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Abstract
Digital twin that shows great potential in different fields may serve as the enabling technology for the health monitoring of 
aero-engine blade. However, due to the harsh conditions inside the aero-engine, one of the most challenging issues for the 
implementation of digital-twin-based blade health monitoring is the lack of an accurate connection method between the 
digital-twin model and the physical entity for rotating blade. Wherein, the key is how to measure the blade data accurately. 
The emerging blade tip timing (BTT), an effective non-contact measurement method for blades, has received extensive 
attention recently. Whereas, due to the limited probes that are allowed to be installed on the engine casing, the BTT signal is 
generally incomplete and under-sampling, which makes it very difficult to reconstruct the blade vibration parameters from 
the measured data. In this study, a novel paradigm for blade vibration parameter reconstruction with super-resolution from 
the undersampled BTT signal is proposed based on atomic norm soft thresholding (AST), which may offer accurate blade 
vibration information for the construction and updating of blade digital-twin model. Unlike the conventional reconstruction 
method that generally needs the interested signal to be sparse under a finite discrete dictionary for successful reconstruction, 
the proposed AST-based blade vibration parameter reconstruction method can take any continuous value in the frequency 
domain from the measurement data with fewer sampling numbers and higher under-sampling rate. Both numerical simula-
tion and experimental verification are utilized to verify the validity of the proposed method. The comparative results indicate 
that the proposed method performs well in resisting “incomplete.” Meanwhile, the proposed method performs better than 
state-of-the-art methods under conditions with fewer data.

Keywords  blade tip timing · Atomic norm · Gridless · Frequency estimation · Digital twin

1  Introduction

Rotor blade is an important component that affects the per-
formance and safety of aero-engine, and it is prone to crack 
damage, fatigue fracture, and other faults in the harsh service 
environment such as foreign object damage, aerodynamic 
excitation, high temperature, etc. (Mohamed et al. 2019; 
Yang et al. 2022). The crack damage will further propagate 
and finally lead to the fracture of the blade, causing a severe 
accident (Yang et al. 2021a, c; Yang et al. 2021b). Therefore, 
it is of great significance to monitor and diagnose the crack 
of the aero-engine rotor blade. Structural health monitoring 
(SHM), as a time-scale measurement method to diagnose 
and control important points in the structure (Farrar and 
Worden 2010), has been widely used in the fields of surface 
defect detection (Abbas and Shafiee 2018) and crack dam-
age identification (Witos 2013). However, at present, the 

Responsible Editor: Chao Hu

Topical Collection: Advanced Optimization Enabling Digital Twin 
Technology.
Guest Editors: C. Hu, V. A. Gonzalez, T. Kim, O. San, Z. Hu,  
P. Zheng

 *	 Laihao Yang 
	 yanglaihao@xjtu.edu.cn

1	 The State Key Laboratory for Manufacturing Systems 
Engineering, Xi’an Jiaotong University, Xi’an 710049, 
People’s Republic of China

2	 The Mechanical and Materials Engineering Department, 
Worcester Polytechnic Institute, Worcester, MA 01609‑2280, 
USA

http://orcid.org/0000-0002-7743-3969
http://crossmark.crossref.org/dialog/?doi=10.1007/s00158-022-03436-1&domain=pdf


	 R. Jin et al.

1 3

27  Page 2 of 15

SHM technology often suffers from the following problems: 
inapplicable model, incomplete data, and insufficient virtual-
real interaction, so it is difficult to be directly applied to the 
condition monitoring of aero-engine rotor blades. Specifi-
cally, it includes:

(1)	 Traditional blade crack monitoring methods mainly rely 
on deterministic modeling, where the parameters are 
difficult to follow the changes in blade operating con-
ditions and health status, while the low generalization 
ability restricts the purely data-driven method based on 
machine learning;

(2)	 General vibration measurement methods can’t be 
directly applied due to the severe working conditions 
(high rotating speed, high temperature, heavy load, etc.) 
of aero-engine blades, multi-source vibration coupling 
interference, and narrow space within the aero-engine 
(He et al. 2018), as a result, it is challenging to achieve 
the complete blade vibration information (frequency, 
amplitude, modal, etc.);

(3)	 There is no feasible theory and technology capable of 
the data fusion, interaction, and collaboration between 
the physical model and state information in physi-
cal space, thus, it is difficult to make full use of both 
model (prior) and measurement information (posterior) 
to realize real-time and accurate monitoring of blade 
crack damage.

In this context, the digital twin technology emerges 
(Grieves and Vickers 2017), making it possible to accurately 
quantify and identify the faults of a complex dynamic sys-
tem, including aero-engine blade cracks. The SHM method 
based on digital twin simulates the behavior of the physical 
entity by building a “twin” in virtual space (Karve et al. 
2020; Ritto and Rochinha 2021). To ensure the consistency 
between the physical entity and the digital entity, the model 
is updated with benchmark data to eliminate the error caused 
by the machining error, material defects, etc. Furthermore, 
with the real-time vibration data for rotating blade underly-
ing performance degradation or under fault condition, the 
condition monitoring, fault diagnosis, and RUL prediction of 
blades can be conducted. Therefore, the application of digi-
tal twin needs not only the construction of accurate and effi-
cient physical model but also the accurate measurement of 
operating condition for rotor blades in real-time. However, 
it is very hard in practical engineering to obtain accurate 
and complete information of blade vibration, which restricts 
the development of digital-twin-based blade crack detection 
and diagnosis. Therefore, this study decided to focus on the 
identification of blade vibration parameters, which is the key 
step for the construction of digital twin model.

Blade tip timing (BTT), as a non-contact stress measure-
ment system (NSMS), measures the arrival time of blades 

by a few optical, capacitance, or magnetic sensors installed 
on the engine casing, and then obtains the blade vibration 
information based on some necessary BTT signal processing 
(also called reconstruction) method (Russhard 2010). Due 
to the non-contact property and the need for fewer probes 
for measurement, BTT technology attracts extensive atten-
tion from the aero-engine OEMs and academic fields. How-
ever, because of the severe under-sampling of BTT method 
itself, the vibration parameters and modes of blades cannot 
be directly obtained. As a result, many scholars are devoted 
to investigating the identification method of blade vibration 
parameters from the undersampled BTT signal. The earli-
est method relies on a strong prior assumption (Joung et al. 
2006), where the blade vibration parameters can be identi-
fied with at least one sensor. For example (Guo et al. 2016) 
estimated the resonance frequency of the blade by utilizing 
arrival times between two probes without the once per revo-
lution (OPR) signal. However, this is seriously inconsistent 
with the actual situation where the strong prior assumption 
is unavailable. Recently, many methods were proposed to 
conquer the limitation induced by the strong prior assump-
tion (Chen et al. 2021). For example, the minimum variance 
spectral estimator (MVSE) was first used by (Stephan et al. 
2008) to recover the complete frequency spectrum of BTT 
signals of mistuned bladed discs, and further improved by 
(Vercoutter et al. 2012). However, their methods still suffer 
some limitations, such as time-consuming and frequency 
aliasing. In order to further overcome the frequency alias-
ing, the methods of direction of arrival (DoA) estimation 
and compressed sensing are introduced into the spectrum 
analysis of BTT signal. (Lin et al. 2016) first tried to apply 
sparse representation to multi-mode blade vibration signals 
reconstruction. (Bouchain et al. 2019) considered the struc-
tured sparsity model to reduce the calculation time of sig-
nal reconstruction. With the physical constraints of probe 
arrangement, (Wu et al. 2019) proposed a sparse recovery 
algorithm for the vibration parameters of BTT signal based 
on the iterative reweighted L1-norm (IRL1). Liu et  al. 
(2022) proposed an improved multiple signal classification 
(MUSIC) method to realize the displacement reconstruc-
tion of the undersampled signal. (Wang et al. 2022) further 
analyzed the influence of speed fluctuation on the theoreti-
cal arrival time and proposed a BTT method to achieve 
high-precision blade vibration measurement under rapid 
speed fluctuation conditions. The above-mentioned inves-
tigations are helpful for the in-depth understanding of the 
basic mechanism for the BTT-based blade vibration meas-
urement and the reconstruction of the BTT undersampled 
signal. However, almost all the state-of-the-art identifica-
tion methods for blade vibration parameters are on-the-grid 
methods, which may lead to frequency mismatch (also called 
base mismatch), and thus limit the accuracy of frequency 
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identification. Therefore, an effective off-the-grid method 
with acceptable computational time should be considered.

To overcome the basis mismatch (Chae et  al. 2010) 
caused by gridding in compressed sensing methods, the 
atomic norm that constructs continuous dictionaries is 
introduced. (Candes and Fernandez-Granda 2014) first 
introduced a gridless sparse method for continuous-time 
signals by total variation norm. (Tang et al. 2013) proposed 
gridless compressed sensing, which can reconstruct spec-
trally sparse signals from random time-domain sampling by 
solving the atomic norm minimization problem, and further 
proposed the atomic norm soft thresholding (AST) method 
to promote the performance in the presence of noise. (Yang 
and Xie 2015) generalized AST to the case of incomplete 
data, and proposed an algorithm called GLS which satisfied 
incomplete data case. Other improvement methods include 
(Li and Chi 2016) for multi-measurement vector, (Wu et al. 
2018) for low-rank matrix reconstruction, (Li et al. 2018) 
based on ANM for modal analysis, and (Wagner et al. 2021) 
for gridless DoA estimation. Actually, the BTT-based blade 
vibration measurement is the issue of multi-modal frequency 
reconstruction under the condition of extreme under-sam-
pling, where the atomic norm-based continuous compressed 
sensing (CCS) that avodes the effect of basis mismatch fac-
ing with conventional methods can provide a novel insight to 
solve this problem from the perspective of super-resolution 
reconstruction.

In this paper, a gridless blade vibration parameter estima-
tion method based on AST is proposed to avoid the reduc-
tion of frequency estimation accuracy caused by basis mis-
match. The main contributions of this paper are illustrated 
as follows:

(1)	 A novel blade vibration reconstruction method based 
on atomic norm soft thresholding is proposed, where 
the atomic norm is harnessed to overcome the under-
sampling of BBT signals, and the gridless property is 
employed to conquer the base mismatch facing with the 
conventional sparse-based method.

(2)	 The proposed method not only improves the accuracy 
of frequency estimation but can also be performed by 
the proximal method in acceptable computational time.

(3)	 The comparative results of simulation and experiment 
show that the proposed method can effectively over-
come the basis mismatch problem of most BTT algo-
rithms. Meanwhile, the proposed method has stable 
performance and robustness with fewer data.

The remainder of the paper is organized as follows. Sec-
tion 2 reviews the basic principle of BTT and basis mis-
match. Section 3 describes the proposed method. Section 4 
verifies the accuracy and robustness of the proposed method 
in the simulation case. Section 5 compares the performance 

of several methods by experiment data acquired from a test 
rig. Section 6 concludes the paper.

2 � BTT reconstruction model and basis 
mismatch

In this section, the general principle of BTT is introduced 
first. With the conventional sparse reconstruction meth-
ods for BTT signal (Wu et al. 2019), the concept of basis 
mismatch, which is inevitable in on-the-grid methods, is 
explained theoretically. Given this, the off-the-grid com-
pressed sensing based on the atomic norm is introduced to 
overcome the issue of basis mismatch.

2.1 � Blade tip timing mechanism and reconstruction 
model

BTT obtains the vibration displacement of the blade tip 
by the time difference when the blade reaches the position 
of the BTT sensor in different states. Several non-contact 
probes are installed on the inner side of the aero-engine cas-
ing at a specific angle to measure the actual arrival time tact 
of the blades. One of the probes is installed on the rotating 
shaft to obtain an OPR signal, which is used to measure the 
expected arrival time texp of the blades indirectly. And the 
displacement of circumferential vibration of the blade tip 
is given by:

where R is the distance from the central axis of the rotor to 
the probe measuring point on the blade, fr (n) is the rotation 
frequency of the blade obtained at the nth revolution by OPR 
signal. The rotation speed between adjacent OPR pulses is 
generally considered to be constant. As Fig. 1 shows, assum-
ing that q probes arranged circumferentially appear at Q pre-
designed positions at equal angles, the equivalent sampling 
rate of blade tip timing is 1

2
Qfr when rotation frequency is fr. 

Therefore, the relationship between the fully sampled signal 
y ∈ ℝ

NQ×1 and the undersampled signal of blade vibration 
x ∈ ℝ

Nq×1 can be represented as follows:

where � =

⎡⎢⎢⎢⎣

1 ⋯ ⋯ ⋯ ⋯ 0

0 ⋯ 1 ⋯ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ ⋯ 1 ⋯ 0

⎤⎥⎥⎥⎦
∈ ℝ

Nq×NQ is measurement 

matrix determined by the installation angle of probes. The 
number of rows of � represents Nq points collected by N 
circles of q probes, and NQ represents the corresponding 
number of pre-designed positions, which means that the 
sampling frequency is equal to 1

2
Qfr . Furthermore, 

(1)x(t) = 2�Rfr(n)
(
texp − tact

)

(2)x = �y
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considering the fact that the vibration response of the rotat-
ing blade tip is sparse in the frequency domain, Eq. (2) can 
be further expressed on the basis of sparse representation 
theory as follows,

where � =
[
ψ1 ψ2 ⋯ ψm

]
∈ ℝ

NQ×m is transform matrix, 
also called sparse representation dictionary in conven-
tional sparse-based methods, in this paper ψ refers to Fou-
rier transform basis, � ∈ ℝ

m×1 is the sparse representation 
coefficients.

According to Eq. (3), the compressed sensing theory can 
be applied to estimating multiple frequencies of the blade 
vibration signals undersampled by BTT. In other words, by 
selecting the appropriate sensing matrix, transform matrix, 
and sparse reconstruction algorithm, the original blade tip 
vibration displacement can be reconstructed with high prob-
ability and high accuracy. Moreover, the signal recovery is 
transformed into the identification of sparse representation 
coefficients θ. However, the strict equality constraint cannot 
be achieved considering the influence of noise and uncer-
tainty. Given this, the equality constraint can be relaxed to 
the inequality constraint. Therefore, the obtained optimiza-
tion problem is as follows:

Through orthogonal matching pursuit (OMP), L1-regu-
larization, and other methods, the nonconvex optimization 
problem of Eq. (4) can be solved, thus realizing the estima-
tion of blade vibration parameters.

(3)x = �y = ���

(4)
�̂ = arg min

�∈ℝm×1
‖�‖0

s.t.‖x −���‖2 ≤ 𝜀

2.2 � Basis mismatch and the atomic norm

In 2.1, a critical assumption is given that the measured signal 
is sparse under the transform basis ψ. Therefore, the signal 
needs to be discretized in the sparse representation domain 
(frequency domain). But, if the measured signal is recovered 
on the basis of �0 instead of � , the error between the recov-
ered signal and the measured signal may be increased. �1 is 
defined as the closest subset of �0 on �

Then, the compressively measured signal with basis mis-
match is x = ��1� +�

(
� −�1

)
� . And, the measured sig-

nal recovery under �1 is formulated as follows:

where �bm is an upper bound on the basis mismatch error ‖‖‖�
(
� −�1

)
�
‖‖‖2 (without noise). This error shows how good 

it is to approximate the assumed sparse vector �̂1 of the Eq. 
(3) in the basis �1 , when actually �̂1 is non-sparse or incom-
pressible. In the case of basis mismatch, accurate signal 
recovery cannot be guaranteed and large errors may be suf-
fered. As for the conventional sparse-based method, the error 
induced by basis mismatch can be reduced through proper 
grids. However, the error between actual frequencies (blue 
cross) and estimated frequencies (red square) will always 
exist(Chi et al. 2011), as shown in Fig. 1. Not only that, too 
fine grid division will increase the correlation between adja-
cent atoms, thus reducing the performance of the sparse 
recovery method.

To solve the basis mismatch, CCS or off-the-grid method 
is introduced. The CCS problem is solved by exploiting 

(5)�
�
= arg min

ψ∈�0

‖‖�0 −�‖‖2

(6)
�̂1 = arg min

�∈ℝm×1
‖�‖1

s.t.��x −��1�
��2 ≤ 𝜀bm

Fig. 1   BTT equivalent sampling model with q = 3 and Q = 18
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sparsity, that is, the number of frequency components is 
as small as possible. Wherein, a direct sparse metric is the 
smallest number of frequency components composing y , 
known as the atomic L0-norm, which can be denoted as:

where ak denotes a discrete sinusoid, and sk is the corre-
sponding coefficient. Similar to the L0-norm in the field of 
traditional compressed sensing, nonconvex and NP-hard 
make it difficult to solve the atomic L0-norm ‖y‖A,0.There-
fore, the atomic (L1) norm is introduced as a convex relaxa-
tion of the atomic L0-norm. It is assumed that the signal 
y can be represented as the non-negative combination of 
points from the atomic set A. The convex hull conv (A) of 
A is a compact set symmetrical with the origin center and 
contains the origin, as shown in Fig. 2. The atomic norm 
‖y‖A defined by gauge function of conv (A) is denoted as:

when ak is the atomic set composed of 1-sparse elements, the 
atomic norm ‖y‖A is the same as the L1-norm. Actually, the 
atomic norm can be generalized in sparse low-rank matrix, 
orthogonal matrix, and other fields. The main difference 
between CCS and traditional compressed sensing is that 
the observation dictionary is no longer composed of Fou-
rier standard orthogonal basis that is discrete, but countless 
continuous atoms. And the correlation coefficient between 
atoms is close to 1. Because the dictionary set does not meet 
the Restricted Isometry Property (RIP), the traditional com-
pressed sensing algorithm is no longer effective (Candes 
2008). In contrast, the atomic norm ‖y‖A still has a good 
sparse constraint to the above continuous dictionary set.

It can be seen that the definition of the atomic norm is 
abstract and hard to be solved. According to the Caratheo-
dory-Toeplitz theorem, the Vandermonde decomposition can 
be carried out for any positive semidefinite Toeplitz matrix. 
Based on this theorem, Proposition 2.1 in (Tang et al. 2013) 

(7)‖y‖A ≜ inf

�
K ∶ y =

K�
k=1

Skak

�

(8)
‖y‖ ≜ inf {t > 0:y ∈ tconv()}

= inf
{

∑

k
sk:y =

∑

k
skak, sk ≥ 0, ak ∈ 

}

provides proof of the relationship between the atomic norm 
and semidefinite programming (SDP). Thus, the atomic 
norm can be transformed into SDP:

where u =
[
u1 u2 ⋯ uNQ

]
∈ ℂ

NQ , (⋅)∗ denotes conjugate 
transpose and Toep(u) ∈ ℂ

NQ×NQ denotes the Hermitian Toe-
plitz matrix whose first column is equal to u,

Equation (9) can be solved in polynomial time. Once 
the optimal solution û is obtained, the frequency compo-
nents encoded in Toep (u) can be obtained by Vandermonde 
decomposition (Yang and Xie 2018).

3 � AST for BTT signal

According to modal expansion theory, the fully sampled 
signal y of blade vibration can be written in the form of 
sinusoids as follows:

where a
(
fk,�k

)
= ej�k

[
0 ej2�fk ⋯ ej2�fk(NQ−1)

]T
∈ ℂ

NQ×1 is 
a vector with samples of individual sinusoids, s ∈ ℝ

K×1 is 
the non-negative coefficients, fk ∈ [0, 1] and �k ∈ [0, 2�] are 
the normalized frequency and the phase of the kth compo-
nent, respectively. And then, the atomic set A composed of 
a
(
fk,�k

)
 can be defined as:

Therefore, the reconstruction of the fully sampled signal 
y from the BTT undersampled signal x can be expressed as 
the following optimization problem:

Considering the measurement noise in BTT signal, 
AST in (Bhaskar et al. 2013) inspired by the least absolute 
shrinkage and selection operator (LASSO) is introduced to 
recover the fully sampled signal y with additive Gaussian 
noise e ∼ N

(
0, �2

)
:

(9)‖y‖A = inf

�
1

2

�
u1 + t

�
∶

�
Toep(u) y

y∗ t

�
≻0

�

(10)Toep(u) =

⎡
⎢⎢⎢⎣

u1 u2 ⋯ uNQ
u∗
2

u1 ⋯ uNQ−1
⋮ ⋮ ⋱ ⋮

u∗
NQ

u∗
NQ−1

⋯ u1

⎤
⎥⎥⎥⎦

(11)

y =

K∑
k=1

a
(
fk,�k

)
sk =

[
a
(
f1,�1

)
a
(
f2,�2

)
⋯ a

(
fk,�k

) ]
s

(12)A = {a(f ,�) ∶ f ∈ [0, 1], � ∈ [0, 2�]}

(13)
ŷ = min

y
‖y‖A

s.t.x = �y

Fig. 2   The illustration of an atomic set A and its convex hull conv(A)



	 R. Jin et al.

1 3

27  Page 6 of 15

where � is the regularization parameter. For the compressed 
sensing-based BTT signal reconstruction methods, the selec-
tion of regularization parameters is related to the balance 
between the data fidelity and the sparse prior. The optimal 
choice of the regularization parameter depends on the dual 
norm of noise which is mentioned in Theorem 1 of (Bhaskar 
et al. 2013). Accordingly, a good choice for � is

Furthermore, Eq. (14) can be transformed into an SDP 
optimization problem.

SDP problem Eq. (16) can be solved by solvers such 
as SeDuMi, SDPT3 (Tutuncu et al. 2003), CVX (Wong 
and Zhou 2019), and CVXPY (Diamond and Boyd 2016). 
However, because SDP is a non-smooth convex optimi-
zation problem, the computational time of these solvers 
becomes unacceptable as the length of the signal increases 
(NQ > 500) . Therefore, ADMM method that is proved to be 
an efficient solution algorithm for SDP problem (Bhaskar 
et al. 2013; Semper and Romer 2019) is introduced to better 
solve Eq. (16). Accordingly, one can obtain the augmented 
Lagrangian of Eq. (16), which is defined as

where � is the penalty parameter, and � is the Lagrange 
multiplier variable which has the same partitioning of the 

blocks in 
[
Toep(u) y

y∗ t

]
 . Because ADMM optimizes each 

independent variable alternately when solving the function, 
the optimization step can be written as:

(14)ŷ = argmin
y

1

2
‖x −�y‖2

2
+ 𝜏‖y‖A

(15)� = �
√
log (NQ) + log (4� log (NQ))

(16)
min
t,u,y

1

2
‖x −�y‖2

2
+

𝜏

2
(t + Tr(Toep(u)))

s.t.S̃=

�
Toep(u) y

y∗ t

�
, S̃≻0

(17)

L
�
t, u, y, S̃,�

�
=

�
�, S̃ −

�
Toep(u) y

y∗ t

��
+

1

2
‖x −�y‖2

2

+
𝜏

2
(t + Tr(Toep(u))) +

𝜌

2

�����
S̃ −

�
Toep(u) y

y∗ t

������

2

F

(18)
(
t(i+1), u(i+1), y(i+1)

)
← argmin

t,u,y
L

(
t, u, y, S̃

(i)
,�(i)

)

(19)S̃
(i+1)

← argmin
S̃≻0

L
(
t(i+1), u(i+1), y(i+1), S̃,�(i)

)

(20)�
(i+1)

← �
(i+1) + 𝜌

(
S̃
(i+1)

−

[
Toep

(
u(i+1)

)
y(i+1)

y∗(i+1) t(i+1)

])

wherein, in Eq. (18), the corresponding closed-form solution 
can be obtained by taking the derivatives of the matrix and 
setting the derivative equal to 0. And then, the updates step 
is given as follows:

where 1 is a matrix with all entries equal to 1, i1 is a vector, 
in which only the first entry is equal to 1, and the rest are all 
equal to 0, �(⋅) is an operator that returns a vector with the 
same dimensions as u, and the ith entry in �(⋅) is the sum 
of the ith diagonal line of the input matrix. Afterwards, the 
updates step of S̃ is the orthogonal projection on SDP cone,

With Eqs. (20)–(24), one iteration of ADMM can be car-
ried out, and algorithm 1 is the example that describes the 
specific step of ADMM.

Algorithm 1: The ADMM algorithm for solving the SDP problem
Input: observed signal under-sampling x , sensing matrix � , regulari-

zation parameter � , penalty parameter �
Output: recovered signal fully-sampling y
Begin

Calculate 
(

1

2

�
∗
� + �I

)−1

Initialize S̃(0) , �(0)

     for i = 0,… ,N
max _ite

 do
          update y(i+1) , u(i+1), t(i+1), S̃(i+1) , �(i+1)

          i ← i + 1

          if stopping criteria are satisfied do
              Stop iteration
          end if
end for
Return y(i+1),u(i+1)

By solving the SDP problem, the optimal solution of the 
signal ŷ and the Toeplitz matrix Toep(u) can be obtained. 
However, if the frequency of the fully sampled signal is esti-
mated directly by Fourier transform of ŷ , the gridless advan-
tage brought by the atomic norm will be lost. Therefore, the 
dual norm of the atomic norm, Vandermonde decomposition 
(Yang and Xie 2018; Li et al. 2020), and other methods are 
used to locate the frequency. In this study, the dual norm of 
the atomic norm is employed, which can be defined as:

(21)t(i+1) =
1

�
Λ

(i)
t + S(i)

t
− I

�

2�

(22)u(i+1) =
1

�(�)

(
�

(
S̃
(i)

u
+

1

𝜌
�

(i)
u

)
−

𝜏

2𝜌
i1

)

(23)y(i+1) =
(
1

2
�

∗
� + 𝜌I

)−1(
𝜌S̃

(i)

y
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where ⟨⋅⟩
ℝ

 denotes real inner product. The form of dual 
norm is equivalent to the maximum modulus of polynomial 
Q(f ) =

∑
i

zie
−j2�fi, f ∈ [0, 1] in the unit circle. Thus, the dual 

problem of Eq. (14) is defined as:

According to Slater’s condition, there is a strong duality 
between the original problem and the dual problem. Theo-
rem 2.4 in (Tang et al. 2013) guarantees the uniqueness of 
the optimal solution.

Corollary 1  Suppose for a(f , 0) in the atomic set a(f , 0) ∈ A , 
and ẑ is the optimal solution of Eq. (26) satisfying.

Once the recovery signal ŷ in Eq. (11) is solved, the 
solution ẑ = �

∗(x −�ŷ) of dual problem Eq. (26) can be 
obtained. Eq. (28) and Eq. (29) show unique properties that 
can localize frequencies. The modulus of dual polynomial 
Q
(
fi
)
=
⟨
ẑ, a

(
fi, 0

)⟩
 ( ̂z for Fast Fourier transform) reaches 

the maximum when frequencies belong to the support set 
f̂ = [ f̂1 f̂2 ⋯ f̂K ] . The estimation accuracy of frequency can 
be improved with the number of Fast Fourier points, so fine 
grids can be divided to obtain excellent frequency resolution. 
In the presence of noise, under-sampling and speed fluc-
tuation, some aliasing frequencies in the red region shown 
in Fig. 3a may appear. Therefore, low-precision frequency 
estimation can be achieved by recovery signal ŷ at first, and 
then high-precision frequency estimation can be performed 
by the dual norm. After that, the least square method could 
calculate the amplitude after the accurate frequency support 
set f̂  is obtained.

(25)

‖z‖∗ = sup
a∈

⟨z, a(f ,�)⟩ℝ

= sup
f∈[0,1],�∈[0,2�]

⟨

z, ei�a(f , 0)
⟩

ℝ

= sup
f∈[0,1]

|

|

|

|

|

∑

i
zie−j2�fi

|

|

|

|

|

(26)
max

z

1

2
‖y‖2

2
−

1

2
‖�y − z‖2

2

s.t.‖z‖∗
A
≤ �

(27)⟨ẑ, ŷ⟩
ℝ
= 𝜏‖y‖A

(28)
|||
⟨
ẑ, a

(
fi, 0

)⟩||| = 𝜏, ∀fi ∈ f

(29)
|||
⟨
ẑ, a

(
fi, 0

)⟩||| < 𝜏, ∀fi ∉ f

4 � Numerical verification

In this section, the validity of the proposed method for the 
reconstruction of BTT undersampled signal is numerically 
verified. According to BTT equivalent sampling model, 
the synthetic signal is used for verification and compari-
son with other reconstruction methods. Moreover, the 
BTT simulator that is always used in BTT algorithm veri-
fication is employed to evaluate the performance in signal 
reconstruction.

4.1 � Synthetic signal‑based verification

The synthetic signal with under-sampling and non-uni-
formity is constructed to verify the validity of the proposed 
method. In recent years, many scholars have been devoted to 
this field, pursuing an effective way to overcome the under-
sampling and non-uniformity of BTT signals. Several meth-
ods such as MVSE(Stephan et al. 2008), OMP(Bouchain 
et al. 2019), and MUSIC(Wang et al. 2020) have been widely 
used in BTT signal processing. MVSE was put forward by 
Capon, and it was applied in BTT very early. OMP is a 
greedy algorithm for solving signal recovery. MUSIC and 
MVSE belong to direction of arrival (DoA) algorithms, and 
the improved MUSIC is effective in BTT data processing.

To preliminarily verify the performance of the pro-
posed method, the synthetic signal is used to compare 
the proposed method with several existing methods. The 
frequencies of the synthetic signal are normalized by the 
equivalent sampling frequency 1

2
Qfr . Four frequency com-

ponents f1 = 0.2353, f2 = 0.3055, f3 = 0.6011 and f4 = 0.8256 
with amplitude c1 = 0.5, c2 = 1.2, c3 = 1.7 and c4 = 0.4, 
respectively. At the same time, white Gaussian noise with 
SNR = 15 dB is added to the synthetic signal. The minimum 
installation interval of the probe is 36°, which means ten 
pre-designed positions with equal circumferential angles are 

(a) (b)

Fig. 3   Dual polynomial value (DPV, the maximum value is normal-
ized to 1) and FFT spectrum for recovered signal, a SNR = 20 dB and 
b without noise
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given, and three different probes arrangement cases are con-
sidered. In the first case, the number of probes is four, and 
the index is 

[
2 3 7 9

]
 . The index of probes in the second 

and third cases is 
[
2 3 7

]
 and 

[
2 3

]
 , respectively. The signal 

observed in the first case is illustrated in Fig. 4. The red dot 
indicates the observed value from probes, and the blue dot 
indicates the unknown value in the pre-designed position. In 
all three cases, 20 circles of data were selected.

The signal spectrum obtained by different methods is 
shown in Figs. 5, 6, 7, 8. Before comparing the differences 
among the results, it should be noted that OMP, MVSE, and 

Fig. 4   The real part of the synthetic signal without noise in the first 
case

(a) (b) (c)

Fig. 5   The spectrum of synthetic signals obtained by AST in three cases, a q = 4, b q = 3, and c q = 2

(a) (b) (c)

Fig. 6   The spectrum of synthetic signal obtained by MVSE in three cases, a q = 4, b q = 3, and c q = 2

(a) (b) (c)

Fig. 7   The spectrum of synthetic signal obtained by OMP in three cases, a q = 4, b q = 3, and c q = 2
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MUSIC are all on-the-grid methods. To reflect the effects 
of basis mismatch for these on-the-grid methods, the grid 
size of these three methods is selected as 0.001. The spec-
trum in Fig. 5 is obtained by a fast Fourier transform of the 
reconstructed fully sampled signal ŷ . However, in order to 
obtain a more accurate frequency estimation, the frequency 
and amplitude (blue square in Fig. 5) is estimated using the 
property of dual polynomials. OMP and MVSE can esti-
mate the amplitude of the signal, so these peaks in the spec-
trum are directly used to represent the information in the 
original signal. The pseudo spectrum obtained by MUSIC 
method could not indicate the amplitude value, so the result 
of MUSIC is normalized to [0, 1], and only the frequency 
estimation accuracy will be compared with others. Table. 1 
shows the frequency and amplitude root mean square error 
(RMSE) of the estimation results, and the null value in the 
table indicates that the frequency or amplitude of the signal 
cannot be estimated under the corresponding cases.

In the first case, all four methods can get good frequency 
estimation results, as shown in Figs. 5a, 6, 7, 8a. And Table 1 
shows that AST with dual polynomial has the highest esti-
mation accuracy. Due to the small number of points, the 
amplitude estimation accuracy of OMP and MVSE is lower 
than AST, which can be improved by increasing the sig-
nal length. When q is reduced to 3, the estimation result of 
MUSIC is greatly affected. It can be seen from Fig. 8b that 
the frequency components with smaller amplitude are not 
easily distinguished for the appearance of aliasing frequency 
and the influence of noise. The other three methods main-
tain good frequency estimation accuracy, but the amplitude 

estimation accuracy drops. In the third case, the number of 
probes becomes 2 (minimum number), and only AST gets 
acceptable results, as Fig. 5c shows. AST can achieve the 
best estimation results under different probe numbers.

(a) (b) (c)

Fig. 8   The spectrum of synthetic signal obtained by MUSIC in three cases, a q = 4, b q = 3, and c q = 2

Table 1   Frequency and 
amplitude RMSE of the 
estimation result under three 
cases

The Bold font indicates the best result under the same entry

Methods q = 4 q = 3 q = 2

Frequency Amplitude Frequency Amplitude Frequency Amplitude

AST 0.0000933 0.01051 0.0001058 0.02071 0.0000916 0.06271
MVSE 0.0001785 0.12154 0.0001785 0.08591 0.0002106 0.09326
OMP 0.0001785 0.04473 0.0003455 0.07210 – –
MUSIC 0.0002385 – 0.0002385 – 0.0004684 –

Table 2   The RMSE and R-square of the reconstructed signal 
obtained by AST, MVSE, and OMP

The Bold font indicates the best result under the same entry

Methods With basis mismatch Without basis mis-
match

RMSE R-square RMSE R-square

AST 0.164 0.994 0.072 0.998
MVSE 0.425 0.960 0.227 0.988
OMP 0.685 0.895 0.435 0.958

(a) (b)

Fig. 9   The reconstructed signals obtained by AST, MVSE, and OMP 
under q = 3, a With basis mismatch and b Without basis mismatch
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To better illustrate the influence of basis mismatch on 
these methods, the second case, where q is equal to 3, is 
further analyzed. The results affected by basis mismatch are 
shown in Figs. 5b, 6, 7, 8b. To avoid basis mismatch, the 
frequency resolution of the synthetic signal is approximated 
to three decimal places, which is consistent with the grid 
size 0.001. The synthetic signal is reconstructed by using 
the spectrum obtained by MVSE, OMP, and the proposed 
AST. It should be noted that the results obtained by MUSIC 
are not involved in this case because of the lack of ampli-
tude. The RMSE and R-square of the reconstructed signal 
obtained by AST, MVSE, and OMP are shown in Table 2, 
and, correspondingly, the reconstructed signals are shown in 
Fig. 9. Since the estimated frequency and amplitude are both 
affected by basis mismatch, it can be seen from Fig. 9 that 
the reconstruction error of the signals obtained by MVSE 
and OMP is much smaller when there is no influence of basis 

mismatch. Wherein, OMP suffers the most apparent perfor-
mance degradation, which is attributed to the misalignment 
of the actual sparsity basis with DFT basis (Chi et al. 2011). 
For AST, there is no increase in signal reconstruction error 
caused by basis mismatch, and even without basis mismatch. 
It can be noted from Table 2 that the proposed AST has the 
lowest signal reconstruction error.

4.2 � BTT simulator‑based verification

The effectiveness of the proposed method is further verified 
by the BTT simulator that is extensively used for BTT signal 
reconstruction methods evaluation (Mohamed et al. 2020; 
Wei et al. 2022). In this study, the dynamic model used for 
BTT simulator is composed of three parts: blade unit, rotor 
unit, and disk unit, as shown in Fig. 10. Beam element is 
used to construct the basic dynamic differential equations of 
the BTT simulator, where the elastic deformation of the disk 
is ignored, and the bearing is considered as a linear spring 
damping model. Then, the dynamic model of the rotor blade 
coupling system can be obtained as follows:

where q is the displacement response vector of the system, 
F is the centrifugal force vector concerning the time, M, C, 
G and K represent mass matrix, structural damping matrix, 
Coriolis matrix, and static stiffness matrix. Since the for-
mulation of the dynamic model is beyond the scope of this 
study, it will not be presented in this paper. For more details, 
please refer to our previous study (Yang et al. 2021a, c; Yang 
et al. 2022) and the open-access literature (Li et al. 2019).

The material and geometrical parameters of the blade disk 
are shown in the Table 3. In this study, it is assumed that 
a crack is parallel to the blade width direction in a blade, 

(30)Mq̈ + (C + G)q̇ + Kq = F(t)

Fig. 10   The modal of the blade disk with crack

Table 3   Material and 
geometrical parameters

Material parameters Value Geometrical parameters Value

Yang’s module of disk 2.09 × 1011 N m−2 Thickness of disk 2.0 × 10−2 m
Density of disk 7.85 × 103 kg m−3 Radius of disk 5.0 × 10−2 m
Yang’s module of blade 7 × 1010 N m−2 Length of blade 4.8 × 10−2 m
Density of blade 2.71 × 103 kg m−3 Thickness of blade 1.0 × 10−3 m
Poisson’s ratio of blade 0.33 Number of blades 8

Fig. 11   Displacement response 
of norm blade and resonance 
occurs at 5700RPM
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as shown in Fig. 10. The distance between the crack and 
the blade root is 5 × 10−3 m, and the depth of the crack is 
4 × 10−4 m. The harmonic excitation is applied to the blade. 
Then the displacement response of BTT measuring point 
(middle point of blade tip) is calculated by Newmark-β 
method. When the rotation speed rises from 0 to 7200 RPM 
with an acceleration of 20 Hz/s, the displacement responses 
at BTT measuring points of normal blade and blade with 
crack are shown in Figs. 11 and 12. The enlarged view of the 
red area is on the right side of Figs. 11 and 12. Twenty-four 
equally spaced probes pre-designed positions (blue points) 
are given, and index of probes is 

[
0 1 3 7

]
 . In addition, the 

simulated BTT signal is sampled in a form (red points in 
Figs. 11 and 12) according to BTT probe arrangement.

Because the measurement point of the probe is designed 
in the middle of the blade tip, the modes above the second 
order are very weak in the experiment. Therefore, only the 
first mode is considered in this simulation. The first-order 
resonance of the normal blade occurs at about 5700 RPM. 
The resonance frequency is 379.41 Hz after the FFT of all 
sampled signals in the resonance region. The resonance 
region of the crack blade appears at about 5460 RPM, and 
the corresponding resonance frequency is 363.38 Hz after 

FFT. Selecting the data corresponding to the resonance 
area and sampling according to the arrangement mode of 
BTT probes, dual polynomials, and frequency support set 
obtained by AST is shown in Fig. 13. Crack causes integral 
multiples of the fundamental frequency, but these frequency 
components are very weak which usually two orders of 
magnitude different from the amplitude of the fundamental 
frequency. It can be seen in Table 4 that the first-order natu-
ral frequency of the cracked blade drops. However, the × 2 
and × 3 frequency are too weak to be reflected in the dual 
polynomial. According to the above two results, it can be 
seen that frequency has a much higher estimation accuracy 
than amplitude. At the same time, the appearance of cracks 
will also lead to an increase in amplitude estimation error 
and signal reconstruction error.

5 � Experimental verification

5.1 � Test rig with BTT system

The data from the real test rig is used to compare the pro-
posed method with other methods. The bladed disk with 

Fig. 12   Displacement response 
of crack blade and resonance 
occurs at 5460RPM

Fig. 13   The spectrum and dual 
polynomial value (the maxi-
mum value is normalized to 1) 
of simulated signal a normal 
blade and b crack blade

(a) (b)

Table 4   Estimation result of 
AST

Signals Frequency Amplitude R-square

AST Truth AST Truth

Normal blade 379.69 Hz 379.41 Hz 0.5673 mm 0.5675 mm 0.996
Crack blade 363.73 Hz 363.38 Hz 0.6163 mm 0.6100 mm 0.993



	 R. Jin et al.

1 3

27  Page 12 of 15

the same physical parameters and material as the bladed 
disk shown in Fig. 10 is selected as the test part. Two air 
nozzles placed at 180° are used to generate air excitation. 
As shown in Fig. 14a, the blade disk in test rig is driven 
by a motor from 2300 to 5300 RPM. The rotation speed of 
the test rig decreased after 30 s at 5300 RPM. Four BTT 
probes are installed around with the installation angle [
0◦ 15◦ 30◦ 60◦

]
 , which is equivalent to the installation 

with index 
[
0 1 3 7

]
 in 24 pre-designed positions in Fig. 14. 

The pulse from BTT probes is collected by EMTD system. 
And Blade 1 is taken as an example. The displacement of 
the blade tip is shown in Fig. 15. The red arrow in Fig. 15 
indicates several resonance regions of the blade.

5.2 � Frequency estimation

In this section, MUSIC, OMP, and MVSE mentioned in 4.1 
are used to compare with AST, and fewer data points will 
be intercepted. Ten circles of data at the 40 s in Fig. 15, and 
the corresponding rotating speed is 4080 RPM. According to 
the theoretical vibration analysis, the first-order natural fre-
quency of the blade under this rotating speed is 367.88 Hz. 
The regularization parameter in AST is obtained by Eq. (15). 
The width of snapshots matrix in MUSIC is set to 32. The 

sparsity of OMP is set to 10. And the iteration number of 
autocorrelation matrix in MVSE is set to 10.

The signal spectrum obtained by four methods, i.e., 
MUSIC, OMP, MVSE, and AST, is shown in Fig. 16. The 
solid blue line in these figures represents the rotating speeds 
of the bladed disk and its integer multiple. The red dotted 
line indicates the natural frequency. First, only the result of 
AST can intuitively find the natural frequency. The pseudo 
spectrum of the signal obtained by MUSIC can discover the 
weak natural frequency in Fig. 15a, d, and e. MVSE and 
OMP are challenging to locate the natural frequency, and 
only some integer multiples of the revolution frequency can 
be distinguished.

As no contact measurement method such as strain gauge 
is installed on this test rig, MUSIC, which has been widely 
verified, is used as a reference. But 100 circle data at the 
same speed are selected to ensure accurate results. Table 5 
shows the natural frequencies obtained from AST and 
MUSIC. It can be seen that the natural frequencies of dif-
ferent blades vary widely, and the difference between blade 
2 with the largest natural frequency (376.69 Hz) and blade 3 
with the lowest natural frequency (365.20 Hz) is 11.49 Hz. 
This is caused by machining errors which are also called the 
mistuning of the blade. AST can maintain good frequency 
estimation accuracy with fewer sampling points and has a 
stable performance like MUSIC in the non-resonant region. 
These points show that the proposed method has a strong 
sparse constraint brought by the atomic norm and good noise 
robustness from soft threshold noise reduction.

6 � Conclusions

This paper presents an AST-based blade vibration recon-
struction method, where the off-the-grid CCS is introduced 
to solve the basis mismatch and overcome the under-sam-
pling problem. The proposed method may serve as the ena-
bling technology for digital twin-based blade health moni-
toring offering high-precision blade vibration parameters. 
Both numerical simulation and experimental verification are 

Fig. 14   The test rig with BTT 
system. a the test rig and b the 
arrangement of BTT probes

Fig. 15   The displacement measured by 4 BTT probes for blade 1
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performed to verify the validity of the proposed method. The 
following conclusions can be drawn as follows:

(1)	 The general problem of BTT signal reconstruction is 
obtained through the equivalent sampling model of 
BTT. The atomic norm is used instead of L1-norm in 
the traditional method. Thus, approximating infinite 
frequency identification accuracy could be achieved. To 
solve the optimization problem containing the atomic 

norm, the primal problem is converted into SDP, and 
ADMM is used to solve it efficiently. Finally, the excel-
lent property of dual norm of the atomic norm is used 
to obtain an accurate frequency support set.

(2)	 In the simulation part, the data from synthetic signal 
showed that the proposed method has better perfor-
mance in the frequency and amplitude estimation, espe-
cially with fewer probes. After that, the data generated 
by the blade disk dynamic model are used to prelimi-
narily verify that the proposed method can accurately 
extract the natural frequency and other information 
when the data is incomplete. Experiments data further 
demonstrate that the proposed method can effectively 
overcome the negative factors, including non-uniform-
ity, under-sampling, fewer data, and noise in actual 
measurement.

This study preliminarily proves that the method based 
on the atomic norm performs quite well in reconstructing 
BTT signal. However, there is still a gap to be improved. 
ADMM-based AST can be solved with low time-consuming, 
but large memory occupation and high complexity limit the 

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 16   The spectrum of 8 blades obtained by MUSIC, AST, MVSE, and AST. a Blade 1, b Blade 2, c Blade 3, d Blade 4, e Blade 5, f Blade 6, 
g Blade 7, h Blade 8

Table 5   First-order natural frequencies of eight blades obtained by 
AST and MUSIC

No Nature frequency No Nature frequency

AST Truth 
obtained by 
MUSIC

AST Truth 
obtained by 
MUSIC

Blade 1 371.77 Hz 371.83 Hz Blade 2 376.69 Hz 377.15 Hz
Blade 3 365.20 Hz 365.31 Hz Blade 4 367.67 Hz 367.54 Hz
Blade 5 366.02 Hz 367.12 Hz Blade 6 366.85 Hz 366.67 Hz
Blade 7 375.87 Hz 375.72 Hz Blade 8 375.05 Hz 374.16 Hz
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proposed method applied on a large scale. In addition, a 
regularization parameter selection method suitable for BTT 
data should be proposed to improve computational effi-
ciency. And the sensing matrix should be reorganized to sat-
isfy the various probes’ layout. Moreover, a high-efficiency 
algorithm and strict proof for semidefinite relaxation will be 
promoted in the future.
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