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Abstract
Traditional methods for structural uncertainty problems with nonconventional distributions involve a significant computa-
tional burden, attributed to the nonlinear increase of structures incurred by the transformation of variables to conventional 
distributions. To solve the above problem, in this study, a derivative lambda probability density function (λ-PDF) is pro-
posed for quantifying the uncertainties in a unified framework. Furthermore, an efficient uncertainty propagation approach 
for complex structures based upon the improved derivative λ-PDF and dimension reduction method (DRM) is developed. 
Firstly, the uncertainties of random variables with large skewness and kurtosis are quantified by the improved derivative 
λ-PDF. Secondly, the n-dimensional structural model is decomposed into a sum of several subsystems. Next, the first-four 
moments of structural responses are derived using the DRM and Gaussian-weighted integral. Finally, the probability den-
sity function and cumulative distribution function of structural responses are reconstructed to quantify their uncertainties 
by the improved derivative λ-PDF. Six demonstrative examples are engaged to illustrate the effectiveness and accuracy of 
the proposed method. Reference methods, such as Monte Carlo simulation, the maximum entropy method, the Edgeworth 
series expansion, and the shifted generalized lognormal distribution, are engaged as calibers to demonstrate the superiority 
of the proposed method.

Keywords Uncertainty propagation analysis · Dimension reduction method · Statistical moments · Derivative λ-PDF · 
Skewness · Kurtosis

1 Introduction

In practical engineering, uncertainties intrinsic in geomet-
ric dimensions, physical parameters, and material proper-
ties are inevitable in the processes of structural designing, 
manufacturing, and assembling (McKeand et al. 2021; Xu 
et al. 2020). With the ever-increasing structural complexity 

and accuracy in the modern industries, the uncertainties in 
structures are increasing exponentially, which should be 
addressed appropriately in the design process to warrant 
the robustness, reliability, and safety of complex structures 
(Jiang et al. 2020). In general, uncertainties can be classified 
into epistemic and aleatory uncertainties (Chen et al. 2021). 
Epistemic uncertainty is caused by the lack of information, 
which can be reduced by inferences to relevant knowledge or 
data. Aleatory uncertainty refers to the inherent uncertainties 
in the structure during the manufacturing and assembling 
processes due to nonperfectly accurate geometric or material 
parameters (Hu and Mahadevan 2017). To carry out uncer-
tainty propagation analysis of complex structures, the most 
critical step is to quantify the uncertainties of structures. 
For this reason, a series of uncertainty models have been 
developed (Liu et al. 2018a).

The nonprobabilistic models have achieved significant 
advances recently due to their simplicity in modeling and 
independence from massive prior information (Wu et al. 
2019), which mainly include evidence theory (Wang 2019), 
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convex models (Jiang et al. 2019), fuzzy sets (Wang et al. 
2019b), etc. The nonprobabilistic models require few sam-
ples to specify uncertainties, which are often used for the 
modeling of epistemic uncertainties (Long et al. 2019). 
However, the small sample size makes it impossible to 
derive accurate statistical data and function curve of struc-
tural response. The probabilistic models are the most com-
monly applied uncertainty quantification models due to 
their solid theoretical groundwork (Acar et al. 2021). In the 
probabilistic models, the uncertain parameters are character-
ized as random variables with different probability distribu-
tions, such as normal distribution, lognormal distribution, 
Weibull distribution, and extreme value distribution. The 
precise statistical data, such as probability density func-
tion (PDF), cumulative distribution function (CDF), and 
statistical moments, can be acquired via sufficient samples 
(Wang and Matthies 2020). A series of probability distribu-
tion models have been developed, which can reliably define 
the distribution of uncertainties and effectively approach 
the uncertainty propagation process, such as saddlepoint 
approximation (SPA) (Huang and Du 2006), maximum 
entropy method (MEM) (He et al. 2022, 2019), Edgeworth 
series expansion (EWE) (Kolassa and Kuffner 2020; Zhao 
and Zhang 2014), shifted generalized lognormal distribu-
tion (SGLD) (Xu and Dang 2019), and generalized lambda 
distribution (Acar et al. 2010).

Various methods have been developed for uncertainty 
propagation analysis of complex structures based on prob-
abilistic models, which can be grouped into four catego-
ries. (1) The first category is the sampling-based methods, 
in which the typical methods are Monte Carlo simulation 
(MCS) (Alban et al. 2017), Latin hypercube sampling (Hel-
ton et al. 2005), and importance sampling (Zhang et al. 
2020). In general, when the number of samples is large 
enough, the results obtained by this category of methods 
are approaching the theoretical results at infinity. However, 
large samples result in high computational costs and low effi-
ciency, which limits its application in complex engineering 
problems. Consequently, the sampling-based methods are 
often used as caliber to demonstrate the effectiveness and 
accuracy of other uncertainty propagation analysis meth-
ods. (2) The second category is the most probable point 
(MPP)-based methods, which has been verified to be an 
efficient uncertainty propagation approach. The most rep-
resentative methods are the first-order reliability method 
(FORM) (Li et al. 2018) and the second-order reliability 
method (SORM) (Park and Lee 2018). The limitation of 
MPP-based methods is that they involve multiple iterations 
to search MPPs of structural performance functions. And 
multiple MPPs may be targeted in one iteration process, 
which leads to intractable computational intensity frequently 
(Meng et al. 2018). (3) The third category is the surrogate 
model-based methods. This category of methods establishes 

an explicit surrogate model through design experiments to 
specify implicit or complex performance functions. The 
proficiency of this category method depends on the appro-
priate selection of the surrogate models and the associated 
parameters (Zhang et al. 2022). At present, the prevailing 
surrogate models mainly include the Kriging method (Xiao 
et al. 2020; Zhang et al. 2019), radial basis function network 
(Zhang et al. 2021a), response surface method (Huang et al. 
2017), and polynomial chaos expansion (Wang et al. 2019a). 
(4) The last category of uncertainty propagation methods is 
moment-based methods. This category of methods recreates 
PDF through statistical moments of the system response, 
including integer-order and fractional-order moment-based 
methods (Liu et al. 2018b; Zhang et al. 2021b). Once the 
statistical moments of structural response are obtained by 
the moment propagation methods, the corresponding PDF of 
the performance function can be directly generated through 
the probability distribution evolution methods.

The application of moment-based methods can be divided 
into two steps including the derivation of the propagation 
of statistical moments and the reconstruction of structural 
response’s PDF. Among the prevailing moment propaga-
tion methods, the univariate dimension reduction method 
(UDRM) (Huang and Du 2006; Rahman and Xu 2004) 
is the most representative to display excellent efficiency 
and robustness when analyzing multivariate uncertainty 
problems (Zhou and Peng 2020). It decomposes an multi-
dimensional system model into multiple one-dimensional 
subsystems and approximates the moments of the original 
multi-dimensional structure via the moments of each sub-
system (Rahman and Xu 2004). On the other hand, UDRM 
may not be necessarily adequate for analyzing uncertain-
ties in a highly nonlinear system. To improve the accuracy, 
Xu and Rahman (2004) proposed a generalized DRM to 
decompose the n-dimensional system into a sum of at most 
s-dimensional subsystems ( s ≤ n ). The accuracy of DRM 
with regard to moment estimation and uncertainty propaga-
tion was enhanced substantially by considering a high value 
of s. Nevertheless, the computational intensity increased 
significantly with the increasing input dimensions. Thus, it 
is critical to specify an appropriate s to ensure a balance 
between accuracy and efficiency. Huang and Du (2006) cal-
culated the statistical moments of structural response via the 
bivariate dimension reduction method (BDRM) and Gauss-
ian-weighted integrals (GWI), and improved simultaneously 
the accuracy and efficiency of uncertainty analysis. Xu and 
Zhou (2020) presented an adaptive trivariate dimension 
reduction method (TDRM) combining GWI for statistical 
moment estimations, and achieved the well trade-off balance 
between efficiency and accuracy of DRM. The second step 
recovers the PDF by probabilistic approximation methods, 
also known as probability distribution models, which con-
struct unified functional forms with unknown parameters. 
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The statistical moments of the structural response are used to 
determine these unknown parameters, and the derived spe-
cific function is considered as PDF of the original structural 
response. The typical methods are saddlepoint approxima-
tion (SPA), maximum entropy method (MEM), Edgeworth 
series expansion (EWE), shifted generalized lognormal 
distribution (SGLD), and generalized lambda distribution. 
Each of these methods has its merits and demerits (Zhou and 
Peng 2020). For example, SPA can obtain accurate prob-
ability estimation of calculated responses in the tail region, 
but singularity problems often occur during the numerical 
calculation (Huang and Du 2006). Zhang and Han (2020) 
evaluated the positional accuracy of robotic manipulators 
based on the DRM and SPA, and efficiently and accurately 
estimated the kinematics reliability of industrial robots. 
The MEM shows good performance in PDF modeling for 
the high and low reliability levels when the skewness is 
relatively high, but the inherent exponential form limits its 
application (Xi et al. 2012). Yun et al. (2019) proposed a 
novel approach to estimate the moment-independent global 
sensitivity combined with DRM and MEM, reducing the 
computational cost remarkably. EWE has the advantages 
of rapid convergence and reduced computational inten-
sity to estimate PDFs of complex structures (Wang et al. 
2020). Shi et al. (2018) proposed an effective method based 
upon the high-order moment standardization technique and 
EWE, improving the accuracy when analyzing uncertainties 
with high nonlinearity. SGLD is flexible in shape, reaches 
almost all the kurtosis–skewness regions achievable by the 
unimodal distributions, and provides high accuracy in the 
tail fitting. Xu and Dang (2019) presented a novel BDRM 
for moment evaluations and reconstructed PDF of the per-
formance function using SGLD with sufficient accuracy 
and efficiency. The generalized lambda distribution is only 
applicable to the approximation of the single peak distribu-
tion with medium or low reliability levels (Acar et al. 2010). 
Liu et al. (2018b) presented a general frame combined with 
UDRM and derivative lambda probability density function 
(λ-PDF), which could represent arbitrary mono-peak PDF 
accurately when their kurtosis–skewness points are located 
in the fitting region.

However, most of the aforementioned methods are not 
straightforward to implement the structural uncertainty 
propagation analysis with large skewness and kurtosis. It is 
because the values of skewness and kurtosis may span large 
ranges due to the high complexities of parameters and the 
derived forms of λ-PDF. Various derivative forms result in 
different ranges of the derived thresholds. For instance, Liu 
et al. (2018b) adopted the derivative λ-PDF in the form of 
power functions to achieve a closed fitting region consisted 
of kurtosis–skewness points. However, it was complicated 
to precisely process the uncertain parameters beyond this 
closed fitting region. In view of that, an improved derivative 

λ-PDF is suggested in the form of coupled exponential and 
power functions in this study. Firstly, the improved deriva-
tive λ-PDF is utilized for constructing uncertainty models of 
the input random variables, whose kurtosis–skewness points 
locate in the fitting region. DRM is then used to decompose 
the n-dimensional structure model into a sum of several 
low-dimensional subsystems. GWI is applied to compute 
directly the multi-dimensional integrations to calculate the 
statistical moments of structure response. The improved 
derivative λ-PDF is subsequently employed to reconstruct 
PDF and CDF of structure response to realize the uncer-
tainty propagation. The improved λ-PDF expands the fitting 
region, enhances the applicability of the derivative λ-PDF 
method and compensates the insufficiency of the aforemen-
tioned methods in analyzing the uncertainties of complex 
structures with large skewness and kurtosis.

The remainder of this paper proceeds as follows: Sect. 2 
briefs the probabilistic tools and inadequacies in the cur-
rently prevailing uncertainty propagation methods, espe-
cially when considering large skewness and kurtosis. Sec-
tion 3 reviews the relatable derivative λ-PDF methods to 
frame comprehension of the current study. Section 4 expos-
its the currently proposed uncertainty propagation analy-
sis method in detail. Section 5 implements six examples to 
demonstrate the effectiveness and accuracy of the currently 
proposed method from various perspectives. Section 6 and 
Sect. 7 discuss and conclude this study.

2  Problem statement

Assuming that there is a structure with n-dimensional vec-
torized input random variables � =

[
X1, X2,… ,Xn

]T , where 
all the random variables Xi are statistically independent, the 
performance function of the structure can be expressed as 
(Liu et al. 2018b)

where g(�) represents the performance function of Xi with 
respect to Z.

The probabilistic uncertainty propagation analysis is to 
estimate CDF, PDF, and statistical moments of Z with the 
given probability distributions of independent variables X. 
CDF of Z at z can be calculated through a multi-dimensional 
integral (Huang and Du 2006)

where f
�
(�) = fX1

(x1)fX2
(x2)⋯ fXn

(xn) is the joint PDF of 
random variables X.

The moment-based methods reconstruct PDF and CDF of 
the structural response via finite-order statistical moments. 

(1)Z = g(�) = g
(
X1, X2,… ,Xn

)
,

(2)FZ(z) = P{Z ≤ z} = �g(�)≤z
⋯� f

�
(�)d�,
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The lth-order raw moment of the structural response can be 
estimated by (Liu et al. 2018b)

The first-four center moments of the structural response 
can be obtained as (Liu et al. 2018b)

And then the mean, standard deviation, skewness, and 
kurtosis of the structural response can be written as (Liu 
et al. 2018b)

To prevent the intractable computational intensity 
incurred by the direct integration method to calculate the 
joint PDF of a highly nonlinear system with multi-dimen-
sional variables, PDF approximation methods based upon 
the acquired statistical moments are developed. PDFs and 
CDFs of structural responses are reconstructed accurately 
and efficiently. In addition, the traditional PDF approxima-
tion methods usually ensue unsatisfactorily low accuracy for 
uncertainty propagation analysis in complex structures with 
large skewness and kurtosis. Therefore, a general probabil-
istic method for uncertainty quantification and propagation 
through improved skewness and kurtosis fitting region is 
proposed in this study.

3  Referenced derivative λ‑PDF method

The PDF reconstruction is an integral step of the moment-
based approach. As mentioned above, a series of PDF 
approximation methods have been developed. Among them, 
the maximum entropy method (MEM), the Edgeworth series 
expansion (EWE), the shifted generalized lognormal distri-
bution (SGLD), and the referenced derivate λ-PDF method 
are adopted as calibers in this study to verify the effective-
ness and accuracy of the currently proposed method for ana-
lyzing uncertainties in complex structures with high skew-
ness and kurtosis. To facilitate the comprehension of the 
current study, the basic implementation procedures for the 
referenced derivate λ-PDF method are briefed in this section.

(3)Ml = ∫
+∞

−∞

[
g(�)

]l
f
�
(�)d�.

(4)

⎧
⎪⎪⎨⎪⎪⎩

D1 = M1

D2 = M2 −M2

1

D3 = M3 − 3M2M1 + 2M3

1

D4 = M4 − 4M3M1 + 6M2M
2

1
− 3M4

1

.

(5)

⎧⎪⎪⎨⎪⎪⎩

� = D1

� =
√
D2

Cs = D3

�
(�)3

Ck = D4

�
(�)4

.

The λ-PDF represents a family of PDF, which can be 
expressed as follows (Liu et al. 2018b)

where z denotes random variable; λ is positive and controls 
the shape of fλ(z).

The normalization factor κ can be expressed as follows

wherein Γ(⋅) indicates gamma function.
The λ-PDF can be utilized to describe the distribution of 

z by selecting appropriate value of λ. However, the variables 
are restricted to the interval of [–1, 1] and are symmetric 
with respect to z = 0 . As a result, the original method can 
only approximate a limited number of symmetric PDFs. To 
eliminate this limitation, a quadratic polynomial function 
can be applied

where h(z) is a function of variable z; �i(i = 0, 1, 2) denote 
the coefficients of the polynomial. Thus, v can be extended 
to any interval and asymmetric probability distributions via 
determining appropriate coefficients. Besides, the curves do 
not exhibit a monotonic trend due to the nonlinear charac-
teristics of quadratic polynomials. To guarantee the mono-
tonicity of v, only two cases ( 𝛿2 > 0 , �1 ≥ 2�2 and 𝛿2 < 0 , 
�1 ≤ 2�2 ) are considered.

The quadratic PDFs with various λ in the two cases are 
shown in Fig. 1. Notably, the input parameter v is asym-
metrical and spans a wide range of values. By selecting the 
appropriate �i(i = 0, 1, 2) and λ, any asymmetrical PDFs in 
any intervals can be fitted by the quadratic derivative λ-PDF. 
To demonstrate the high fitting ability of the quadratic deriv-
ative λ-PDF, a fitting region, which consists of the kurto-
sis–skewness points obtained by MCS with 107 samples, is 
also given in Fig. 2.

It can be illustrated in Fig. 2 that the kurtosis of the sys-
tems, whose PDF can be accurately recovered by the original 
quadratic derivative λ-PDF, basically goes between 1.5 and 
3.2. When the kurtosis–skewness point falls out of the fit-
ting region, an optimization algorithm is used to identify 
the closest point to the actual point in the fitting region, and 
its uncertainty model is applied for uncertainty propagation 
analysis. Obviously, the farther the distance between the two 
points is, the greater the discrepancy between the established 
uncertainty model and the actual uncertainty model, and 
the lower the accuracy of uncertainty propagation analysis. 
In addition, the quadratic polynomial is not monotonic, the 
range of random variables should be specified in advance. 

(6)fλ(z) =

{
𝜅
(
1 − z2

)λ−0.5 |z| < 1

0 |z| ≥ 1
,

(7)� =
Γ(λ + 1)

Γ(0.5)Γ(λ + 0.5)
,

(8)v = h(z) = �0 + �1z + �2z
2,
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To overcome the ambiguity of the referenced λ-PDF method, 
an improved derivative λ-PDF is proposed in this study to 
expand the fitting region and enhance the applicability for 
the uncertainty propagation of complex structures with large 
skewness and kurtosis.

4  Currently proposed method

This section exposits the currently proposed method in detail. 
The layout of this section is that the uncertainty modeling 
method for the input variables is introduced in Section 4.1, 
in which the quadratic derivative λ-PDF is extended to a sum 
of power and log functions of arbitrary orders. The moment 
propagation analysis through the dimension reduction method 
(DRM) and Gaussian-weighted integrals (GWI) is presented in 

Section 4.2. The specific implementation procedure of the cur-
rently proposed method is subsequently outlined in Section 4.3.

4.1  Uncertainty modeling of input variables

The uncertain models of input variables are first constructed 
to quantify the uncertainties, which lays the groundwork for 
the moment propagation analysis.

4.1.1  Derivation of improved derivative λ ‑ PDF

The original power function polynomial is improved, so that 
the fitting region is expanded to accommodate the original 
fitting region and lift the limitation to the second derivative. 
The improved polynomial can be expressed as

where �i ∈ (−∞, +∞) (i = 0, 1, 3) and �2 ∈ (0, +∞) . When 
�2 is an odd number, v is monotonic and unbounded. How-
ever, when �2 is an even number, v is not monotonic but 
bounded. In particular, when �2 = 2 , Eq. (9) is in the second-
order derivative form of Liu et al. (2018b).

The logarithmic function is monotonic and exhibits an 
infinite range of values (Gardini et al. 2021). In statistics, 
the logarithmic transformation is a monotonic transforma-
tion and the transformed variables retain the original statisti-
cal properties, such as mean and variance. The logarithmic 
function is then further improved

where �i ∈ (−∞, +∞) (i = 0, 1, 3, 4) and �2 ∈ (0, +∞).

(9)v = h(z) = �0
(
z + �1

)�2 + �3,

(10)v = h(z) = �0
(
z + �1

)�2 + �3 ln (z + 1) + �4,

Fig. 1  Derivative λ-PDF with different λ
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Since it is not straightforward to determine the positive 
and negative terms in Eq. (10), the positive and negative 
terms of the polynomial are separated, so that

w h e r e  �i ≥ 0 (i = 0, 2, 3, 5, 6, 7)  ;  �i ≥ 1(i = 1, 4)  ; 
�8 ∈ (−∞,+∞).

Equation (6) indicates that the λ-PDF method possesses 
probability density only when z falls in the range of [–1, 
1]. To ensure the monotonicity of this function in the valid 
range of z, the ranges of the undetermined parameters �i
(i = 0, 1,… , 8) should also be specified. In view of that, 
�1 and �4 are assigned the nominal range of (1,+∞) , �8 is 
assigned the nominal range of (−∞,+∞) and all the others 
are assigned the nominal range of (0,+∞).

Thus, f�(v) can then be expressed as

where f�(v) and f�(z) are PDFs of v and z, respectively; 
and h�(z) expresses the derivative of h(z) . The lth-order raw 
moment Ml can be derived as

where vmin and vmax are the minimum and maximum values 
of the variable v, respectively. Because v increases monoton-
ically with increasing z, when v reaches the minimum value, 
z takes the minimum value – 1; when v takes the maximum 
value, z takes the maximum value 1.h(z) stands for a function 
of z with respect to v as shown in Eq. (11).

The parameters are optimized to derive the most appro-
priate values for approximation to PDF. Totally, ten param-
eters, such as λ and �i(i = 0, 1,… , 8) , should be optimized, 
whose initial values are specified as (1, 2, 2, 0.5, 2, 2, 0.5, 2, 
2, 1). The optimal solution of the parameters can be derived 
by searching the minimum sum of squared deviations of the 
approximate and exact first-four order moments. Combining 
Eqs. (4), (5), (11)–(13), the following optimization model 
can be established

where μ, σ, Cs, and Ck denote the first-four order statistical 
moments of the structure solved by substituting the unknown 

(11)
v = h(z) = �0

(
z + �1

)�2 − �3
(
−z + �4

)�5
+ �6 ln (z + 1) − �7 ln (−z + 1) + �8,

(12)f�(v) = f�(z)
/||h�(z)||,

(13)Ml = ∫
vmax

vmin

vl ⋅ f�(v)dv = ∫
1

−1

hl(z) ⋅ �
(
1 − z2

)�−0.5
dz,

(14)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

find𝜆, 𝛿i (i = 0, 1,… , 8)

min f =
�
𝜇 − 𝜇0

�2
+
�
𝜎 − 𝜎0

�2
+
�
Cs − Cs0

�2
+
�
Ck − Ck0

�2
s.t.λ ≥ 0, 𝛿1 ≥ 1,𝛿4 ≥ 1

𝛿i > 0,i = 2, 3, 5, 6, 7

𝛿0,𝛿8 ∈ (−∞,+∞)

,

parameters of each iteration into the function of λ-PDF in the 
optimization process; μ0, σ0, Cs0, and Ck0 indicate the first-
four order statistical moments of the parameters obtained 
from the statistical information of the input parameters or 
the first-four order statistical moments of the response calcu-
lated by the moment propagation method. The optimization 
strategy is solved by the quadratic sequential programming 
(SQP), and the calculation would stop when f ≤ 10−6.

4.1.2  Standardization of random variables

To simplify the computational process and reduce the com-
putational cost, the random variable v is converted into a 
standard normal variable u.The relationship between v and 
u can be given as follows (Zhang and Han 2020)

In this way, calculation efficiency is improved when opti-
mizing and determining parameters. The final calculation 
objects are PDF and CDF about u . The conversion relation-
ship between f (v) and f (u) can be derived as

Finally, combining Eqs. (6), (12), and (16), λ-PDF can 
be derived as

The fitting region of the currently proposed method, 
which consists of the kurtosis–skewness points obtained by 
MCS with 107 samples, is shown in Fig. 3. Compared with 
the fitting region of the referenced method in Fig. 2, the 
range of the fitting region of the currently proposed method 
is significantly increased, thus, the fitting ability is enhanced. 
Especially for the points located outside the reference fit-
ting region but within the proposed fitting region, the fit-
ting effect of the proposed method is remarkably better. To 
illustrate the fitting region of the proposed method more 
vividly, a comparison between the improved and referenced 
derivative λ-PDF method is presented in Section 4.1.3.

4.1.3  Comparison of fitting regions

To demonstrate the superiority of the currently proposed 
method, the improved and the original fitting regions are 
compared in Fig. 4, while MCS is implemented to obtain 
the kurtosis–skewness points.

From Fig. 4a, the improved region is much bigger than 
the original region. But the original fitting region is not 
accommodated in the improved fitting region completely. 

(15)u =
(
v − �v

)/
�v.

(16)f (v) = f (u)
/
�v.

(17)fλ(z) =

{
𝜅(1−z2)

λ−0.5

𝜎v|h�(z)| |z| < 1

0 |z| ≥ 1

.
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The potential reason may be that the uncovered area in the 
original region requires a minimum value of the parame-
ter. Taking �1 as an example, the kurtosis–skewness point 
of the structure can reach the uncovered area only when 
�1 = 0.005 , which may not be captured properly by the dia-
gram with a phenomenal parameter value range, such as [0, 
4]. To prove that the improved region can cover the entire 
original region, a zoomed-in local comparison is conducted 
with a much-narrowed range of simulation parameters of [0, 
0.5]. The comparison result is illustrated in Fig. 4b.

4.2  Moment propagation

After the uncertain models of the input variables are 
obtained, the statistical moments of structural response can 
be estimated through the moment propagation methods. In 

this study, DRM and GWI are adopted. DRM first decom-
poses the high-dimensional system into several low-dimen-
sional subsystems, and the first-four statistical moments of 
the system response are then evaluated via GWI.

The lth original moment of Z can be written as (Huang 
and Du 2006)

For the DRM, the n-dimensional integral is estimated by 
the summation of multiple s-dimensional functions (s ≤ n)(Xu 
and Rahman 2004), and the UDRM is suitable for engineer-
ing applications with low accuracy requirements. Besides, 
the BDRM has lower computational efficiency, but it is more 
suitable for engineering problems with high accuracy require-
ments. In practical engineering, the UDRM or BDRM shall be 
selected in different cases according to specific accuracy and 
efficiency requirements. According to UDRM, the lth-order 
original moment can be expressed as (Xu and Rahman 2004)

where Ŷk
(
�k

)
= Y

(
𝜇1,… ,𝜇k−1,Xk,𝜇k+1,… ,𝜇n

)
 is  the 

kth subsystem;�k(k = 1, 2,… ,n) is the mean value of Xk ; 
Y0 = Y

(
�1,�2,… ,�n

)
.

According to BDRM, the lth-order original moment can be 
expressed as (Xu and Rahman 2004)

(18)Ml = ∫
+∞

−∞

[
g(�)

]l
f
�
(�)d� = ∫

+∞

−∞

Y(�)f
�
(�)d�.

(19)Ml = ∫
+∞

−∞

[
n∑

k=1

Ŷk
(
�k

)]
f
�k

(
�k

)
d�k − (n − 1)Y0,

Fig. 3  Fitting region of currently proposed method
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where

Equations (19) and (20) only involve one- and two-dimen-
sional integrals, therefore, the computational cost of Eqs. (19) 
and (20) is lower than that of Eq. (18). However, the number 
of two-dimensional integrals is n(n − 1)∕2 , which implies that 
it still ensues high computational cost when dealing with high-
dimensional problems. GWI is thus adopted to further reduce 
the computational cost because it approximates the integrals 
by summing up the weighted functions evaluated at Gauss 
points.

As to UDRM, Ml can be transformed from Eq. (19) into 
(Rahman and Xu 2004)

where Xm
k

 is the mth Gauss point; �m denotes the corre-
sponding Gauss weight; r stands for the number of the Gauss 
points (abscissa).

For the case of BDRM, Ml can be converted from Eq. (20) 
to be

where Xm
k

 indicates the mith Gauss point to replace the kith 
variable in Y; �m1

 and �m2
 are the corresponding Gauss 

weights; r1 and r2 are the respective numbers of the Gauss 
points.

GWI requires the transformation of nonnormal distribu-
tion into a normal distribution, which increases the nonlin-
earity of the system. Therefore, it is advisable to choose the 
appropriate orthogonal polynomial models for the respec-
tive distributions of random variables. The orthogonal 

(20)

Ml = ∫
+∞

−∞ ∫
+∞

−∞

Y2fXk1

(
xk1

)
fXk2

(
xk2

)
dxk1

dxk2

−

(
n − 2

1

)
∫

+∞

−∞

Y1fXk

(
xk

)
dxk +

(
n − 1

2

)
Y0,

(21)Y1 =

n∑
k=1

Y
(
�1,… ,�k−1,Xk,�k+1,… ,�n

)
.

(22)

Y2 =
∑
k1<k2

Y
(
𝜇1,… ,Xk1

,… ,Xk2
,… ,𝜇n

)
,
(
k1,k2 = 1, 2,… ,n

)
.

(23)
Ml ≅

n∑
k=1

r∑
m=1

�mY
(
�1,… ,�k−1,X

m

k
,�k+1,… ,�n

)

− (n − 1)Y
(
�1,�2,… ,�n

)
,

(24)

Ml ≅
∑
k1<k2

r1∑
m1

r2∑
m2

𝜔m1
𝜔m2

Y
(
𝜇1,… ,X

m1

k1
,… ,X

m2

k2
,… ,𝜇n

)

−

(
n − 2

1

) n∑
k=1

r∑
m=1

𝜔mY
(
𝜇1,… ,𝜇k−1,X

m
k
,𝜇k+1,… ,𝜇n

)

+

(
n − 1

2

)
Y
(
𝜇1,𝜇2,… ,𝜇n

)

,

polynomials and the corresponding GWI functions for 
ordinary different probability distribution types are listed 
in Table 1 (Liu et al. 2018b). For simplicity, GWI formulas 
for one-dimensional integrals only, as examples, are given 
in Table 1. In consequence of the derivation of the statistic 
moments propagation, the improved derivative λ-PDF is 
further used to reconstruct the PDF and CDF of the system 
response following a similar procedure to the uncertainty 
modeling of the input variables in Section 4.1.

Since the moment calculation is included in the two-
dimensional and one-dimensional numerical integrals, the 
total number of function evaluations in BDRM is (Ding and 
Xu 2021)

Similarly, the total number of function evaluations in 
UDRM can be obtained by (Zhang and Han 2020)

where N is the number of function evaluations; n denotes the 
dimension of the uncertain system; d implies the number of 
GWI points.

4.3  Procedure of currently proposed method

The stepwise procedure of the proposed method for structural 
uncertainty propagation is shown in Fig. 5 and specified as 
follows:

Step 1  Derive the probability data of input random vari-
ables. For variables with specific distributions, the 
probability data are calculated through the given 
parameters. On the other hand, for variables under 
arbitrary distributions, the probability data are 
approximated by the improved λ-PDF method when 

(25)N =
n(n − 1)

2
⋅ (d − 1)2 + n ⋅ (d − 1) + 1.

(26)N = n ⋅ (d − 1) + 1,

Table 1  GWI formulas for different distributions (Liu et al. 2018b)

Distribution Polynomial Formula

Uniform Legendre 1

2

r∑
m=1

�mg
�

b−a

2
xm +

a+b

2

�

Normal Hermite 1√
�

r∑
m=1

�mg
�√

2�xm + �

�

Lognormal 1√
�

r∑
m=1

�mg
�
e
√
2�I xm+�I

�

Exponential Laguerre 1

�

r∑
m=1

�mg
�

xm

�

�

Weibull r∑
m=1

�mg
�
� �
√
xm

�

Gamma 1

Γ(�)

r∑
m=1

�m

�
xm

��−1
g
�
�xm

�
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the kurtosis–skewness points locate in the improved 
fitting region. If the kurtosis–skewness points fall out 
of the improved fitting region, they are approximated 
by MEM.

Step 2     Calculate the first-four statistical moments of 
structural response. DRM and GWI are adopted to 
implement the moment propagation analysis based 
on the probability data of input variables derived in 
Step 1. The calculated moments are regarded as the 
objective values in Eq. (14) to acquire the appropri-
ate parameters.

Step 3     Optimize the parameters λ and �i in Eq. (14). The 
initial parameters are substituted into Eq. (14) to 
start the optimization process. When the objective 
function is minimized, the first-four order statisti-
cal moments are identified as the data closest to the 
respective objective value. The final parameters are 
then determined.

Step 4     The approximate PDF and CDF of structural 
response are obtained. The optimized parameters 
acquired in Step 3 are substituted into Eq.  (17) 
to estimate the λ-PDF, which is regarded as PDF 

Fig. 5  Flowchart for implementation procedure of currently proposed method
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reconstructed by the currently proposed method. 
The corresponding CDF can finally be obtained by 
integration.

 

5  Demonstrative examples

To illustrate the effectiveness and accuracy of the currently 
proposed method, six examples are engaged in this section. 
Considering the balance between accuracy and efficiency, 
different DRMs and GWI with 5 Gauss points are used 
in the examples when evaluating the statistical moments. 
MCS with  107 samples is adopted as caliber. After deriva-
tion of the propagation of statistical moments, the methods 
for approximating PDF and CDF of the structural response 
are adopted. For comparison, the referenced λ-PDF method, 
MEM, EWE, and SGLD are also utilized to reconstruct 
PDF and CDF of the structural response. Besides, the cur-
rently proposed method and the reference λ-PDF method 
are referred to as PM and RM, respectively, in the figure 
legends for simplicity. To demonstrate the fitting capabilities 
of different methods, PDF and CDF are graphically illus-
trated for each example. To further reveal the tail accuracy 
of each method, logarithmic coordinates are used in the CDF 
figures.

5.1  Two‑dimensional numerical example

To improve the accuracy of the currently proposed method 
when the kurtosis–skewness points fall out of the origi-
nal region, a binary quadratic system (Acar et al. 2010) is 
considered

where xi ∼ N(0, 1)(i = 1, 2) . To accomplish the uncertainty 
propagation of this binary quadratic system, the proposed 
method is realized through following steps:

(1) Construct the uncertainty models of the input variables. 
The first-four order statistical moments of the two vari-
ables are derived from the respective distribution pat-
terns and parameters.

(2) Implement the moment propagation. The first-four 
order statistical moments of the structural response are 
calculated by the UDRM via Eq. (23), and the results 

(27)Y = x2
1
+ x2

2
− 1,

are shown in Table 2. The statistical moments obtained 
in this step are regarded as the exact solutions, that is 
�0 , �0 , Cs0 , and Ck0 in Eq. (14).

(3) Determine the optimized λ-PDF. The unknown param-
eters λ and δi(i = 0, 1, …, 8) of initial values (1, 2, 2, 
0.5, 2, 2, 0.5, 2, 2, 2, 1) are substituted into Eq. (17) to 
obtain the optimized λ-PDF.

(4) Calculate the optimized first-four statistical moments. 
The optimized λ-PDF obtained in Step (3) is substituted 
into Eq. (18) to calculate the optimized moments in 
Eq. (14).

(5) Compute the objective function f =
(
� − �0

)2
+
(
� − �0

)2
+
(
Cs − Cs0

)2
+
(
Ck − Ck0

)2 . The objec-
tive function f can be computed after calculating the 
exact moments and the optimized moments.

(6) Determine if the convergence condition is satisfied. If 
the value of the objective function f is less than  10–6, 
stop the iteration. On the contrary, update the parameter 
values and repeat Step (3) to Step (5) until the value of 
the objective function f is less than  10–6. The iterations 
histories of objective function are shown in Fig. 6.

(7) Output the optimized parameters. The final values of 
the optimized parameters λ and δi(i = 0, 1, …, 8) are 
(0.4426, 0.8470, 1.4003, 0.0186, 0.1671, 10.4037, 
0.2256, 0.0037, 0.9425, − 0.8759).

(8) Reconstruct the PDF and CDF of the system response. 
The final optimized λ-PDF can be obtained through 
substituting the final parameters into Eq. (17), and it 
is regarded as PDF of the system response. The CDF 
of the system response can be reconstructed through 
further derived. The reconstruction results are shown 
in Fig. 7.

The moments of the system response acquired by MCS and 
UDRM are listed in Table 2. Obviously, the kurtosis of the 
system response indicates that the kurtosis–skewness point 
falls outside the original fitting region. According to Liu et al. 
(2018b), an approximate point within the original fitting region 
that is closest to the actual point of (2.0011, 9.0390) should be 
searched to fit the PDF and CDF. It is understood that, with 
this substantial gap between the two points, low accuracy will 
be ensued for the referenced λ-PDF method.

Figure 6 shows the optimization iteration process, from 
which it can be seen that the adopted optimization strategy 

Table 2  Statistical moments 
of system response in binary 
quadratic system

R.E. relative error (%)

Methods μ (R.E.) σ (R.E.) Cs (R.E.) Ck (R.E.) N

MCS 1.0001 (–) 1.9981 (–) 2.0011 (–) 9.0390 (–) 107

UDRM 1.0000 (0.0100) 2.0000 (0.0951) 2.0000 (0.0550) 9.0000 (0.4315) 9



An efficient uncertainty quantification and propagation method through skewness and kurtosis…

1 3

Page 11 of 21 36

satisfies the convergence condition after 25 iterations and com-
pletes the optimization model solution.

The recovered probability curves of the system response 
through the optimized parameters are shown in Fig. 7, where 
the PM and RM represent the proposed method and the refer-
enced method, respectively. It can be known from Fig. 7, both 
the PDF and CDF approximated via the currently proposed 
method are in the closest agreements with those by MCS, 
while the referenced λ-PDF method yields the most devia-
tion. When fitting the PDF and CDF of the system response, 
the result by the EWE is closer to MCS result than that by 
the MEM. On the other hand, when fitting the PDF of sys-
tem response, the EWE shows large fluctuations when x ≥ 2 , 
while the MEM is more stable on the whole. The fitting results 
demonstrate that the fitting region, i.e., the applicability of the 

derived λ-PDF, is expanded compared to that of the referenced 
method, while the accuracy is not compromised.

5.2  Three‑dimensional numerical example

A nonlinear system with nonnormal distribution input vari-
ables is considered in this example, which can be expressed as

where ln xi ∼ N(1, 0.1)(i = 1, 2) , and x3 ∼ N(1, 0.1).
The statistical moments by MCS, UDRM, and BDRM 

are shown in Table 3. Notably, the results computed by the 
BDRM are more accurate than those by UDRM. Thus, the 
results computed by BDRM are used to approximate the 
PDF and CDF. PDF and CDF curves fitted by all four meth-
ods are presented in Fig. 8.

From Fig. 8a, the PDF curve obtained by the currently 
proposed method is the closest to the curve obtained by 
MCS. The curve by the EWE method almost coincides with 
that by the currently proposed method except for some areas, 
where the curve by the EWE method is less accurate than 
that by the currently proposed method. Besides, the curve 
by the referenced λ-PDF method is better than that by the 
MEM in view of skewness and the overall trend, but not for 
kurtosis. From Fig. 8b, the curve by the currently proposed 
method is in closest agreement with that by MCS. The tail 
accuracy of the referenced λ-PDF method is followed by 
that of the currently proposed method, which is negated by 
overall fluctuation. The overall curve by the EWE method is 
smooth, but the tail accuracy is not high. The MEM displays 
the worst approximation to CDF. In brief, the currently pro-
posed method yields the highest accuracy in approximating 
PDF and CDF for nonlinear systems.
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5.3  High‑dimensional numerical example

This example presents a high-dimensional system (Zhang 
et al. 2021a), where the number of variables can be changed 
without altering the level of failure probability. The function 
of the system is given by

where n can be any value and n = 30 in this exam-
ple;ln xi ∼ N(1, 0.2)(i = 1, 2,… ,n).

Table  4 shows the statistical moments by MCS, 
UDRM, and BDRM. Notably, for the first-three order 
statistical moments, the results of UDRM show the same 
accuracy as those of BDRM, but UDRM is less accurate 
than BDRM in the calculation of Ck. Although the number 
of function calls for UDRM is less than that of BDRM, 
the computational results of BDRM are still selected for 
the system response PDF and CDF reconstruction in favor 

(29)g
�
x1,… , xn

�
=
�
n + 3�

√
n
�
−

n�
i=1

xi,

of its high computational accuracy. PDF and CDF curves 
approximated by the six methods are presented in Fig. 9. 
To further demonstrate the accuracy of the currently 
proposed method, the SGLD, which has proven to be an 
excellent method (Xu and Dang 2019), is incorporated 
as a comparison for recovering the probability curves of 
structural response in this example. 

From Fig. 9, the accuracy of each fitting method is 
not significantly different from each other. Especially, for 
PDF approximation in Fig. 9a, only the curve obtained 
by the referenced method deviates slightly, and the other 
four curves acquired by other fitting methods exhibit high 
accuracy. As shown in Fig. 9b, the PM result is compa-
rable in accuracy to the SGLD, MEM, and EWE results, 
all of which are significantly better than that of the RM 
method in the tail region. In short, the currently proposed 
method can also achieve high accuracy in approximating 
PDF and CDF for high-dimensional systems.

Table 3  Statistical moments 
of system response in three-
dimensional example

Methods μ (R.E.) σ (R.E.) Cs (R.E.) Ck (R.E.) N

MCS 3.1411 (–) 0.8911 (–) 0.7874 (–) 4.0728 (–) 107

UDRM 3.1406 (0.0159) 0.8869 (0.4713) 0.6801 (13.6271) 3.4752 (14.6730) 13
BDRM 3.1407 (0.0127) 0.8916 (0.0561) 0.7886 (0.1524) 4.0405 (0.7931) 61
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Fig. 8  PDFs and CDFs of system response in three-dimensional example

Table 4  Statistical moments 
of system response in high-
dimensional example

Methods μ (R.E.) σ (R.E.) Cs (R.E.) Ck (R.E.) N

MCS 3.2870 (–) 1.0955 (–) –0.1093 (–) 3.0193 (–) 107

UDRM 3.2863 (0.0224) 1.0954 (0.0118) –0.1110 (1.5498) 0.1221 (95.9560) 121
BDRM 3.2863 (0.0224) 1.0954 (0.0118) –0.1110 (1.5498) 3.0221 (0.0933) 7081
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5.4  Plastic collapse mechanism

A plastic collapse mechanism of one-bay frame with linear 
performance function as shown in Fig. 10 is exemplified. 
The performance function can be given as follows (Xu and 
Dang 2019)

Table 5 shows the means and coefficient of variations 
(COV) of each variable. The statistical moments by MCS, 
UDRM, and BDRM are listed in Table 6. Accordingly, the 
kurtosis calculated by BDRM is more accurate than that by 
UDRM. Thus, the moments calculated by BDRM are used 
to reconstruct the PDF and CDF.

PDFs and CDFs reconstructed by the six approximation 
methods are presented in Fig. 11. It is observed that PDF by 
the currently proposed method is still in the closest agree-
ment with that by MCS, while the curves acquired by the 
EWE and the SGLD almost coincide with that by the cur-
rently proposed method. PDF curves obtained by the MEM 
and the referenced λ-PDF method are close to each other as 
shown in Fig. 11a, while the PDF curve by the MEM exhibits 
a better fitting capability than that by the referenced λ-PDF 
method. From Fig. 11b, the currently proposed method dis-
plays the same high accuracy as the SGLD when approximat-
ing the CDF, especially in the tail area. The result calculated 
by MEM shows a higher accuracy than those by the EWE 
and the referenced λ-PDF method. On another negative note, 
the EWE and the referenced λ-PDF methods exhibit local 
fluctuations. And the referenced λ-PDF method yields the 

(30)Y = x1 + 2x2 + 2x3 + x4 − 5x5 − 5x6.

worst performance in fitting CDF in this example. In brief, 
the currently proposed method renders the highest accuracy 
when approximate both PDF and CDF for linear uncertainty 
propagation problems.
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Fig. 9  PDFs and CDFs of system response in 30-dimensional example
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Fig. 10  Plastic collapse mechanism

Table 5  Distribution information of random variables in plastic col-
lapse mechanism

Variables Distribution μ COV

x1 Lognormal 120 0.1
x2 Lognormal 120 0.1
x3 Lognormal 120 0.1
x4 Lognormal 120 0.1
x5 Lognormal 50 0.3
x6 Lognormal 40 0.3
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5.5  Annular column

A column with annular cross-section subject to axial com-
pression load (Xu and Zhou 2020) is considered in this 
example, and the schematic is given in Fig. 12.

The nonlinear performance function is established with 
regard to the buckling failure. The performance function can 
be described as (Xu and Zhou 2020)

where E denotes the elastic modulus of material; L is the 
height of column; D represents the internal diameter; T 
expresses the thickness; and P indicates the axial load.

The distribution data of random variables are given in 
Table 7. The first-four statistical moments by MCS and 
DRMs are listed in Table 8, where the results obtained by 
TDRM are quoted from Xu and Zhou (2020). Evidently, 
the results obtained by TDRM is the closest to that by MCS 
among the three DRMs. On the other hand, the computa-
tional efficiency of TDRM is the lowest. To obtain the most 
accurate result, the moments obtained by TDRM are applied 
in this example by using the data directly, and the low com-
putational efficiency is not a concern.

Based on the moments obtained by TDRM, the PDFs and 
CDFs reconstructed with six methods: MCS, the currently 
proposed method, the referenced λ-PDF method, the MEM, 

(31)Y =
�2E

L2
⋅

�

64

[
(D + T)4 − D4

]
− P,

the EWE, and the SGLD are shown in Fig. 13. Notably, the 
PDF curve acquired by the currently proposed method is the 
closest to that by MCS. From Fig. 13a, the curves acquired by 
the EWE and the SGLD successive to the currently proposed 
method are also in close agreement with those by MCS. The 
referenced λ-PDF method fits PDF well in the skewness, but 

Table 6  Statistical moments of 
structural response in the plastic 
collapse mechanism

Methods μ (R.E.) σ (R.E.) Cs (R.E.) Ck (R.E.) N

MCS 270.1232 (–) 103.3805 (–) − 0.5322 (–) 3.6219 (–) 107

UDRM 270.0000 (0.0456) 103.2714 (0.1055) − 0.5282 (0.7516) 1.8026 (50.2305) 25
BDRM 270.0000 (0.0456) 103.2714 (0.1055) − 0.5282 (0.7516) 3.6076 (0.3948) 265

(b)(a)

Fig. 11  PDFs and CDFs of structural response in plastic collapse mechanism

Fig. 12  Sketch for annular column
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not in the kurtosis. MEM exhibits a low accuracy in fitting 
PDF in this example. As shown in Fig. 13b, the SGLD exhib-
its the highest accuracy in the tail region, and the currently 
proposed method has inferior accuracy to the SGLD beyond 
the  10–3 level, but is still superior to the other three methods. 
The result obtained by the referenced λ-PDF method presents 
higher accuracy than that of the EWE, and the MEM dis-
plays the lowest approximating capability herein. This exam-
ple demonstrates again that the currently proposed method 
yields superior accuracy for the analysis of highly nonlinear 
uncertainty propagation problems.

5.6  6‑DoF industrial robot

To demonstrate further the accuracy of the currently pro-
posed method in analyzing uncertainties in practical 

engineering structure, a 6-degree-of freedom (6-DoF) 
industrial robot (Kucuk and Bingul 2014) is analyzed in 
this example. Its mechanism diagram is sketched in Fig. 14.

The rotation angle of each joint is controlled to manipu-
late the movement of the end-effector in space. D–H parame-
ters and uncertain variables of the industrial robot are shown 
in Tables 9 and 10, in which the determined parameters are 
h1= 36 , d2= 24 , l4= 10 , d6= 10 , �3= 80

o , and �4= 49
o.

The pose transformation matrices of the 6-DoF industrial 
robot can then be obtained sequentially as follows

In this example, MCS, UDRM, and BDRM are used to 
calculate the first-four moments of the positioning accuracy 

(32)
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⎡
⎢⎢⎢⎣

cos �5 − sin �5 0 l4
0 0 1 0

− sin �5 − cos �5 0 0
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⎡
⎢⎢⎢⎣

cos �6 − sin �6 0 0

0 0 −1 −d6
sin �6 cos �6 0 0

0 0 0 1
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Table 7  Distribution data of random variables in annular column

Variable Distribution μ σ

E Lognormal 210.00 GPa 40.00 GPa
D Normal 30.00 mm 1.00 mm
T Normal 6.00 mm 0.40 mm
L Normal 2500.00 mm 90.00 mm
P Lognormal 6000.00 N 400.00 N

Table 8  Statistical moments 
of structural response in the 
annular column

Methods μ (R.E.) σ (R.E.) Cs (R.E.) Ck (R.E.) N

MCS 8270.3182 (–) 3456.3354 (–) 0.7076 (–) 3.9132 (–) 107

UDRM 8270.1952 (0.0015) 3406.8002 (1.4332) 0.2206 (68.8242) 1.5150 (61.2849) 21
BDRM 8270.4415 (0.0015) 3457.4111 (0.0311) 0.6921 (2.1905) 3.6273 (7.3060) 181
TDRM 8270.4403 (0.0015) 3457.9035 (0.0454) 0.7085 (0.1272) 3.9100 (0.0818) 821

(b)(a)

Fig. 13  PDFs and CDFs of structural response in annular column
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of the end-effector. The computed results are shown in 
Table 11, in which the statistical moments of the three direc-
tions by BDRM exhibit the highest accuracy. Thus, these 
moments are used to approximate the PDF and CDF of the 
three directions of the industrial robot, as shown in Figs. 15, 
16, and 17. It is seen from Table 11 that both the UDRM 

and BDRM yield high accuracies in μ and σ, while BDRM 
displays higher accuracy in the skewness and kurtosis, which 
are more preferential in approximating PDF and CDF for 
nonnormal distribution systems.

It can be found from Fig. 15a that the PDF curve of x 
direction of the industrial robot by the currently proposed 
method deviates slightly from that by MCS, especially in 
the tail area. Nevertheless, compared with the other four 
methods, the proposed method is still the closest method 
to MCS. The performance of the SGLD ranks second to 
that of the currently proposed method, followed by that of 
the EWE. The MEM yields the worst fitting among all the 
six methods. As shown in Fig. 15b, the CDF curve of the 
x direction obtained by the EWE is the closest to that by 
MCS, especially in the tail area. However, the overall curve 
fluctuates. Although the performance of the currently pro-
posed method is inferior to that of the EWE in terms of 
tail accuracy, the overall curve is smooth and close to MCS 
result. The trend of the SGLD result is smooth and has a 
good overall accuracy, but the tail accuracy is lower than 
the currently proposed method. The overall MEM result is 
also fluctuating, and exhibits the worst accuracy in the tail 
area. The referenced λ-PDF method yields smooth trend but 
low tail accuracy.

As shown in Fig. 16a, the result achieved by the cur-
rently proposed method deviates locally from that by MCS, 
but accords well on a whole. Still, it exhibits the best per-
formance compared with those by the other four methods. 
The result approximated by SGLD fits better in skewness 
than those by the referenced λ-PDF method, the EWE, and 
the MEM. The EWE shows better ability in fitting kurto-
sis than the referenced λ-PDF method. And MEM exhibits 
the worst performance in fitting the PDF of the y direction 
among all the five methods. It can be seen in Fig. 16b that 
the EWE yields high accuracy in the tail area, but fluctuat-
ing overall curve. The curves acquired by the currently pro-
posed method and the SGLD are disadvantageous in the tail 
area, but are superior in terms of overall trend compared to 
the EWE. The tail accuracy of the SGLD is lower than the 
currently proposed method. Besides, the referenced λ-PDF 
method yields lower accuracy than the other three methods 
except for the MEM in the tail area. Thus, the MEM renders 
the lowest tail accuracy and fluctuates overall curve.

The currently proposed method yields the highest accu-
racy in approximating the PDF and CDF in the z direction of 
the industrial robot as shown in Fig. 17. The result obtained 
by the SGLD does not show much difference from that by 
the currently proposed method in Fig. 17a, and the EWE 
has the same accuracy except for the tail area, where the 
difference of the curves becomes obvious. The referenced 
λ-PDF method does not perform well in deriving kurtosis, 
whereas its results almost coincide with those by the pro-
posed method in other derivations. The MEM still displays 

Fig. 14  Diagram of 6-DoF industrial robot

Table 9  D–H parameters of 
6-DoF industrial robot

i �i (
◦) �i−1 (

◦) ai−1 di

1 �1 0 0 h1

2 �2 90 0 d2

3 �3 − 90 0 l2
4 �4 0 l3 0
5 �5 − 90 l4 0
6 �6 90 0 d6

Table 10  Distribution data of random variables in 6-DoF industrial 
robot

Variable Distribution μ σ

l2 Normal 18 0.018
l3 Normal 16 0.016
�1 Normal 48◦ 20◦

�2 Normal − 31◦ 1◦

�5 Normal − 13◦ 10◦

�6 Normal 5◦ 0.5◦
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the worst fitting ability. As shown in Fig. 17b, it is notewor-
thy that the result achieved by the MEM method exhibits 
remarkable fluctuations in the tail region. The currently 

proposed method yields high overall accuracy, followed by 
the SGLD, while the referenced λ-PDF method does not 
fit well the CDF of the z direction, especially in the tail 

Table 11  Statistical moments of 
x, y, and z directions of 6-DoF 
industrial robot

Methods Directions μ (R.E.) σ (R.E.) Cs (R.E.) Ck (R.E.) N

MCS x 9.3361 (–) 3.0126 (–) − 0.8337 (–) 3.6039 (–) 107

y 7.2885 (–) 3.3873 (–) − 0.7341 (–) 3.4513 (–)
z 60.7422 (–) 0.9145 (–) − 0.6937 (–) 3.5452 (–)

UDRM x 9.3315 (0.0493) 3.0496 (1.2282) − 0.5947 (28.6674) 2.6263 (27.1262) 25
y 7.2818 (0.0919) 3.3777 (0.2834) − 0.6324 (13.8537) 3.0900 (10.4685)
z 60.7431 (0.0015) 0.9152 (0.0765) − 0.6474 (6.6744) 3.2240 (9.0601)

BDRM x 9.3365 (0.0043) 3.0146 (0.0664) − 0.8353 (0.1919) 3.6023 (0.0444) 265
y 7.2850 (0.0480) 3.3884 (0.0325) − 0.7328 (0.1771) 3.4314 (0.5766)
z 60.7432 (0.0016) 0.9152 (0.0765) − 0.6975 (0.5478) 3.5569 (0.3300)

(b)(a)

Fig. 15  PDFs and CDFs of x direction of industrial robot

(b)(a)

Fig. 16  PDFs and CDFs of y direction of industrial robot
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area. The result calculated by the EWE still exhibits over-
all fluctuation. In simple summary, the currently proposed 
method serves as an effective and accurate approach to the 
uncertainty propagation of the positioning accuracy of the 
industrial robot.

6  Discussion

In this paper, an enhanced derivative λ-PDF method for 
uncertainty quantification and analysis is proposed. Six 
examples are utilized to compare the performance of the 
currently proposed method with those of four existing meth-
ods. Some characteristics, advantages, and disadvantages 
of the different approaches have been presented through an 
adequate comparison.

The dimension reduction method (DRM) is used for 
statistical moments estimation, and the results of the 
MCS method are utilized as a benchmark. According to 
the calculation results of each example, the main differ-
ence between UDRM and BDRM calculation accuracy 
is reflected in the results of skewness and kurtosis. In 
Example 5.3, the high-dimensional numerical example, 
the relative error between the kurtosis values of UDRM 
and MCS even reaches 95.96%, while the relative error 
between the kurtosis values of BDRM and MCS in the 
same case is only 0.09%. In Example 5.6 (6-DoF industrial 
robot), the skewness and kurtosis values in the x, y, and 
z directions show that the accuracy of BDRM is higher 
than that of UDRM. In addition, the currently proposed 
method requires higher accuracy to calculate the skewness 
and kurtosis. Therefore, the results of BDRM are selected 
to recover the PDF and CDF of the structural response to 
ensure the accuracy of the proposed method.

In the case of PDF approximation methods, four meth-
ods are used to compare with the proposed method to ade-
quately illustrate the accuracy of the proposed method, and 
MCS is still used as a benchmark. The proposed method 
exhibits excellent accuracy in both numerical and engi-
neering examples, with an improvement compared to the 
referenced method, which is mainly due to the expanded 
fitting region. The accuracy of the referenced method is 
inferior in the examples because the kurtosis–skewness 
points of the responses of the six examples are outside 
the referenced fitting region, resulting in a lower accuracy 
of the reference method. The maximum entropy method 
(MEM), the Edgeworth series expansion method (EWE), 
and the shifted generalized lognormal distribution (SGLD) 
are all proven excellent methods, but their performances 
in all examples are not consistent. The accuracy of MEM 
is less accurate than that of the proposed method in most 
cases. The tail accuracy of the Edgeworth level expan-
sion method for engineering examples is similar to that 
of the proposed method, but the overall trend fluctuates 
considerably. The proposed method can achieve equivalent 
accuracy compared with the SGLD method at the tail for 
numerical examples, however, for the engineering prob-
lem, the computational accuracy of the SGLD method in 
all three directions is inferior to the proposed method. 
Therefore, the proposed method can improve the computa-
tional accuracy for large skewness and kurtosis problems.

The comparisons of computational cost of the proposed 
method and other comparative methods in terms of CPU 
time are listed in Table 12. The computations are run in a 
laptop with Intel(R) Core(TM) i5-7300HQ CPU and 8 GB 
RAM. As shown in Table 12, the computational cost of 
the proposed method is much less than that of MCS, but 
slightly more than that of comparative methods. The reason 

(b)(a)

Fig. 17  PDFs and CDFs of z direction of industrial robot
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for slightly high computational cost of the proposed method 
is to determine the unknown parameters in the optimization 
model Eq. (14). Although the computational cost is slightly 
higher, the total amount of CPU time is less than half a 
minute which is affordable for the most practical problems. 
The comparative methods without additional optimization 
models have high computational efficiency, but for problems 
with large skewness and kurtosis, most of them sacrifice the 
computational accuracy and even obtain incorrect results. 
Therefore, the proposed method can balance the computa-
tional accuracy and efficiency, which is superior to other 
methods for solving such problems with large skewness and 
kurtosis.

7  Conclusions

In this paper, an efficient uncertainty analysis approach 
based on the currently proposed improved derivative λ-PDF 
and dimension reduction method is developed to perform 
uncertainty propagation of complex structures with large 
skewness and kurtosis. To implement uncertainty quantifica-
tion in a uniform framework, an improved derivative λ-PDF 
is derived for uncertainty modeling of input random vari-
ables. The Gaussian-weighted integrals (GWI) and dimen-
sion reduction method (DRM) are used to decompose the 
n-dimensional system and compute the statistical moments 
of structural responses based on the statistical information 
of input variables. To reconstruct the PDF of structural 
responses, the improved derivative λ-PDF is applied to 
approximate PDF and CDF using an optimization method. 
The currently proposed method can effectively and accu-
rately derive the uncertainty propagation analysis for com-
plex systems with large skewness and kurtosis.

To demonstrate the effectiveness and accuracy of the cur-
rently proposed method, six examples are analyzed. Ref-
erence methods of Monte Carlo simulation, the maximum 
entropy method, the Edgeworth series expansion method, 
and the shifted generalized lognormal distribution are 

engaged as calibers. Different examples reflect the superi-
ority of the proposed method in different aspects. Specifi-
cally, Example 1 illustrates that the improved fitting region 
with regard to the currently proposed method is significantly 
expanded compared to the original one. Example 2 is a 
numerical example, which demonstrates the high accuracy 
of the currently proposed method in processing nonlinear 
uncertainty problems. Example 3 presents a 30-dimensional 
system and proves the high accuracy of the currently pro-
posed method in the uncertainty propagation of high-dimen-
sional systems. Both linear and nonlinear performance func-
tions in engineering structures of Example 4 and Example 
5, respectively, demonstrate the applicability and accuracy 
of the currently proposed method in solving both linear and 
nonlinear engineering uncertainty propagation problems. 
Finally, the positioning accuracy of a 6-DoF industrial robot 
end-effector in three directions in Example 6 further cor-
roborates the effectiveness and accuracy of the currently 
proposed method in processing high complex uncertainty 
propagation problems.

In summary, the currently proposed method exhibits sig-
nificant improvement over the prevailing referenced meth-
ods. Further enhancements are desired in view of that when 
the kurtosis of the structural response is greater than 8, the 
bounds of the fitting region in the referenced λ-PDF method 
are not straightforward to be determined precisely. In addi-
tion, extending the fitting region by changing the derivative 
λ-PDF should also be attempted.
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Table 12  Computational cost 
comparison among proposed 
method and other methods

Examples CPU time

MCS (s) PM (s) RM (s) MEM (s) EWE (s) SGLD (s)

Example 5.1 16,852.71 28.59 1.69 3.80 10.17 2.82
Example 5.2 13,406.27 29.27 3.74 4.68 7.62 10.47
Example 5.3 18,584.75 31.03 3.54 6.14 3.50 4.04
Example 5.4 18,046.42 26.33 6.25 8.38 10.65 10.23
Example 5.5 17,471.79 28.70 6.48 7.28 7.21 6.82
Example 5.6
 x 16,233.29 27.61 5.64 7.59 7.00 5.87
 y 13,770.36 26.95 5.65 6.67 7.15 5.85
 z 13,583.16 25.20 5.66 7.61 6.06 5.79
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