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Abstract
Reliability analysis using first-order reliability methods (FORM) has been widely used in reliability-based design optimization 
(RBDO) due to their simplicity and efficiency. The performance of the RBDO is highly dependent on how it deals with the loops 
of deterministic optimization and reliability analysis as well as the process of reliability assessment. In this paper, sequential 
optimization and reliability analysis (SORA) is employed to reduce the computational cost of RBDO. Moreover, a double-step 
modified adaptive chaos control method (DS-MACC) based on an improved adaptive chaos control approach is developed to 
speed up the reliability analysis loop. In the method presented here, two sets of novel criteria are introduced within two steps 
to distinguish the condition of the iterative process, compute and modify the step size. The efficiency and robustness of the 
proposed method is shown with eight inverse reliability problems and five RBDO examples and is compared with some meth-
ods developed recently. The results illustrate that the proposed method is more efficient with a competitive convergence rate.

Keywords Reliability-based design optimization · Reliability analysis · Performance measure approach · Chaos control 
method · Sequential optimization and reliability assessment method

1 Introduction

In structural design, safety and cost are the two main contra-
dictory design criteria that have to be met simultaneously by 
designers. While cost savings can reduce the safety level of 
structures, improving safety may result in increasing costs 
(Melchers and Beck 2018). Moreover, uncertainty is the 
intrinsic characteristic of all engineering systems in real world 
and can be associated with material properties and physical 
quantities such as dimensions, manufacturing tolerances, and 
external loads. Although traditional deterministic design opti-
mization methods can reduce the design costs, they ignore the 
effects of uncertainty which can result in unreliable structures 
and even catastrophic failures. Accordingly, reliability-based 
design optimization (RBDO) methods have been introduced 
that use structural reliability theory to take the effect of uncer-
tainty into account (Shayanfar et al. 2018). The main objective 

of this theory is to find the failure probability pf  based on 
Limit State Functions (LSF) or performance functions, and 
can be evaluated as (Liu and Der Kiureghian 1991):

where X =
[
x1, x2,… , xn

]T  is the vector of random vari-
ables, fX(X) is the joint probability density function (JPDF) 
of random variables vector, G(X) is the LSF, and G(X) ≤ 0 
indicates failure region. The JPDF of random variables is 
usually rarely known and evaluating the above-mentioned 
multi-dimensional integral is also a very daunting task, 
especially in the case of dealing with highly complicated 
implicit LSFs. Therefore, the aforementioned computational 
challenges have led to the development of alternative ways 
to estimate Pf  . These alternatives can be grouped into two 
main methods: (1) simulation methods such as Monte Carlo 
simulation (MCS), importance sampling (IS), and Latin 
hypercube (LHC). (2) approximation methods including 
first-order reliability methods (FORM) and second-order 
reliability methods (SORM). In comparison with FORM, 
SORM has more accuracy, but more computational burden 
since it requires to calculate second derivates. So, FORM is 

(1)

Pf = ∫ …∫ G(X)≤0
fX
(

x1, x2,… , xn
)

dx1 … dxn = ∫ G(X)≤0
fX(X)dx,
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widely used in RBDO for its effectiveness and less effort. 
There are two different first-order reliability assessment 
approaches including the reliability index approach (RIA) 
and performance measure approach (PMA). While in the 
former, the algorithm seeks for the most probable failure 
point (MPFP) on the LSF surface with the minimum dis-
tance from the origin, in the latter, the algorithm searches 
for the minimum performance target point (MPTP) on the 
target reliability index hypersphere.

In the RIA, the most commonly used algorithm is HL-RF 
which was first introduced by Hasofer and Lind (Hasofer and 
Lind 1974) and was further developed by Rackwitz and Flesser 
with the inclusion of distribution information of random vari-
ables (Rackwitz and Flessler 1978). Although this method has 
a fast convergence rate for linear and some moderately nonlin-
ear LSFs, it can produce periodic oscillation or fail to converge 
for some simple and highly nonlinear LSFs, which can result 
in unstable solutions. Therefore, ample studies have been done 
to circumvent these problems and increase the accuracy and 
speed of the method. A modified HL-RF that uses a merit func-
tion to monitor the convergence of the method was proposed 
in (Liu and Der Kiureghian 1991). Different merit functions 
were also developed to determine the step length (Zhang 1994; 
Santos et al. 2012). Stability transformation method (STM) of 
chaos feedback control was employed in the chaos control (CC) 
method for convergence control of FORM (Yang 2010). Despite 
its higher robustness compared with the HL-RF, CC method is 
computationally expensive for highly nonlinear problems and 
converges very slowly due to its small control factor. To alleviate 
its computational cost, various improved CC methods such as 
enhanced HL-RF (EHL-RF) (Kang et al. 2011), adaptive chaos 
control (ACC) (Li et al. 2015), enhanced chaos control (ECC) 
(Hao et al. 2017), directional stability transformation method 
(DSTM) (Meng et al. 2017) were proposed in which the con-
trol parameter is adaptively chosen between 0 and 1 based on 
various criteria. Finite-step-length (FSL) iterative algorithm was 
introduced in (Gong and Yi 2011) that uses a new step length 
in the direction of the gradient vector. Roudak et al. proposed 
a generalization of HL-RF and FSL that uses two parameters 
to eliminate the numerical instability of HL-RF (Roudak et al. 
2017). Different methods were introduced to calculate the opti-
mum search direction in each iteration. Keshtegar and Miri 
adopted the conjugate gradient approach and Wolfe conditions 
to compute the search direction and step size, respectively, in 
line (Keshtegar and Miri 2014). Conjugate stability transfor-
mation (CSTM) (Keshtegar 2016a, b), chaotic conjugate con-
trol (CCC) (Keshtegar 2016a, b), conjugate finite-step-length 
(CFSL) (Keshtegar 2017a, b) were also developed by Keshtegar 
et al. to improve the robustness of FORM. Several studies have 
shown that RIA is less efficient than PMA due to its low numeri-
cal efficiency (Lee et al. 2002).

In the PMA, the main idea is the fact that minimizing a com-
plicated function under simple constraints is much easier than 

minimizing a simple function under complicated constraints 
(Aoues and Chateauneuf 2010). So, the target reliability level is 
defined in advance and MPTP is sought on this level. Advanced 
mean value (AMV) (Wu et al. 1990) uses the steepest decent 
direction to find MPTP and is the fastest approach for convex 
problems. However, it cannot perform well for concave and 
highly nonlinear LSFs, so unstable solutions such as oscillation, 
bifurcation, and slow convergence may occur. Thus, conjugate 
mean value (CMV) and hybrid mean value (HMV) were pro-
posed (Youn et al. 2003). Despite the good convergence of the 
HMV method for convex and slightly nonlinear problems, it 
fails to converge for highly nonlinear concave LSFs. Enhanced 
hybrid mean value (EHMV) was proposed further by Youn to 
increase numerical efficiency (Youn et al. 2005). Meng et al. 
reduced the computational cost of the CC method by extending 
the iterative points to the �-hypersphere known as MCC method 
(Meng et al. 2015). The efficiency of the PMA was improved 
by the studies of Keshtegar et al. in relaxed PMA (Keshtegar 
et al. 2016c), modified advanced mean value (MMV) (Kes-
htegar 2017a, b), and Self-adaptive modified chaos control 
(SMCC) (Keshtegar et al. 2017c). Hybridized conjugate mean 
value (HCMV) (Zhu et al. 2021), Dynamical accelerated chaos 
control (DACC) (Keshtegar et al. 2018a), and Augmented step 
size adjustment (ASSA) (Hao et al. 2019) are other methods 
that improved stability and robustness of PMA.

In recent years, various methods have been proposed for 
solving RBDO problems (Shayanfar et al. 2018). A traditional 
strategy is a nested two-level approach called the double-loop 
approach in which, the outer loop is responsible for determin-
istic constrained optimization (DO), whereas the inner loop, 
which is responsible for reliability analysis, assesses the value 
of random variables by computing the failure probability based 
on predefined limit state functions. Accordingly, either PMA 
or RIA can be used in this loop. Despite the simplicity of 
the classic RBDO, the computational costs can be very high 
since a large number of function evaluations may be needed. 
Therefore, single-loop and decoupled methods have been pro-
posed for efficiency improvement (Jeong and Park 2017). In 
single-loop approaches, the reliability analysis is removed by 
replacing probabilistic constraints with equivalent determin-
istic constraints. In decoupled methods, reliability analysis is 
separated from deterministic optimization. Sequential optimi-
zation and reliability assessment (SORA) is one of the robust 
decoupled methods proposed by (Du and Chen 2004) which 
will be discussed further. It is also worth mentioning that 
machine learning-based RBDO methods have been developed 
recently (Li and Wang 2020, 2022). The Kriging method has 
been employed in various studies to develop surrogate models 
(Wang and Wang 2013). Surrogate modeling is a special case 
of supervised machine learning that is trained using a data-
driven approach and the idea behind this method is to replace 
the original computationally expensive model with a cheap 
easy-to-analysis approximation model to reduce both time and 
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computer runs and increase efficiency. Moreover, time-variant 
RBDO framework is another area which has been investigated 
in several studies like (Wang et al. 2021, 2022).

One of the recently developed methods that uses adaptive 
chaos control factor is proposed by (Roudak et al. 2018). This 
method that employs the RIA with two internal parameters 
and a criterion to alter the control parameter during the com-
putation process, exhibits numerical stability and small itera-
tion numbers to reach MPP. However, it suffers from a high 
number of function evaluations in each iteration to achieve the 
proper control parameter. Therefore, in this study, it has been 
tried to reduce the computational burden of this algorithm by 
introducing novel criteria through two stages in DS-MACC 
to distinguish the type of function and modify the step length. 
Furthermore, to improve the numerical efficiency, the idea of 
SORA is employed in this study to expedite the RBDO pro-
cess. The proposed algorithm is compared with AMV, HMV, 
MCC, improved adaptive CC (IACC), and some other recent 
methods for mathematical and structural reliability analysis 
and RBDO problems.

The organization of this paper is as follows. RBDO for-
mulation as well as RIA and PMA approaches are illustrated 
in Sect. 2. IACC method is explained in detail within Sect. 3. 
In the next two sections, the proposed method is introduced 
and formulated. Illustrative examples are used to compare 
aforementioned methods in Sect. 6. Eventually, the conclu-
sion is drawn in last Section.

2  Formulation of the reliability‑based 
design optimization (RBDO)

The mathematical model of the classic two-level RBDO is 
generally formulated as follows:

where d represents design variables vector with the lower and 
upper bounds of dL and dU for each variable, respectively. X 
is the random variables vector and �X contains the mean value 
of these variables. f (.) is the objective function, Gi(.) is the ith 
performance function (constraint function) and m is the num-
ber of probabilistic constraints. Pf (.) and Pt

f ,i
 are the probabil-

ity of failure and allowable failure probability, respectively. � t
i
 

is the target reliability index of the ith performance function, 
and Φ(.) stands for the standard normal cumulative distribu-
tion function. As mentioned before, to reduce the computa-
tional cost of the nested two-level RBDO, sequential 

(2)

Find d,�X

Minimize f (d,X)

s.t. Pf

(
Gi(d,X) ≤ 0

) ≤ Pt
f ,i

Where Pt
f ,i
= Φ

(
−� i

t

)
, i = 1, 2,… ,m

d
L ≤ d ≤ d

U

,

optimization and reliability assessment (SORA) was proposed 
(Du and Chen 2004). In this method, deterministic optimiza-
tion (DO) and reliability analysis are performed separately as 
follows. During the first cycle, constrained DO is carried out 
first to obtain the value of the design variables. Afterward 
reliability analysis is performed. At this stage, the feasibility 
of the constraint is checked, and the MPTP corresponding to 
each constraint is computed. This is the end of the first cycle. 
To start the next cycle, a shifting vector is needed to move the 
violated constraints to the feasible zone, and the DO in the 
next cycle is performed with shifted constraints. This shifting 
vector is computed based on the MPTP points obtained in the 
previous cycle as follows:

In which, k is the number of the current cycle, and �k−1
X

 is 
the vector of mean values of random design variables drawn 
during constrained DO of previous cycle k − 1 . Xk−1

MPTPi
 is the 

MPTP computed for the i th constraint in reliability analysis 
of previous cycle k − 1 , and m is the number of constraints. 
This should be noted that this vector for unviolated con-
straints is 0 . The formulation of SORA is mathematically 
expressed as:

Thus, as the aforementioned procedure goes on, the relia-
bility of the optimum design is augmented and the probabil-
ity of the failure is reduced. Eventually, when the probabilis-
tic constraints are feasible and the convergence condition is 
met, the algorithm stops. The schematic view of the SORA 
process in the first and last cycles are illustrated in Fig. 1.

The probabilistic constraints of the RBDO can be 
assessed by two alternative approaches of RIA and PMA 
which have been introduced briefly before. In RIA, the relia-
bility index is obtained by solving the following constrained 
optimization problem:

where U is the vector of random variables transformed from 
X-space to standard normal space ( U-space). In Fig. 2a, the 
schematic view of this approach for a two-variable LSF can 
be easily observed. As it is obvious, in RIA, the algorithm 
tries to find the minimum distance from the origin to the 
limit state G(U) = 0 . Therefore, the radius of the �-circle 
varies as the iterations go on until it touches the limit state 
surface. The distance is called reliability index. Whereas, 
in PMA, as can be seen in Fig. 2b, the radius of �-circle is 

(3)s
k
i
= �

k−1
X

− X
k−1
MPTPi

, i = 1, 2,… ,m

(4)

Find d,�X

Minimize f
(
d,�X

)

s.t. Gi

(
d,�X − s

k
i

) ≥ 0, i = 1, 2,… ,m

(5)
min
u

||U||

s.t. Gi(U) ≤ 0
,



 M. Ilchi Ghazaan, F. Saadatmand 

1 3

284 Page 4 of 20

constant and equal to the target reliability index �T , and the 
algorithm searches for MPTP over this circle. PMA can be 
mathematically expressed as:

3  Improved FORM method using adaptive 
chaos control (IACC)

The process of chaos control method is formulated as fol-
lows (Yang and Yi 2009):

(6)
min
u

Gi(U)

s.t. ||U|| = �T
i

(7)
(
U

CC
k+1

)
= U

CC
k

+ 𝜆C
(
f
(
Uk

)
− U

CC
k

)
0 < 𝜆 < 1,

where C is the n × n dimensional involutory matrix with 
merely one element in each row. The value of elements in 
each column is 1 or − 1 and the other ones are 0 in this 
matrix. So, there are 2nn! Involutory matrixes can be 
selected. However, the unit matrix I is usually picked as 
matrix C . � is the control factor and is determined based on 
the eigenvalues of the original system’s Jacobian matrix. 
f
(
U

k

)
 is the next iterative point calculated using steepest 

descent direction. While a small value for control factor � 
can lead to a more robust iterative process, especially for 
highly nonlinear problems, the computational cost can 
become very exorbitant. Conversely, a large value of � can 
be very efficient, however, the possibility of oscillation 
or divergence may rise. In the CC method usually, a fixed 
and relatively small value of � is selected for the iterative 

Fig. 1  Schematic view of SORA procedure a DO in the first cycle, b Shifting constarints before the last cycle, c Finding the reliable optimum 
design in the last cycle
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process, which can result in a large number of iterations to 
reach MPFP. Therefore, efficiency is obviously sacrificed 
for accuracy especially when a larger value for � may work. 
Roudak et al. proposed a method that is RIA-based and 
employs a varying control parameter � to improve the effi-
ciency of the CC method (Roudak et al. 2018). In the IACC 
method, � is proportional to the rate of convergence and is 
reduced based on the nonlinearity degree in a specific part 
of an LSF by considering the change in the direction of the 
two consecutive gradient vectors. At the onset of the search 
process of this method, � is equal to 1 and its reduction is 
controlled with three parameters c1 , c2 , and b , all of which 
are between 0 to 1. In the following, the function of these 
parameters is explained briefly.

Consider this algorithm is performing the kth iteration and 
wants to find the next iterative point (Uk+1) . To do so, the last 
value of � is first chosen to compute Uk+1 . Then, ∇G(Uk+1) 
is calculated at that point. Here, a criterion is utilized for 
checking the direction of the two gradient vectors in current 
and prospective iterative points; thus, the cosine of the angle 
between the aforementioned vectors is computed by the fol-
lowing relation:

If |cos�k| is larger than b, Uk+1 is accepted and � is 
decreased very slightly as � = c2� . If not, � = c1� and Uk+1 
will be re-calculated using the new reduced value of � and 
this continues until the relation expressed in Eq. 8 is larger 
than b. In the aforementioned study, values of c1 , c2 , and 
b are suggested to be 0.9, 0.99, and 0.95, respectively. c1 
is the local sensitivity controller; the closer the value of 
c1 is to 1, the more conservative the iterative process will 
be, since � is reduced very slowly. When the nonlinearity 
degree of the LSF is high, this is favored, however, this 
can lead to a high number of function evaluations. When 

(8)cos �k =
∇G(Uk)∇G(Uk+1)

||∇G(Uk)
||||∇G(Uk+1)

||

the angle between two consecutive gradient vectors is suf-
ficiently small, to prevent oscillation, the value of � is not 
let to be constant, so c2 which is very close to unity is used 
to reduce the control parameter slightly. In addition, the 
value of b determines the severity of Eq. 8. A larger value 
of b indicates a more limited accepted range for the angle 
between two successive gradient vectors, consequently, 
the convergence rate may reduce. Whereas, by a smaller 
value for b , the process is faster, but the risk of divergence 
increases.

The above-mentioned method has been successful in 
reducing the number of iterations and is robust during 
the iterative process, which will be illustrated in Sect. 6. 
However, the high number of function evaluations is the 
main deficiency of this algorithm. Considering a constant 
fixed value such as c1 or c2 for control parameter reduc-
tion, especially in first iterations, the computational cost 
is still high which can reduce the efficiency of the algo-
rithm. Moreover, RIA-based algorithms typically require 
much more function evaluations. What is more, consider-
ing the absolute value of the ����k is not efficient, because 
in case of highly nonlinear LSFs, this can lead to slow 
convergence of the algorithm i.e., if ��s�k is − 0.97, its 
absolute value is 0.97 which is greater than b = 0.95 . This 
means the algorithm should modify the step size with c2 
parameter which is too slow. In Sect. 6, example 7 is a 
good illustration of this problem which will be discussed 
further. For this reason, in the next section, these problems 
are tackled to improve the efficiency of this algorithm.

4  Proposed method

In reliability methods using chaos control, all use a con-
trol parameter to prevent chaotic solutions. The impor-
tant thing is what value should be chosen for this con-
trol parameter to reach a balance between the number of 

Fig. 2  Illustration of a RIA and b PMA approaches
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function calls and convergence. For instance, a very small 
value of control parameter λ may be able to converge to 
MPP but needs thousands of iterations to do so and vice 
versa. Thus, the value of λ is very effective. Some methods 
like the MCC method use small and fixed values for this 
parameter which cannot guarantee convergence and may 
lead to high computational cost. Some methods use vary-
ing values of λ during the process which is more reason-
able. In our study, we tried to use the available information 
at each iteration to find an appropriate value of λ and mod-
ify it at each iteration to reach high efficiency and fast con-
vergence. In this section, double-step modified adaptive 
chaos control (DS-MACC) method is proposed to alleviate 
the high computational cost of the IACC method. Besides, 
the proposed method is coupled with SORA to enhance the 
efficiency and convergence speed of the RBDO. In the first 
step, two new criteria are introduced to find the intervals 
in which MPTP may exist. Information required to check 
the conditions are demonstrated in the following relations:

where �1 is the angle between the current ( Uk ) and pre-
vious iterative points ( Uk−1 ) which can be seen in Fig. 3. 
The next relation is the same as Eq. 8 as follows:

To predict the probable location of MPTP, there are 3 dif-
ferent conditions:

1. Steepest descent direction is the direction through 
which, the value of the performance function decreases 
at its fastest rate and it also points to the minimum of 
the performance function. Thus, if the cosine of the angle 
between the current and previous iterative points is posi-
tive ( cos�k ≥ 0 ), it means that MPTP is located out of the 

(9)��� �1 =
Uk−1Uk

||Uk−1
||||Uk

||
, ����2 =

U
AMV
k+1

Uk

|||U
AMV
k+1

||| |Uk|
,

(10)cos �
k
=

∇G(U
k
)∇G(U

k+1)

||∇G(Uk
)||||∇G(Uk+1)

||

interval of Uk−1 and Uk . In addition, UAMV
k+1

 is utilized to 
find out if the steepest descent direction can be used as 
U

k+1
 or not. In other words, if ||����1|| ≤ ||����2|| or ( 𝜃2 < 𝜃1 ) 

defined in Eq. 9, steepest descent direction is the fast-
est and most efficient search direction; therefore, AMV 
method is adopted to calculate the next iterative point 
using Eq. 11 and the algorithm goes for the next iteration; 
otherwise, another approach is employed which will be 
explained further in this section.

To better understand this, consider the following 
example: G1(X) = −exp

(
x1 − 7

)
− x2 + 10 is a convex 

function with two normally distributed random variables 
x1,2 ∼ N(6, 0.8) , and the target reliability index is set as 
3. This performance function is depicted in Fig. 4a. The 
first two iterative points that are calculated utilizing the 
steepest descent direction are shown with numbers 1 and 
2. At each of them, negative normalized gradient vectors 
are illustrated with black arrows, and as can be observed, 
they point out the interval beyond U1 and U2 . So, the next 
probable iterative point is obtained using the AMV method 
(Eq. 11). At this stage, the second criterion is checked. It 
can be easily seen that ||����1|| ≤ ||����2|| , as a result, AMV 
method is chosen to calculateU

k+1
.

2. If cos�k ≤ 0, MPTP is located between Uk and Uk−1 
and there is no need to check the other condition. Con-
sider G6(X) = 0.2Ln

[

exp
[

5
(

1 + x1 − x2
)]

+ exp
[

5
(

5 − 5x1 − x2
)]] as an 

example, which is a concave function having two random 
variables with normal distributions: x1,2 ∼ N(0, 1) , and  �t 
is 3. This G6(x) is shown in Fig. 4b. Regarding the direc-
tion of the negative normalized gradient vectors, it is obvi-
ous that MPTP is between U1 and U2 . When this occurs, 
the step length is calculated using Uk−1 and Uk . For doing 
so, the augmented step size adjustment (ASSA) method 
(Hao et al. 2019) is employed which offers one the most 
efficient step length adjustment processes. ASSA method 

(11)Uk+1 = U
AMV
k+1

= −�T
∇G(Uk)

‖∇G(Uk)‖

Fig. 3  Illustration of �
1
 and �

2
 

for different types of LSFs
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uses a vector that is depicted in Fig. 5 to calculate the step 
length � . This vector which is expressed as ���⃗ab

k
 is calcu-

lated by the following relation (Hao et al. 2019):

As shown in Fig. 5, ���⃗ab
k
 links the endpoint of the nor-

malized direction vector a to the endpoint of the normal-
ized negative gradient vector b in the k th iteration. The 
step length �k is then computed as follows:

(12)���⃗ab
k
= −

∇G
�
Uk

�

‖∇G
�
Uk

�
‖
−

Uk

‖Uk‖

(13)𝜆k =
‖���⃗ab

k
‖

‖���⃗ab
k−1

‖ + ‖���⃗ab
k
‖
���Uk − Uk−1

�� �

The next iterative point can be obtained by the following 
relations:

3. As mentioned before, if cos�k ≥ 0, MPTP is 
located out of the interval Uk−1 to Uk . Additionally, if 
||𝑐𝑜𝑠𝜃1|| > |𝑐𝑜𝑠𝜃2| , the steepest descent direction may 
lead to divergence. This can be readily observed via the 
next example, a highly nonlinear performance function 
G4(X) = exp

(
1.5x1.5

1
− 5

)
+ exp

(
1.2x2

2
− 15

)
− 15 (Kes -

htegar et al. 2018c) which is illustrated in Fig. 4c. The random 
variables are x1,2 ∼ N(5, 0.8) with �t = 3 . In the correspond-
ing figure, the iterative point U3 depicts the current iteration 

(14)

Uk+1 = � t
n(Uk+1)

|||n(Uk+1)
|| |
, n
(
Uk+1

)
= Uk + �k

U
AMV
k+1

− Uk

||||U
AMV
k+1

− Uk
||| |

Fig. 4  Three different states of iterative histories a 1st state, b 2nd state, c 3rd state
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and the algorithm wants to find the interval in which, MPTP 
is located. The negative normalized gradient vectors point 
out of U2 and U3 . Furthermore, the location of the iterative 
point obtained by the AMV method cannot satisfy the second 
condition and this means the AMV method here, can lead to 
divergence or bifurcation, so it cannot be employed. Moreo-
ver, the direction of the steepest descent directions in points U1 
and U3 , illustrates the MPTP is somewhere between U1 to U3 . 
Generally speaking, �k in this state, is computed as:

when either of the second or third states happens, this is 
the end of the first step in which a trial Uk+1 is obtained and 
needed to be modified in the second step. Based on the cri-
terion introduced in Eq. 16 the cosine of the angle between 
∇G(Uk) and ∇G(Uk+1) should be greater than b which is con-
sidered to be 0.7 in this study. If this condition is met, Uk+1 is 
accepted and the next iteration will be performed; otherwise, 
�k is reduced exponentially by Eq. 17 until the aforemen-
tioned criterion is satisfied. In Eq. 17, t  is the number of 
times that the second step is performed until the k th itera-
tion. So, t  changes only when the second step is adopted. 
This prevents the step length reduction rate from being either 
too slow or too fast. If the LSF is highly nonlinear, during 
the step size modification in initial iterations, the t parameter 
causes the step size to reduce slightly, thereby searching the 
sensitive part of the performance function more efficiently. 
During the last iterations, the step length is usually very 
small and thus, less sensitive to the value of t.

(15)𝜆k =
‖���⃗ab

k
‖

‖���⃗ab
k−2

‖ + ‖���⃗ab
k
‖
���Uk − Uk−2

�� ��

(16)cos𝜃k =
∇G(Uk)∇G(Uk+1)

||∇G(Uk)
||||∇G(Uk+1)

||
> b = 0.7

5  The iterative procedure of DS‑MACC 

Step 1:   Define a performance function i.e., G(d,X) , target 
reliability index �t , � and � of random variables. 
Set k = 0 , stopping criterion � , and the control 
parameter b . (here, b is set as 0.7).

Step 2:   Transform random variables from X-space to 
U-space.

Step 3:  If k ≤ 3, then compute the new point based on the 
AMV method formula in Eq. 11.

  Else; start the first step:

• If ||����1|| ≤ ||����2|| (defined in Eq.  9) and cos�k ≥ 0 
(defined in Eq. 10), then compute the new point based 
on AMV method formula in Eq. 11. Afterward, go to 
Step 5

• If cos�k ≤ 0 , then Compute the trial point Uk+1  using 
Eqs. 12, 13, and 14. Afterward, go to the next step.

• If ||𝑐𝑜𝑠𝜃1|| > |𝑐𝑜𝑠𝜃2| , and cos�k ≥ 0 , then Compute the 
trial point Uk+1  using Eqs. 14 and 15. Afterward, go to 
the next step.

Step 4:   checking the criterion introduced in Eq. 16 in the 
second step:

• While cos𝜃k < b , modify �k using Eq. 17 and recalculate 
the Uk+1 until this criterion is satisfied.

Step 5:   Check the convergence cr i ter ion: If 
||||Uk+1 − Uk

||||∕|||Uk
|| | < 𝜀 , then stop and finish 

the process. Otherwise, set k = k + 1 and go to 
Step 3.

The flowchart of the proposed method is shown in Fig 6.

6  Illustrative examples and numerical 
results

In this section, several numerical and structural examples 
are solved for verifying the proposed method. The numer-
ical results are compared with other methods including 

(17)�k = ���
(
−

t

10

)
|||Uk+1 − Uk

|| |

Fig. 5  Illustration of ���⃗ab vector
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AMV, HMV, MCC, IACC, and some other recent methods 
in terms of the number of iterations and function evalu-
ations for investigating their accuracy and efficiency. For 
doing so, two sets of examples are considered. The first set 
deals with seven mathematical and one structural perfor-
mance functions for reliability analysis. The implementa-
tion of the above-mentioned methods in RBDO are illus-
trated via the second set including five mathematical and 
structural problems. All methods are coded with MAT-
LAB. For the MCC method, the control parameter � is 
set both 0.1 and 0.5. It has to be mentioned that the value 
of � will also be different for these methods in RBDO 

examples. Moreover, C = I for all methods employing 
the concepts of the CC method. To have a fair compar-
ison, the PMA approach of IACC is also implemented. 
The convergence criterion for the first set is considered 
as ||||Uk+1 − Uk

||||∕|||Uk
|| | < 10

−5 , and for the second set is 
||||Uk+1 − Uk

||||∕|||Uk
|| | < 10

−6.

6.1  Set I: mathematical and structural examples 
for reliability analysis

Seven mathematical nonlinear limit state functions are 
used for comparison and listed in Table 1. The value of the 

Fig. 6  The flowchart of the DS-MACC method
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performance functions ( G(X∗) ) and the number of function 
evaluations, as well as iterations, are provided in Table 2. 
From this table, it is readily apparent that IACC and DS-
MACC can converge to MPTP for all LSFs. However, the 
number of function evaluations of the proposed method is 
much less than that of IACC. MCC with � = 0.1 has shown 
to be a robust method in comparison with the other four 
methods. AMV is the least efficient method among all since 
it can only reach to MPTP for merely one LSF. MCC with 
� = 0.5 and HMV methods usually have greater computa-
tional effort compared with other iterative processes.

The first performance function, as mentioned before, is a 
convex function which is weakly nonlinear. AMV, HMV, and 
the proposed method converge to X∗ with the same number of 
function evaluations because based on the criteria utilized in 
these methods, they all use the steepest descent direction for 
the process and act like the AMV method. Although the IACC 

shows fewer function evaluations compared with the MCC 
method, its computational cost is still higher since it modifies 
� unnecessarily. In the MCC method, the small fixed step size 
has increased the number of iterations especially when � is 
0.1. The convergence history of example 2 is plotted in Fig. 7. 
This is a moderately nonlinear performance function, and all 
the methods except for AMV can find the MPTP. As can be 
seen from Table 2, DS-MACC method is the most efficient 
approach for MPTP search and is five times faster than the 
IACC method. In this example, a small control parameter for 
the MCC method is more desirable because of the high non-
linearity of LSF near MPTP. For this reason, the MCC method 
with � = 0.5 and HMV are very slow to converge.

The third performance function has a large reliability 
index that augments the challenge of seeking MPTP. From 
Fig. 8, it is apparent that oscillation occurs in AMV iterative 
procedure. DS-MACC method provides the best numerical 

Table 1  Limit state functions with their corresponding distribution information

# Limit state function Distribution �
t

1 G
1
(X) = −exp

(
x
1
− 7

)
− x

2
+ 10 (Hao et al. 2019) x

1
∼ N(6, 0.8)

x
2
∼ N(6, 0.8)

3

2 G
2
(X) = x3

1
+ x3

2
− 18 (Hao et al. 2019) x

1
∼ N(10, 5)

x
2
∼ N(9.9, 5)

3

3 G
3
(X) = 0.3x2

1
x
2
− x

2
+ 0.8x

1
+ 1 (Hao et al. 2019) x

1
∼ N(1.2, 0.42)

x
2
∼ N(1, 0.42)

6

4 G
4
(X) = exp

(
1.5x1.5

1
− 5

)
+ exp

(
1.2x2

2
− 15

)
− 15 (Keshtegar et al. 2018c) x

1
∼ N(5, 0.8)

x
2
∼ N(5, 0.8)

3

5 G
5
(X) = −0.75 + 0.489x

1
x
4
+ 0.843x

2
x
3
− 0.0432x

5
x
6
+ 0.0556x

5
x
7
+ 0.000786x2

7
 (Hao 

et al. 2019)
i = 1 − 4xi ∼ N(1, 0.05)

i = 5xi ∼ N(0.3, 0.006)

i = 6, 7xi ∼ N(0, 10)

3

6 G
6
(X) = 0.2Ln

[
exp

[
5
(
1 + x

1
− x

2

)]
+ exp

[
5
(
5 − 5x

1
− x

2

)]]
 (Hao et al. 2019) x

1
∼ N(0, 1)

x
2
∼ N(0, 1)

3

7 G
7
(X) = 0.3x2

1
x
2
− x

2
+ 0.8x

1
+ 1 (Keshtegar et al. 2018b) x

1
∼ N(0, 0.55)

x
2
∼ N(6, 0.55)

3

Table 2  Numerical results 
of MPTP search for different 
methods (iterations/function 
evaluations)

AMV HMV MCC
(� = 0.1)

MCC
(� = 0.5)

IACC DS-MACC 

G
1
(X∗) −0.3579

(9∕9)

−0.3579

(9∕9)

−0.3579

(97∕97)

−0.3579

(21∕21)

−0.3579

(13∕16)

−0.3579

(9∕9)

G
2
(X∗) − −31.0665

(165∕165)

−31.0665

(26∕26)

−31.0665

(89∕89)

−31.0665

(42∕68)

−31.0665

(13∕13)

G
3
(X∗) − −2.2293

(594∕594)

−2.2293

(25∕25)

−2.2293

(160∕160)

−2.2293

(20∕41)

−2.2293

(14∕15)

G
4
(X∗) − − 4.44695

(17∕17)

− 4.44695

(8∕30)

4.44695

(12∕19)

G
5
(X∗) − 0.075283

(551∕551)

0.075283

(42∕42)

0.075283

(169∕169)

0.075283

(36∕56)

0.075283

(14∕15)

G
6
(X∗) − − − − −1.1566

(11∕56)

−1.1566

(10∕21)

G
7
(X∗) − − −6.71162

(11∕11)

− −6.71162

(68∕89)

−6.71162

(12∕15)
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results with 15 function evaluations to find MPTP. This is 
mainly because it uses the steepest descent direction when 
it is needed based on the conditions introduced in this study, 
which expedites the process. In addition, the step length 
expressed in Eq. 17 can sufficiently narrow the search inter-
val for the second step of the algorithm and this prevents it 
from unnecessary function calls in the IACC method. IACC 
has fewer iterations than MCC with � = 0.1, , whereas, its 
number of function evaluations is relatively twofold. MCC 
( � = 0.5 ) and HMV also require many iterations to satisfy 
the convergence criterion and thus, are less efficient.

For example 4, iterations are plotted in Fig. 9. It is highly 
nonlinear with a great curvature around MPTP; a difficult 
problem for AMV, HMV, MCC methods. It can be viewed 
that the IACC method can converge to MPTP after 8 itera-
tions, which is the least among all. However, its computa-
tional burden is larger than others with 30 function evalu-
ations. MCC ( � = 0.1 ) and the proposed method exhibit 
acceptable efficiency. Example 5 is a multi-dimensional 
highly nonlinear LSF with seven random variables. DS-
MACC method can accurately reach MPTP with only 15 
function calls which is approximately less than one-third 
of that of the next best result obtained by MCC with 42 
function calls. IACC has been able to reduce the number of 
iterations of the MCC method, but its computational cost is 
higher. MCC ( � = 0.5 ) and HMV found the MPTP after 169 
and 551 iterations, respectively, showing their ineffective-
ness. AMV encounters oscillation and fail to converge.

Example 6 and 7 are two strictly nonlinear performance 
functions and their iterative procedures are depicted in 

Fig. 10 and Fig. 11, respectively. For example 6, only the 
IACC and DS-MACC method can find MPTP and are the 
most robust and efficient methods compared to others. Even 
the small control parameter of MCC ( � = 0.1 ) could not help 
it to reach the minimum target point. The proposed method 
has the least number of function calls which is around half 
of the IACC method’s function calls. This illustrates that 
DS-MACC method has been successful to improve the 
numerical instability and efficiency of the IACC method. 
This happens thanks to the criterion introduced to narrow 
the search interval iteration by iteration letting the algorithm 
reduce the step length fewer times than the IACC method. In 
terms of example 7, both the MCC ( � = 0.1 ) and proposed 
method demonstrate good efficiency in MPTP search. Con-
versely, IACC though converge to MPTP, as can be seen in 
Fig. 11, it shows instabilities and � reduction is done insuf-
ficiently resulting in the high number of function evalua-
tions. This is mainly because it considers the absolute value 
of the cos�k which is not correct and can lead to this kind 
of iteration history. This problem is successfully tackled in 
the proposed method. Thus, it can be concluded from the 
examples above that DS-MACC method is the most efficient 
and accurate one to find MPTP. MCC ( �=0.1) is also an 
efficient algorithm for highly nonlinear LSFs due to its small 
control parameter. However, it may fail to converge for LSFs 
with severe nonlinearity like example 7. Also, it shows less 
efficiency for moderately nonlinear or convex performance 
functions. The IACC is also a robust method that can solve 
problems with different levels of curvature, but its compu-
tational cost can be high.

Fig. 7  Iterative histories of MPTP search for Example 2
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Example 8: To illustrate the efficiency of the proposed 
method, an explicit performance function with a large num-
ber of random variables is considered here which is intro-
duced based on the displacement of the node under load 
P1(Δ

z

p1
) at the z-direction in the space truss with 24 elements 

shown in Fig. 12. Finite element method can be used to 

calculate Δz

p1
 which should be less than the maximum value 

of 0.01 m (Keshtegar et al. 2018a).

There are 32 independent normal and non-normal 
random variables in this example. Their description and 

(18)G8(X
∗) = 0.01 − |Δz

p1
|

Fig. 8  Iterative histories of MPTP search for Example 3

Fig. 9  Iterative histories of MPTP search for Example 4
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statistical properties of them are listed in Table 3. The 
target reliability index is 3.0. From Table 4, it is apparent 
that the proposed method has superior performance above 
others including the IACC method. While the Ds-MACC 
method requires only 650 function calls to converge to 
MPTP, the IACC and SMCC methods need 1170 and 1366 

function evaluations to do so. In addition, HMV, HCC, 
and MCC methods could not reach the solution because 
of their instability and inefficiency. This example vividly 
shows the robustness of the proposed method to reduce 
the computational burden of structural reliability analysis.

Fig. 10  Iterative histories of MPTP search for Example 6

Fig. 11  Iterative histories of MPTP search for Example 7
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6.2  Set II: mathematical and structural examples 
for reliability‑based design optimization

Example 9: A weakly nonlinear RBDO example is given as 
follows (Hao et al. 2019):

(19)

findd =
[

d1, d2
]T

min f (d) = d1 + d2

S.t.Pf
[

Gj(X) > 0
]

≤ Φ
(

−� jt
)

, j = 1, 2, 3

G1 = 1 −
X2
1X2

20

G2 = 1 −
(

X1 + X2 − 5
)2

30
−

(

X1 − X2 − 12
)2

120

G3 = 1 − 80
X2
1 + 8X2 + 5

0 ≤ di ≤ 10,Xi = N
(

di, 0.3
)

fori = 1, 2

d0 = [5, 5]T , �1t = �2t = �3t = 3.0

This example involves two independent random variables 
with normal distribution and three probabilistic con-
straints. The optimum results obtained by AMV, HMV, 
MCC, HCC, and ASSA are extracted from literature (Hao 
et al. 2019) and are shown in Table 5 for comparison. 
These methods use a double-loop RBDO algorithm to 
find the optimum. The MCS method with 106 samples 
is utilized to validate the reliability level of each proba-
bilistic constraint. Results indicate all methods can find 
the optima, however, DS-MACC and IACC methods that 
use the SORA procedure are faster and more efficient to 
find the optimum design variables and can converge to 
that point after 212 and 219 function calls, respectively, 
which is about two third of that of needed for the ASSA 
method. Moreover, the MCC method with � = 0.1 is the 
most computationally expensive method because of using 
a very small step size in each iteration. The design vari-
ables obtained after the first, second, and last cycles can 
be seen in Fig. 13. It can be seen that the third constraint 
is inactive during the process.

Example 10 A highly nonlinear RBDO example is consid-
ered as follows (Keshtegar et al. 2018a):

Fig. 12  The space truss struc-
ture of Example 8

Table 3  Statistics of random variables in Example 8

Variables Distribution Mean Standard 
deviation

Description

A
1
− A

6
(m2) Normal 0.013 0.1 Cross-sectional area

A
7
− A

12
(m2) Normal 0.01 0.1 Cross-sectional area

A
13
− A

24
(m2) Normal 0.016 0.1 Cross-sectional area

E(GPa) Normal 205 0.12 Young’s modulus
P
1
(kN) Gumbel 20 0.15 Point load

P
2
− P

7
(kN) Gumbel 10 0.12 Point loads

Table 4  Comparison of 
different methods for Example 8

HMV HCC MCC SMCC (Keshtegar 
et al. 2018a)

IACC DS-MACC 

X
∗

MPTP

A
1
− A

6
(m2) – – – 128.4612 128.5791 128.5791

A
7
− A

12
(m2) – – – 99.6559 99.6588 99.6588

A
13
− A

24
(m2) – – – 159.7680 159.7923 159.7923

 E(GPa) – – – 174.0782 168.8693 168.8693
P
1
(kN) – – – 31.9374 31.1967 31.1967

P
2
− P

7
(kN) – – – 9.7826 9.7681 9.7681

g
(
XMPTP

)
(cm) Chaos Chaos Chaos − 0.46428 − 0.4679 − 0.4679

Iterations – – – 21 18 10
Function calls – – – 1366 1170 650
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In this example, the two random variables have normal 
distribution. Three probabilistic constraints are defined 
herein. The second constraint is highly nonlinear which is 
a difficult challenge for methods to deal with. For the aim 
of comparison, the results of the iterative algorithms are 
extracted from literature (Keshtegar et al. 2018a). For this 
example, the MCS method with 107 samples is employed. 

(20)

findd =
[

d1, d2
]T

min f (d) = −

(

d1 + d2 − 10
)2

30
−

(

d1 − d2 + 10
)2

120
S.t.Pf

[

Gj(X) > 0
]

≤ Φ
(

−� jt
)

, j = 1, 2, 3

G1 = 1 −
X2
1X2

20
G2 = −1 + (Y − 6)2 + (Y − 6)3 − 0.6(Y − 6)4 + Z
Y = 0.9063X1 + 0.4226X2, Z = 0.4226X1 − 0.9063X2

G3 = 1 − 80
X2
1 + 8X2 + 5

0 ≤ di ≤ 10,Xi = N
(

di, 0.3
)

for i = 1, 2
d0 = [5, 5]T , �1t = �2t = �3t = 3.0

The RBDO results for this example are presented in Table 6. 
Moreover, to compare the performance of the proposed 
method with kriging-based RBDO methods, the results 
for hybrid adaptive kriging-based single-loop (HAK-SLA) 
method are also extracted from literature (Yang et al. 2021) 
which considered the stopping criterion of � = 10

−3 for reli-
ability analysis. Therefore, we also solved this example with 
the same stopping criterion which is shown in the last row 
of Table 6. As it is evident, the proposed method shows 
the fastest convergence rate as it can reach the optimum 
after 5 cycles and 348 function evaluations. Whereas, the 
DCC method requires 10 iterations and 567 function calls 
to do so. The IACC is also more efficient than the DCC 
method with approximately 100 more function calls than 
the proposed method. The HCC and MCC need more than 
16,000 and 7000 function evaluations, respectively, to con-
verge which is very exorbitant. The AMV and HMV meth-
ods cannot make it to satisfy the convergence criterion. The 
DS-MACC method also works slightly better than the HAK-
SLA method with only 5 cycles and 299 function calls while 
HAK-SLA requires 36 iterations and 308 function evalua-
tions which shows the better performance of the proposed 
method in comparison with the kriging-based method. In 
Fig. 14, the first, second, and last cycles of the proposed 
method’s performance for this example are illustrated. It 
shows that the first and second probabilistic constraints 
are the active ones. The high nonlinearity of the second 
constraint is easily handled by the proposed method with 
the least number of function calls. This certifies the supe-
rior performance of DS-MACC method coupled with the 
SORA over other methods with nested double-loop RBDO 
procedure.

Example 11 The structural diagram of a roof truss subjected 
to uniform loads is illustrated in Fig. 15 in which, the top 
and compression bars are made of reinforced concrete mem-
bers, bottom and tension bars are made of steel. Regarding 
the structural mechanics’ requirements, the perpendicular 
deflection ΔC should be less than 0.03. This example is con-
sidered in the RBDO problem as follows (Keshtegar et al. 
2018a):

Table 5  Comparison of 
different methods for Example 9

f d Iter/FE �MCS

1
�MCS

2
�MCS

3

AMV 6.7257 (3.4391, 3.2866) –/360 2.98 3.05 Inf
HMV 6.7257 (3.4391, 3.2866) –/369 2.98 3.05 Inf
HCC 6.7257 (3.4391, 3.2866) –/426 2.98 3.05 Inf
MCC (� = 0.1) 6.7257 (3.4391, 3.2866) –/2355 2.98 3.05 Inf
ASSA 6.7257 (3.4391, 3.2866) –/318 2.98 3.05 Inf
IACC 6.7257 (3.4391, 3.2866) 4/219 2.97 3.05 Inf
DS-MACC 6.7257 (3.4391, 3.2866) 4/212 2.97 3.05 Inf

Fig. 13  Iterative history of Example 9
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(21)

Find d =
[

Ac,As
]T

min f (d) = 20224As + 364Ac

S.t.Pf

[

G(X) = 0.03 −
(

ql2

2

)(

3.81
AcEc

+ 1.13
AsEs

)

≤ 0
]

≤ Φ
(

−�t
)

where 0.0006 ≤ As ≤ 0.0012, 0.018 ≤ Ac ≤ 0.063
[

As,Ac
]0 = [0.001, 0.042], �t = 3.0

where l is the length of truss, Ac , and As are the cross-
sectional areas of reinforced concrete and steel bars, 
respectively. Ec and Es represent the corresponding elas-
tic modulus. This example involves two random design 
variables, namely As and Ac with four random variables. 
The statistical parameters of the random variables can be 
found in Table 7. The results for the RBDO model of this 
example are solved by HCC, HDMV, and DCC methods 
and extracted from (Keshtegar et al.  2018b) and (Kes-
htegar et al. 2018a) to compare with the IACC and pro-
posed method. In Table 8, the results are indicated. Fur-
thermore, the reliability index for the LSF of this example 
is computed with 107 samples using the MCS method. It 
is observed that all methods are converged accurately to 
the optimum design point with a high-reliability level 
with a good agreement with results presented in (Rashki 
et al. 2014). However, the number of function calls for the 
proposed method is about thirteen times and three times 
faster than HCC, HDMV, and DCC methods, respectively. 
Hence, the IACC is as efficient as DS-MACC method but 
still requires more function evaluations. It should be men-
tioned that the DCC method has the highest reliability 

Table 6  Comparison of 
different methods for Example 
10

f d Iter/FE �MCS

1
�MCS

2
�MCS

3

AMV – – – – – –
HMV – – – – – –
HCC (Keshtegar et al. 2018a) − 1.7247 (4.5581, 1.9645) 10/16299 2.95 – Inf
MCC (� = 0.1) (Keshtegar 2017a, b) − 1.7247 (4.5581, 1.9645) 10/7260 – – Inf
DCC (Keshtegar et al. 2018a) − 1.7247 (4.5581, 1.9645) 10/567 2.95 – Inf
IACC − 1.7247 (4.5581, 1.9645) 5/412 2.95 3.21 Inf
DS-MACC − 1.7247 (4.5581, 1.9645) 5/348 2.95 3.21 Inf
HAK-SLA ( � = 10

−3 ) (Yang et al. 2021) − 1.7247 (4.5581, 1.9645) 36/308 2.95 3.21 Inf

DS-MACC ( � = 10
−3) − 1.7247 (4.5581, 1.9645) 5/299 2.95 3.21 Inf

Fig. 14  Iterative history of Example 10

Fig. 15  Schematic of the roof 
truss
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level among all, while its computational effort is about 
two times that of the proposed method.

Table 8  Comparison of different methods for Example 11

HCC (� = 0.1) 
(Keshtegar et al. 
2018b)

HDMV (Keshtegar 
et al. 2018b)

DCC (Keshtegar 
et al. 2018b)

IACC DS-MACC Lit (Rashki 
et al. 2014)

As × 10
−3
(
m2

) 1.1202 1.0886 1.0886 1.0883 1.0883 1.068

Ac × 10
−2
(
m2

) 3.6397 3.8358 3.8358 3.8371 3.8371 4.046
Optimum 35.9045 35.9781 35.9781 35.9785 35.9785 36.24
X
∗
MPTP

q∗(N∕m) 22,696.129 22,522.635 22,606.49 22,504.6882 22,504.6882
l∗(m) 12.0746 12.0693 12.0721 12.0686 12.0686
As∗ × 10

−2
(
m2

) 10.5455 10.2597 10.323 10.2515 10.2515

Ac∗ × 10
−2
(
m2

) 3.0575 3.0917 3.117 3.0833 3.0833

Es∗ × 10
10(Pa) 9.218 9.267 9.234 9.2753 9.2753

Ec∗ × 10
10(Pa) 1.916 1.924 1.923 1.9245 1.9245

 Iterations 45 9 12 12 12
 Function calls 6929 1405 1102 576 576 40,000
βMCS 2.862 2.917 3.003 2.91 2.91 3.01

Example 12 A welded beam problem (Cho and Lee 2011) 
shown in Fig. 16 is given. This problem has four independ-
ent normally distributed random variables and five proba-
bilistic constraints. Detailed explanation of this example can 
be accessed via (Cho and Lee 2011). The RBDO model is 
defined as follows:

The RBDO results for AMV, HMV, MCC, HCC, and 
HCMV methods using double-loop strategy are extracted 
from from (Keshtegar et al. 2018c) and (Zhu et al. 2021), 
respectively, and summarized in Table 9. All methods can 

(22)

Find d =
[
d1, d2, d3, d4

]T

min f (d, z) = c1d
2

1
d2 + c2d3d4

(
z2 + d2

)

S.t. Pf

[
Gj(X) > 0

] ≤ Φ
(
−𝛽

j

t

)
, j = 1, 2,… , 5

successfully obtain the optimum as 2.5913. The performance 
of AMV, HMV, and HCC are the same as each other with 
1350 function calls. The MCC method requires the highest 
number of function evaluations to reach the optimal design 
point. The HCMV method could save about %50 of the com-
putational cost of the HCC method, however, it is still two 
times and three times slower than the IACC and proposed 
method, respectively. DS-MACC method could also success-
fully reduce the number of function calls of the IACC method 
from 409 to 389. In addition, the SORA procedure needs 
only four cycles to reach the solution, while the double-loop 
RBDO needs more than 10 iterations to do so, which shows 
the high convergence rate of the proposed method.

Example 13 Speed reducer illustrated in Fig. 17 is utilized 
for engine and propeller rotation with efficient velocity in 
the light plane (Keshtegar et al. 2018c). This design problem 
includes seven normal and independent random variables 

Table 7  Statistics of random variables in Example 11

Variables Distribution Mean Standard deviation

q(N∕m) Normal 20, 000 1400

l(m) Normal 12 0.12

As(m
2) Normal Design variable 5.9852 × 10

−5

Ac(m
2) Normal Design variable 0.0048

Es(Pa) Normal 10
11

6 × 10
9

Ec(Pa) Normal 2 × 10
10

1.2 × 10
9

Fig. 16  Schematic of the welded beam structure
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plus eleven probabilistic constraints. The random design 
variables are gear width (X1) , gear module (X2) , the number 
of pinion teeth (X3) , distance between bearings (X4,X5) , and 
diameter of each shaft (X6,X7) . The RBDO model for this 
example is expressed in Eq. (22), and more details is acces-
sible in (Keshtegar et al. 2018c):

Table 10 presents the results of the RBDO approaches 
for this example. Results for the double-loop based AMV, 
HMV, MCC, HCC, and HCMV are reported from (Zhu et al. 
2021). It should be noted that the convergence criterion is 
considered as 10−4 for this example. From Table 8, while 
all methods can find the optima, it can be seen that only 

(23)

Find d =
[
d1, d2, d3, d4, d5, d6, d7

]T

min f (d) = 0.7854d1d
2

2

(
3.3333d2

3
+ 14.9334d3 − 43.0934

)
− 1.508d1 + 7.477

(
d3
6
+ d3

7

)
+ 0.7854

(
d4d

2

6
+ d5d

2

7

)

S.t. Pf

[
Gj(X) > 0

] ≤ Φ
(
−𝛽

j

t

)
, j = 1, 2,… , 11

the HCMV, IACC, and DS-MACC methods can obtain the 
optimum design variables with less than 1000 function calls. 
Both the IACC and proposed method are more efficient than 
others with 184 and 154 function calls, respectively. More-
over, AMV, HMV, and HCC methods have the same effi-
ciency as each other, which shows the constraints are almost 
convex types. Therefore, DS-MACC method coupled with 

the double-loop strategy may yield the same result as the 
AMV method. But, incorporating the SORA approach could 
reduce the number of function calls from 1147 to 154 for 
this example. The HCMV method also reduces the function 
calls by combining their proposed method with sufficient 
conditions with AMV.

7  Conclusion

In this work, a new double-step PMA based on the improved 
adaptive chaos control (IACC) method was proposed and 
integrated with the SORA procedure to alleviate the com-
putational cost of RBDO problems. Usually, the reliability 
analysis loop is responsible for the largest percentage of 
computations. So, making this process more efficient is a 
key to reduce the computational burden. The nonlinearity 
degree of LSFs can be easily found via the direction of the 
normalized gradient vector which is utilized in the IACC 
method. However, the strategy used for step length reduction 
is not efficient since it does not consider any information 
related to the type of the LSF. Thus, the computational cost 
can rise in the case of convex and highly nonlinear LSFs. 
Regarding this defect, double-step modified adaptive chaos 
control (DS-MACC) is introduced. In this method, to detect 
the function type, two novel criteria are considered in the 

Table 9  Comparison of 
different methods for Example 
12

AMV HMV MCC (� = 0.15) HCC (� = 0.15) HCMV IACC DS-MACC 

Optimum design point X∗

d∗
1

5.7300 5.7300 5.7300 5.7300 5.73 5.7300 5.7300
 d∗

2
200.8981 200.8981 200.8981 200.8981 200.9 200.8982 200.8982

 d∗
3

210.5977 210.5977 210.5977 210.5977 210.6 210.5977 210.5977
 d∗

4
6.238936 6.238936 6.238936 6.238936 6.239 6.2389 6.2389

Optimum 2.591318 2.591318 2.591318 2.591318 2.591 2.591319 2.591319
Iterations 15 15 12 15 12 4 4
Function calls 1350 1350 13,378 1350 854 409 389

Fig. 17  Schematic of the speed reducer
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first step. based on the different conditions of these criteria, 
three states of iterations can happen for each of which, a 
particular relation for initial step size calculation is proposed 
which makes the whole process faster because of choos-
ing an efficient step size in advance. During the second 
step, the initial step length is adaptively modified until the 
angle between two consecutive steepest descent directions 
is smaller than a particular value. In addition, to prevent a 
large number of function evaluations of dealing with highly 
nonlinear constraints in the double-loop RBDO strategy, the 
DS-MACC method is linked with SORA.

To evaluate the capability of the proposed method, two 
sets of problems comprised of mathematical and structural 
reliability analysis as well as RBDO problems are consid-
ered. Results indicate that DS-MACC has been successful to 
address the inefficiency of IACC and the high computational 
cost of traditional double-loop approaches. DS-MACC is 
capable of dealing with highly nonlinear LSFs with a fast 
convergence rate. It also has a high accuracy to find the 
MPTP thanks to the double-step strategy integrated in this 
method besides the criteria introduced to find the intervals 
in which MPTP may exist. To conclude, the robustness and 
less computational burden of the proposed method certifies 
its competitive and reliable performance, especially in the 
case of dealing with highly nonlinear performance functions.
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