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Abstract
Topology optimization (TO) is well suited to exploit the geometric freedom provided by additive manufacturing (AM), but 
only when the two technologies are properly integrated. Failure to account for the manufacturing process in the execution of 
the optimization formulation can lead to performance loss and increased production time and/or cost. This paper discusses a 
TO methodology motivated by the unique features of wire and filament based AM processes with high deposition rates where 
a constant thickness of deposited features is desired to manage heat flow and path planning during fabrication. In addition 
to typical manufacturing constraints such as minimum feature size and feature separation, the proposed approach utilizes 
discrete object projection to impose a constant thickness requirement on all structural features, including structural members 
and connection points (joints). The mathematical consistency of the developed framework enables the use of gradient-based 
optimizers, and tradeoffs between design freedom and computational cost are discussed. Although the technique was devel-
oped with a specific electron beam fabrication process in mind, it is readily extendable to other AM technologies with similar 
requirements as well as to create lattice-like designs. The approach is demonstrated on benchmark minimum compliance 
problems and is shown to successfully design structural components that are directly manufacturable.

Keywords  Topology optimization · Additive manufacturing · Manufacturing constraints · Electron beam freeform 
fabrication · Wire-fed

1  Introduction

Topology optimization (TO) provides a framework for 
optimizing the distribution of a material within a domain 
by utilizing modern computational tools to improve per-
formance over empirical design. As additive manufactur-
ing (AM) offers unprecedented geometric freedom over 
conventional manufacturing processes, it is well-suited to 
harness the potential of TO, but only when the two technolo-
gies are properly coupled. Tailoring the design process to 
the specific capabilities and limitations of the manufactur-
ing process produces useful results and reduces the need 
for post-processing. The incorporation of manufacturing 

constraints into topology optimization has been an active 
area of research, particularly for AM constraints related to 
(for example) unsupported overhangs (Gaynor et al. 2014b; 
Gaynor and Guest 2016; Langelaar 2016, 2017; Mass and 
Amir 2017; Gaynor and Johnson 2018) and consideration of 
build orientation (Langelaar 2018; Wang and Qian 2020).

Electron Beam Freeform Fabrication (EBF3) is a wire-
fed layer-additive metal AM process developed at NASA 
Langley Research Center (LaRC) with Sciaky technology. 
It fuses weldable wire onto an existing part or substrate 
using a focused electron beam (see Fig. 1). The wire and 
portion of the substrate directly underneath the electron 
beam’s focal point undergo a temperature increase of 
O(103) K/s (Wȩglowski et al. 2016) to form a melt pool 
and then rapidly solidify with minimal heat distortion once 
the beam has passed. Adequate heat management meas-
ures such as cooling breaks, maximum feature widths, or 
heat monitoring with closed loop control are required to 
prevent features from melting if the e-beam must travel 
near previous deposits. The process is performed in a 
vacuum ( 1.3 × 10−2 Pa or lower) to prevent dissipation of 
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the electron beam, achieving approximately 95% energy 
efficiency (Taminger and Hafley 2003). The wire gauge 
and e-beam raster size determine the deposition width. 
Depending on the wire stock and the size of the vacuum 
chamber, this process can build parts on the centimeter 
to meter scale at deposition rates of 330 to 2500 cm3/hr 
(Taminger and Hafley 2003), making it particularly suita-
ble for large scale components. For most applications, it is 
considered a near net shape technique, as the large feature 
resolution typically necessitates some surface finishing.

While all manufacturing processes have a minimum 
feature size (the size of the smallest feature that can accu-
rately be built), wire and filament based AM processes 
further require that structures be composed of integer mul-
tiples of the characteristic machine feature width. As the 
bead width increases with respect to the structure size, it 
becomes increasingly advantageous to design components 
comprised of features of uniform width. For EBF3, varying 
width throughout a component can be achieved by using 
multiple passes or changing the e-beam raster size, but 
local changes in width are generally undesirable. Designing 
structures with only single-pass features facilitates toolpath 
planning and helps to manage heat flow during fabrication, 
particularly considering the extreme heat fluxes developed 
in EBF3. Also, the beginning and end of any deposition 
path provide the least geometric precision, so continuous 
connectivity of components is advantageous. Crossing over 
previously deposited material leads to a buildup of mate-
rial at the joint; this effect can be mitigated, however, with 
temporary manipulation of the deposition parameters. Con-
sidering these manufacturing challenges, a TO methodology 
capable of creating features of constant width is needed. 
This work seeks to address the need through a projection-
based TO framework.

Length scale control was one of the earliest manufactur-
ing constraints to be addressed in the field of topology opti-
mization. The myriad methods can be roughly categorized 

into two approaches: filtering/projection and constraint-
based, with many researchers employing a hybrid of these 
strategies. Filters based on relative densities (Bruns and Tor-
torelli 2001), Heaviside projection (Guest et al. 2004; Guest 
2009b; Carstensen and Guest 2018), morphology (Sigmund 
2007), and robustness (Wang et al. 2011) perform various 
operations on the independent design variables to generate 
the elemental relative densities that are used in finite ele-
ment computations. While the functional forms vary, the 
constraint-based methods all rely on penalizing features 
that violate the desired length scale. Some methods use an 
indirect approach (Petersson and Sigmund 1998), while oth-
ers impose an explicit characteristic length (Poulsen 2003; 
Guest 2009a; Allaire et al. 2016; Fernandez et al. 2019, 
2021). These methods limit minimum length scale, maxi-
mum length scale, or both; however, all existing methods 
face numerical challenges such as failure to converge or the 
need for extensive parameter tuning when the minimum and 
maximum length scales are close in magnitude, as would be 
required for a uniform feature thickness constraint.

An additional approach to address these concerns 
involves the optimization of discrete objects. Discrete object 
projection (Guest 2011; Ha and Guest 2014; Guest 2015) 
maps features of a fixed size and/or shape onto a continu-
ous design domain through the definition of neighborhood 
sets that use distinct material phases. As originally pro-
posed, this formulation does not allow for the connectiv-
ity of the discrete objects. This was extended by (Koh and 
Guest 2017) to consider three material phases and by (Koh 
2017) to consider reinforcing fibers in TO of composites. 
More recently, the approach was adapted to address the dis-
crete nozzle size restriction of extrusion type AM processes 
(Carstensen 2020) by modifying the shape of the material 
mapping neighborhoods. This allows for full connectivity of 
the discrete objects along the print direction, while requir-
ing that adjacent objects remain separate or tangent, but do 
not overlap. The work in (Carstensen 2020) was limited to 
only horizontal and vertical print directions, leading the 
algorithm to struggle with connectivity of oblique features. 
Geometry projection (Norato et al. 2015) can also be used 
to map parameterized discrete objects onto a continuous 
domain with consistent sensitivity analysis. Each feature can 
be defined with a fixed width, but as presented the method 
does not include a way to prevent in-plane overlapping of 
adjacent objects, which would increase the overall feature 
width. The technique is elegant and efficient with minimal 
parameter tuning, but is reported to be subject to numerical 
instabilities such as ground structure dependence, increased 
gray regions, and lack of symmetry (Norato et al. 2015). 
The method of moving morphable components (MMC) 
has similar functionalities (Guo et al. 2014), as discussed 
in a recent review paper (Wein et al. 2020); (Niu and Wad-
bro 2019) used penalization within the context of MMC to 

Fig. 1   Electron beam freeform fabrication schematic. Reprinted from 
(Taminger and Hafley 2006)
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pursue uniform width features. Additional approaches have 
been developed using the level set method (Liu et al. 2018; 
Jang et al. 2019)

The approach presented in this paper uses a discrete 
object projection methodology with a novel mapping scheme 
that allows for long continuous features of uniform thickness 
while prohibiting the overlapping of adjacent features. The 
technique includes a user-specified discretization of print 
directions for increased design freedom, while offering 
computational tools to address the corresponding increase 
in dimensionality. This paper is organized as follows: Sect. 2 
provides an overview of pertinent computational TO tools. 
The proposed method of addressing wire-fed AM design 
considerations is detailed in Sect. 3, followed by the prob-
lem formulation and sensitivity analysis in Sect. 4. Design 
examples and discussion are presented in Sect. 5, and con-
clusions in Sect. 6.

2 � Background

The ultimate goal of density-based topology optimization is 
to select which material is present in each finite element. In 
traditional solid-void topology optimization, this is captured 
by an elemental volume fraction of �e = 0 (void) or �e = 1 
(solid), relative to the baseline properties of a fully dense 
element. These elemental variables, however, are rarely used 
as the independent optimization variable as some form of 
geometric restriction, such as through projection methods, 
is typically required.

2.1 � Multiphase heaviside projection method

The Heaviside Projection Method (HPM) (Guest et al. 2004; 
Guest 2009b) establishes a field of independent design vari-
ables � that are mapped onto finite elements �e for analysis. 
The fundamental idea behind HPM is that a single independ-
ent design variable �ij has the ability to deposit a feature of 
material i into the design domain at location j when its mag-
nitude is nonzero (i.e., �ij> 0 ). The design variables, � , are 
filtered onto each element, e, using linear or uniform weight-
ing, we

ij
 , to generate an elemental projection value for each 

material phase, �e
i
 , as shown in Eq. (1) (Bruns and Tortorelli 

2001; Bourdin 2001).

These values then undergo a regularized Heaviside step 
[Eq. (2)] to determine a phase-specific elemental volume 
fraction, �e

i
 , in the physical domain. We note that this 

(1)�e
i
=

∑

j
�ijw

e
ij

∑

j
we
ij

property is typically tied to deposition of material, but can 
also be applied to machining and removal of material, often 
called void projection (Guest 2009b; Guest and Zhu 2012). 

 where �max is the maximum allowable magnitude of the 
design variable (Guest et al. 2011). For sufficiently large val-
ues of the projection parameter �i , any non-zero �e produces 
a 0/1 (void/solid) elemental volume fraction. The authors 
have opted to use the original projection formulation rather 
than the thresholding projection formulation (Wang et al. 
2011) for computational efficiency in the context of dis-
crete object projection. The interested reader is referred to 
(Carstensen and Guest 2018) for a more detailed discussion.

Single-phase projection controls only the length scale 
of the active phase (e.g., void or solid), possibly resulting 
in unacceptable passive phase (e.g., solid or void, respec-
tively) features. This is mitigated by combining the results 
of projecting both phases. Many problems use independent 
design variables for each phase, such that �e

0
 is a function of 

�0j and �e
1
 is a function of �1j (Guest 2009b; Gaynor et al. 

2014a); other problems use a combined design variable such 
that both �e

0
 and �e

1
 are functions of the same �j (Ha and 

Guest 2014; Guest 2015; Carstensen 2020; Carstensen and 
Guest 2018). In either case, the two phase-specific volume 
fractions are then assembled to arrive at a final elemental 
volume fraction, �e , to be used in finite element analysis. 
Figure 2 shows a schematic representation of independent 
and combined multiphase projection. This work will utilize 

(2a)Void: �e
0
= e−�0�

e
0 −

�e
0

�max

e−�0�max

(2b)Solid: �e
1
= 1 − e−�1�

e
1 +

�e
1

�max

e−�1�max

Fig. 2   Independent and combined multiphase projection
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combined projection as discussed in Sect. 3.1, and �ij will 
herein be replaced by �j in all subsequent equations. The 
symbol �(i)j refers to both �ij and �j.

To obtain the final elemental volume fraction, the multi-
phase components, �0 and �1 , can simply be averaged (Guest 
2009b). This means both passive regions (no projection) and 
phase mixing (conflicting projection) achieve an interme-
diate volume fraction, which can be mitigated by existing 
methods for gray region penalization such as Solid Isotropic 
Material with Penalization (SIMP) (Bendsøe 1989; Zhou 
and Rozvany 1991) or Rational Approximation of Material 
Properties (RAMP) (Stolpe and Svanberg 2001). This pro-
vides mathematical motivation for the optimizer to drive 
toward a clean 0/1 (void/material) solution. Combining the 
independent projections in a slightly different manner penal-
izes phase mixing while allowing for passive regions by 
assigning a default phase (e.g., no active projection results 
in a void element) (Guest 2015). Other functional forms can 
be used to incentivize problem-specific desired behavior 
(Carstensen and Guest 2018; Carstensen 2020).

2.2 � Manufacturing primitives

Topology optimization is most effective when the manu-
facturing process is incorporated into the design algorithm. 
This prevents designing components that are difficult or 
impossible to produce and greatly reduces the need for post-
processing. By tying the feature deposited by an independent 
design variable in HPM to the fundamental building block 
of a manufacturing process, referred to as a manufacturing 
primitive, we can control component geometry and improve 
manufacturability. Conventional HPM (Guest et al. 2004; 
Guest 2009b) uses a circular manufacturing primitive as 
shown in Fig. 3a. If a design variable takes on a value greater 
than zero, any element whose centroid is within a user-speci-
fied radius of that design variable becomes solid, mimicking 
deposition of a circle and ensuring minimum feature size. 

This is readily extended to a rectangular primitive (Fig. 3b: 
any element whose centroid is within the bounding box 
would become solid. Note that any non-circular manufactur-
ing primitive must incorporate a way to specify the orienta-
tion (shown here at 45◦ ). In this work, design variables are 
placed at the nodes of the finite element mesh for simplicity 
and to emphasize the distinction between the elements and 
the primitives, but one can choose other locations (Guest 
and Smith Genut 2010).

Manufacturing primitives, similar to structuring ele-
ments in morphology, may consist of a shape adapted for a 
material or manufacturing process (Guest 2009b; Guest and 
Zhu 2012; Ha and Guest 2014; Guest 2015; Vatanabe et al. 
2016; Ha et al. 2019), a morphable shape in which one or 
more parameter is variable (Ha and Guest 2014; Norato et al. 
2015; Guo et al. 2017), or a surrogate representation of a 
manufacturing constraint (Gaynor and Guest 2016; Vatanabe 
et al. 2016). The primitive presented in (Carstensen 2020), 
for example, is aimed at nozzle-type AM and consists of 
an immutable core flanked by an adaptable bonding layer, 
resulting in features which are integer multiples of the noz-
zle diameter.

3 � Design for uniform feature width

Characterizing the geometry of a manufacturing process 
is necessary in order to tailor the topology optimization 
approach. The wire-fed nature of the EBF3 process natu-
rally creates oblong features in which the arclength is much 
larger than the width. The continuous nature of the wire 
can be exploited to create arbitrary shapes, but requires an 
increase in scale, e.g., a perimeter which is at least one wire 
wide plus infill. To minimize the need for process param-
eter manipulation and to simplify heat management in the 
extreme thermal environment of EBF3, we herein propose a 
topology optimization scheme to design components of uni-
form single wire bead width features. The projection-based 
approach consists of a tailored manufacturing primitive and 
a corresponding computational tool to improve convergence.

3.1 � Manufacturing primitive for wire‑fed AM

While a rectangular manufacturing primitive is a natural 
choice to represent a wire segment, this shape facilitates, 
but does not necessitate, the creation of oblong features of 
uniform width. To ensure the optimizer only places primi-
tives end to end, we wrap the long edges of the rectangle 
in another primitive which deposits void onto the physi-
cal domain. Seen in Fig. 4, any element whose centroid is 
located within the red bounding box becomes solid when 
the design variable magnitude is greater than zero, while 
any element located within either of the blue bounding 

Fig. 3   Heaviside projection with manufacturing primitives: every 
design variable has the ability to create a manufacturing primitive in 
the design domain
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boxes becomes void (the definitive absence of material). 
This is an extension of discrete object HPM (Ha and Guest 
2014; Guest 2015): one design variable is projecting two 
phases onto the physical domain. We will refer to the 
physical shape created by this combined phase projection 
as a bead primitive (shown here at an orientation of 45◦).

The width of the solid phase rectangle, dsolid
min

 , is the 
required bead width dictated by the process parameters 
(wire diameter, raster size, etc.), while the length is cho-
sen by the user (specified as an aspect ratio with respect 
to width). The width of the void rectangles, dvoid

min
 , is the 

minimum separation required to keep adjacent beads from 
wicking together. Preliminary tests of the EBF3 process 
by the authors suggest a gap of approximately 60–70% of 
the bead width is sufficient. The length of the void rec-
tangles, shown in Eq. (3), is determined by the length of 
the solid rectangle, but may not be less than the minimum 
void feature size.

where � is a user-specified aspect ratio for the solid por-
tion of the bead primitive. The void phase is slightly shorter 
than the solid phase to allow gradual changes in orientation 
along a structural ligament (feature comprised of multiple 
bead primitives laid end to end) and also to allow perpen-
dicular and near perpendicular joints with other ligaments. 
Figure 5 shows several possible joints and curves that can 
be created using the bead primitive. This ability to construct 
curved features provides an advantage over a ground struc-
ture approach, which is limited to rectilinear features.

The user specifies a discrete set of candidate angles 
at which to orient the primitive, using one independent 
design variable for each orientation at each location, noting 
the trade-off between design freedom and computational 

(3)Lvoid = min{dvoid
min

, (� − 1)dsolid
min

}

cost. Selection of more than one orientation at a location 
(Fig. 6) or incompatible neighboring orientations results in 
phase mixing; this can be penalized through conventional 
methods or by the method described in Sect. 3.2.

Continuity is possible using this bead primitive and 
is incentivized through the sensitivities because it is 
mechanically advantageous. In order to avoid including 
independent void phase design variables, the authors rec-
ommend using combined projection with a “Default Void” 
option for phase assembly, in which the lack of any active 

Fig. 4   Heaviside projection with EBF3 bead primitive. One design 
variable creates a wire segment and parallel void spaces to ensure fea-
tures of fixed width without imposing limitations on feature length

Fig. 5   Possible geometric features created by combining bead primi-
tives. Passive white space will also become void when using “Default 
Void” phase assembly. All features have a uniform width but are free 
to vary in length
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projection results in a void phase elemental volume frac-
tion (Guest 2015).

Using this formulation, in the absence of any projection, 
the white space between primitives shown in Fig. 5 would 
become void elements, rather than the gray regions which 
would result from the averaging method of (Guest 2009b). 
We note this formulation is identical to (Guest 2015), which 
was modified by (Carstensen 2020) to allow objects to be 
placed tangent. These works demonstrate that by changing 
the functional relations of the projections, as well as shapes, 
length scales, and material composition of the primitives, 
researchers can achieve different topological controls.

The proposed approach can be used either in planar 
applications, or within each build layer of a 3D compo-
nent. As sacrificial support structures would be difficult 
to remove in a process such as EBF3, the authors rec-
ommend the use of overhang constraint [e.g., (Gaynor 

(4)�e =
�e
1
(1 + �e

0
)

2

and Guest 2016; Langelaar 2016)] when extending this 
method to 3D to ensure that material is present in the 
layer below a new deposition.

3.2 � Phase mixing penalization

Conventional penalizations of intermediate volume frac-
tions (e.g., SIMP, RAMP) incentivize 0/1 volume fractions 
through their effect on the physics and material cost. These 
methods are often sufficient to prevent phase mixing; how-
ever, the efficacy of the proposed bead projection to ensure 
minimum separation of adjacent features relies entirely on 
the penalization of phase mixing that occurs when one prim-
itive’s solid region overlaps another primitive’s void region 
(see Fig. 6). Furthermore, adequate refinement of the finite 
element mesh typically results in an average element size 
that is considerably smaller than the proposed bead primitive 
and adequate discretization of the bead primitive orienta-
tion angle leads to multiple design variables capturing many 
of the same elements within their projection zones (e.g., if 
four orientation angles are considered, an element located at 
the center of a bead primitive will be within the projection 
zone of all four candidate primitives). From the element’s 
perspective, these two numerical scaling effects cause a 
marked increase in the number of design variables wielding 
influence over the element, exacerbating some of the known 
numerical challenges of multiphase projection. Combining 
the numerical difficulties with the heavy reliance on phase 
mixing penalization, the authors have found it beneficial to 
employ a more targeted approach when working with bead 
projection. In addition to a dramatic increase in the HPM 
regularization parameter (e.g., � can be greater than 1000), 
we modify the volume computation to place a higher “cost” 
on phase mixing than on other instances of intermediate 
volume fractions, similar to volume constraint implemented 
in (Carstensen 2020).

Total material volume (in the objective function of a 
minimum volume problem or in a volume constraint) is 
computed as

where e represents the element number and ve represents the 
elemental volume. Replacing the volume fraction, �e , (in 
volumetric computations only) with the effective volume 
fraction, �e

effv
 , shown in Eq. (6) imposes a steep penalty on 

phase mixing while capturing a reasonably accurate measure 
of volume for single phase results. Note that this formulation 
is tailored for use with a phase assembly method that 
defaults to void projection [Eq. (4)].

(5)Vtot =
∑

e

�eve

(6)�e
effv

= �e
1
(2 − �e

0
)

Fig. 6   Combinations of design variable magnitudes at location j: a 
Projection of horizontal primitive only, b Projection of vertical primi-
tive only, c Phase mixing due to simultaneous projection of horizon-
tal and vertical bead primitives
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Whether computed directly, or with a penalization scheme 
such as SIMP or RAMP, elemental volume fractions typi-
cally range from 0 to 1; the proposed volume computation, 
herein referred to as an overlap volume penalty, ranges from 
0 to 2. When a conventional approach is used for finite ele-
ment analysis in conjunction with this approach for a volume 
constraint or minimum volume objective function, we main-
tain fidelity in the physics while also discouraging intermedi-
ate volume fractions, with an especially aggressive penaliza-
tion of phase mixing. Table 1 aligns the conventional volume 
computation (using a “Default Void” phase assembly) to be 
further penalized with SIMP in stiffness calculations with 
the corresponding proposed volume computation under the 
possible phase projection combinations. When no phase or a 
single phase is projected, the volume computations are equal 
and representative; when both phases are actively projected, 
we penalize the FEA volume through reduced stiffness and 
inflate the volumetric cost with the overlap penalty. Figure 7 
demonstrates this effect on the phase mixing example shown 
in Fig 6c, visualizing each phase-specific volume fraction, 
the reduced volume fraction used to compute stiffness, and 
the inflated volume fraction used to compute volume.

4 � Problem formulation and sensitivity 
analysis

Gradient-based optimization requires a sensitivity analysis. 
The sensitivity of functions that contain metrics of mechani-
cal performance is typically solved using the adjoint method. 
Herein we consider classical minimum compliance prob-
lems, expressed as

(7)

min
�

�
T
�

s.t. �(�)� = �
∑

e

�effv
ve ≤ Vmax

0 ≤ �j ≤ �max ∀ j

where F is the global force vector, d is the global displace-
ment vector, �(�) is the global stiffness matrix assembled 
from elemental stiffness matrices, �e , as:

where �e
min

 is a small positive number employed to ensure 
positive definiteness of the stiffness matrix, �e is computed 
using Eq. (4), � is the SIMP penalty, and �e

0
 is the stiffness 

matrix of a fully dense element.
For a given objective or constraint function f, sensitivi-

ties are

where �f
��e

 for a compliance problem problem is given by the 
adjoint method as

where �e is the nodal displacement vector for element e and 
��e

��(i)j

 is given in the following sections.

(8)�
e(�) =

(

�e
min

+
(

�e(�)
)�
)

�
e
0

(9)
�f

��(i)j

=
∑

e

[

�f

��e
⋅

��e

��(i)j

]

(10)
� �T

�

��e
= −�

(

�e(�)
)�−1

�
eT
�

e
0
�
e

Table 1   Comparison of volume computations. Projection of zero or 
exactly one phase results in equal stiffness and volumetric relative 
densities

Phase mixing (simultaneous projection of 2 phases) results in penal-
ized stiffness density and inflated volumetric cost

Phase projected �e
0

�e
1

FEA volume Volumetric cost
�e
1
(1 + �e

0
)

2

�e
1
(2 − �e

0
)

Neither 1 0 0 0
Void 0 0 0 0
Solid 1 1 1 1
Both 0 1 0.5 2

Fig. 7   Comparison of elemental volume computations in the pres-
ence of phase mixing: a �e

0
 : Projection of void phase, b �e

1
 : projection 

of solid phase, c �e : “Default Void” elemental volume fraction used 
for FEA, d �e

effv

 : effective elemental volume fraction used for volume 
computations
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4.1 � Proposed bead projection

Our proposed manufacturing primitive constitutes a spe-
cific mapping scheme relating the design domain to the 
physical domain; this step is then situated in the standard 
workflow of multi-phase projection. Our approach relies 
on combined projection (Fig. 2) (Guest 2015), i.e., one 
design variable projects both void and solid phases. The 
distinction between independent and combined projection 
affects the sensitivity analysis as follows:

where i represents the material phase (0 for void, 1 for solid) 
and j represents design variable location. The reader is 
referred to (Guest 2009b) for details regarding the sensitivity 
of the phase-specific relative densities with respect to the 
design variable, ��

e
i

��j

 ; the regularization of an otherwise non-

differentiable Heaviside step function is an important prop-
erty of HPM. The selection of the “Default Void” phase 
assembly formulation as given in Eq. (4) gives the following 
sensitivity components:

Combining Eqs. (9)–(12) gives

4.2 � Phase mixing penalization

Whether used in an objective function or a constraint, the 
total volume is computed as shown in Eq. (5), replacing �e 
with �e

effv
 [Eq. (6)]. Note that the fully dense volume of 

each element, ve , is a constant (not necessarily uniform 
across all elements), and that the sensitivity with respect 
to each design variable has contributions from multiple 
elements:

(11)
Independent ∶

��e

��ij

=
��e

��e
i

⋅

��e
i

��e
i

⋅

��e
i

��ij

Combined ∶
��e

��j

=
∑

i

[

��e

��e
i

⋅

��e
i

��e
i

⋅

��e
i

��j

]

(12)

��e

��e
0

=
�e
1

2

��e

��e
1

=
1 + �e

0

2

(13)

� �T
�

��j

=
∑

e

[(

− �
(

�e
)�−1

�
eT
�

e
0
�
e

)

(

�e
1

2
⋅

��e
0

��j

+
1 + �e

0
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From the definition of the effective volume fraction, we get 
the following sensitivities with respect to each phase-spe-
cific volume fraction:

Under combined multi-phase projection, the sensitivities 
with respect to each design variable are a summation of the 
sensitivities with respect to each phase. The sensitivities are 
summarized in Eq. (16).

5 � Design examples and discussion

The proposed bead projection approach is demonstrated on 
two classical linear elastic minimum compliance problems: 
the Michell beam is used to illustrate the achievement of a 
uniform width design, and a simply supported beam high-
lights the effect of primitive orientation discretization. An 
additional example is presented to explore the performance 
of the proposed approach under multiple load cases. All 
examples employ SIMP penalization of intermediate vol-
ume fractions, multi-phase Heaviside Projection Method 
with “Default Void” phase assembly, the overlap penalty 
for the volume constraint, and are solved using the Method 
of Moving Asymptotes (MMA) (Svanberg 1987). Continu-
ation is applied to increase the SIMP parameter, � , from 2 
to 10, and the Heaviside parameters, �0 and �1 , starting at 
0 and following the Fibonacci sequence. Each continuation 
step is limited to 200 iterations and optimization progresses 
until the change in objective function is less than 0.5% cou-
pled with a measure of non-discreteness (Sigmund 2007) of 
less than 5% for three consecutive continuation steps, or a 
maximum value of � is reached (55 for the void phase and 
1597 for the solid phase).

The structures are designed using material properties 
of Ti-6Al-4V; when processed with the EBF3, this alloy 
has been shown to exhibit material properties consistent 
with standard properties in the annealed wrought condition 
(Taminger and Hafley 2006). The 2D examples presented 
herein are designed within the build plane using isotropic 
material properties. Note that these examples were limited 
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to bead primitives precisely one bead wide; however, the 
proposed framework allows for the inclusion of multiple 
bead widths.

The optimization is initialized with a uniform distribution 
of all possible orientations of all primitives, i.e., all design 
variables are equal at the start; a linesearch is executed at 
each continuation step to ensure feasibility. We note that 
alternative initial configurations were explored (e.g., a uni-
form distribution of only horizontal primitives). These solu-
tions often suffered a loss of symmetry and had much worse 
performance; however, they occasionally outperformed 
the uniform initial guess. As no discernible pattern was 
observed, we recommend using a uniform distribution of ini-
tial design variables to prevent bias in the absence of a priori 
knowledge of a desired configuration. We also suggest using 
continuation on optimization parameters to minimize the 
dependence on the initial guess and to promote convergence 
to high quality local minima. As with all nonconvex prob-
lems, we cannot guarantee global optimality of the solutions.

5.1 � Michell beam design

The design domain, Ω , (Fig. 8) is subjected to a unit tip load 
and a minimum feature size of dmin = H

12
 . A mesh of 192 × 

144 finite elements was used. The MMA asymptote increase 
parameter was reduced to 1.1, and the initial asymptote was 
tightened to 0.1

�+1
 (Guest et al. 2011). Twelve possible orienta-

tions (15◦ increments) of each bead primitive were consid-
ered and the upper bound on the independent design variable 
was raised to �max = 10 (Guest et al. 2011). The optimiza-
tion process was performed at two maximum allowable 
global volume fractions.

For each maximum volume, a conventional design using 
classical radial projection (circular primitives) (Guest 
et  al. 2004) is used as a baseline for comparison. The 
results, as visualized through the elemental volume frac-
tion, �e [Eq. (4)], are shown in Figs. 9 and 10, where red 
indicates solid, blue indicates void, yellow/green indicates 

intermediate densities, C is the final compliance, V is the 
final global volume fraction, and Mnd is the measure of non-
discreteness (Sigmund 2007). For the low volume fraction 
case, most features located away from the support when 
using radial projection (Fig. 9a) have an approximate width 
of dmin , naturally approaching the uniform feature width con-
dition. There is still, however, a 29% performance difference 
between this solution and the solution using bead projection 
(Fig. 9b). Given the qualitative similarities between the two 
designs, we initially suspected that the difference in perfor-
mance was due to some minor defects in the bead projection 
design, namely pinholes and single-element ligaments. To 
examine the impact of these unexpected features, we per-
formed a manual repair and found only a 1% improvement 
in the compliance. This leads us to conclude that the slightly 
thinner, branching features at the root of the constant thick-
ness structure, which is where strain energies are largest, Fig. 8   Michell beam design domain and boundary conditions

Fig. 9   Michell beam for 15% allowable volume using a classical 
radial projection and b single bead thickness projection
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lead to a significant loss in stiffness when compared to the 
radial projection solution.

The effect of the bead projection is more pronounced 
as the maximum allowable volume increases. Figure 10a 
shows a conventional design with several internal struts at 
the minimum feature size, a thicker outer shell, and a large 
contiguous stem near the supports of the structure. All of 
these features pose manufacturing challenges for the EBF3 
process, both in toolpath planning and in heat management. 
The design using the proposed bead projection approach 
(Fig. 10b) eliminates all of these variations in feature thick-
ness by expanding vertically to use more of the design 
domain, leaving enough space to replace the large stem with 
a lattice composed of features of width dmin . The addition of 
this manufacturing constraint results in a 38% increase in the 
compliance; there is a larger trade-off between performance 
and manufacturability at the higher volume fraction because 

the baseline topology is further from meeting the uniform 
feature thickness condition, requiring more extensive design 
changes.

Due to the discretization of the angles available for 
primitive orientation, some slight curvature and waviness 
can be observed in the bead projection solutions (Figs. 9b 
and 10b), possibly contributing to the difference in com-
pliance as straight and/or smoothed structural features 
would likely improve the performance of the designs. The 
authors believe that the bending introduced by these pre-
sumed imperfections is minor in the context of the avail-
able design alternatives. Under the current orientation 
discretization scheme, when the desired orientation of a 
feature does not align with the available options, the opti-
mizer must decide between a change in global topology 
and approximating the desired angle with near matches 
of primitives offset by slight translations. Utilizing a finer 
discretization of angles may alleviate this challenge, but 
the benefits of such an approach must be weighed against 
the increased computational cost and decreased numeri-
cal conditioning. This trade-off is investigated further in 
Sect. 5.2.

Interestingly, we also note an increase in the measure of 
non-discreteness in the bead projection solution. This meas-
ure is larger throughout the optimization process, as can be 
seen in the convergence plots of Fig. 11, which compares 
the convergence of the radial projection and bead projec-
tion schemes used to produce the solutions in Fig. 9. The 
jumps in these plots are associated with continuation steps 
where the SIMP penalty is increased. As the non-discrete-
ness measure is larger during intermediate iterations for 
the bead primitive case, increasing the SIMP penalty has a 
larger effect on the compliance, making these jumps more 
pronounced; nevertheless, the optimizer is able to locate and 
refine a high quality solution. Note that these curves are 
generally representative of the examples considered herein. 
The convergence behavior could perhaps be mitigated with 
additional parameter tuning; however, it is interesting to note 
that if we threshold all of the gray elements in this design, 
we achieve a final volume fraction of 22.6%, indicating an 
inactive volume constraint. It is difficult for the optimizer 
to make incremental changes to the volume, as primitives 
must be added in a series to create an entire structural fea-
ture and avoid phase mixing. This suggests that a minimum 
mass formulation may be more appropriate than a minimum 
compliance formulation when the volume is arbitrary, as the 
optimizer may grow new structural features without violat-
ing (for example) a compliance constraint.

The larger number of iterations to convergence also nec-
essarily means the computational cost of solving the beam 
primitive example is larger here than when using radial pro-
jection. More design iterations means more finite element 
analyses, which are the dominant cost in typical topology 

Fig. 10   Michell beam for 25% allowable volume using a classical 
radial projection and b single bead thickness projection
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optimization problems. The larger number of design vari-
ables also leads to computational cost increases in the pro-
jection operations and the solution of the MMA subproblem, 
with the cost of these iterations scaling roughly linearly with 
the number of design variables. The increased number of 
iterations, however, is by far the most influential property in 
the computational cost.

To examine the convergence more closely, we have plot-
ted in Fig. 12 the design evolution corresponding to the beam 
primitive convergence plot (Fig. 11). All major changes to 
the topology have been completed by approximately 450 

iterations, with the remaining refinements to nearly 0-1 dis-
tribution comprising another 350 iterations, reflecting that 
large magnitudes of SIMP and beta may be required to drive 
the solution to 0-1. This again could likely be made more 
efficient with parameter tuning. Perhaps more importantly, 
the optimizer identifies an asymmetric solution fairly early 
in the evolution. This may extend the convergence process 
as the optimizer must adjust the beam design after the pri-
mary asymmetric feature is removed. It also introduces 
asymmetries in the final design, which was surprising to 
the authors. In contrast to typical topology optimization, 

Fig. 11   Convergence of the iterates in the Michell beam example (see Sect. 5.1) at 15% volume fraction when using a Radial Projection and b 
Bead Projection. f (k) and M(k)

nd
 are the values of the objective function (compliance) and non-discreteness metric, respectively, at iteration k 

Fig. 12   Selected intermediate results of the optimized design shown in Fig. 9b
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the comparatively large size of the EBF3 bead manufactur-
ing primitive compared to the size of the design domain, 
coupled with the discretization of the primitive orientation, 
limits the optimizer’s ability to make fine adjustments to the 
topology. This effect can give rise to asymmetry in the solu-
tion to an otherwise symmetric problem, as seen in Figs 9b 
and 10b. A solution which is symmetric about a horizon-
tal line at mid-height is expected; however, as discussed in 
(Stolpe 2010), the presence of symmetry in the domain and 
boundary conditions of a topology optimization problem 
does not guarantee symmetry in the solution, especially 
when discrete geometric conditions (such as fixed member 
size) are required.

To investigate this aspect of the Michell beam problem 
(see Fig 8), we compare the solution found at the low volume 
fraction (Fig 9b) to one obtained using bead projection with 
forced symmetry. The top half of the domain was modeled 
and symmetric boundary conditions applied. The results are 

presented in Fig. 13b. The symmetric solution has weaker 
performance than the asymmetric solution in both compli-
ance and the measure of non-discreteness. If the symmetric 
solution is post-processed to threshold all intermediate den-
sity elements, the compliance naturally decreases but the 
volume constraint is violated ( C = 2.63 and V = 15.68% , 
respectively). In this instance, the solution which does not 
impose symmetry outperforms the symmetric solution, 
though this relationship cannot be generalized as neither 
solution can be shown to be globally optimal.

5.2 � Effect of orientation discretization

The orientation of each instance of the bead primitive is 
chosen from a user-specified discrete set of angles, using one 
independent design variable for each angle at each location. 
This allows the user partial control over the complexity of 
the design. For example, selecting two candidate orienta-
tions allows the user to produce a design consisting of only 
horizontal and vertical members. A large number of candi-
date orientations improves design freedom and smoothness, 
but also increases computational cost. Furthermore, when a 
large number of candidate orientations is combined with a 
small finite element size, achieving convergence can prove 
difficult due to numerical conditioning. This effect is most 
noticeable when the size of the bead primitive is large with 
respect to the size of the design domain.

The level of coarseness in this discretization process can 
have a pronounced effect on the resulting design, as demon-
strated on the simply supported beam problem. The design 
domain, Ω , (Fig. 14) is subjected to a unit midspan load and 
a minimum feature size of dmin = 0.1H . One half of the 
domain was modeled using a mesh of 180 × 60 finite ele-
ments and symmetric boundary conditions were applied. 
The strategy to achieve convergence varies considerably 
with the number of candidate primitive orientations. When 
2 or 3 orientations are considered, the design space is well 
conditioned but the number of feasible high performing 
solutions is fundamentally limited. The first two continua-
tion steps for the Heaviside parameter were able to be 
skipped, and the value of �max was reduced to 610 for the 
solid phase. The MMA asymptote increase parameter was 
reduced to 1.1, and the initial asymptote followed (Guest 

Fig. 13   Comparison of bead projection a without and b with symme-
try enforced

Fig. 14   Simply supported beam design domain and boundary condi-
tions
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et al. 2011). When 4 or more primitive orientations are con-
sidered, the design space is dramatically expanded, but it is 
more challenging for the optimizer to find a high perfor-
mance solution due to numerical conditioning. These sce-
narios require a gradual start to allow sufficient time to thor-
oughly navigate the design space; they cannot accommodate 
skipping the initial � values of 0 and 1 as used in the previ-
ous case. The initial asymptote was tightened to 0.1

�+1
 . The 

maximum allowable volume fraction is 40% and the upper 
bound on the design variable (Guest et al. 2011) is set equal 
to the number of candidate orientations (but not more than 
10) for all scenarios.

Figure 15 compares the results of five primitive orienta-
tion scenarios, where C, Mnd , and the colors are as defined 
in Sect. 5.1. Under coarse angle discretization, the result-
ing designs are jagged and, for this particular example, 
roughly truss-like. As the number of orientation candidates 
increases, the design becomes smoother and trends toward 
a more classical solution. The waviness of structural fea-
tures discussed in the previous example is more pronounced 
herein as the minimum feature size is large compared to 
the domain size, exacerbating any misalignment between 
the desired and available topologies. As expected, the 

compliance performance improves with each refinement of 
the discretization scheme, as the design freedom increases.

This exercise has been completed by simply dividing 180◦ 
into equal increments; however, this procedure is readily 
extended to include user-selected candidate orientations. 
This could be useful to represent possible moves of a spe-
cific manufacturing process, or perhaps to prevent unsup-
ported overhangs by only allowing features oriented above 
the critical overhang angle. For problems without such ori-
entation constraints, the authors have found that 15◦ incre-
ments (12 candidate orientations) are adequate to replicate 
the unconstrained condition for most applications, provided 
the ratio of domain size to primitive size is sufficiently high.

5.3 � Multiple load case example

A carrier plate is subjected to independent shear and ten-
sile loads. The optimizer must balance the needs of the dif-
fering stress flows, as the orientation of the primitives can 
no longer follow the orientations of the principal stresses. 
For this example, a square design domain, Ω , (Fig. 16) is 
subjected to two unit distributed loads ( q1 = q2 = 1 ) and a 
minimum feature size of dmin =

H

30
 , using a mesh of 180 × 

Fig. 15   Simply supported beam: 
bead primitive orientation angle 
discretization schemes. An 
increase in the number of orien-
tation candidates is correlated 
with smoother topologies and 
improved performance

Possible
Orientations ∆Angle Results

2

90◦

C = 6.22 Mnd = 3.4%

3

60◦

C = 5.33 Mnd = 5.7%

4

45◦

C = 5.12 Mnd = 3.5%

6

30◦

C = 5.05 Mnd = 3.4%

12

15◦

C = 4.85 Mnd = 6.0%
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180 finite elements. The top of the domain where the loads 
are applied is prescribed to be solid, while the rest of the 
domain is to be designed by the optimizer. We use a modifi-
cation of the minimum compliance problem to minimize the 
summation of two compliances, as seen in Eq. (17). Volume 
is limited to 30%. All other optimization parameters are con-
sistent with the example in Sect. 5.1.

where i refers to load cases 1 and 2 as shown in Fig 16 and 
all other variables are as described in Sect. 4.

The results of the optimization are shown in Fig. 17. 
The final compliance was 0.212 units and the non-dis-
creteness measure was 4.8%. It is interesting to note that 

(17)
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�
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2
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0 ≤ �j ≤ �max ∀ j

this example required care to be taken in the relationship 
between the design and non-design domains. No design 
variable may be located within a distance rsolid

min
 of the 

domain edges to prevent deposition of partial-width fea-
tures (Guest and Smith Genut 2010); however, because 
the loading edge was designated as solid (see Fig 16), this 
distance must be increased to 3 rsolid

min
 along the top edge. As 

phase mixing penalization has no effect on the non-design 
domain, it cannot be used to engender length scale control 
near the non-design domain.

6 � Conclusion

Herein we present a method to design structures composed 
of uniform thickness features. This is motivated by the ease 
of manufacture of such structures with wire/filament or noz-
zle-fed processes, especially for thermally intense processes 
such as EBF3, but has relations to the creation of lattice-like 
structures using local volume constraints (Guest 2009a; Wu 
et al. 2017, 2018; Tromme et al. 2020). It must be clearly 
stated that this is not a strict manufacturing requirement for 
EBF3, as processing parameters can be adjusted on the fly to 
achieve variable feature thickness, but rather a simplification 
to aid in the EBF3 deposition process.

The proposed method improves manufacturability of 
the resulting component by ensuring a uniform width of 
long continuous features, thereby minimizing the need for 
costly and time-consuming post-processing of the design 
and manipulation of the deposition parameters. A novel 
technique for penalizing phase mixing is also presented 
to ease the computational burden of the increased dimen-
sionality. The proposed approach is specifically crafted to 
apply geometric control over the optimization process and 
the sensitivity analysis is mathematically consistent, allow-
ing it to be readily extended to other wire-fed or extrusion 
type AM methods which have similar geometric consid-
erations. Another advantage of this method is the explicit 
inclusion of feature orientation as a design component. This 
not only allows the user control over the angles featured 
in the design (e.g., for eliminating unsupported overhangs), 
but also allows the optimizer to export this information to a 
post-processor which can generate a toolpath and subsequent 
G-code.

The approach is currently limited to straight, single bead 
primitives which exclude wider features and sometimes 
result in small pores. The primary numerical challenge of 
this method arises from the large number of independent 
design variables and subsequent conditioning of the design 
space, requiring the user to seek a balance between design 
freedom and tractability/navigability. The highly nonlinear 
nature of the formulation also necessitates parameter tuning. 

Fig. 16   Carrier plate design domain and boundary conditions

Fig. 17   Carrier plate optimized for minimum compliance, subject to 
30% volume fraction. C = 0.212, Mnd = 4.8%
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Future work will explore the inclusion of multiple primitive 
types (e.g., double- and triple-wide bead primitives, prede-
fined joints), consider reduced design variable fields (Guest 
and Smith Genut 2010), and focus on improving the compu-
tational efficiency of the method, thereby allowing for finer 
discretization of the primitive orientation, facilitating the 
extension to 3D applications, and mitigating the sensitivity 
to algorithm parameters. Alternative optimization formula-
tions (e.g., mass minimization, stress constraints) will also 
be explored.
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