still has a tendency to search low 
fidelity first and then high fidelity even near the stopping 
point. The high-fidelity point searched in step 42 is taken as 
the optimization result.

A total of 31 high-fidelity and 45 low-fidelity experiments 
were performed in the whole calculation, including the ini-
tial design. However, a total of 36 high-fidelity and 50 low-
fidelity experiments were conducted by the MFSKO method. 
At the same time, we also adopted the particle swarm opti-
mization algorithm(PSO) to optimize the design. As an 
engineering example, the real optimal value is unknown in 
advance, so the PSO algorithm is employed to approximate 
the real optimal value. 30 particle points were selected on 
the real system, and after 38 iterations, the optimal value 
2.444136E-03 was obtained. As shown in Table 6, PEI and 
MFSKO are also compared.

The airfoil curves after optimization by the three method 
are shown in Fig. 14, we can see that compared to the base-
line airfoil, the thickness and curvature are both reduced, Fig. 13   Computational grid of NACA0012 airfoil

Table 5   The result of the last 8 
samples before iteration stop

Iteration Best solution Fidelity level maximal PEI Response

35 (0.159029, 0.171001, 0.164546) H 0.032 1.322173E-02
36 (0.153849, 0.143051, 0.147530) L 0.030 3.869752E-03
37 (0.179059, 0.162208, 0.143035) H 0.027 3.869752E-03
38 (0.163518, 0.159067, 0.143035) H 0.026 7.297047E-03
39 (0.180440, 0.139910, 0.159409) H 0.022 5.547299E-03
40 (0.153849, 0.139910, 0.143035) L 0.0014 3.110536E-03
41 (0.156957, 0.139910, 0.143035) L 0.0019 3.307508E-03
42 (0.154194, 0.139910, 0.143035) H 3.5625E-07 2.458502E-03
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and the maximum thickness of the airfoil moves to the right, 
which can reduce the drag. In addition, Fig. 15 shows the 
static pressure contours of the baseline and optimized air-
foil. The results show that the pressure recovery of the trail-
ing edge of the airfoil is delayed, the pressure distribution 
becomes flat, and the shock wave intensity is weakened.

5 � Summary and future work

In this paper, a Co-Kriging-based multi-fidelity sequential 
optimization method is proposed for expensive black-box 
problem, and the objective of the paper is to develop a 
more efficient sequential sampling strategy, named propor-
tional expected improvement (PEI). The PEI criterion is an 
extension of EI criterion and used an integrated criterion to 
determine both location and fidelity level of the subsequent 
search.

In the integrated criterion, a proportional factor � which 
is adaptively adjusted according to the sample density is 
added to adjust the tendency between exploration and 
exploitation during the search process. Meanwhile, Kull-
back–Leibler divergence is used to measure the credibility 

or information contribution of a point from system with 
different fidelities. The PEI method was then validated by 
application to seven analytical functions, and we found 
that the introduction of factor � helps to improve the 
greedy nature of EI criterion and helps to search for the 
global optima. However, theoretical analysis shows that 
a large value of � may lead to the increase of total cost 
and sample points may cluster. To solve this problem, we 
suggest adaptively adjusting � by the sample density, and 
it will make a tradeoff between the accuracy of optimum 

Fig. 14   Optimized front and rear airfoils

Table 6   Comparison of airfoil optimization results with different 
methods

method HF samples LF samples optimum

PEI 31 45 2.458502E-03
MFSKO 36 50 2.581709E-03

Fig. 15   Static pressure contours of NACA0012 airfoil
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and the numbers of iterations. The contrast test for five 
analytical functions also shows that adaptively adjusting 
the value of � can achieve high accuracy and considerable 
cost. Besides, when the accuracy of two methods is the 
same, PEI can save the total cost, which means that PEI is 
a more efficient method.

Moreover, a Kullback–Leibler divergence-based item is 
used to measure the credibility of point from different fideli-
ties, and it decides the fidelity level of the next observation 
along with the cost item. The effectiveness and advantage of 
the proposed method were compared with MFSKO method 
by seven analytical functions, and also demonstrated for 
aerodynamic shape optimization of NACA0012 airfoil.

The research in this paper is based on the existing Co-
Kriging method, and the currently widely used multi-fidelity 
surrogate model is mostly based on autoregressive architec-
ture. This kind of treatment is relatively easy to handle, but 
if the autoregression hypothesis does not meet the actual 
situation, it will result in incorrect results. As the surrogate 
model may be more important to the optimization results 
than the sequential criterion, thus how to describe the fidel-
ity difference and the consequently modeling problem is a 
creative potential. In this paper, Case 7 is an three-fidelity 
optimal problem, and the computational cost of building a 
Co-Kriging model increases as the sample size increases. 
So, the more advanced metamodel is worth studying. In the 
PEI sequential criterion proposed in this paper, an adaptive 
proportional factor is introduced to improve greedy and to 
achieve better optimization effect, which is also applicable 
to single-fidelity case, but how to adjust the proportional 
factor adaptively to achieve high accuracy and considerable 
cost remains to be further studied. And we will also focus 
on applying the PEI method to higher dimensional optimiza-
tion, it will be challenging as the dimension is larger than 
50. On the other hand, through in this paper, we can handle 
some kind of unknown constraints, it is still an essential 
direction.

Appendix A

Theorem 1  (Equivalence theorem about exploration and 
exploitation) The PEI function defined by (17) is equivalent 
to the following form:

and sgn[(� − 1)(� − 1)] ≥ 0 , in which � is the proportional 
factor of exploration and exploitation, and � is the scaling 
of variance.

Proof  Similar to the work of Johns et al. (1998), EIP(x) and 
EI(x) are treated as the function of f̂m(x) and sm(x) , that is to 
record EIP(x) = EIP(f̂m(x), sm(x)) . Obviously, EI function is 
the special case of PEI, that is

We get the partial derivative of prediction mean and predic-
tion variance sm(x) , and we use the binary Lagrange mean 
value theorem

In which 0 < 𝜃 < 1 , ∇EIsm is the partial derivative of EI to 
sm(x) . To further simplify, as � and Φ are the standard nor-
mal probability density and cumulative distribution function, 
based on the partial derivative relationship, we have

In which

EIP(x) = (f̂m(x
∗) − f̂m(x))Φ(

f̂m(x
∗) − f̂m(x)

sm(x)
)

�������������������������������������������������
exp loitation

+ 𝛾sm(x)𝜙(
f̂m(x

∗) − f̂m(x)

sm(x)
)

���������������������������������
exp loration

EIP(x) =EIP(f̂m(x), sm(x)) = EI(f̂m(x), 𝜆sm(x))

=EI
(
f̂m(x), sm(x) + (𝜆 − 1)sm(x)

)

f (x0, y0 + k) = f (x0, y0) + k ⋅ ∇fy(x0, y0 + �k)

(A1)

EIP(f̂m(x), sm(x))

= (f̂m(x
∗) − f̂m(x))Φ

(
f̂m(x

∗) − f̂m(x)

sm(x)

)

+ sm(x)𝜙

(
f̂m(x

∗) − f̂m(x)

sm(x)

)

+ 𝜙

(
f̂m(x

∗) − f̂m(x)

sm(x) + 𝜃(𝜆 − 1)sm(x)

)
⋅ (𝜆 − 1)sm(x)

= (f̂m(x
∗) − f̂m(x))Φ

(
f̂m(x

∗) − f̂m(x)

sm(x)

)

+ 𝛾̂(x)sm(x)𝜙

(
f̂m(x

∗) − f̂m(x)

sm(x)

)

𝛾̂(x) = 1 +
𝜙(

f̂m(x
∗)−f̂m(x)

sm(x)+𝜃(𝜆−1)sm(x)
)

𝜙(
f̂m(x

∗)−f̂m(x)

𝜆sm(x)
)

(𝜆 − 1)
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As 
𝜙(

f̂m (x∗)−f̂m (x)

sm (x)+𝜃(𝜆−1)sm(x)
)

𝜙(
f̂m (x∗)−f̂m (x)

𝜆sm(x)
)

> 0  ,  𝛾̂(x)−1

𝜆(x)−1
> 0  ,  t hus  we  have 

sgn((𝜆(x) − 1)(𝛾̂(x) − 1)) > 0 . If 𝜆 = 1, 𝛾̂ = 1 , PEI is just the 
standard EI function, sgn((𝜆(x) − 1)(𝛾̂(x) − 1)) = 0 . To sum 
up, for any �(x) , there exist a 𝛾̂(x) to meet (A1) and 
sgn((𝜆(x) − 1)(𝛾̂(x) − 1)) ≥ 0

Thus, for any point x , after get its f̂m(x) and sm(x) , we can 
surely get a �(x) and after scaling of sm(x) to make 𝛾̂(x) the 
same everywhere, we record it as � and have

	�  ◻

Appendix B

See Table 7.
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