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Abstract
The moment method can effectively estimate the structure reliability and its local reliability sensitivity (LRS). But the exist-
ing moment method has two limitations. The first one is that error may exist in computing LRS due to the LRS is derived on 
the numerical approximation of failure probability (FP). The second one is the computational cost increases exponentially 
with the dimension of random input. To solve these limitations, a simple and efficient method for LRS is proposed in this 
paper. Firstly, the proposed method uses integral transformation to equivalently derive the LRS as the weighted sum of FP 
and several extended FPs, and these FPs have the same performance function but different probability density functions 
(PDFs), in which no assumption is introduced in case of normal input. Secondly, by taking advantage of the derived FPs with 
the same performance function and different PDFs, where these different PDFs have an explicit and specific relationship, a 
strategy of sharing integral nodes is dexterously designed on the multiplicative dimensional reduction procedure to simulta-
neously estimate the moments, which are required by estimating the FP and the extended FPs with moment-based method, 
of performance function with different PDFs. After the derived FPs are estimated by their corresponding moments, the LRS 
can be estimated as a byproduct. Compared with the existing moment method for LRS, the proposed method avoids its first 
limitation by equivalently deriving the LRS as a series of FPs without introducing error in case of normal input. Moreover, 
because of the designed strategy of sharing integral nodes, the computational cost of the proposed method increases linearly 
with the dimension of random input, which avoids the second limitation of the existing method for LRS. The superiority of 
the proposed method over the existing method is verified by numerical and engineering examples.

Keywords  Moment method · Local reliability sensitivity (LRS) · Multiplicative dimensional reduction · Integral nodes 
sharing strategy · Extended failure probability

1  Introduction

Reliability and local reliability sensitivity (LRS) analysis 
are very important to ensure the reliability of structures, 
and there are many developments of the methods to analyze 
them in recent years. Reliability refers to the probability that 
the structure can complete the specified function within the 
specified time, while failure probability (FP) refers to the 

probability that the structure cannot complete the specified 
function. LRS analysis aims at studying the effect of random 
input distribution parameters on the FP, and it can provide 
gradient information for reliability-based design optimiza-
tion (RBDO) (Torii et al. 2017; Dubourg et al. 2011).

In practical engineering problem, the random uncertainty 
is definitely unavoidable due to the uncontrolled occasional 
factor in geometric size, material properties, applied load 
and working environment, etc.. Thus, it is necessary to con-
sider the random uncertainty in the design optimization, and 
RBDO by taking the random uncertainty into consideration 
is developed for optimizing the structure performance under 
ensuring the reliability. In RBDO model, the failure prob-
ability is generally embedded as a constraint in the design 
parameter optimization. The LRS, which is defined as the 
partial differential of the failure probability with respect to 
the design parameter (usually the distribution parameter of 
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random input), can help provide an optimal direction for 
searching the optimal design parameter. Thus, researching 
efficient method to solve the LRS is necessary to improve the 
efficiency of solving RBDO by the gradient-based RBDO 
optimization strategy, and this work devotes to the efficient 
solution of the LRS.

At present, most of methods for LRS analysis are devel-
oped on the basis of reliability analysis methods, mainly 
including moment method (Zhao and Ono 1999; Xiao and 
Lu 2018; Zhao and Lu 2007), numerical simulation method 
(Li et al. 2012; Au and Beck 1999; Alvarez et al. 2018) and 
surrogate model method (Cadini et al. 2014; Zhai et al. 2016; 
Fan et al. 2018). In engineering applications, the moment 
method is more suitable for estimating the reliability and 
LRS of the structure due to its high computational efficiency.

The basic idea of the moment method for estimating reli-
ability is to approximate the probability density function 
(PDF) of the performance function by computing the first 
few moments, and then estimate FP by the PDF of the per-
formance function. The methods for estimating moments 
of performance function mainly include Taylor expansion 
(Hasofer and Lind 1974; Hohenbichler et al. 1987; Huang 
et al. 2018) and point estimation (Rosenblueth 1981; Seo 
and Kwak 2002; Zhao and Ono 2001, 2000). The method 
based on the first and second order Taylor expansion of per-
formance function needs to compute the gradient of per-
formance function, which is difficult to get accurately for 
implicit nonlinear performance function. The point estima-
tion-based method uses numerical integration to estimate the 
first few moments of the performance function (Zhou and 
Nowak 1988), such methods mainly include two-point esti-
mation (Rosenblueth 1981) and three-point estimation (Seo 
and Kwak 2002), etc. Since point estimation only requires 
the performance function evaluations at the integral grid 
nodes to estimate the performance function moments, it 
has a wider range of application than the Taylor expansion 
where the gradient is required. After the first few moments 
of the performance function are obtained, the FP of the 
structure can be estimated. At present, the main methods to 
estimate the FP based on the first few moments of perfor-
mance function are second-moment method (Zhao and Ono 
1999; Wong 1985), third-moment method (Hong et al. 1999) 
and fourth-moment method (Xiao and Lu 2018; Zhao and Lu 
2007; Zhao and Ono 2004). With the increase of the order 
of the employed moment, the statistical information of the 
performance function increases gradually, and the computa-
tional accuracy of the FP is improved as a result. However, 
the increase of the moment order needs to compute the inte-
gral of the performance function with a higher order, and 
it means a higher degree of nonlinearity integral needs to 
be completed. It is well-known that the higher the degree 
of nonlinearity is, the more difficult the estimation of the 
integral is accurately completed by the finite integral nodes. 

Balancing the computational difficulty of performance func-
tion moment and the inclusion degree of statistical informa-
tion of the performance function by moments, 4 is usually 
taken as the highest order of performance function moment 
to estimate FP.

The methods for LRS analysis developed on the moment 
method for reliability mainly include the second-moment 
(Karamchandani and Cornell 1992; Zhang et al. 2011a)-
based first-order Taylor expansion and the fourth-moment-
based point estimation (Lu et al. 2010). In these two kinds 
of method, the sensitivity of FP with respect to distribution 
parameter can be obtained by the chain rule. However, the 
numerical approximation expression of FP cannot guarantee 
the approximate accuracy of derivative function of the FP. 
Therefore, these methods are not rigorous in theory even if 
the numerical examples do not find a large computational 
error. In addition, it is worth pointing out that the compu-
tational cost of the fourth-moment (Lu et al. 2010)-based 
three-point estimation increases exponentially with the 
dimension of random input, thus it is only suitable for prob-
lems with a lower dimension of random input.

In view of the lack of theoretical rigor and dimensional-
ity disaster in estimating the LRS by the existing fourth-
moment-based methods, a new moment method is proposed 
for LRS analysis in this paper. The proposed method starts 
from the integral definition of the LRS, and it equivalently 
derives the LRS by integral transformation as the weighted 
sum of the FP and extended FPs, in which these derived 
FPs possess the same performance function but different 
PDFs. No assumption is introduced in the whole derivation, 
which ensures the theoretical rigor. These derived FPs have 
the same performance function, and their PDFs have the 
explicit relationship. By taking advantage of these charac-
teristics, a strategy of sharing integral nodes is elaborately 
designed on the multiplicative dimensional reduction (Zhang 
and Pandey 2013), on which it can simultaneously compute 
the first four moments of the performance function required 
by the derived FPs. In the designed strategy, the multivariate 
integral for estimating the moments of performance function 
is transformed into the product of univariate integrals, thus 
it avoids dimensionality disaster in the existing three-point 
estimation method. Compared with the existing moment 
method for LRS, the advantages of the proposed method 
mainly lie in two aspects. The first is no assumption is intro-
duced in derivation from LRS to the FP and extended FPs, 
and it is theoretically rigorous. The second is the computa-
tional cost of the proposed method increases linearly with 
the dimension of random input due to the designed strat-
egy of sharing integral nodes on multiplicative dimensional 
reduction.

The structure of this paper is as follows. Firstly, Sect. 2 
introduces the definition of LRS and the idea for comput-
ing LRS by fourth moment-based three-point estimation. 
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In Sect. 3, by use of integral transformation, the LRS is 
equivalently derived to the weighted sum of original FP 
and extended FPs, on which the multiplicative dimen-
sional reduction-based strategy of sharing integral nodes is 
designed for estimating the derived FPs efficiently. Numeri-
cal examples and engineering examples are used to verify 
the superiority of the proposed method in Sect. 4, and the 
conclusions are drawn in Sect. 5.

2 � The definition of LRS and its 
estimation through the existing fourth 
moment‑based method

2.1 � Definition of LRS

Let g = g(X) denote the structure performance function with 
n-dimensional  random input X =

[
X1,X2,… ,Xn

]T , then the 
corresponding FP denoted by Pf  can be defined by Eq. (1),

where F = {x|g(x) ≤ 0} represents the failure domain, P{⋅} 
represents the probability operator, fX(x,�X) is the joint 
PDF of the random input X , and �X represents the distribu-
tion parameter vector of X . Let li be defined as the number 
of distribution parameters for the ith random variable Xi 
(i = 1, 2, ⋅ ⋅ ⋅, n).

It can be seen from Eq. (1) that Pf  changes with the dis-
tribution parameter �X of the random input X , and the effect 
of �X on Pf  can be quantified by LRS. The LRS is defined as 
the partial differential of Pf  with respect to �(k)

Xi

(i = 1, 2, ⋅ ⋅ ⋅, n;k = 1, 2, ⋅ ⋅ ⋅, li) , i.e., �Pf

/
��

(k)

Xi
 , where �(k)

Xi
 

represents the kth distribution parameter of Xi . By substitut-
ing Eq. (1) into the definition of LRS, the following Eq. (2) 
can be obtained for estimating LRS.

2.2 � Existing fourth moment‑based method for LRS

The existing fourth moment-based method (Lu et al. 2010) 
for estimating LRS is established on three-point estimation, 
in which Pf  is approximated by Eq. (3) numerically (Xiao 
and Lu 2018; Zhao and Lu 2007; Zhao and Ono 2004) and 
the LRS is derived on this numerical approximation of Pf  
by chain rule.

(1)

Pf = P{F} = P{g(x) ≤ 0}

=�F

fX(x,�X)dx = �g(x)≤0
fX(x,�X)dx

,

(2)
�Pf

��
(k)

Xi

=
�
[∫

F
fX(x,�X)dx

]

��
(k)

Xi

=�F

�fX(x,�X)

��
(k)

Xi

dx

In Eq. (3), the mth moment �Pf

mg(m = 1, 2, 3, 4) of the per-
formance function is approximately estimated by three-point 
estimation integral procedure. Φ(⋅) represents the cumulative 
distribution function of the standard normal variable, 

�4M =
3(�

Pf

4g
−1)�2M+�

Pf

3g
(�2

2M
−1)√

(5(�
Pf

3g
)2−9�

Pf

4g
+9)(1−�

Pf

4g
)

 is the fourth moment reliability 

index, and �2M = �
Pf

1g

/
�
Pf

2g
 is the second moment reliability 

index.
Based on the numerically approximate expression of Pf  

in Eq. (3), the LRS �Pf

/
��

(k)

Xi
 is derived by the differential 

chain rule in Ref. (Lu et al. 2010) in Eq. (4).

where the partial differentials required in Eq. (4) can be 
obtained analytically except for ��Pf

mg

/
��

(k)

Xi
(m = 1, 2, 3, 4) , 

and ��Pf

mg

/
��

(k)

Xi
 can also be obtained by the three-point esti-

mation integral procedure after the transformation (Lu et al. 
2010).

It can be observed from Eq. (4) that the existing fourth 
moment-based method for LRS is derived by the chain rule 
and the numerical approximation of Pf  . However, the 
numerical approximation function of Pf  may not be applica-
ble to its derivative function, thus this derivation is not rigor-
ous in theory and may lead to the error of LRS. In addition, 
the computational cost of estimating �Pf

mg and ��Pf

mg

/
��

(k)

Xi

(m = 1, 2, 3, 4;i = 1, 2, ⋅ ⋅ ⋅, n;k = 1, 2, ⋅ ⋅ ⋅, li) increases expo-
nentially with the dimension of random input due to the 
three-point estimation is employed in the existing method.

3 � The proposed method for LRS

In order to avoid the limitations of the existing fourth 
moment method for LRS, a new and efficient method is 
proposed for estimating the LRS in this paper. The basic 
idea of the proposed method includes equivalent derivation 
of LRS to the weighted sum of a series of FPs and design of 

(3)

Pf ≈ Φ(−�
4M)=Φ

⎛
⎜⎜⎜⎝
−

3(�
Pf

4g
− 1)�

2M + �
Pf

3g
(�2

2M
− 1)

�
(5(�

Pf

3g
)2 − 9�

Pf

4g
+ 9)(1 − �

Pf

4g
)

⎞
⎟⎟⎟⎠

=Φ

⎛
⎜⎜⎜⎝
−
3(�

Pf

4g
− 1)(�

Pf

1g

�
�
Pf

2g
) + �

Pf

3g
((�

Pf

1g

�
�
Pf

2g
)2 − 1)

�
(5(�

Pf

3g
)2 − 9�

Pf

4g
+ 9)(1 − �

Pf

4g
)

⎞
⎟⎟⎟⎠

(4)

�Pf

��
(k)

Xi

≈
�Pf

��4M

��4M

��
(k)

Xi

=
�Pf

��4M

⎡
⎢⎢⎣
��4M

��2M

⎛
⎜⎜⎝
��2M

��
Pf

1g

��
Pf

1g

��
(k)

Xi

+
��2M

��
Pf

2g

��
Pf

2g

��
(k)

Xi

⎞⎟⎟⎠
+

��4M

��
Pf

3g

��
Pf

3g

��
(k)

Xi

+
��4M

��
Pf

4g

��
Pf

4g

��
(k)

Xi

⎤⎥⎥⎦

,
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multiplicative dimensional reduction-based sharing integral 
node for estimating the derived FPs.

3.1 � Equivalent derivation of LRS

According to the definition of LRS in Eq. (2), the equiv-
alent expression in Eq.  (5) can be obtained by integral 
transformation,

in which �
�
(k)

Xi

(x,�X)=
1

fX(x,�X)

�fX(x,�X)

��
(k)

Xi

.

When the random input is non-normal, the transformation 
proposed by Rackwitz et al. can be used to obtain the equiva-
lent normal variable corresponding to the non-normal ran-
dom one (Rackwitz and Flessler 1978; Hohenbichler and 
Rackwitz 1981). Assuming that the non-normal variable X 
follows a distribution with cumulative distribution function 
(CDF) FX(x) and PDF fX(x) . The equivalent normal variable 
corresponding to non-normal variable X is denoted as 
X� ∼ N

(
��
X
, ��

X2

)
 , and its two distribution parameters �′

X
 and 

�′
X
 can be determined by the following equivalent transfor-

mation established by Refs. (Rackwitz and Flessler 1978; 
Hohenbichler and Rackwitz 1981).

where x∗ is the most probable failure point (MPP), Φ(⋅) 
and �(⋅) are the CDF and PDF of standard normal variable, 
respectively, and Φ�(⋅) is the derivative function of standard 
normal CDF.

Equations (6) and (7) establish the numerical relationship 
among the distribution parameters of the equivalent normal 
variable and those of the non-normal variable, and based on 
this numerical relationship, the local reliability sensitivity with 
respect to the distribution parameter of equivalent normal varia-
ble can be numerically transformed to that with respect to the dis-
tribution parameter of non-normal variable. Since this transfor-
mation has no analytical solution generally, the error is inevitable.

When the random input variables are dependent varia-
bles, the dependent random variables can also be trans-
formed into independent normal ones (Rosenblatt 1952; Lu 
et al. 2020). In this paper, the input variables following inde-
pendently normal distribution are concerned. When 
Xi (i = 1, 2,… , n) follows normal distribution with the mean 
of �Xi

 and standard deviation of �Xi
 , denoted by �(1)

Xi
=�Xi

 and 

(5)
�Pf

��
(k)

Xi

= ∫F

�fX(x,�X)

��
(k)

Xi

dx=∫F

�
�
(k)

Xi

(x,�X)fX(x,�X)dx

(6)FX(x
∗) = ΦX� (x∗) = Φ

(
x∗ − ��

X

��
X

)

(7)fX(x
∗) = Φ�

X� (x
∗) = Φ�

(
x∗ − ��

X

��
X

)
=

1

��
X

�

(
x∗ − ��

X

��
X

)

�
(2)

Xi
=�Xi

, respectively, �
�
(k)

Xi

(x, �X) (k = 1, 2) can be derived 
as Eqs. (8) and (9).

By substituting Eqs. (8) and (9) into Eq. (5), the LRS with 
respect to mean and standard deviation can be obtained in 
Eqs. (10) and (11), respectively.

where ��Xi

= ∫
F
xifX

(
x,�X

)
dx , ��Xi

= ∫
F

(
xi − �Xi

)2
fX
(
x,�X

)
dx.

It can be observed from Eqs. (10) and (11) that, through the 
equivalent integral transformation, the LRS is derived as the 
estimation of Pf  , ��Xi

 and ��Xi
(i = 1, 2,… , n) , while the inte-

gral domains in the integral of estimating ��Xi

 and ��Xi
 are 

same as the failure domain of estimating Pf  defined by the 
original performance function, and the integrand functions of 
estimating ��Xi

 and ��Xi
 are related to xi and the original PDF 

fX(x,�X) . By converting equivalently the integrand functions 
of estimating ��Xi

 and ��Xi
 into the extended PDFs, ��Xi

 and 
��Xi

 can be derived as the estimations of the extended FPs, in 

(8)

�
�
(1)

Xi

(x,�X) = ��Xi

(x,�X) =
1

fX(x,�X)

�fX(x,�X)

��Xi

=
xi − �Xi

�2

Xi

(9)

�
�
(2)

Xi

(x,�X)=��Xi
(x,�X)

=
1

fX(x,�X)

�fX(x,�X)

��Xi

=
1

�Xi

(
(xi − �Xi

)2

�2

Xi

− 1

)

(10)

�Pf

��
(1)

Xi

=
�Pf

��Xi

=∫F

��Xi

(x,�X)fX(x,�X)dx

=∫F

xi − �Xi

�2

Xi

fX(x,�X)dx (i = 1, 2,… , n)

=
1

�2

Xi

∫F

xifX(x,�X)dx −
�Xi

�2

Xi

Pf

=
1

�2

Xi

��Xi

−
�Xi

�2

Xi

Pf

(11)

�Pf

��
(2)

Xi

=
�Pf

��Xi

=∫F ��Xi
(x,�X)fX(x,�X)dx

=∫F
1

�Xi

(
(xi − �Xi

)2

�2
Xi

− 1

)
fX(x,�X)dx (i = 1, 2,… , n)

=
1

�3
Xi

∫F (xi − �Xi
)2fX(x,�X)dx −

1

�Xi

Pf

=
1

�3
Xi

��Xi
−

1

�Xi

Pf
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which the performance functions are still g(x) but the PDFs 
are the extended PDFs.

3.2 � Reconstruction of extended PDFs for estimating 
'�Xi

 and '�Xi

Since the integrand function (xi − �Xi
)2fX(x,�X) in 

��Xi
= ∫

F
(xi − �Xi

)2fX(x,�X)dx is always greater than or equal 
to zero, it is easy to reconstruct its extended PDF, and it is 
demonstrated as follows.

It is well-known that the PDF fX(x,�X) of independent ran-
dom inputs can be expressed as the form in Eq. (12), thus ��Xi

 
can be derived as the form in Eq. (13) equivalently.

where X−i =
[
X1,… ,Xi−1,Xi+1,… ,Xn

]T , �Xi
 and �X−i

 repre-
sent the distribution parameter vectors of Xi and X−i, respec-
tively. f (1)

Xi
(xi,�

(1)

Xi
)=

(xi−�Xi
)2fXi

(xi,�Xi
)

∫
xi
(xi−�Xi

)2fXi
(xi,�Xi

)dxi
=

(xi−�Xi
)2

�2

Xi

fXi
(xi,�Xi

) is 

the extended PDF of random variable Xi in estimating ��Xi
 , 

and �(1)

Xi
 is the distribution parameter vector of extended PDF 

f
(1)

Xi
( ⋅ , ⋅ ) . Obviously, the reconstructed f (1)

Xi
(xi,�

(1)

Xi
) satisfies 

the basic properties of PDF.
By the derivation of Eq. (13), ��Xi

(i = 1, 2,… , n) is trans-
formed into the extended FP with the performance function 
g(x) and the extended joint PDF f (1)

Xi
(xi,�

(1)

Xi
)fX−i

(x−i,�X−i
) . In 

this paper, estimating ��Xi
 is completed by the fourth moment 

method based on the multiplicative dimensional reduction 
integral. Since the performance functions of ��Xi

 and Pf  are 
same, and there is an explicit relation between the extended 
PDF f (1)

Xi
(xi,�

(1)

Xi
) of Xi and the original PDF fXi

(xi,�Xi
) of Xi , 

on which the next subsection will design the same set of mul-
tiplicative dimensional reduction integral nodes to estimate 
��Xi

 and Pf  simultaneously. Then, the LRS �Pf

/
��Xi

 with 
respect to standard deviation can be obtained by Eq. (11).

Similarly, the following part shows the procedure for recon-
structing the extended PDF of estimating ��Xi

 . For reconstruct-
ing extended PDF of estimating ��Xi

 , ��Xi

 is transformed as 
follows,

(12)fX(x,�X)=fXi
(xi,�Xi

)fX−i
(x−i,�X−i

)

(13)

��Xi
= �F

(xi − �Xi
)2fXi

(xi,�Xi
)fX−i

(x−i,�X−i
)dx

=�F

∫
xi
(xi − �Xi

)2fXi
(xi,�Xi

)dxi

∫
xi
(xi − �Xi

)2fXi
(xi,�Xi

)dxi
(xi − �Xi

)2fXi
(xi,�Xi

)fX−i
(x−i,�X−i

)dx

=�2

Xi �F

f
(1)

Xi
(xi,�

(1)

Xi
)fX−i

(x−i,�X−i
)dx

in which �x2
i
= ∫

F
x2
i
fXi
(xi,�Xi

)fX−i
(x−i,�X−i

)dx , i.e., �x2
i
 is also 

the integral over the failure domain defined by the perfor-
mance function g(x).

By reconstructing the integrand function of estimating 
�x2

i
 as an extended PDF, �x2

i
 can also be derived equiva-

lently as the extended FP. Thus, the following equivalent 
transformation is executed for �x2

i
,

where f (2)
Xi

(xi,�
(2)

Xi
)=

x2
i

�2

Xi
+�2

Xi

fXi
(xi,�Xi

) is the extended PDF of 

Xi in estimating �x2
i
 , and �(2)

Xi
 is the distribution parameter 

vector of the extended PDF f (2)
Xi

( ⋅ , ⋅ ).
Similar to the estimation of ��Xi

(i = 1, 2, ⋅ ⋅ ⋅, n) , �x2
i

(i = 1, 2, ⋅ ⋅ ⋅, n) can also be estimated by the fourth moment 
method based on the multiplicative dimensional reduction 
integral. Since the performance function for estimating �x2

i
 

is same as that for estimating Pf  , and the extended PDF 
f
(2)

Xi
(xi,�

(2)

Xi
) about Xi in estimating �x2

i
 has an explicit rela-

tion with the PDF fXi
(xi,�Xi

) about Xi in estimating Pf  , the 
same set of multiplicative dimensional reduction integral 
nodes can be used to estimate �x2

i
 and Pf  simultaneously.

It can be known from above derivations that �Pf

/
��Xi

(i = 1, 2, ⋅ ⋅ ⋅, n) can be obtained by substituting the extended 
FP ��Xi

 and Pf  , which are estimated by the same set of the mul-
tiplicative dimensional reduction integral nodes, into Eq. (11), 
and �Pf

/
��Xi

(i = 1, 2, ⋅ ⋅ ⋅, n) can be obtained by substituting 
��Xi

 , which is estimated in Eq. (14) through �x2
i
 , ��Xi

 and Pf  
estimations by the same set of the multiplicative dimensional 
reduction integral nodes, and Pf  into Eq. (10). In the next sec-
tion, the strategy of multiplicative dimensional reduction-based 
sharing integral nodes is designed for simultaneously estimating 
the first four moments required by Pf  , ��Xi

 and �x2
i
.

(14)

��Xi

=∫F

xifXi
(xi,�Xi

)fX−i
(x−i,�X−i

)dx

=∫F

x2
i
+ �2

Xi
− (xi − �Xi

)2

2�Xi

fXi
(xi,�Xi

)fX−i
(x−i,�X−i

)dx

=
1

2�Xi
∫F

x2
i
fXi
(xi,�Xi

)fX−i
(x−i,�X−i

)dx

−
1

2�Xi
∫F

(xi − �Xi
)2fXi

(xi,�Xi
)fX−i

(x−i,�X−i
)dx+

�Xi

2
Pf

=
1

2�Xi

�x2
i
−

1

2�Xi

��Xi
+
�Xi

2
Pf

(15)

�x2
i
=�F

x2
i
fXi
(xi,�Xi

)fX−i
(x−i,�X−i

)dx

=�F

∫
xi
x2
i
fXi
(xi,�Xi

)dxi

∫
xi
x2
i
fXi
(xi,�Xi

)dxi
x2
i
fXi
(xi,�Xi

)fX−i
(x−i,�X−i

)dx

=(�2

Xi
+ �2

Xi
)�F

f
(2)

Xi
(xi,�

(2)

Xi
)fX−i

(x−i,�X−i
)dx
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3.3 � Fourth moment method for estimating Pf  , '�Xi

 
and 'x2

i

 by multiplicative dimensional reduction 
integral

In this paper, the fourth moment method based on multi-
plicative dimensional reduction integral is employed to 
estimate the FP Pf  and the extended FPs ��Xi

 and �x2
i
 . 

According to the fact that Pf  and the extended FPs ��Xi
 and 

�x2
i
 have the same performance function g(x) , and there are 

explicit relations between the extended PDFs f (1)
Xi

(xi,�
(1)

Xi
) , 

f
(2)

Xi
(xi,�

(2)

Xi
) and the PDF fXi

(xi,�Xi
) about Xi in estimating 

��Xi
 , �x2

i
 and Pf , respectively, the strategy of sharing inte-

gral nodes is designed to estimate the required first four 
moments by Pf  , ��Xi

 and �x2
i
 , i.e., through the same set of 

Gaussian integral nodes, the first four moments required 
by Pf  , ��Xi

 and �x2
i
 are estimated simultaneously, and then 

Pf  , ��Xi
 and �x2

i
 can be obtained by the fourth moment 

method.

3.3.1 � Moments estimation of performance function based 
on multiplicative dimensional reduction integral

On the basis of the first-order expansion and equivalent loga-
rithmic transformation of the high-dimensional model in Ref. 
(Zhang and Pandey 2013), the performance function g = g(X) 
can be approximately expressed as the product of multiple uni-
variate functions in Eq. (16),

in which �X =
[
�X1

,�X2
,… ,�Xn

]T is the mean vector of the 
random input vector X.

By use of Eq. (16), the n - dimensional integral for the mth 
origin moment Mmg of the performance function g = g(X) can 
be transformed into the product of n univariate integrals in 
Eq. (17).

Each univariate integral ∫
xk

[
g(xk,�X−k

)
]m
fXk

(xk,�Xk
)dxk k =

(1, 2, ⋅ ⋅ ⋅, n) in Eq. (17) can be estimated by Gaussian integral 
(Zhou and Nowak 1988; Zhang and Pandey 2013) in Eq. (18),

(16)

g(X) ≈
[
g(�X)

]1−n n∏
k=1

g(�X1
, ⋅ ⋅ ⋅,�Xk−1

,Xk,�Xk+1
, ⋅ ⋅ ⋅,�Xn

)

(17)

Mmg = ∫Rn

[
g(X)

]m
fX(x,�X)dx

≈ ∫Rn

[
g(�X)

]m(1−n) n∏
k=1

[
g(xk,�X−k

)
]m
fX(x,�X)dx

≈
[
g(�X)

]m(1−n) n∏
k=1

∫xk

[
g(xk,�X−k

)
]m
fXk

(xk,�Xk
)dxk

where x(j)
k

 and w(j)

k
(j = 1, 2, ⋅ ⋅ ⋅,Nk) respectively represent the 

jth Gaussian integral node and the corresponding Gaussian 
integral weight of xk , and Nk represents the number of 
Gaussian integral node. �X−k

 is the vector composed of the 
mean values of the remaining variables except �Xk

 of xk , i.e., 
�X−k

=
[
�X1

,… ,�Xk−1
,�Xk+1

,… ,�Xn

]T
 . In this paper, the 

input variables in Eq. (18) are following independently nor-
mal distribution, for non-normal random input variables, 
they should be transformed into equivalent normal variable 
first. Then it can refer Appendix A for Gaussian integral 
formulas, five-point Gaussian integral nodes and corre-
sponding weights.

3.3.2 � The strategy of sharing integral node for the first four 
moments required by Pf  , '�Xi

 and 'x
2

i

According to the definition of the origin moment of g(x) , 
the first four origin moments MPf

mg(m = 1, 2, 3, 4) required 
by Pf  can be obtained using the multiplicative dimensional 
reduction integral in Eqs. (17) and (18), i.e., MPf

mg = Mmg.
Refer to Appendix B for the transformation relation 

between the origin moment and the central moment of the 
performance function, the first four central moments �Pf

mg 
(m = 1, 2, 3, 4) of g(x) required by Pf  can be obtained, on 
which the FP Pf  can be estimated by Eq. (3) of the fourth 
moment method.

Similarly, the first four origin moments M
��Xi

mg  and M
�
x2
i

mg

(m = 1, 2, 3, 4) required by ��Xi
 and �x2

i
 can be, respectively, 

obtained in Eqs. (19) and (20) using the multiplicative 
dimensional reduction integral method shown in Eqs. (17) 
and (18).

(18)

Mmg ≈
[
g(�X)

]m(1−n) n∏
k=1

∫xk

[
g(xk,�X−k

)
]m
fXk

(xk,�Xk
)dxk

≈
[
g(�X)

]m(1−n) n∏
k=1

{
Nk∑
j=1

w
(j)

k

[
g(x(j)

k
,�X−k

)
]m} ,

(19)

M
��Xi
mg = �Rn (g(x))

mf
(1)

Xi
(xi,�

(1)

Xi
)fX−i

(x−i,�X−i
)dx

≈
�
g(�X)

�m(1−n) n�
k=1
k≠i

�
�xk (g(xk,�X−k

))mfXk (xk,�Xk )dxk

�

⋅ �xi (g(xi,�X−i
))mf

(1)

Xi
(xi,�

(1)

Xi
)dxi

≈
�
g(�X)

�m(1−n) n�
k=1
k≠i

�
Nk�
j=1

w
(j)

k
(g(x

(j)

k
,�X−k

))m

�

⋅

⎧⎪⎨⎪⎩

Ni�
j=1

w
(j)

i

⎡⎢⎢⎣
(g(x

(j)

i
,�X−i

))m
(x

(j)

i
− �Xi

)2

�2
Xi

⎤⎥⎥⎦

⎫⎪⎬⎪⎭
, (i = 1, 2, ⋅ ⋅ ⋅, n)
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The following Eqs. (21) and (22), respectively, extract the 
univariate integral about xi in Eqs. (19) and (20),

in above equations, fXi
(xi,�Xi

) can be used as the PDF to 
select the Gaussian integral nodes of xi , so that the integral 
nodes for MPf

mg can be reused to estimate M
��Xi

mg  and M
�
x2
i

mg

(m = 1, 2, 3, 4) simultaneously, which realizes using the same 
set of integral nodes to simultaneously estimate the first four 
origin moments of the performance function g(x) under the 
original PDF fX(x,�X) as well as extended PDFs 
f
(1)

Xi
(xi,�

(1)

Xi
)fX−i

(x−i,�X−i
) and f

(2)

Xi
(xi,�

(2)

Xi
)fX−i

(x−i,�X−i
) , 

respectively.
Refer to Appendix B for the transformation relation between 

the origin moment and the central moment of the performance 
function, the required first four central moments �

��Xi

mg  and �
�
x2
i

mg

(m = 1, 2, 3, 4;i = 1, 2, ⋅ ⋅ ⋅, n) can be obtained from the first 
four origin moments M

��Xi

mg  and M
�
x2
i

mg  of ��Xi
 and �x2

i
, respec-

tively, and then the extended FPs ��Xi
 and �x2

i
 can be, respec-

tively, estimated by Eq. (3) of the fourth moment method.
So far, the FP Pf  as well as the extended FPs ��Xi

 and �x2
i
 can 

be estimated, on which �Pf

/
��Xi

 and �Pf

/
��Xi

(i = 1, 2, ⋅ ⋅ ⋅, n) 
can be obtained by Eq. (11) and (10), respectively.

(20)

M
�
x2
i

mg = �Rn

(g(x))mf
(2)

Xi
(xi,�

(2)

Xi
)fX−i

(x−i,�X−i
)dx

≈
[
g(�X)

]m(1−n) n∏
k=1
k≠i

[
�xk

(g(xk,�X−k
))mfXk

(xk,�Xk
)dxk

]

⋅ �xi

(g(xi,�X−i
))mf

(2)

Xi
(xi,�

(2)

Xi
)dxi

≈
[
g(�X)

]m(1−n) n∏
k=1
k≠i

[
Nk∑
j=1

w
(j)

k
(g(x

(j)

k
,�X−k

))m

]

⋅

{
Ni∑
j=1

w
(j)

i

[
(g(x

(j)

i
,�X−i

))m
(x

(j)

i
)2

�2

Xi
+ �2

Xi

]}
, (i = 1, 2, ⋅ ⋅ ⋅, n)

(21)
∫xi

(g(xi,�X−i
))mf

(1)

Xi
(xi,�

(1)

Xi
)dxi

=∫xi

(g(xi,�X−i
))m

(xi − �Xi
)2

�2

Xi

fXi
(xi,�Xi

)dxi

(22)
∫xi

(g(xi,�X−i
))mf

(2)

Xi
(xi,�

(2)

Xi
)dxi

=∫xi

(g(xi,�X−i
))m

x2
i

�2

Xi
+ �2

Xi

fXi
(xi,�Xi

)dxi

3.4 � The detailed steps of the proposed method 
for estimating LRS

Based on the above theoretical derivation and the strategy of 
sharing integral node, the flow chart of the proposed method 
for estimating LRS is shown in Fig. 1, and the detailed steps 
are listed as follows.

Step 1 The input variables following independently nor-
mal distribution are concerned, for the case with non-nor-
mal input variables, the non-normal input variables can be 
transformed into normal ones at first (Rackwitz and Flessler 
1978; Hohenbichler and Rackwitz 1981). So it corresponds 
to “Normal Gauss-Hermite” in the Tables of Appendix A, 
then select the corresponding Gaussian integral formulas, 
and record Nk selected Gaussian integral nodes and corre-
sponding weights of each integration variable xk as (x(j)

k
,w

(j)

k
)

(j = 1, 2, ⋅ ⋅ ⋅,Nk;k = 1, 2, ⋅ ⋅ ⋅, n).
Step 2 Estimate the first four origin moments MPf

mg

(m = 1, 2, 3, 4) of g(x) with PDF fX(x,�X) by Eq. (18). Then 
estimate the first four center moments �Pf

mg (m = 1, 2, 3, 4) 
corresponding to MPf

mg by the conversion relation between 
the origin moment and the central moment. Finally, estimate 
the failure probability Pf  by the fourth moment method in 
Eq. (3).

Step 3 By the strategy of multiplicative dimensional 
reduction-based sharing integral node, estimate the first four 
origin moments M

��Xi

mg  and M
�
x2
i

mg  (m = 1, 2, 3, 4;i = 1, 2, ⋅ ⋅ ⋅, n), 
respectively, by Eqs. (19) and (20), corresponding to the 
e x t e n d e d  P D F s  f

(1)

Xi
(xi,�

(1)

Xi
)fX−i

(x−i,�X−i
)  a n d 

f
(2)

Xi
(xi,�

(2)

Xi
)fX−i

(x−i,�X−i
) . Then transform M

��Xi

mg  and M
�
x2
i

mg  into 
the f irst  four central  moments �

��Xi

mg  and �
�
x2
i

mg

(m = 1, 2, 3, 4;i = 1, 2, ⋅ ⋅ ⋅, n), respectively, by the conversion 
relation of the origin moment and the central moment, on 
which the extended FPs ��Xi

 and �x2
i
 can be, respectively, 

estimated by the fourth moment method in Eq. (3).
Step 4 Estimate �Pf

/
��Xi

 and �Pf

/
��Xi

(i = 1, 2, ⋅ ⋅ ⋅, n), 
respectively, by Eqs. (11) and (10).

3.5 � Computational cost discussion of the proposed 
method

For estimating LRS with n - dimensional random input, the 
computational cost of the proposed method in Ref. (Lu et al. 
2010) is 3n, and it increases exponentially with the dimen-
sion of the random input. For the problem with medium 
and high dimension input variables, this existing method 
will face dimensionality disaster. The method proposed in 
this paper employs the multiplicative dimensional reduc-
tion integral to transform the n-dimensional integral of esti-
mating the performance function moments into the prod-
uct of n univariate integrals. For each univariate integral, 
it can be approximated with an acceptable precision only 
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by estimating the performance function at a finite number 
of integral nodes. The computational cost of the proposed 
method is 

∑n

k=1
Nk + 1 in this paper, where Nk represents 

the number of integral nodes required for each univariate 

integral. The five-point Gaussian integral is employed in 
this paper, i.e., Nk = 5(k = 1, 2, ⋅ ⋅ ⋅, n) , thus the computa-
tional cost is 5n + 1 for n-dimensional random input, which 
increases linearly with the dimension of the random input. 

Fig. 1   Flow chart of the proposed method for estimating LRS
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Thus, the proposed method in this paper is applicable for 
medium and high dimension problems.

4 � Examples

Four examples are presented. The first one is a numerical 
example with exponential limit state performance function, 
which verifies the applicability of the proposed method. The 
second example considers a high dimensional numerical 
example with non-normal random variable, demonstrating the 
efficiency of the proposed method to the high dimension prob-
lems and the applicability to the problems with non-normal 
random variable. In the third example, a finite element exam-
ple is presented to illustrate the applicability of the proposed 
method to implicit limit state performance function problems. 
Finally, an example of a system with multiple failure modes is 
presented to illustrate the limitation of the proposed method.

4.1 � Numerical example with exponential limit state 
function

In order to illustrate the applicability and superiority of the 
proposed method, a numerical example in the form of an expo-
nential limit state performance function with a high degree 
of nonlinear is presented, and its performance function is as 
follows,

where Xi(i = 1, 2, ⋅ ⋅ ⋅, 6) are assumed as independent nor-
mal random inputs, �X = [1.5, 1, 1.5, 1.2, 1.2, 1.2]T and 
CovX = [0.05, 0.06, 0.05, 0.05, 0.05, 0.05]T are their mean 
vector and variation coefficient vector, respectively.

The solutions of FP estimated by different methods are 
shown in Table 1. The solutions of LRS with respect to 
mean and standard deviation estimated by different meth-
ods are shown in Figs. 2 and 3, respectively. Among them, 
the Monte-Carlo method is denoted as MC, the method in 
Ref. (Lu et al. 2010) is denoted as Moment-4, the method 
proposed in this paper is denoted as PM. N is the number of 
evaluating the performance function. The solutions obtained 
by the MC can be regarded as the reference.

From Table 1, one can see that the results of the FP esti-
mated by the Moment-4 and PM are close to that of the MC, 
however, the PM is obviously superior to the Moment-4 in 
terms of computational efficiency. From Figs. 2 and 3, one 
can see that the LRS solutions of the PM method are gener-
ally closer to those of the MC than those of the Moment-4 
method. Therefore, the efficiency and applicability of the 
PM are verified by this numerical example.

4.2 � High dimensional numerical example

In order to illustrate the advantages of the PM in computing 
efficiency, this example considers a numerical example with 
18-dimensional random inputs, and the performance func-
tion can be expressed as

(23)g(X) =
1.2X4X

2

5
X3

6

e1.5X1X2−X3

− 1,

Table 1   The solutions of FP in 4.1

Method MC Moment-4 PM

Pf 2.8364 × 10 − 2 3.6062 × 10 − 2 3.6203 × 10 − 2

N 1 × 107 729 31

Fig. 2   LRS with respect to 
mean in 4.1
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where Xi(i = 1, 2,… , 18) are random inputs, the distribution 
parameters are listed in Table 2. In this example, the Weibull 
distribution of input Xi(i = 9, 10,… , 18) should be trans-
formed into normal distribution (Rosenblatt 1952; Lu et al. 
2020) first. Then based on the transformed normal distribu-
tion, the PM can be employed. The solutions of FP estimated 
by different methods are shown in Table 3. The solutions of 
LRS with respect to mean and standard deviation estimated 
by different methods are shown in Figs. 4 and 5, respectively.

As can be seen from Table 3, the results of FP estimated 
by the moment-4 and PM are consistent, but the computa-
tional cost of the PM is far less than that of the Moment-4, 
and the computational cost of the Moment-4 is even 19 times 

(24)g(X) =

∏18

i=1
Xi

16
− 1,

Fig. 3   LRS with respect to 
standard deviation in 4.1

Table 2   Distribution parameters of input variables in 4.2

Note: Parameter 1 is the scale parameter for Weibull distribution and 
the mean for normal distribution. Parameter 2 is the shape parameter 
for Weibull distribution and the standard deviation for normal distri-
bution

Variable Parameter 1 Parameter 2 Distribution

Xi(i = 1, 2,⋯ , 9) 1.2 0.05 Normal
Xi(i = 10, 11,⋯ , 18) 1.2 20 Weibull

Table 3   The solutions of FP in 4.2

Method MC Moment-4 PM

Pf 3.7175 × 10 − 2 4.1951 × 10 − 2 4.1437 × 10 − 2

N 2 × 107 318 = 387,420,489 91

Fig. 4   LRS with respect to 
mean in 4.2
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more than that of the MC. With the increase of the dimen-
sion of the random inputs, the computational cost of the 
Moment-4 increases exponentially, which will face dimen-
sionality disaster. On the contrary, the computational cost 
of the PM just increases linearly, it can also keep a small 
computational cost in the high dimensional problems. In 
this example, when the computational cost of the Moment-4 
reaches 318 , the computational cost of the PM is only 91, 
which reflects the significant advantage of the PM in compu-
tational efficiency. Figures 4 and 5 show the results of LRS 
with respect to mean and standard deviation of the three 

comparison methods. It can be seen that the results of the 
Moment-4 and PM are roughly consistent with those of the 
MC.

4.3 � Simplified wing box structure

During flight, the wing box structure bears most of the verti-
cal load from the wing, and the displacement of its free end 
may be relatively large. The simplified wing box model is 
shown in Fig. 6. Large displacement may cause rod deforma-
tion and lead to rod or plate damage, which is not allowed 
during flight, so it is necessary to calculate the displacement 
of wing box structure. The wing box structure consists of 64 
rods and 42 plates. The 64 rods are divided into 3 groups 
according to their direction, and the lengths of the rods in 
the direction of x , y and z are 2L , L and 3L, respectively. 
The cross-sectional area of all rods is A, the thickness of all 
plates is TH, E and P are the elastic modulus and external 
load of all plates and rods, respectively, and Poisson's ratio 
is 0.3. Assuming that the input variables are independent 
normal variables, their distribution parameters are shown 
in Table 4.

Fig. 5   LRS with respect to 
standard deviation in 4.2
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Fig. 6   Simplified wing box model

Table 4   Distribution parameters of input variables of the wing box 
structure

Note: COV means coefficient of variation

Variable/Units Mean COV Distribution

A
/
m2 1 × 10 − 4 0.10 Normal

L∕m 0.2 0.10 Normal
E∕Pa 7.1 × 1010 0.05 Normal
P∕N 1500 0.05 Normal
TH∕m 2.5 × 10 − 3 0.05 Normal
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In this paper, the maximum displacement Dmax of the free 
end of the wing box structure can be expressed as

where D(L,A,E,P, TH) is the implicit function about the 
input variable, which is determined by finite element analy-
sis. Figure 7 shows the finite element model of the wing 
box structure constructed in ABAQUS 6.41, in which the 
input variables are fixed at their mean values. In addition, the 
deformation of the wing box structure is shown in Fig. 8. The 
failure is defined as that the value of Dmax exceeds 6.6 × 10−3

(m). Then the limit state performance function of the wing 
box structure can be expressed as g(X) = 6.6 × 10−3 − Dmax . 
The solutions of FP estimated by different methods are 
shown in Table 5. The solutions of LRS with respect to mean 
and standard deviation estimated by different methods are 
shown in Figs. 9 and 10, respectively.

From Table 5, one can see that the results of FP for the 
moment-4 and PM are consistent with that for the MC, but 
the computational cost required by the PM is significantly 
lower than that of the Moment-4. Figures 9 and 10 show 

(25)Dmax = D(L,A,E,P, TH),

the LRS with respect to mean and standard deviation of the 
three comparison methods, respectively. It can be seen that 
the results of the Moment-4 and PM are very close to those 
of the MC. However, the computational cost of the PM is 
significantly lower than that of Moment-4, which shows the 
efficiency of the PM and the applicability of the PM to the 
problem with implicit limit state performance function.

In addition, the dimensionless LRS results are listed in 
Table 6. From Table 6, it can be seen that the increase of 
means of L and P will increase the FP, and the impact on 
FP of P mean is more than that of L mean on FP. While the 
increase of means of A, E and TH will decrease the FP, and 
the impact on FP of E mean is most. Contrarily, the increase 
of the standard deviation of all inputs will increase the FP, 
and the impact on FP of E standard deviation is most, while 
the impact on FP of A standard deviation is least. The above 
quantitative conclusions drawn from LRS analysis can pro-
vide gradient information for the failure probability con-
cerned uncertainty design optimization.

4.4 � One‑bay elastoplastic frame

The accuracy of the proposed method is high and matches 
the accuracy of the existing method in Ref. (Lu et al. 2010) 
in the above three examples, but it should be pointed out that 
there are some limitations of the proposed method. That is, 
when the proposed method is applied to the problem with 
multiple failure modes or the problem with a small FP, the 
computational error may be large.

Fig. 7   Finite element model of wing box structure

Fig. 8   Deformation of wing box 
structure

Deformation mm

Table 5   The solutions of FP in 4.3

Method MC Moment-4 PM

Pf 4.3893 × 10 − 2 4.4113 × 10 − 2 4.0993 × 10 − 2

N 1 × 107 243 26
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For addressing the limitation of proposed method in 
detail, the derivation of the proposed method is reviewed as 
follows. Firstly, the proposed method analytically derives 
the LRS as a weighted sum of FP and some extended FPs, 
and no error is introduced in this stage of the proposed 
method in case of normal input. Secondly, the proposed 

method dexterously designs a strategy of sharing integral 
nodes to estimate the first four moments for simultaneously 
obtaining the FP and extended FPs, and this stage of the 
proposed method may produce some errors due to the mul-
tiplicative dimensional reduction and Gaussian quadrature 
for the univariate integral are employed. The multiplicative 
dimensional reduction method transforms the n-dimensional 
multivariate integral into the product of n univariate inte-
grals for estimating the first four moments of performance 
function, and this transformation is based on that the loga-
rithm of performance function can be approximated by a 
polynomial of univariate function sum. For the case that 
the logarithm of performance function can be approximated 

Fig. 9   LRS with respect to 
mean in 4.3

MC
Moment-4
PM

210A
110L

1110E
410P

210TH

Fig. 10   LRS with respect to 
standard deviation in 4.3

0

1

2

3

4

5

6

7
MC
Moment-
PM

210A 210L 1110E 410P 210TH

Table 6   The values after non-dimensional treatment for LRS in 4.3

Variable A L E P TH

�Pf

/
��  − 2.3354 2.2054  − 25.7588 2.3428  − 23.3191

�Pf

/
�� 0.0433 0.0085 1.3637 0.1089 1.1247
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with a high precision by the polynomial of univariate func-
tion sum, and the Gaussian integral nodes are enough to 
accurately estimate the univariate integral, then the preci-
sion of the proposed method is high. Namely, in case that 
the logarithm of performance function can be approximated 
accurately by the polynomial of univariate function sum, 
and the Gaussian integral nodes are enough to accurately 
estimate the univariate integral, then the proposed method 
can be reliably applied. Otherwise, the error of the proposed 
method may be large.

From the above explanation, it can be seen that the limi-
tation of the proposed method is caused by the fact that the 
multiplicative dimensional reduction method is employed 
to estimate the statistical moments and the fourth moment 
method is employed to estimate the FP and extended FPs. 
However, if some efficient and accurate numerical methods, 
which can be applied to estimate simultaneously the original 
FP and extended FPs with high accuracy, can be found to 
replace the multiplicative dimensional reduction method and 
moment method, the limitation of the proposed method can 
be effectively avoided.

In order to illustrate the limitation of the proposed method 
more intuitively, an example of a system with multiple fail-
ure modes is presented. Considering a one-bay elastoplastic 
frame in Fig. 11. Four potential failure modes of structure 
system can be readily identified and their performance func-
tions are defined as follows,

Since this is a series system, the performance function 
denoted as g of the structure system can be defined as the 
minimum of the above four performance functions, i.e., 
g = min

{
g1, g2, g3, g4

}
 . In this example, Mi(i = 1, 2, 3) 

and S are independent normal inputs with means and 
standard deviations of �Mi

= 2(i = 1, 2, 3) ,  �S = 1 , 
�Mi

= 0.2(i = 1, 2, 3) and �S = 0.25, respectively. The LRS 
results estimated by different methods are, respectively, 
listed in Table 7.

From the results in Table 7, it is shown that the accuracy 
of the PM is much less than that of the Moment-4 method in 
Ref. (Lu et al. 2010) for the LRS of the system with multiple 
failure modes. The reason is that the logarithmic perfor-
mance function of the system with multiple failure modes 
cannot be accurately approximated by the polynomial of the 
univariate function sum, and the integral node number of the 
multiplicative dimensional reduction integral quadrature is 
less than that of the three-point estimation. This example 
shows that the PM is not suitable for analyzing the LRS of 
the system with multiple failure modes.

5 � Conclusions

In this paper, an efficient method for local reliability 
sensitivity (LRS) is proposed by use of moment method. 
Firstly, the proposed method uses a series of integral 
transformation to derive equivalently the LRS into the 
weighted sum of failure probability (FP) and several 
extended FPs, and these derived FPs have the same per-
formance function but different probability density func-
tions (PDFs), including original PDF and extended PDFs. 
No approximation is introduced in the derivation for 

(26)

g1 = 2M1 + 2M3 − 4.5S

g2 = 2M1 +M2 +M3 − 4.5S

g3 = M1 +M2 + 2M3 − 4.5S

g4 = M1+2M2 +M3 − 4.5S

1M
2M

3M

S 6m

4.5m

Fig. 11   One-bay elastoplastic frame

Table 7   The solutions of LRS

Method �Pf

��M1

�Pf

��M2

�Pf

��M3

�Pf

��S

MC  − 0.0142  − 0.0080  − 0.0147 0.0413
Moment-4  − 0.0143  − 0.0079  − 0.0143 0.0401
PM  − 0.0003  − 0.0003  − 0.0003 0.0020

Method �Pf

��M1

�Pf

��M2

�Pf

��M3

�Pf

��S

MC 0.0130 0.0094 0.0132 0.1008
Moment-4 0.0111 0.0081 0.0111 0.0984
PM 0.0010 0.0004 0.0010 0.1172
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normal variable, which ensures the theoretical rigor of the 
LRS. Then, on the basis of the fact that derived FPs have 
the same performance function and there are the explicit 
relations between the PDF and the extended PDFs, the 
strategy of multiplicative dimensional reduction-based 
sharing integral node is designed dexterously to estimate 
the statistical moments of the performance function 
required by the original FP and extended FPs. In the pro-
posed method, the multiplicative dimensional reduction 
integral is employed to transform the multivariate integral 
of the performance function moments into the product 
of a series of univariate integrals, on which the first four 
moments of the performance function corresponding to 
the derived FPs can be estimated simultaneously by the 
same set of multiplicative dimensional reduction integral 
nodes. By the designed strategy of multiplicative dimen-
sional reduction-based sharing integral node and the rigor 
derivation of the LRS, the computational cost of the pro-
posed method increases linearly with the dimension of the 
random input, which is superior to the existing moment 
method for LRS.

Because the proposed method adopts the multiplicative 
dimensional reduction method to estimate the statistical 
moments of the performance function, and the fourth 
moment method to estimate the FP and extended FPs, it is 
hard to avoid the limitations of the multiplicative dimen-
sional reduction method and the moment method, i.e., for 
a small FP or the multiple failure modes, the computa-
tional error may be large. However, the proposed method 
has good expansibility, by choosing the numerical simula-
tion method (Au and Beck 1999; Alvarez et al. 2018) that 
can estimate simultaneously the original FP and extended 
FPs with high accuracy by sharing the sample informa-
tion, the limitations of the multiplicative dimensional 
reduction method and the moment method can be avoided 
and the calculational accuracy of LRS can be improved.

Appendix A: Gaussian integral formulas, 
five‑point Gaussian integral nodes 
and corresponding weights

See Tables 8, 9

Table 8   Gaussian integral 
formula under different 
distributions (Zhang et al. 
2011b)

Distribution Support domain Gaussian rules Numerical integration formula

Uniform [a, b] Gauss–Legendre ∑Nk

k=1
wk

�
1

2
g
�

b−a

2
zk +

a+b

2

��m

Normal (−∞,+∞) Gauss-Hermite ∑Nk

k=1
wk

�
g(�+zk�)

�m
Lognormal (0,+∞) Gauss-Hermite ∑Nk

k=1
wk

�
g(exp(�+zk�))

�m
Exponential (0,+∞) Gauss-Laguerre ∑Nk

k=1
wk

�
g(zk

�
�)
�m

Weibull (0,+∞) Gauss-Laguerre ∑Nk

k=1
wk

�
g(�z1∕ �

k
)
�m

Table 9   Characteristic points of 
five-point Gaussian integral and 
corresponding weights

Gaussian rules k 1 2 3 4 5

Gauss-Hermite wk 1.1257 × 10 − 2 0.22208 0.53333 0.22208 1.1257 × 10 − 2

zk  − 2.8570  − 1.3556 0 1.3556 2.8570
Gauss–Legendre wk 0.23693 0.47863 0.56889 0.47863 0.23693

zk  − 0.90618  − 0.53847 0 0.53847 0.90618
Gauss-Laguerre wk 0.52176 0.39867 7.5942 × 10 − 2 3.6118 × 10 − 3 2.3370 × 10 − 5

zk 0.26356 1.4134 3.5964 7.0858 12.641
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Appendix B: Transformation relation 
between the origin moment and the central 
moment of the performance function

For performance function g = g(X) with n - dimensional ran-
dom input X =

[
X1,X2,… ,Xn

]T , fX(x,�X) is the joint PDF 
of the random input X , and �X represents the distribution 
parameter vector of X . The first four origin moments Mmg

(m = 1, 2, 3, 4) of the performance function g = g(X) can be 
obtained by Eq. (B1) using the multiplicative dimensional 
reduction integral.

The first four central moment �mg(m = 1, 2, 3, 4) of  
g = g(X) can be expressed as follows,

(B1)

Mmg = ∫Rn

(g(x))mfX(x,�X)dx

≈
[
g(�X)

]m(1−n) n∏
k=1

{
Nk∑
j=1

w
(j)

k

[
g(x

(j)

k
,�X−k

)
]m}

(B2)�1g = ∫Rn

g(x)fX(x,�X)dx

(B3)

�
2g =

[
∫Rn

(g(x) − �
1g)

2fX(x,�X)dx

]1∕ 2

=

{
∫Rn

[
(g(x))2 − 2�

1gg(x) + �2

1g

]
fX(x,�X)dx

}1∕ 2

=

[
∫Rn

(g(x))2(x,�X)dx − 2�
1g ∫Rn

g(x)fX(x,�X)dx + �2

1g

]1∕ 2

(B4)

�
3g =

1

�3

2g
∫
Rn
(g(x) − �

1g)
3fX(x,�X)dx

=
1

�3

2g
∫
Rn

[
(g(x))3 − 3�

1g(g(x))
2 + 3�2

1g
g(x) − �3

1g

]
fX(x,�X)dx

=
1

�3

2g
∫
Rn
(g(x))3fX(x,�X)dx −

3�
1g

�3

2g
∫
Rn
(g(x))2fX(x,�X)dx

+
3�2

1g

�3

2g
∫
Rn
g(x)fX(x,�X)dx −

�3

1g

�3

2g

(B5)

�
4g =

1

�4

2g
∫Rn

(g(x) − �
1g)

4fX(x,�X)dx

=
1

�4

2g
∫Rn

[
(g(x))4 − 4�

1g(g(x))
3 + 6�2

1g
(g(x))2 − 4�3

1g
g(x) + �4

1g

]
fX(x,�X)dx

=
1

�4

2g
∫Rn

(g(x))4fX(x,�X)dx −
4�

1g

�4

2g
∫Rn

(g(x))3fX(x,�X)dx

+
6�2

1g

�4

2g
∫Rn

(g(x))2fX(x,�X)dx −
4�3

1g

�4

2g
∫Rn

g(x)fX(x,�X)dx +
�4

1g

�4

2g

According to Eqs. (B1–B5), the transformation relation 
between the origin moment and the central moment of the 
performance function can be obtained in Eqs. (B6–B9).
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