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Abstract
Topology optimization (TO) provides a systematic approach for obtaining structure design with optimum performance of 
interest. However, the process requires the numerical evaluation of the objective function and constraints at each iteration, 
which is computationally expensive, especially for large-scale designs. Deep learning-based models have been developed 
to accelerate the process either by acting as surrogate models replacing the simulation process, or completely replacing the 
optimization process. However, most of them require a large set of labelled training data, which is generated mostly through 
simulations. The data generation time scales rapidly with the design size, decreasing the efficiency of the method itself. 
Another major issue is the weak generalizability of deep learning models. Most models are trained to work with the design 
problem similar to that used for data generation and require retraining if the design problem changes. In this work an adaptive, 
scalable deep learning-based model-order-reduction method is proposed to accelerate large-scale TO process, by utilizing 
MapNet, a neural network which maps the field of interest from coarse-scale to fine-scale. The proposed method allows for 
each simulation of the TO process to be performed at a coarser mesh, thereby greatly reducing the total computational time. 
More importantly, a crucial element, domain fragmentation, is introduced and integrated into the method, which greatly 
improves the transferability and scalability of the method. It has been demonstrated that the MapNet trained using data from 
one cantilever beam design with a specific loading condition can be directly applied to other structure design problems with 
different domain shapes, sizes, boundary and loading conditions.

Keywords Deep learning · Artificial neural network · Topology optimization · Surrogate method

1 Introduction

Structural design has always been playing an important 
role in engineering applications ranging from the design 
of industrial products such as aircraft components to the 
design of advanced materials like metamaterials. One of the 
inverse design methods especially in the field of mechanical 

engineering is topology optimization (TO) in which the 
material distribution is optimized systematically within 
a prescribed design domain to achieve a design objective 
while subjecting to certain design constraints. However, 
due to the repetitive evaluations of the objective function 
and constraints required during the TO process, which are 
typically carried out by numerical simulations such as Finite 
Element Method (FEM)-based analysis, the computational 
cost of the TO method could be prohibitively large for large-
scale designs. For example, the design of an airplane foil 
with giga-scale resolution required 8000 CPUs running 
simultaneously for days (Aage et al. 2017).

One of the effective solutions to accelerate the TO process 
and reduce the computational cost of large-scale designs is 
to speed up the large-scale simulation. Various methods have 
been developed over the years, starting with conventional 
reduced order methods used in early years (Yvonnet and He 
2007; Nguyen 2008; Boyaval 2008; Monteiro et al. 2008; 
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Cremonesi et al. 2013; Hernández et al. 2014; Benner et al. 
2015) to rapidly developed deep learning methods such as 
artificial neural networks (ANN) in recent years. One of the 
advantages of ANNs is that once constructed, predictions 
from ANNs can be rapidly computed with the time scale on 
the order of milliseconds. This advantageous property of 
ANN has been utilized in large-scale analysis with the ANN 
serving as the surrogate model to replace time-consuming 
numerical simulations such as FEM calculations. ANN-
based surrogate models have been widely adopted in the 
field of structural mechanics for the prediction of mechanical 
responses of structures. This implementation is seen in the 
works (White et al. 2019; Tan et al. 2020; Nie et al. 2020; 
Lee et al. 2020; Kalina et al. 2022), which utilized either the 
forward NN or Convolutional Neural Network (CNN) for the 
prediction of mechanical fields such as stress/strain field of 
structures subjected to various loadings.

Another approach to speed up the design process is to 
apply deep learning models to directly predict the optimized 
or near-optimal structures, partly or completely skipping 
over the optimization process, which is seen in works (Sos-
novik and Oseledets 2019; Yu et al. 2019; Kollmann et al. 
2020; Ates and Gorguluarslan 2021). In these works, deep 
learning models are used to predict from “structures” to 
“structures”, essentially treating structure designs as images. 
For example, in the work by Sosnovik and Oseledets (2019), 
a neural network is used to predict the optimized structure 
directly using the density field of the structure at interme-
diate steps of TO. These models are used as black boxes 
without requiring any prior knowledge associated with the 
design problem, and the computational time is reduced by 
skipping the design process. However, in order to train the 
model, many TO design solutions must be pre-produced, 
which in turn requires a large number of FEM calculations.

Despite the great interest and effort on the development 
of machine learning-based efficient TO methods, most exist-
ing methods/models suffer from two major shortcomings. 
The first one is the need of a large set of training data. With 
the required data mostly generated through time-consuming 
simulations such as FEM calculations, the time required for 
the generation of training data increases with the problem 
size, which is impractical for large-scale structural designs. 
Several methods have been proposed to reduce the number 
of training data. For example, in the work by Qian and Ye 
(2021), only the designs in the early stage of optimization 
are used as training data. The data from the later stage of 
optimization are omitted since most of these designs are 
similar to those in previous iterations and therefore do not 
contribute much to the learning process of the machine 
learning model. With this approach, the number of train-
ing data can be reduced to a certain extent, but significant 
amount of expensive FEM calculations is still required to 
be performed. This might become a problem for large-scale 

TO designs, for example, those with giga-scale resolution 
(Aage et al. 2017; Baandrup et al. 2020), as the computa-
tional resource required for the calculations is too high and 
may not be easily accessible. In another work by Chi et al. 
(Chi et al. 2021), an online updating scheme is proposed to 
avoid the long offline training, thereby avoiding the need 
for a large pool of pre-generated training data. Since an 
online training scheme is utilized, the model is required to 
be trained in real time for every new problem.

Another drawback in most of the existing works is the 
poor transferability of the trained models, with their pre-
diction accuracy dropping significantly when applied to 
“unseen” settings. As a result, most existing models have 
rather narrow application scopes, difficult to generalize to 
problems with different settings particularly with differ-
ent domain shapes and sizes. A main reason for the nar-
row application scope is that in those methods, the machine 
learning model maps the entire domain, which is represented 
as an image, and possibly boundary/loading conditions to its 
corresponding output such as the stress field or the design 
solution. To accommodate for different domains and condi-
tions, a large set of representative training data is required, 
which is challenging if not impossible to generate for large-
scale designs.

One approach to reduce the number of training data and/
or improve the transferability is to incorporate the physics 
into the machine learning process or machine learning mod-
els. An example of the former case is the physics-informed 
neural network (PINN) approach (Raissi et al. 2019; Lu 
et al. 2020; Raissi and Karniadakis 2018; Raissi et al. 2020), 
which has attracted a great attention recently. In PINN, the 
physics is embedded in the loss function. As a result, very 
little or even no training data is needed. The trade-off is that 
the training time greatly increases because the complexity 
of the training, which is effectively a multi-objective opti-
mization problem, increases. The latter case can be seen 
in the work of Wang et al. (2021) in which the neural net-
work maps the mechanical field of the initial design such 
as the displacement and/or the stress/strain field to the cor-
responding design solution. The input of the ANN model 
contains certain physics of the problem. Hence the model 
has a relatively strong generalization ability. It can predict 
design solutions of the same problem with different bound-
ary conditions even though the model was trained only on 
one boundary condition. However, the quality of the pro-
duced design solutions needs to be improved and the model 
seems to be only applicable for a fixed design domain.

In this work, we propose and develop an ANN-based 
model-order-reduction method to greatly reduce the com-
putational cost of the expensive numerical evaluation of the 
objective and constraints and thus to speed up the TO pro-
cess for large-scale designs. In particular, this method is scal-
able and adaptable to different problem settings including 
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the changing domain size and shape without the need to 
retrain the deep learning model. In the method, numerical 
analysis is carried out on a coarser mesh instead of the origi-
nal mesh using conventional methods such as the FEM. A 
neural network model, entitled as MapNet, is then used to 
map the coarse-scale field to the full-scale field. The objec-
tive and constraints are then evaluated based on the mapped 
full-scale field. The major benefit of this approach is that the 
coarse-scale field, which is much less expensive to obtain, 
contains the physical information, such as the boundary and 
loading conditions. If boundary/loading conditions change, 
the coarse-scale field changes accordingly. Compared with 
ANN models that map the structure to its full-scale field, 
the training of MapNet, is easier and requires less full-scale 
data because the network only needs to learn the relationship 
between a coarse field and its corresponding fine field. This 
approach is not new and has been applied in several works 
previously (Chi et al. 2021; Tan et al. 2022). To improve the 
transferability and scalability, the idea of domain decom-
position is utilized in this method. The problem domain is 
decomposed into a set of small subdomains or fragments, 
and the network is constructed to perform the mapping on 
each small subdomain instead of the entire problem domain. 
The predicted field of each subdomain is then combined to 
form the field of the original domain. A major advantage 
of this approach is that many different domains with vary-
ing sizes and shapes can potentially be decomposed into 
similar sets of subdomains/fragments, the MapNet trained 
with data from a specific design problem can be more eas-
ily transferred to different problems. Besides, the number 
of training data is increased because one data of the entire 
domain can be decomposed into many subdomain data and 
thereby increasing the accuracy of the network.

The paper is presented by first describing the design prob-
lems used for the demonstration of the performance of the 
proposed method. The detailed implementation of the pro-
posed method is discussed next. In the section of results and 
discussions, the accuracy and efficiency of the method are 
demonstrated on various design problems having different 
design domains and boundary conditions, benchmarked with 
results obtained from conventional TO methods. Finally, the 
paper is concluded with a discussion of the possible future 
work.

2  Problem statement

The performance of the proposed method is demonstrated on 
two benchmark design problems of TO methods, specifically 
the structural and thermal compliance minimization design 
problems. The structural compliance minimization design 

problem can be expressed mathematically in a discretized 
form as follows:

where C(x) is the compliance of the structure, � is the dis-
placement vector, � is the global stiffness matrix, F is the 
loading vector. V(x) represents the volume of the structure 
and V0 is the volume of the entire design domain. f  is the 
desired volume fraction. In this work, the volume fraction 
constraint is set as 0.4 for all cases, unless specifically men-
tioned. The design variable is the elementwise “density” x . 
In this work, two common TO methods, the Bi-directional 
Evolutionary Structural Optimization (BESO) and the Solid 
Isotropic Material with Penalization method (SIMP), are 
used to perform TO designs. The elementwise density is 
either 0 or 1 in BESO and a value between 0 and 1 in SIMP 
with 0 representing the void and 1 representing the solid 
phase of the structure, respectively. The design objective is 
to optimize the topology, that is, the density, of structures 
within the design domain, so that the compliance of the 
structure is the minimal, while subjecting to a given loading 
and volume fraction. A variety of design cases with differ-
ent domains, boundary and loading conditions are selected 
to demonstrate the transferability of the proposed method, 
starting with the classical 2D cantilever beam design as 
illustrated in Fig. 1a. The design domain is a square with 
the left boundary being fixed and a vertical distributed area 
load applied at the upper right boundary of the domain. The 
second design problem is the same as the cantilever design 
except that instead of one distributed area load, three dis-
tributed area forces are applied at the centers of the top, the 
right and the bottom boundaries, respectively as illustrated 
in Fig. 1b. Two more design cases, that is, the L-shaped 
beam and simple bridge designs shown in Fig. 1c and d, are 
also considered. The two cases have distinct domain shapes 
and sizes. In addition, boundary and loading conditions are 
entirely different from those of cantilever design problems. 
For the beam design of (a), (b), and (c), the distributed area 
load is applied on a square region of L/16 by L/16, while for 
the bridge design problem the distributed line load is applied 
over the whole top boundary.

In order to demonstrate the versatility of our method, the 
thermal compliance minimization problem is also solved using 
the proposed method. In this problem, the design objective is 
to minimize thermal compliance subject to a given thermal 
loading and boundary conditions. The mathematical model 
of the design problem is given as follows:

(1)
min
x

∶ C(x) =
1

2
�

�
��

subjected to ∶
V(x)

V0

= f

�� = �

,
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where C(x) is the objective function, � is the temperature 
field, K

c
 the conductivity matrix and � is the thermal loading 

including contributions from boundary heat flux and internal 
heat generation/loss. The SIMP method is used for this prob-
lem and the design domain is a square. This design problem 
is based on that demonstrated in the work of Bendsoe and 
Sigmund (2003), in which the design domain is insulated 
at all edges except for a heat sink with zero temperature 
located across the centre of the top boundary. The plate is 
subjected to distributed heating all over the plate. Two dif-
ferent boundary conditions are considered, with the first one 
having a small heat sink while the second having a large 
heat sink. The lengths of the heat sink in the two cases are 
illustrated in Fig. 2.

(2)

min
x

∶ C(x) = �
�
K

c
�

subjected to ∶
V(x)

V0

= f

K
c
� = �

0 ≤ x ≤ 1

,

3  Methodology

As briefly mentioned in the introduction, in the proposed 
method, the evaluation of the objective and sometimes the 
constrain in each TO iteration is conducted using MapNet 
instead of the full-scale numerical simulation used in the 
conventional TO methods. The main process of the evalu-
ation can be separated into five steps. First, the fine-scale 
structure is scaled down to its coarse-scale structure (coars-
ening) and the FEM calculation is performed at the coarse 
scale. Next, the entire fine-scale structure and the coarse-
scale mechanical field are decomposed into a set of small 
fragments (fragmentation). In this study, the mechanical 
field refers to the strain energy of each element. A MapNet 
is then used to map the coarse-scale field of each fragment to 
the corresponding fine-scale field. At last, the fragments of 
the fine-scale field are combined to form the fine-scale field 
of the original domain (defragmentation) and the objective/
constraints are then evaluated based on the fine-scale field. 

Fig. 1  Illustration of design domain for structural compliance mini-
mization problem for a cantilever beam with a distributed area load 
applied at the upper right corner, b cantilever beam with multiple 

distributed area loads, c L-shaped beam subject to a distributed area 
load, d Bridge design subjected to a distributed line load
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Fig. 2  Illustration of design 
domains of thermal compliance 
minimization problem for two 
different settings of boundary 
conditions

Fig. 3  Illustration of the conventional FEM-based TO (a) and the proposed framework based on MapNet (b)
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The process is illustrated in the flowchart shown in Fig. 3 
with comparison to the conventional FEM-based TO process 
and the detailed description of each part is presented in the 
following paragraphs.

Coarsening is performed by scaling down the fine-scale 
density field of the structure with NF number of elements to 
its coarse-scale density field with NC number of elements, 
where Nc should be much smaller than NF to achieve high 
efficiency. The density value of a coarse-scale element is 
obtained by averaging the density values of NF∕Nc fine-scale 
elements. Figure 4 shows one sample of the conversion from 
a fine-scale structure to a coarse-scale structure. In the sec-
ond step, FEM calculation is performed on the coarse-scale 

structure to obtain its strain energy field. Since the scale 
difference is large between the coarse and fine scale, the 
reduction in simulation time can be significant.

Next, fragmentation is performed on both the density and 
strain energy fields as illustrated in Fig. 5. Using one sam-
ple of the density field obtained from the cantilever design 
problem as an example, the fine-scale structure is cropped 
into 64 small non-overlapping fragments. Moreover, instead 
of the non-overlapping cropping, we can go a step further by 
introducing overlapping cropping as shown in Fig. 6. In fact, 
overlapping cropping is more advantageous because when 
the fragments are combined to form the entire field, there 
is less likely for discontinuities to occur at the edge of each 
fragment, thus making the overall field smoother. More dis-
cussions about the method will be presented in Sect. 4.1.3.

As mentioned previously, using MapNet to map the field 
of a fragment instead of the whole domain helps improv-
ing the transferability. This is because fragments of differ-
ent designs are more likely to resemble to each other even 
though the overall designs are entirely different. Consider-
ing the comparison between the cantilever beam and the 
L-shaped beam shown in Fig. 7, it is not difficult to see 
that they are very different in view of the entire structure. 
However, as the domain is cropped into fragments, there are 
now more similar fragments as indicated by the connecting 
indicator in the figure. Therefore, if the MapNet is trained 
with the cropped cantilever beam data, it likely can provide 
accurate predictions for L-shaped beam without any retrain-
ing or retraining with very little data. The advantage is even 
more apparent in design cases with different domain sizes 
and shapes. Besides, the fragmentation process can also 
increase the number of training data for MapNet. For exam-
ple, as demonstrated in Fig. 5, 1 sample of structure has been 
cropped into 64 samples after the fragmentation, providing 
64 times more samples that can be used to train MapNet. 
It should be pointed out that the fragmentation method is 
only possible with the special way MapNet is constructed. 

Fig. 4  Coarsening process to convert a fine-scale structure to its 
coarse-scale structure

Fig. 5  Fragmentation process cropping the domain into small subdo-
mains (fragments)

Fig. 6  Comparison between 
non-overlapping and overlap-
ping fragmentation process



An adaptive and scalable artificial neural network‑based model‑order‑reduction method for…

1 3

Page 7 of 19 348

Since MapNet predicts fine-scale mechanical fields from 
coarse-scale mechanical fields, it does not need additional 
inputs about the external constraints on the problem, such 
as boundary conditions or loading conditions. However, if 
the ANN is built to map the density field of the structure to 
the corresponding mechanical field, fragmentation could not 
be performed because additional inputs on boundary/loading 
conditions are required.

After fragmentation, MapNet is used to map the coarse-
scale field of each fragment to its fine-scale field. The archi-
tecture of the MapNet is illustrated in Fig. 8, with each con-
volutional and deconvolutional layer having filter sizes of 
3 × 3 and stride of 2 × 2 except for the last layer with 1 × 1 
stride, and activation function of ReLU. The coarse-scale 
mesh size illustrated in the architecture of MapNet is chosen 
as 1/16th of the fine-scale mesh size in both width (W) and 
height (H). In order to facilitate the training of MapNet, 
the data used as the input and output are all represented 
in 2D arrays with the same sizes of the discretized design 
problem domains, that is, FEM mesh. The value of each 
element in the array is the strain energy of the element in 
the corresponding discretized domain. However, due to the 
convolution-based architecture of MapNet, the dataset hav-
ing N number of samples is reshaped into (N ×W × H × 1), 
where W and H represents the width and the height of each 
array. We have tried a couple architectures such as the one 
used in the work by Tan et al. 2020, and found that by apply-
ing the concept of U-Net (Ronneberger et al. 2015) and add-
ing the fine-scale density into our MapNet, the performance 
can be improved. The Conv blocks before the Residual block 
extract the features of input coarse-scale field and fine-scale 
density. The Residual block is used to increase the depth of 
the network. The Deconv blocks are used to restore the shape 
of the fine-scale field. Another crucial feature that improves 
the prediction accuracy is by including the fine-scale struc-
ture at different deconvolutional layers as shown in Fig. 8.

To train the MapNet, we use the results obtained from 
early iterations of one FEM-based TO design. Specifically, 
we conduct a conventional FEM-based TO for the cantilever 

beam design problem described in Fig. 1a. The fine-scale 
strain energy field and density field generated during each 
iteration are extracted to form the dataset. Results from early 
iterations of TO are used as training data due to the reason 
that the topology or the density field of structure undergo 
major changes only during early iterations, while in late 
iterations only local fine tuning is involved (Ates and Gorgu-
luarslan 2021). The trained MapNet is then applied in other 
design problems. The fragments of fine-scale strain energy 
field predicted by MapNet are recombined back to the origi-
nal scale through the defragmentation process. For the non-
overlapping defragmentation, the process is straightforward 
by just combining the prediction edge-to-edge. While for the 
overlapping case, each fragment is also combined but aver-
aged values are taken at each overlapping area.

4  Results and discussions

In this section, the performance of the MapNet is firstly ana-
lysed. It is followed by the performance of the proposed 
method on several common 2D TO design problems.

4.1  Performance evaluation of MapNet

The cantilever beam design problem with a volume fraction 
constraint of 0.4 and a distributed load applied at the upper 
right corner as shown in Fig. 1a is used to study the accu-
racy of the MapNet. A design resolution of NF = 512 × 512 
is chosen as the fine-scale mesh, while the coarse-scale 
mesh is chosen to be Nc = 32 × 32 . The conventional FEM-
based TO is run using BESO method to produce the design 
solution, which converges within 200 iterations. The data 
obtained from this TO process is used to train the Map-
Net following the procedure discussed in the previous sec-
tion. First, the effect of the number of training data on the 
accuracy of the network is analysed. The performance of 
the MapNet is also compared to that without fragmenta-
tion and/or without embedding the fine-scale density in the 

Fig. 7  Illustration showing 
similar fragments between the 
cropped L-shaped beam and 
cantilever beam structure
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network to demonstrate the effectiveness of the proposed 
method. Next, the fragmentation method is further analysed 
by investigating the effect of different fragment sizes on the 
performance. Lastly, the overlapping technique is discussed 
and used in the fragmentation process.

4.1.1  Number of training data

Three sets of fine-scale data with the total number of 
N = 40, 60 and 100 are obtained by running the conven-
tional TO process of the cantilever beam design for N itera-
tions. For example, to generate 40 fine-scale data, TO is 
only run up to 40 iterations. The coarse-scale strain energy 

Fig. 8  The architecture of 
MapNet
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field required for the training of the MapNet is obtained by 
performing FEA on the coarse-scale structure down scaled 
from the fine-scale structure following the method described 
in Sect. 3. The strain energy field is then cropped to small 
non-overlapping fragments using a cropping scale of 16, 
with each sample of the coarse-scale strain energy field is 
cropped from the original size of 32 × 32 to 256 samples 
of 2 × 2 non-overlapping fragments. The fine-scale density 
field and strain energy field are also cropped from their 
original size of 512 × 512 into 256 samples of 32 × 32 non-
overlapping fragments. Hence the actual numbers of train-
ing data for the MapNet are Ntrain = 256 × 40, 256 × 60 and 
256 × 100 respectively in the three cases. The cropping pro-
cess is shown in Fig. 9. For better visualization, a cropping 
scale of 8 is used in the figure. Using these cropped data, the 
MapNet is trained using ADAM optimizer (Kingma and Ba 
2014) and a learning rate of 1e−4. Due to the limitation of 
computational power, the number of iterations is set to be 
1000 steps. In order to ease the training process for neural 
network, the values of the input and output are normalized 
to around the range of 0–1. The normalization factors for 
the coarse and fine scale strain energy field are selected as 
1e−4 and 1e−6, respectively, which are obtained from their 
distributions shown in Fig. 10. 

After the MapNet is trained, 100 fine-scale data not 
including in the training dataset is used to evaluate the 
accuracy of the MapNet. In this case, the data from the 
100th to the 200th iteration of the conventional FEM-
based TO process are selected to be the testing data. Each 
data is cropped into 256 fragmented data. The fine-scale 
strain energy field predicted by the MapNet on each frag-
ment is compared to that obtained through FEM (ground 
truth) directly obtained from the FEM-based TO and shown 
in Fig. 11. For clear visualization, the strain energy field 
is plotted in the logarithm scale with an offset of 1e−8, 
that is, Uplot = log(Uoriginal + 1e−8) . To provide a quan-
titative error measure, the mean squared error (MSE) is 
calculated and listed in Table 1. The MSE is defined as 
1

N

∑N

i=1

�

UNN
i

− UFEM
i

�2
, where N is the total number of test-

ing fragments, UNN
i

 and UFEM
i

 refer to the strain energy of the 
ith element predicted by the MapNet and the FEM, respec-
tively. From the figure and the table, it can be observed that 
as the number of training data increases, the MSE decreases 
and therefore the accuracy of the MapNet improves as 
expected. Based on the consideration of both accuracy and 
efficiency, the MapNet trained with data obtained from 60 
TO iterations is selected and used in all the analyses pre-
sented in the rest of the paper. To demonstrate the effect of 

Fig. 9  Illustration showing the fragmentation, MapNet prediction and defragmentation process, starting from the coarse-scale strain energy field 
and fine-scale density field, finally to fine-scale strain energy field
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fragmentation and the inclusion of fine-scale density field of 
the fragment in the neural network, the predicted fine-scale 
strain energy fields of fragments are also compared to those 
obtained from the MapNet trained without fragmentation, 
that is, the MapNet maps the coarse-scale field of 32 × 32 
directly to the fine-scale field of 512 × 512, and to those 

obtained from the MapNet constructed without the inclusion 
of fine-scale density field. Results are presented in Fig. 12. 
From the comparison, it is obvious that fragmentation and 
the inclusion of the fine-scale density greatly improve the 
prediction accuracy. In particular, adding the fine-scale den-
sity field produces results with much sharper and clearer 
edges. This is due to the reason that the fine-scale density 
field contains the information on the general shape of the 
structure and can provide a filtering effect on the predictions.

To study the performance of the MapNet, it is also 
important to examine the prediction accuracy of the entire 
field, that is, the field with its original size of 512 × 512 
obtained after combining all fragmented fields with size 

Fig. 10  Samples of the distributions of the coarse-scale and fine-scale strain energy fields obtained from the fragments of cantilever beam design 
problem

Fig. 11  Prediction of strain energy field (fragments) by the MapNet trained with the different number of training data samples (cantilever beam 
problem)

Table 1  Comparison of MSE between MapNet trained with different 
number of training data

Number of training data 100 60 40

MSE 0.00029 0.00058 0.00072
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of 32 × 32. This process, which is called defragmenta-
tion, is illustrated in Fig. 9. The defragged strain energy 
field predicted by the MapNet trained with fragmented 
data and fine-scale density is shown in the second row 
of Fig. 13. Aside from visual comparison, a quantitative 
comparison is also made by calculating the mean squared 
error of the prediction, which is tabulated in Table 2. The 
predictions by the MapNet without fragmentation and the 
density field is also shown in the same figure and table 

for comparison. It can be observed that the predicted fine-
scale strain energy field with our proposed method is also 
much better in the defragged form.

4.1.2  Fragmentation: cropping scale

Results shown in the previous section indicate that frag-
mentation improves the prediction accuracy of the neural 
network. In these results, a cropping scale of 16 is used for 
the fragmentation, which has increased the training data by 
256 times. If a larger cropping scale is used, for example 
with a scale of 32, the number of training data can be further 
increased, and consequently, the accuracy of the MapNet 
would be further improved. However, our study indicates 
that this is not necessarily the case. The investigation is per-
formed by training the MapNet with three different cropping 
scales of 8, 16 and 32, respectively. Results in the defragged 

Fig. 12  Comparison of strain energy field of fragments predicted by MapNet trained with neither fragmented data nor density field, only frag-
mented data, and both fragmented data and density field to the ground truth. The colour legend is the same as that in Fig. 11

Fig. 13  Comparison between predicted strain energy field by MapNet trained with neither fragmentation nor fine-scale density, and that trained 
with both

Table 2  Comparison between MSE of the network trained with nei-
ther fragmentation nor fine-scale density, and that trained with both

MapNet Trained without fragmenta-
tion and fine-scale density

Trained with fragmentation 
and fine-scale density

MSE 0.0017 0.0006
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form are compared in Fig. 14 along with the prediction error 
listed in Table 3 for all the cases.

By comparing the results from the cropping scale of 8 
with that of 16, it can be observed that the MSE of the Map-
Net decreases with the cropping scale. This is due to the 
previous explanation that as the cropping scale increases, 
more fragments are produced, thus increasing the number of 
training data for the MapNet. However, as the scale increases 

to 32, which corresponds to a fragment size of 1 × 1 for the 
coarse-scale data, and 16 × 16 for fine-scale data, the per-
formance dropped with a higher error. One reason is due 
to the non-smooth boundaries between fragments as can 
be observed in Fig. 14b. Since the fine-scale strain energy 
of the entire field is obtained by simple recombination of 
all non-overlapping fragments, it is to be expected that the 
value at the edges of fragments might not be continuous 
with the adjacent fragments. Another reason might be due 
to that as the samples get cropped into smaller fragments, 
the possibility for non-uniqueness to occur increases. Non-
uniqueness refers to the case where the same input for the 
network corresponds to different output values, essentially 
having a one-to-many mapping, which makes the training of 
the network more difficult. For example, as shown in Fig. 10, 

Fig. 14  a Comparison of strain energy field predicted by MapNet trained with fine-scale density and different cropping scales of fragments. b 
Zoomed in comparison of the predicted strain energy field from results in the first two columns in a 

Table 3  Comparison of MSE from the MapNet trained with different 
cropping scale of fragments

Cropping scale 8 16 32

MSE 0.00088 0.00058 0.00152
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the coarse-scale strain energy ranges from 0 to 1.5e−4. 
Therefore, any two values having difference smaller than 
1e−12 are regarded as being identical. By using this crite-
rion and considering the fragmented data for the cropping 
scale of 32 with a fragment size of 1 × 1, it has been found 
that two fragments with the same coarse-scale strain energy 
value of 2.57e−5 and the exactly identical density field, have 
two different fine-scale strain energy fields as illustrated in 
Fig. 15. Therefore, the cropping scale should not be too large 
so that the non-uniqueness issue could be avoided during the 
training of the MapNet. Considering the trade-off, a rule of 
thumb for selecting the cropping scale is that one should 
choose the largest cropping scale before the non-uniqueness 
occurs. The non-uniqueness can be detected by examining 
the similarity of training samples. In this example, the best 
cropping scale is 16. For all the examples shown in the rest 
of the paper, the cropping scale used is 16.

4.1.3  Fragmentation: overlapping fragmentation

Although the results obtained by fragmentation are already 
much better than those without fragmentation, by care-
ful observation it can be found that the predicted fine-
scale strain energy field in the defragged form is not very 
smooth at the boundaries of two fragments due to the reason 
explained in the previous section. In order to overcome this 
issue, the overlapping method described in the methodology 
section (Fig. 6) is utilized. Referring back to the figure, the 
overlapping is performed during the fragmentation by crop-
ping the domain at a smaller interval. Considering the origi-
nal domain of 6 × 6, with a cropping scale of 3, the size of 
each fragment is 2 × 2. For a non-overlapping fragmentation, 
a total of 9 fragments are produced by cropping the domain 
at an interval of 2 pixels as shown in Fig. 6a. For overlapping 
fragmentation, by cropping the domain at an interval of 1 
pixel, a total of 25 2 × 2 fragments are produced as shown 
in Fig. 6b. Of course, one can produce more fragments by 
cropping the domain at smaller intervals, for example, at an 
interval of 0.5 pixel. Based on our experience, the accuracy 
is sufficient by using the interval of 1 pixel for the examples 
considered in this work. For the coarse domain with 32 × 32 
pixels and a cropping scale of 16, a total of 31 fragments 
are produced. Similarly, after the fragments of the fine-scale 
strain energy are predicted by MapNet, the fragments are 
also combined at the interval of 16 elements, with average 
values taken at any overlapping parts. The results obtained 

with overlapping fragments are shown in Fig. 16 with the 
MSE tabulated in Table 4. By comparing to the previous 
result with non-overlapping fragmentation in the same fig-
ure and table, the predicted fine-scale strain energy field is 
observed to be smoother and the error of the MapNet has 
also decreased further with the utilization of overlapping 
fragments.

4.2  Application of the MapNet to TO design

With the MapNet developed and trained using the method 
discussed in the previous section, it is then implemented into 
the TO process and the TO process for the cantilever design 
with a single load illustrated in Fig. 1a is carried out fol-
lowing the process introduced in the methodology section. 
In this case, BESO algorithm is used. For clarity, it should 
be pointed out that the MapNet used in all structure designs 
presented in the rest of the paper is trained with only 60 TO 
data obtained from the first 60 TO iterations of the cantilever 
beam design shown Fig. 1a, and with a cropping scale of 16 
and the overlapping fragmentation. The optimized structure 
obtained from this modified TO process, that is, the Map-
Net-based TO process, is compared to that obtained from 
the conventional FEM-based TO process in Fig. 17. The 
objective function, that is, the compliance associated with 
both structures is also provided in the figure. In addition, the 
optimized structure obtained from the MapNet constructed 
without fragmentation and the inclusion of the fine-scale 
density field is also shown to demonstrate the superiority of 
the current MapNet architecture. From the comparison, the 
first thing to note is that the result from MapNet implement-
ing fragmentation and with the fine-scale density is obvi-
ously much better than that without. At the same time, the 
optimized structure obtained with the MapNet-TO is very 
similar to that obtained using the conventional method.

Table 5 shows the detailed breakdown of the time for the 
relevant phases in each case and the total time required for 
each iteration in the TO process. The computational time 
shown is based on the calculation performed on Intel(R) 
Xeon(R) CPU E5-2687Wv2 (3.40 GHz) containing 16 cores. 
From the table, it can be observed that a 300-times reduc-
tion in the computational time is achieved with the MapNet-
based TO in one single TO iteration. It should be mentioned 
that the FEM solver used in this work is not the most effi-
cient solver. The complexity is around O

(

M1.5
)

, where M 
is the size of the linear system. Hence the computational 

Fig. 15  Illustration showing 
examples of non-uniqueness 
issue
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cost of the fine-scale FEM calculation is quite high. How-
ever, considering that the complexity of the most efficient 
FEM solver is O(M) , the saving in the computational cost 
from 512 × 512 to 32 × 32 should be around two orders of 
magnitude. Since the TO design in this cantilever beam case 
requires 200 iterations to converge and only the first 60 itera-
tions are used to generate the training data, the total time 
saving for completing even one TO process is significant.

Fig. 16  Comparison between strain energy field predicted by MapNet trained with non-overlapping and overlapping fragmentation

Table 4  Comparison of the MSE between MapNet trained with over-
lapping fragmentation and non-overlapping fragmentation

Number of training data 
( N

train
)

Overlapping fragmenta-
tion

Non-overlapping 
fragmentation

MSE 0.0004 0.0006

Fig. 17  TO results of the 
cantilever beam problem with 
the load applied at the top 
right boundary obtained from 
a FEM-based TO method; b 
MapNet-based TO method; 
c MapNet-based TO method 
without fragmentation and the 
inclusion of fine-scale density
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4.3  Transferability of the MapNet

In this section, the transferability of the MapNet is dem-
onstrated on several benchmark design problems that are 
different from the cantilever design case used to train the 
MapNet. They are the cantilever beam design with multiple 
applied forces, the L-shaped beam design and the bridge 
design problem illustrated in Fig. 1. Specifically, the Map-
Net trained using the cantilever design with a single load is 
directly implemented into the TO process to solve the three 
new design problems without any retraining.

The first two design problems shown in Fig. 1b and c 
have the same square design domains with the fine-scale 
mesh of 512 × 512 and the coarse-scale mesh of 32 × 32. 

BESO algorithm is used as the TO method for all three 
design cases. The optimized structures and their final com-
pliances obtained through the conventional FEM-based TO 
and the MapNet-based TO are shown in Figs. 18 and 19. As 
indicated by the results, the optimized structures obtained 
using the MapNet-based TO method resemble those from 
the FEM-based TO method with fewer branches. The final 
compliances obtained are also similar to those from FEM-
based TO.

The bridge design problem illustrated in Fig. 1d has a 
very different boundary condition and domain shape and 
size from all other design cases considered. The design 
domain is discretized into 768(width) × 384(height) ele-
ments. In this case, the coarse-scale mesh is chosen to be 
Nc = 48 × 24 . During the fragmentation process, each sam-
ple of the coarse-scale strain energy field is cropped into 
47 × 23 fragments of 2 × 2 with overlapping cropping of 1 
element. The fine-scale density field is cropped into 47 × 23 
fragments of size 32 × 32 . These inputs are then fed to the 
MapNet to predict the fine-scale strain energy fields of all 
47 × 23 fragments with size of 32 × 32 . These fine-scale 
strain energy fields are then combined to form the entire field 
of the original domain, that is, with the size of 768 × 384 , 
and the TO process is proceeded as previously discussed. 
Although the design domain of the bridge is entirely differ-
ent from that of the cantilever, by using the fragmentation 
process, the previously trained MapNet can still be directly 
applied to this problem because it provides the prediction 
on the fragments/building blocks of the structure instead of 
the whole structure. Therefore, its generalization capability 
is much increased. The optimized results obtained from the 
MapNet-based TO process and FEM-based TO method are 
shown in Fig. 20. From the results, the MapNet trained with 

Table 5  Time comparison 
for completion of a single TO 
iteration by pure FEM-based 
TO method and the proposed 
MapNet-based TO method

Time category FEM-TO process MapNet-TO process

FEM calculation time (s)  ~ 600 (Mesh 512 × 512)  ~ 0.13 (Mesh 32 × 32)
MapNet calculation time + fragmentation and 

defragmentation time (s)
0 0.92

The time for the rest of optimization process (s)  ~ 1  ~ 1
Total time for each iteration (s)  ~ 600  ~ 2

Fig. 18  Comparison of TO results between FEM-based method and 
the proposed MapNet-based method for cantilever beam with multi-
ple loads applied

Fig. 19  Comparison of TO results between FEM-based method and 
the proposed MapNet method for L-shaped beam

Fig. 20  Comparison of TO results between FEM-based method and 
the proposed MapNet method for the bridge design problem
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the cantilever beam data again shows excellent performance 
with the optimized structure and its compliance being very 
close to that of the ground-truth results.

It should be pointed out that the strain energy field needs 
to be properly normalized before feeding it into the MapNet, 
otherwise the predicted fine-scale strain energy field would 
have a large error. Since the ranges of the strain energy of 
different problems can be different, different normalization 
factors should be determined and used for different prob-
lems. This can be done by observing the coarse and fine-
scale strain energy fields from the first several iterations, for 
example, 5 iterations of the FEM-based TO process. In the 
first two design cases, the normalization factor is the same 
as the simple cantilever design with a single load. In the 
bridge case, it is found that the normalization factors should 
be set as 1e−7 and 1e−9 for the coarse and fine-scale data, 
respectively.

To examine the efficiency, the computational times 
required to perform the MapNet-based TO in the three new 
design problems are calculated. For the cantilever beam with 
multiple applied loads and the L-shaped beam, the time sav-
ing per design iteration is similar to that tabulated in Table 5 
because they have the same mesh size as the previous canti-
lever beam problem (512 × 512). The time saving per itera-
tion for the bridge design problem is slightly different, which 
is around 250 times as shown in Table 6.

4.4  Applications of the MapNet with SIMP

In this section, the proposed method is implemented in the 
SIMP-based TO process to show that it is not restricted by 
the type of TO methods. The parameters used are listed as 
follows: the penalization power is 3, the density filter radius 
is 16 and the iteration number is 200. More details can refer 
to the reference (Huang and Xie 2007), where the explana-
tion of filter and parameter choice were introduced. In the 
SIMP approach, the density field contains intermediate val-
ues, and thus a new MapNet is constructed. Following the 
procedure described in previous sections and again using the 
cantilever beam design with a single load to generate train-
ing data, the MapNet is found to be requiring a minimum 

of 60 training data from the TO process in order to achieve 
satisfactory prediction accuracy. The performance of the 
MapNet is then evaluated by directly implementing it into 
the SIMP process and comparing the design solution with 
that obtained from FEM-based SIMP on this design case. 
Satisfactory results are obtained as shown in Fig. 21.

Next for the demonstration of transferability, the MapNet-
based SIMP is used directly to design the L-shaped beam 
and the bridge. The optimized results obtained for each 
corresponding design problem are compared to the design 
solutions obtained from the FEM-based SIMP in Fig. 22. 
These results again illustrate the good transferability of the 
proposed method.

It should be pointed out that the design obtained from the 
MapNet-based TO method contains the fine-scale features 
as shown in Fig. 23a and it is very different from the design 
with a resolution of 32 × 32 obtained from FEM-based SIMP 
method.

4.5  Application to the thermal problem

Similar to the FEM-based TO method, the proposed Map-
Net-based TO method is applicable to a wide range of 
design problems. In this section, results of the structure 
design with minimum thermal compliance are shown to 
further demonstrate the performance of the MapNet-based 

Table 6  Comparison between 
computational time for one 
single TO iteration for FEM-
based method and the proposed 
MapNet method for the bridge 
design problem

Time category TO process with pure FEM 
calculations on fine scale

TO process with 
MapNet implementa-
tion

FEM calculation time (s)  ~ 750 (Mesh 768 × 384)  ~ 0.17 (Mesh 48 × 24)
MapNet calculation time + fragmentation and 

defragmentation time (s)
0  ~ 2

The time for the rest of optimization process (s)  ~ 1  ~ 1
Total time for each iteration (s)  ~ 750  ~ 3
Total time taken for whole TO process (assuming 

200 iterations for convergence)
1.5 × 10

5
6 × 10

2

Fig. 21  Comparison between TO results of FEM-based method and 
the proposed MapNet method (SIMP) for cantilever beam with a sin-
gle applied load at the top of the right boundary
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TO method. The two thermal design problems are 
described in Sect. 2. The first design problem being con-
sidered has a small size of heat sink with a constant tem-
perature of zero degree located at the centre of the top 
boundary (Fig. 2a). The domain size of the design problem 
is again selected to be 512 × 512, with the volume fraction 
constraint chosen to be 0.4. This problem is firstly solved 
using the FEM-based SIMP, the filter radius is selected to 
be 16. The process converges around 100 iterations and the 
optimized results are shown in the left figure of Fig. 24. 
A new MapNet with the same architecture as the previous 
one is constructed and trained using the data obtained from 
the first few iterations of the FEM-based TO. Specifically, 

it is found that 40 TO data is sufficient to train the Map-
Net to satisfactory performance. The coarse-scale mesh 
size for this problem is again 32 × 32. By observing the 
distribution and range of thermal compliances from the 
first 5 iterations of FEM-based TO, the normalization fac-
tors for this thermal problem are selected to be 200 and 5 
for the coarse and fine-scale thermal compliance, respec-
tively. Following the same approach shown in Fig. 3, the 
trained MapNet is implemented into the TO process and 
the thermal compliance is minimized using the MapNet-
based TO. The optimized results are shown in Fig. 24 and 
it is observed that the results are close to those from the 
FEM-based TO.

To demonstrate the transferability of the trained Map-
Net, the thermal design problem with a large heat sink 
located on the top of the boundary (Fig. 2b) is solved 
using the previously trained MapNet. Instead of imposing 
the same volume fraction of 0.4 as the previous problem, 
we go a step further by setting a different volume frac-
tion constraint for this problem, which is 0.6. The design 
result using MapNet is presented in Fig. 25 together with 
that obtained from the FEM-based TO. Although both 

Fig. 22  Comparison between TO results of FEM-based method and 
the proposed MapNet method (SIMP) for a L-shaped beam and b 
bridge design problem

Fig. 23  Illustration of the fine-scale features of the L-shaped beam 
design obtained from the MapNet-based SIMP method and com-
parison of this design with the coarse-scale design (32 × 32) obtained 
from FEM-based SIMP method

Fig. 24  Comparison between TO results of FEM-based method and 
the proposed MapNet method for thermal problem with a small heat 
sink

Fig. 25  Comparison between TO results of FEM-based method and 
the proposed MapNet method for thermal problem with a large heat 
sink and a volume fraction of 0.6
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the volume fraction constraint and boundary condition 
are different from the first problem, thus ending up with 
an optimized structure which looks very different, the 
MapNet-based method can still provide a result closely 
resembling that by FEM. This result again demonstrates 
the good transferability of the MapNet.

5  Conclusion

In this work, an adaptive and scalable deep learning-based 
method is proposed to speed up the iterative TO design pro-
cess with large design domain. The time-consuming calcula-
tion of the field of interest is replaced with that performed 
at a much coarse mesh and a deep learning model known as 
MapNet is developed to map the coarse field back to the fine 
field. A unique feature of the MapNet is that it is constructed 
for the building blocks of the domain instead of the entire 
domain. As such, the MapNet can be applied to problems 
with different domain sizes and shapes without retraining. 
The performance of the proposed method is demonstrated 
across different design problems frequently used as bench-
mark in structure design. The MapNet is shown to be able 
to provide predictions on the fine-scale strain energy field 
with only a small amount of training data obtained from the 
first few iterations of TO process of one cantilever beam 
design problem. By implementing the trained MapNet into 
the TO process, the optimized results of all three different 
testing design problems are shown to be closely similar to 
those obtained from conventional FEM-based TO. In the 
meantime, the total computational time required for each 
iteration has been greatly reduced.

We have shown that the proposed MapNet can be imple-
mented into both BESO and SIMP. We have also shown that 
the method can be used for thermal design problems. In fact, 
it could be implemented into any density-based TO methods 
and applied to a wide range of design problems including 
nonlinear problems and stress-constrained designs similar 
to the conventional FEM-based TO method. To extend the 
proposed method to these problems will be our near-future 
work.

Although only 2D design problems are demonstrated in 
the current work, the method could be developed for 3D 
designs and it will be carried out in our future work. As the 
computational time involved in 3D simulations are much 
longer than that in 2D, the potential time saving would be 
massive if a large-scale difference is chosen between the 
coarse and fine scale. Another investigation that could also 
be studied in future work is the normalization factor for the 
inputs and outputs of the network. In the current work the 
normalization factors are chosen so that the distribution of 
the strain energy field is scaled to match that of the training 
data. This requires some prior knowledge or observations to 

be made on some of the data from the design problem that 
are being considered. Better normalization methods could be 
developed to minimize the requirement of prior knowledge 
on the design problems.
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