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Abstract
An effective and robust semi-active control scheme using MR damper for mitigating the earthquake-induced structural 
responses is proposed in this study. In the first place, a human-designed fuzzy logic controller is developed, in which the uni-
formly distributed membership functions are adopted for both input and output variables, and the fuzzy rules are formulated 
based on the law of the fundamental vibration mode. Next, an inverse modeling technique is developed for identifying the 
input current of MR damper based on the modified Bingham-plastic model. To simultaneously mitigate the seismic responses 
and guide the MR damper selection, the multiobjective NSGA-II-based approach is applied. The human-designed fuzzy logic 
controller is then optimized, in which the parameters in the output variable range, membership functions, and the rule base 
are defined as the design variables. By taking into account different parameter combinations, a variety of Pareto-optimal 
solutions are derived, based on which the influences of the membership function’s type and symmetry, as well as the rule 
base’s symmetry on the control performance, are analyzed. Finally, the improved semi-active control systems have been 
constructed for both linear and nonlinear structures by combining the optimized fuzzy controller with the proposed inverse 
modeling technique of MR damper. Numerical results have demonstrated the effectiveness and robustness of the proposed 
semi-active control scheme to the uncertainties associated with structural properties and seismic excitations.

Keywords Fuzzy logic control · MR damper · Inverse modeling technique · Multiobjective optimization · Pareto fronts · 
Seismic structures

1 Introduction

The mitigation of destructive effects caused by natural haz-
ards, such as strong earthquakes and high winds is of major 
concern in the structural engineering community. Over the 

past few decades, numerous efforts have been conducted to 
develop versatile structural control schemes for maintaining 
the safety and serviceability of civil engineering structures 
under natural hazards (Peng and Li 2019). Structural con-
trol is usually categorized into passive, active, semi-active, 
and hybrid controls (Housner et al. 1997). Among these 
modalities, passive control has been significantly studied 
and applied to many engineering structures due to its sim-
ple mechanism and zero power requirement. However, the 
passive control cannot adapt to changing structural prop-
erties or varying loading conditions and; thus, its effec-
tiveness is limited. Different from passive control, active 
control uses the external energy supplied by actuators to 
exert control forces on structures. Therefore, active control 
is usually characterized by many attractive features, such as 
high adaptability and large force capacity. However, active 
control is suffered from stability and reliability problems as 
well as large power consumption problems in practice. In 
this respect, semi-active control, which adjusts the control 
device’s behavior by modifying the physical properties of 
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embedded smart materials or mechanical systems, not only 
possesses the reliability of passive control and the adaptabil-
ity of active control, but also has a small power requirement. 
Hybrid control, generally consisting of passive and active 
control modalities, is a feasible solution to the multilevel 
earthquake-resistant design of engineering structures, but it 
often occupies a large space. Therefore, semi-active control 
has drawn increasing attention from engineers and research-
ers in recent years.

As a kind of fail-safe device for the semi-active control 
system, magnetorheological (MR) damper exhibits high 
reliability and stability, but its inherent nonlinear hysteretic 
nature has brought many difficulties and challenges in the 
design of control strategy (Zhang and Peng 2020). Develop-
ing an effective and robust control strategy is of vital impor-
tance to utilize the full capacity of MR damper. In the past 
two decades, various control algorithms have been proposed 
for MR damper-based structural systems (Behboodi et al. 
2021; Zhao et al. 2019). In 1996, Dyke et al. proposed a 
clipped-optimal control algorithm based on the accelera-
tion feedback to alter the behavior of MR damper (Dyke 
et al. 1996, 1998). Later, some improved versions of the 
clipped-optimal control algorithm have been developed for 
providing more effective and efficient control (Pohoryles and 
Duffour 2015; Yoshida and Dyke 2004; Yuen et al. 2007). 
Apart from the clipped-optimal control family, many other 
semi-active control algorithms, such as the decentralized 
output feedback polynomial controller, modulated homo-
geneous friction algorithm, decentralized bang−bang con-
trol algorithm, and Lyapunov’s direct approach have been 
developed for MR damper-based structural systems (Cha 
et al. 2013; Dyke and Spencer 1997; Jansen and Dyke 2000). 
The above-mentioned algorithms are usually classified into 
traditional control strategy, in which a primary controller, 
such as the linear quadratic regulator (LQR) and Lyapunov 
algorithms, is used to provide reference control force for 
inducing a secondary controller to produce the actual control 
force. Therefore, the traditional control strategy relies on the 
accurate mathematical model associated with the dynamics 
of controlled structures. However, it is not easy to establish 
an exact model that well matches the structural dynamics, 
since structural properties, external loadings and measure-
ments are usually full of nonlinearities and uncertainties 
(Chakraborty and Debbarma 2011; Li et al. 2010).

As an alternative to the traditional control strategy, one 
promising strategy, i.e., fuzzy logic control (FLC), is less 
sensitive to the uncertainties associated with structural 
dynamics, because it mainly uses linguistic instructions 
based on the human expertise as a basis for the control strat-
egy. The inherent robustness and ability to accommodate 
uncertainty and imprecision have provided FLC a key advan-
tage over traditional control strategies. Choi et al. developed 
a semi-active fuzzy control strategy for MR damper-based 

structural system (Choi et al. 2004), in which the required 
voltage can be generated for producing a desired damper 
force. The MR damper system based on the FLC technique 
is further employed for seismic protection of base-isolated 
building structures (Jung et al. 2006), cable-stayed bridges 
(Ok et al. 2007), high-rise buildings (Bathaei et al. 2018), 
and offshore jacket platforms (Ghadimi and Taghikhany 
2021).

Although FLC has been applied to various scenarios 
of controlled structures and systems, the design of fuzzy 
membership functions and rule base remains a challenging 
task, which is often subjective and time consuming. It is 
mainly because there are no provided routines for deter-
mining the parameters of membership functions and rule 
base. These parameters are usually selected based on the 
trial-and-error investigation of control effectiveness. To 
overcome this problem, some optimization-based meth-
ods have been developed to identify fuzzy rules and adjust 
membership functions by advanced optimization algo-
rithms, such as genetic algorithm (GA) (Ali and Ramas-
wamy 2009), particle swarm optimization algorithm (Mari-
naki et al. 2011), and whale optimization algorithm (Azizi 
et al. 2019). Among these optimization algorithms, GA 
is the most widely used one. For example, to enhance the 
performance of FLC used for an MR damper-based build-
ing structure against earthquake ground motions, Yan and 
Zhou applied GA to tune fuzzy rules, in which the weighted 
multiobjective function is used to consider two objectives, 
i.e., minimizing the maximum structural displacement and 
acceleration (Yan and Zhou 2006). Dounis et al. developed 
an evolutionary fuzzy logic controller to modulate the input 
voltage of MR damper for reducing the seismic response 
of a base-isolated structure. In the design procedure, GA 
was employed to tune membership functions (Dounis et al. 
2007). Aimed at attenuating the seismic responses of a 
base-isolated structure equipped with the FLC-driven MR 
damper system, Ali and Ramaswamy used GA to optimize 
both membership functions and rule base for obtaining an 
optimal fuzzy controller, in which the weighted multiobjec-
tive function is adopted to minimize bearing displacement 
and maintain the magnitude of base shear and floor accel-
eration (Ali and Ramaswamy 2008).

In the aforementioned studies, the control objectives 
for GA-optimized fuzzy controllers are all combined by 
weighting factors to form a onefold function-based crite-
rion. However, a trial-and-error procedure may be required 
for selecting appropriate weighting factors. Some research-
ers try to solve multiobjective problems by introducing the 
nondominated sorting genetic algorithm (NSGA-II). This 
optimization algorithm not only allows several competing 
physical quantities to be included simultaneously in control-
ler optimization, but also provides a set of Pareto-optimal 
solutions, instead of a single solution. For example, to ensure 
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both the safety and comfort of a MR damper-based struc-
ture, Shook et al. applied the NSGS-II scheme to optimize 
fuzzy logic controllers, in which four competitive objec-
tives, i.e., peak interstory drift, peak acceleration, RMS of 
interstory drift and RMS of acceleration were considered 
in parallel (Shook et al. 2008b). Besides, the NSGS-II has 
also been successfully applied to optimize the FLC-driven 
MR damper-based control system in base-isolated structures 
(Kim and Roschke 2006, 2007; Mehrkian et al. 2019; Shook 
et al. 2008a), torsionally-responsive structures (Shook et al. 
2009), adjacent buildings (Uz and Hadi 2014), nonlinear and 
plan-asymmetric structural systems (Zafarani et al. 2018).

It is noted that, in previous studies, the attention is mainly 
focused on minimizing the structural responses, and little 
attention has been given to the control requirement (Huang 
et  al. 2009). In fact, imparting attention to the control 
requirement is not only an economical consideration, but 
also a safety consideration that helps to design appropriate 
control devices. If a structure is equipped with an unsuit-
able control device whose maximum control requirement is 
much lower than the desired level, the performance of the 
control system will be largely discounted in some situations 
of extreme hazards. For instance, the dampers deployed in 
a building of the Northeastern University of Technology, 
Japan experienced serious impact, which caused damage to 
the main structure during the Great East Japan earthquake 
due to the insufficient design of damper stroke (Peng et al. 
2021a). Therefore, both structural response and control force 
need to be considered when optimizing fuzzy logic control-
lers, and meanwhile, the corresponding seismic performance 
of MR damper-based structures needs to be addressed.

On the other hand, membership functions and rule base 
are two important and indispensable parts of a complete 
fuzzy logic controller, which have been widely investi-
gated in the literature. In previous studies, both the mem-
bership functions and fuzzy rules are either assumed to 
be symmetric or asymmetric. It is noted that asymmet-
ric membership functions (fuzzy rules) may improve 
the controller’s performance by introducing additional 
design parameters for providing more variability. In con-
trast, symmetric membership functions (fuzzy rules) may 
improve computational efficiency by largely reducing the 
number of design parameters. Therefore, it is necessary to 
explore the influence of symmetric and asymmetric param-
eter assumptions on the FLC performance for achieving a 
balance between computational efficiency and effective-
ness. However, related research works are rare to see, 
although this topic is of guiding significance for the FLC 
design. Besides, the fuzzy output is usually defined as the 
current (voltage) by which the MR damper force can be 
calculated using the extended Bouc−Wen model (Spen-
cer et al. 1997). It is worth noting that the evaluation of 
the extended Bouc−Wen model needs to solve differential 

equations, which will complicate the optimization process 
and raise the computational cost. To improve the optimiza-
tion efficiency, the optimization process can be simplified 
by directly defining the control force as the fuzzy out-
put. In this regard, an inverse modeling technique needs 
to be developed for identifying the input current for MR 
damper based on the optimum control force calculated by 
the optimized fuzzy controller. Inverting a forward model 
of MR damper is the most direct approach to develop an 
inverse model for current identification. However, due to 
the highly nonlinear hysteretic nature, the commonly used 
forward MR damper models are usually composed of some 
complex equations, such as transcendental equation, dif-
ferential equation, and power function, which makes it dif-
ficult to derive a direct inversion of these forward models. 
In order to bypass the complexity of Bouc−Wen models, 
a modified MR damper model by combining the Bingham-
plastic model with a refined constitutive model for MR 
fluids was proposed very recently (Pei et al. 2021). It is 
anticipated that the inverse modeling of MR damper can 
be facilitated by virtue of the modified MR damper model.

The remainder of this paper is structured as follows. In 
Sect. 2, a human-designed fuzzy logic controller (FLC-
HD) is developed. In Sect. 3, an inverse modeling tech-
nique is proposed to identify the input current for MR 
damper to track the desired force provided by the fuzzy 
logic controller. Section 4 describes the main procedure 
of optimizing the human-designed fuzzy logic controller 
using the NSGA-II, and then designs a series of optimiza-
tion cases by varying the definitions of membership func-
tion and rule base. In Sect. 5, the optimization results are 
analyzed, and the optimized fuzzy controller is combined 
with the proposed inverse modeling technique for con-
structing improved semi-active control systems, whose 
effectiveness and robustness are investigated by conduct-
ing a series of numerical simulations on example struc-
tures. The conclusions and prospects are summarized in 
Sect. 6.

2  Human‑designed fuzzy logic controller

The FLC mainly uses linguistic instructions based on the 
human expert knowledge as a basis for control strategy. 
A fuzzy logic controller can be embedded into a closed-
loop system by incorporating human expertise into lin-
guistic IF–THEN rules. A classical fuzzy logic control-
ler is mainly composed of three parts, i.e., fuzzification 
interface, fuzzy rule and fuzzy inference design, and 
defuzzification interface. A schematic view of the general 
architecture of a fuzzy logic controller is shown in Fig. 1.
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2.1  Fuzzification interface

As shown in Fig. 1, to design a fuzzy logic controller, the 
first step is to choose appropriate input and output variables. 
In this study, the structure acceleration, which can be read-
ily provided by accelerometers, and structural velocity are 
selected as fuzzy input. The control force is defined as the 
output variable. Next, a reasonable range of fuzzy input 
needs to be defined for two input variables. Here, the ranges 
of two input variables are respectively defined as 75% of the 
maximum uncontrolled velocity and acceleration responses, 
which are within the reasonable range (70 ~ 80%) provided 
in the literature (Uz and Hadi 2014; Yan and Zhou 2006). It 
is mainly because the structural responses under fuzzy logic 
control can be mostly covered by 70 ~ 80% of the uncon-
trolled structural responses. A too small or too large range 
will cause a rare or excessive use of the outermost member-
ship functions, and thus limit the variability of the control 
system. Then, for convenience in defining the membership 
functions, the values of input variables are normalized by 
the corresponding ranges before entering the fuzzy logic 
controller. The normalized input data are then converted into 
linguistic variables through fuzzification. Here, the linguistic 
variables for both input and output values are divided into 
seven fuzzy variables, as listed in Table 1.

There are two types of membership functions that are 
often adopted for input and output variables i.e., the Gauss-
ian and generalized bell-shaped membership functions, as 

shown in Fig. 1. The main reason is that these two types 
of membership functions can approximate almost all other 
types of membership functions by appropriately defining 
their parameters, which are respectively defined as follows 
(Ahlawat and Ramaswamy 2001; Kim and Roschke 2006):

where a and b are the width (standard deviation) and central 
position of the Gaussian membership function, respectively; 
c and e are the central position and slope of the generalized 
bell-shaped membership function; d is the half-width of the 
generalized bell-shaped membership function at 0.5 mem-
bership grade.

For the human-designed fuzzy logic controller in this work, 
the evenly distributed Gaussian membership functions with 
the overlap ratio of 0.6 are adopted for describing the central 
parts of both input and output variables; and the spline-based 
Z- and S-shaped membership functions are respectively used 
to describe the two outermost parts of both input and output 
variables, as expressed by (Hanumanthakari 2021):

where g and h are the central position and width of the 
spline-based Z-shaped membership function; p and q are 
the central position and width of the spline-based S-shaped 
membership function. For clarity, the initial membership 
functions for input and output variables of the human-
designed fuzzy logic controller are illustrated in Fig. 2.
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Fig. 1  General architecture of a 
classical fuzzy logic controller

Fuzzification interface

Input
Membership functions Fuzzy rule base Output

Membership functions

Fuzzy inference Defuzzification interface
Input

Feedback

Output

Command

Knowledge base

If input 1 is ai and input
2 is bi , then output is ci;
i= 1, 2, …, n

Table 1  The linguistic variables 
for input and output values of 
the FLC

Linguistic 
variable

Velocity, accel-
eration and control 
force

NL Negative large
NM Negative medium
NS Negative small
ZE Zero
PS Positive small
PM Positive medium
PL Positive large
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2.2  Fuzzy rule and inference design

Inference engine is the kernel of a fuzzy logic controller, 
which characterizes the transformation from input to output. 
From the perspective of structural safety and comfort, in 
this work, the fundamental principle of devising a human-
designed fuzzy logic controller is to minimize both struc-
tural displacement and acceleration. IF–THEN rules are 
employed for constructing the rule base of the fuzzy logic 
controller. An example of the if-premise-then-consequent 
statement can be expressed as:

If the structure velocity is PL and acceleration is PL, then 
the control force is NL.

To design an appropriate rule base for the fuzzy logic 
controller, it is necessary to observe the structural motion 
states and understand the system dynamics. For simplicity, 

a sinusoidal movement is assumed and the corresponding 
structural responses, including displacement, velocity, and 
acceleration are illustrated in Fig. 3. As observed, one may 
find distinctive characteristics of structural motion states, 
which can be summarized as follows:

State 1: Structural acceleration and velocity are both posi-
tive (or negative), and the absolute value of the former is 
increasing while the latter is decreasing; structural displace-
ment is increasing, indicating that the structure is moving 
away from the initial position. Therefore, the control force 
should be large to suppress the structural motion.

State 2: Structural acceleration and velocity are opposite 
in sign, and the absolute value of the former is decreasing 
while the latter is increasing; structural displacement is 
decreasing, indicating that the structure is returning toward 
the initial position. Therefore, the control force can be small 
or zero.

Based on the two states summarized above, a standard 
symmetric rule base is devised, as shown in Table 2.

2.3  Defuzzification interface

As the third part of a fuzzy logic controller, the defuzzifica-
tion interface describes the mapping from the space of fuzzy 
outputs to crisp outputs. In this study, the center of gravity 
method is used to determine the crisp control output. For the 
jth rule of the ith input variables, the command force Fi cal-
culated by the selected defuzzification method is expressed 
by (Teng et al. 2000):

where nr represents the number of fuzzy rules; �(j)

i
 denotes 

the membership function corresponding to the output vari-
able defined in the consequent statement of the jth rule of the 
ith input variable; c(j)

i
 denotes the center of the membership 

function �(j)

i
.

(4)Fi =

∑nr
j=1

c
(j)

i
∫ �

(j)

i∑nr
j=1

∫ �
(j)

i

Fig. 2  Initial membership functions for input and output variables of 
the human-designed fuzzy logic controller. Note: i = 1, 2, 3; i = 1 rep-
resents input 1, i = 2 represents Input 2, and i = 3 represents output
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Fig. 3  Structural motion states under a sinusoidal movement

Table 2  Rule base for the 
human-designed fuzzy logic 
controller

Acceleration Velocity

NL NM NS ZE PS PM PL

NL PL PL PM PM PS NS NS
NM PL PL PM PS ZE NS NM
NS PL PL PS PS ZE NM NM
ZE PL PM PS ZE NS NM NL
PS PM PM ZE NS NS NL NL
PM PM PS ZE NS NM NL NL
PL PM PS NS NM NM NL NL
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3  Inverse modeling technique for current 
identification of MR damper

Since the force generated by MR damper is directly controlled 
by the input current, an inverse model or modeling technique 
aimed at current identification needs to be proposed, in order 
to induce MR damper to produce the damping force for 
approaching the reference force provided by the fuzzy logic 
controller. In this section, an iterative force tracking technique 
is adopted to combine with a forward model to derive the opti-
mum current for MR damper.

3.1  Forward model

In our previous study, a simple modified Bingham-plastic 
model with clear physical meanings and high accuracy was 
proposed to characterize the dynamic behaviors of MR 
dampers (Pei et al. 2021). In this work, this forward model 
is adopted to calculate the damper force as well as further 
establish an inverse modeling technique for MR damper. This 
modified Bingham-plastic model is constructed by combing 
a modified Coulomb friction element in parallel with a linear 
spring and a hysteretic operator, which is defined as follows 
(Pei et al. 2021):

where k is the spring stiffness; λ is the coefficient for control-
ling the low-velocity stress:

and ξ is the hysteretic operator:

(5)Fmr = kx + �fy + �fh

(6)𝜆 =
2

𝜋
sgn(ẋ) arctan

(|ẋ|∕ẋb
)

(7)𝜉 = arctan
{[
ẋ − ẋHsgn(x)

]
∕ẋa

}

fy and fh are the yielding and hysteretic forces, respectively; 
ẋa and ẋb are two different reference velocities for the non-
dimensional purpose; ẋH is the hysteretic velocity. There 
are six parameters involved in this model, including three 
force-related parameters (k, fy, and fh) and three displace-
ment-related parameters ( ẋH , ẋa and ẋb ). As shown in Fig. 4, 
the trends of six parameters varying with the input current 
have been obtained through fitting the experimental data col-
lected from an experiment, in which a sinusoidal displace-
ment excitation with amplitude of 2.54 cm and frequency of 
0.5 Hz was applied to MR damper at various input current 
levels (0 ~ 2.0A) (Yang 2001). Here, the polynomial func-
tion is adopted to describe the relationships between the six 
parameters and input current, as expressed by:

Based on the fitting parameters, the modified Bingham-
plastic model is used to calculate the damper force versus time, 
displacement, and velocity under different input currents. The 
comparison of the model predictions and the fitting experi-
mental data is shown in Fig. 5, in which a good agreement is 
observed, indicating the accuracy of the forward model.

(8)k = −0.2997I3 + 1.9563I2 − 3.7818I − 0.236

(9)fh = 5.101I3 − 50.197I2 + 131.56I + 4.0539

(10)fy = −45.090I3 + 152.930I2 − 147.940I + 76.710

(11)ẋH = −0.1209I3 + 0.8308I2 − 1.7046I − 0.5106

(12)
ẋa = −0.1347I4 + 0.6602I3 − 1.0982I2 + 0.7768I + 0.204

(13)
ẋb = −12.786I4 + 61.726I3 − 105.4I2 + 76.802I − 23.489

(a) Displacement-related parameters hx , ax and bx (b) Force-related parameters fy, fh and k

0.0 0.5 1.0 1.5 2.0

. . .

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

Current (A)

x' 0
dna

'x a
)

mc(

x'H

x'a

x'b
-14

-12

-10

-8

-6

-4

-2

x' b  
(c

m
)

0.0 0.5 1.0 1.5 2.0
0

20

40

60

80

100

120

Current (A)

f y
dna

f h
)

Nk(

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

k 
(k

N
/c

m
)

k

fy

fh

Fig. 4  Model parameters varying with input current



An improved semi‑active structural control combining optimized fuzzy controller with inverse…

1 3

Page 7 of 25 272

3.2  Inverse modeling technique

An inverse model aims to provide the input current for 
inducing the MR damper to produce the desired control 
force. The most direct way to establish an inverse model is to 
make an inversion of a forward model. However, due to the 
highly nonlinear hysteretic nature, the forward MR damper 
models are usually composed of some complex equations, 
such as transcendental equation, differential equation, and 
power function, and they are thus difficult to be inverted for 
establishing an inverse model. Therefore, instead of estab-
lishing an inverse model, we choose to approach the opti-

mum current by proposing an inverse modeling technique, 
which involves analyzing the motion state of the damper pis-
ton and calculating the damper force by updating the input 
current until the desired control force at the present instant 
of time is approached. For clarity, the detailed computational 
procedure is sketched in Fig. 6, where i denotes the present 
instant of time and j denotes the step of updating the input 
current.

3.3  Model validation

To validate the accuracy of the proposed inverse modeling 
technique of MR damper, in this subsection, a numerical 
study that involves the inverse modeling technique and the 
human-designed fuzzy logic controller is conducted. The 
example structure used here is a three-story building struc-
ture with three MR dampers installed on each floor, as shown 
in Fig. 7(a). With the assumption of masses lumped at floor 
levels, the equation of motion for this building structure sub-
jected to seismic ground acceleration ẍg can be written as:

(14)MẌ + CẊ + KX = DFd(t) +MIẍg

where M and K are the mass and stiffness matrices, given by

C is the damping matrix and it is calculated by assuming 

2% inherent damping and Rayleigh damping; X represents 
the vector of structural displacements relative to the ground, 
and “.” and “..” above X denote the first and second deriva-
tives with respect to time. i.e., the vectors of velocity and 
acceleration. I denotes the unit vector; Fd is the force vector 
containing control forces provided by MR dampers; D is 
the matrix denoting the location of MR dampers. The NS 
component of the El Centro earthquake (1940) is used as the 
input seismic ground motion, as shown in Fig. 7(b).

The forward model presented in Sect. 3.1 is fitted based 
on the experimental study conducted by Yang (2001), and 
thus it has the maximum damper force of 200 kN under 
the maximum input current 2 A. Here, considering the size 
of the example structure, the maximum damper force is 
magnified into 1000 kN under the maximum input cur-
rent 2 A by scaling the parameters involved in the fitted 
forward model. Then, numerical investigations are con-
ducted on the proposed semi-active control scheme com-
bining the human-designed fuzzy logic controller and the 
inverse modeling technique of MR damper, as illustrated 
in Fig. 8(a). Through a trial-and-error test, the upper bound 
of the output variable’s range is defined as 1400 kN, which 
allows the largest seismic response reduction under the 

(15)M =

⎡
⎢⎢⎣

4 0 0

0 4 0

0 0 4

⎤
⎥⎥⎦
× 105 kg

(16)K =

⎡
⎢⎢⎣

4 −2 0

−2 4 −2

0 −2 4

⎤
⎥⎥⎦
× 108 N∕m

(a) Force versus time (b) Force versus displacement (c) Force versus velocity
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premise that the output force is lower than 1000 kN. As 
a comparison, the seismic response of structure by a ref-
erence active control is calculated with the application 
of active tendons (actuators) commanded by the human-
designed fuzzy logic controller, as illustrated in Fig. 8(b). 
Then, the seismic responses of the example structure 
obtained from two different control schemes are compared 
in Figs. 9(a) ~ (c). It is observed that the floor displace-
ment, floor velocity, and floor acceleration responses by the 
proposed semi-active control scheme are in good consist-
ency with those by the reference active control, indicating 
the proposed inverse modeling technique can well track 
the desired force. Besides, a good consistency between the 
control forces provided by the two control schemes shown 
in Fig. 9(d) has directly illustrated this point. However, 
some differences appear when the direction of the control 
force changes. The error is mainly caused by the inher-
ent dissipative property of MR damper, which makes it 

scarcely possible to output the desired optimal force all the 
time (Khalid et al. 2014; Xu et al. 2021).

Besides, it is worth noting that the control effective-
ness of the human-designed fuzzy logic controller is 
limited. To achieve higher control performance, in the 
next section, the NSGA-II-based optimization scheme 
will be applied to improve the human-designed fuzzy 
logic controller.

4  Optimization of the human‑designed 
fuzzy logic controller using NSGA‑II

To improve the performance of the human-designed fuzzy 
logic controller, in this section, the multiobjective GA 
based on the NSGA-II is adopted to optimize the member-
ship functions and tune the fuzzy rules.

Fig. 6  Flowchart of the inverse 
modeling technique of MR 
damper

Fig. 7  Schematic views of 
example structure and input 
seismic ground motion

(a) Geometric layout of the shear-frame structure (b) NS component of the El Centro earthquake (1940)

MR 
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4.1  Objective functions

To improve structural performance and guide the MR 
damper selection, five competing physical quantities 
are selected as control objectives in this study, includ-
ing the normalized peak floor displacement and floor 
acceleration, the normalized root mean square (RMS) 
floor displacement and floor acceleration, and the nor-
malized peak control force. The objective functions with 
respect to these five physical quantities are summarized 
in Table 3, where i denotes the floor of structure and t 
denotes the time; dcon,i(t) and acon,i(t) are the ith floor dis-
placement and floor acceleration of the controlled struc-
ture, respectively; dunc,i(t) and a unc,i(t) are the ith floor 
displacement and floor acceleration of the uncontrolled 
structure, respectively; Fmr,i(t) is the control force exerted 
on the ith floor at time t by the MR damper; Fmr,max is the 
maximum output of the MR damper.

4.2  Design variables

The performance of a fuzzy logic controller mainly relies 
on the choice of membership function, the definition of the 
rule base, and the range of output variable. Therefore, in 
this study, the parameters involved in membership func-
tions, rule base, and output variable range are defined as the 
design variables, and the population-based approach, i.e., 

GA, is employed as the search engine. It is worth noting that 
there is a chance to obtain meaningless design parameters 
because the GA searches in a large space and uses selection, 
crossover, and mutation operations to ensure the diversity 
and optimality of solutions. To overcome this problem, some 
constraints need to be adopted to regulate the optimization 
work. As for the membership functions, it is important to 
maintain the initial order of the central positions of fuzzy 
sets. In this respect, the following inequality constraints are 
thus adopted for both input and output variables:

The two outermost parts of the input (output) variable 
are respectively described by the spline-based Z-shaped and 
S-shaped membership functions, then,

(1) if the Gaussian membership function is used to 
describe the central parts:

(2) if the Bell-shaped membership function is used to 
describe the central parts:

For the range of output variable (control force), the max-
imum output of MR damper Fmr,max of the applied semi-
active control force increased by ± 50% is defined as the 
range of this optimization parameter Fout, as expressed by:

(17)
gi = −1 ≤ bi,1 ≤ bi,2 ≤ bi,3 ≤ bi,4 ≤ bi,5 ≤ pi = 1 (i = 1, 2, 3)

(18)
gi = −1 ≤ ci,1 ≤ ci,2 ≤ ci,3 ≤ ci,4 ≤ ci,5 ≤ pi = 1 (i = 1, 2, 3)

(a) Proposed semi-active control scheme (b) Reference active control scheme
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Fig. 8  Conceptual diagrams of proposed semi-active and reference active control schemes
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4.3  Nondominated sorting genetic algorithm 
version II

Generally, the first four physical quantities (representing 
the mitigation of structural response) presented in Table 3 
are in conflict with the last one (representing the require-
ment of control force), because a larger control force is often 
required for suppressing the structural response to a lower 
level. It is thus difficult to find a feasible solution that allows 
simultaneous minimization of all the physical quantities. In 
this sense, the optimization of the human-designed fuzzy 
logic controller can be considered as a multiobjective prob-
lem that finds optimal solutions with superior performance 
in terms of predefined objectives. To solve this multiobjec-
tive problem, a fast elitist nondominated sorting genetic 
algorithm, i.e., the NSGA-II, is adopted to optimize the 
human-designed fuzzy logic controller. Here, only the main 
optimization procedures are described. For more detailed 
information on the NSGA-II, please refer to reference (Deb 
et al. 2000).

Initially, a random parent population R of size Na is cre-
ated with consideration of the constraints defined in Eqs. 
(17)–(19). Each set of design variables is used to estab-
lish the corresponding fuzzy logic controller. Next, the 

(19)0.5Fmr,max ≤ Fout ≤ 1.5Fmr,max
structural seismic responses under each fuzzy logic con-
troller are derived to compute the objective functions and 
evaluate the fitness of these objective functions. Then, all 
the solutions are sorted based on the nondomination rank 
and labeled with Pareto fronts. Among the solutions with 
different front numbers, the one with a lower front number 
is better. For the solutions with the same front number, the 
crowding distance, which measures the distance between a 
solution and its neighbors in the same front, is calculated 
and the solution with a larger crowding distance ranks bet-
ter for improving the population diversity. Subsequently, 
a series of fundamental GA operations including selec-
tion, crossover, and mutation are carried out to create a 
child population S of size Nb. Further, by combining the 
parent and child populations, a new population T of size 
Na + Nb is obtained. This new combined population is then 
truncated to produce a new parent population of size Na 
based on the aforementioned ranking method. The main 
optimization process will be repeated until the maximum 
number of generations is finally reached. For clarity, the 
optimization procedures for the FLC-based structure using 
NSGA-II are illustrated in Fig. 10.

4.4  Optimization formula

According to the statements of objective functions, design 
variables, and optimization algorithm, the multiobjective 

(a) Displacement versus time (b) Velocity versus time

(c) Acceleration versus time (d) Control force versus time
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optimization problem presented in this work can be sum-
marized as follows:

Find:  (1) Membership function parameters:

  (a) If use Gaussian + S-shaped + Z-shaped mem-
bership functions:

  

  (b) If use Bell-shaped + S-shaped + Z-shaped 
membership functions:

  

  (2) Rule base: ri = {NL, NM, NS, ZE, PS, PM, PL}(
i = 1, 2, 3,… , nRB

)

  (3) Range of output variable: Fout

Optimize:  f1 = J1, f2 = J2, f3 = J3, f4 = J4 and f5 = J5

Subject to:  For Gaussian:gi = −1 ≤ bi,1 ≤ bi,2 ≤ bi,3 ≤ bi,4
≤ bi,5 ≤ pi = 1 (i = 1, 2, 3)

  For Bell-shaped: gi = −1 ≤ ci,1 ≤ ci,2 ≤ ci,3 ≤ ci,4
≤ ci,5 ≤ pi = 1 (i = 1, 2, 3)

Input 1 ∶ a1,i, b1,i (i = 1, 2, 3,… , 5), h1, q1

Input 2 ∶ a2,i, b2,i (i = 1, 2, 3,… , 5), h2, q2

Output ∶ a3,i, b3,i (i = 1, 2, 3,… , 5), h3, q3

Input 1 ∶ c1,i, d1,i, e1,i (i = 1, 2, 3,… , 5), h1,q1

Input 2 ∶ c2,i, d2,i, e2,i (i = 1, 2, 3,… , 5), h2,q2

Output ∶ c3,i, d3,i, e3,i (i = 1, 2, 3,… , 5), h3,q3

  R a n g e  o f  o u t p u t  v a r i a b l e : 
0.5Fmr,max ≤ Fout ≤ 1.5Fmr,max

To build a robust and efficient fuzzy logic controller, 
different optimization cases are designed by varying the 
type of membership functions (only Gaussian and Bell-
shaped types are considered), applying the symmetric or 
asymmetric membership functions, and using the sym-
metric or asymmetric rule bases. Therefore, a total of 8 
optimization cases are designed, as listed in Table 4.

5  Results and discussion

In this section, the NSGA-II-based multiobjective optimiza-
tion method has been conducted to optimize fuzzy logic con-
trollers for mitigating the seismic responses of both linear 
and nonlinear structural systems.

5.1  Linear structural system

The information of the linear example structure is given in 
Sect. 3.3. Here, the NS component of the El Centro earth-
quake (1940) is adopted as the external excitation; then, an 
optimized fuzzy controller is selected to be combined with 
the proposed inverse modeling technique for constructing a 
semi-active control scheme. The effectiveness and robust-
ness of this optimized FLC-based semi-active control 
scheme are further investigated by conducting a series of 
numerical studies on the example structure.

5.1.1  Pareto‑optimal solutions

To determine an appropriate upper limit on the number of 
generations, the NSGA-II-based optimization is first con-
ducted on the optimization case FLC-GSS for different num-
bers of generations. Based on the numerical results, the evo-
lution process of fitness values for the normalized structural 
responses J1, J2, J3, and J4 versus normalized control force 
J5 is depicted in Fig. 11. As expected, the control perfor-
mance of the elite individuals is enhanced with the increas-
ing number of generations. Besides, it is observed that, in 
the initial generations, the control performance exhibits a 
rapid improvement but shows little change in the latter gen-
erations, indicating the population gets closer and closer to 
the optimal front. Therefore, to ensure that an optimal front 
can be achieved by all the optimization cases, the maximum 
number of generations is specified to be 1000, and the popu-
lation size is taken to contain Na = 100 individuals.

A variety of Pareto-optimal solutions are then obtained 
by conducting the NSGA-II-based optimization on the other 

Table 3  Objective functions defined for optimization of human-
designed fuzzy logic controller

Description Objective functions

Normalized peak floor displacement
J1 =

max
t,i
(|dcon,i(t)|)

max
t,i
(|dunc,i(t)|)

Normalized peak floor acceleration
J2 =

max
t,i
(|acon,i(t)|)

max
t,i
(|aunc,i(t)|)

Normalized RMS floor displacement
J3 =

RMS
t,i

(|dcon,i(t)|)
RMS

t,i
(|dunc,i(t)|)

Normalized RMS floor acceleration
J4 =

RMS
t,i

(|acon,i(t)|)
RMS

t,i
(|aunc,i(t)|)

Normalized peak control force
J5 =

max
t,i
(|Fmr,i(t)|)
Fmr,max
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optimization cases. The Pareto fronts in terms of normal-
ized structural responses versus normalized control force 
are illustrated in Fig. 12. Results show that larger control 
force capacity has led to more beneficial response mitiga-
tion. As a comparison, we also calculated Pareto fronts for 
the case using the human-designed fuzzy logic controller by 

varying the range of output variable. As can be seen from 
Fig. 12, the optimal fronts of the optimized fuzzy controllers 
are generally much closer to the vertical axis than that of 
the human-designed fuzzy logic controller in both peak and 
RMS responses, indicating an improved control capacity.

In general, compared with the optimization case with 
symmetric membership functions (or rule base), the case 
with asymmetric ones possesses more variability due to the 

Start

Generate initial population R
of size Na for design variables

Stop criteria 
satisfied

Yes

End

No
Design the fuzzy controllers based on Na sets of variables

Compute the seismic response of the FLC-based structure; 
evaluate five objective functions of each individual 

Rank the population R based on Pareto fronts and 
crowding distance

Conduct GA operators: Selection, Crossover, Mutation to 
create newborn population S of size Nb

Combine current and newborn population to generate 
population T=R+S of size Na + Nb

Rank the population T based on Pareto fronts and 
crowding distance and then truncate it to size Na

Objective 1

O
bj

ec
tiv

e 
2

Objective 1

O
bj

ec
tiv

e 
2

Pareto fronts

Crowding distance

Fig. 10  Flowchart of the NSGA-II-based multiobjective optimization

Table 4  Summary of 
optimization cases

Note: The label of cases FLC-XYZ, in which X denotes the initial of the type of membership functions 
such as Gaussian, Y denotes the initial of the symmetry of membership functions such as Symmetric, and 
Z denotes the initial of the symmetry of rule bases such as Asymmetric

Cases Variable 
number

Membership function Rule base

Gaussian Bell Symmetry Asymmetry

Symmetry Asymmetry Symmetry Asymmetry

FLC-GSS 44 ✓ ✓
FLC-GSA 68 ✓ ✓
FLC-GAS 62 ✓ ✓
FLC-GAA 86 ✓ ✓
FLC-BSS 53 ✓ ✓
FLC-BSA 77 ✓ ✓
FLC-BAS 77 ✓ ✓
FLC-BAA 101 ✓ ✓
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involvement of more undetermined design variables, and 
thus it can provide better control performance. However, 
Fig. 12 shows that the optimization cases with symmetric 
membership functions (or rule base) can also obtain good 
results and some are even better than the cases with both 
asymmetric membership functions and rule base. A typi-
cal example can be found by comparing the FLC-GAS and 
FLC-GAA cases. The main reason is that the increasing 
number of design variables has widened the search space 
and thus makes it more difficult to find optimum solutions 
in predefined generations. Therefore, to achieve a balance 
between optimization efficiency and effectiveness, it is not 
recommended to design a fuzzy logic controller with both 
asymmetric membership functions and rule base.

According to Fig. 12, we can also observe that, when the 
normalized peak control force is larger than 0.6, the Gauss-
ian membership function-based controllers generally show 
superior performance in comparison with the Bell-shaped 
membership function-based controllers. Conversely, when 
the normalized peak control force is less than 0.6, the Bell-
shaped membership function-based controllers perform bet-
ter. This phenomenon demonstrates that the optimized con-
trollers with the Bell-shaped membership functions are not 
absolutely better than those with the Gaussian membership 

functions, though there are more design variables involved 
in the former which can offer more variability. However, it is 
worth noting that the computational burden may be further 
increased due to the involvement of more design parameters. 
In this respect, the Gaussian membership function is recom-
mended for devising a fuzzy logic controller in terms of 
reducing design parameters as well as providing sufficient 
accuracy.

5.1.2  Structural responses

It is noted that, in this study, the maximum output of the 
applied MR damper is specified as Fmr,max = 1000 kN. There-
fore, to utilize the full capacity of the MR damper, as J5 
approaches 1.0, the optimized controller that shows the best 
performance in terms of the control objectives one concerns 
most should be selected. Here, we have chosen an optimized 
fuzzy logic controller from the Pareto-optimal solutions of 
the FLC-GAS case, which can achieve the minimum value 
in terms of the sum of J1, J2, J3, and J4. The selected con-
troller is highlighted in Fig. 12. By combining the selected 
optimized controller with the proposed inverse modeling 
technique, an improved semi-active control system is con-
structed, and then applied to mitigate seismic responses 

Fig. 11  Normalized peak and 
RMS structural responses 
versus normalized peak control 
force under different numbers of 
generations

(a) 10 generations (b) 100 generations

(c) 600 generations (d) 1000 generations
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of the example structure. Time histories of the seismic 
responses of the 3rd floor and peak interstory drift along 
the floor of the example structure are shown in Fig. 13 for 
the cases of the selected FLC-GAS and the FLC, including 
the uncontrolled case. As qualitatively observed, the selected 
optimized controller can significantly reduce the structural 
responses, especially for the floor displacement and peak 
interstory drift, compared to the human-designed fuzzy logic 
controller.

Specifically, according to Table 6, when the selected 
FLC-GAS controller is applied, the four control objec-
tives, J1, J2, J3, and J4, which represent the peak and RMS 
responses, are respectively decreased by 43.2% and 32.1%, 
71.8%, and 33.5%; while for the FLC-HD case, the four 
indices are respectively decreased by 24.3%, 13.6%, 40.0%, 
and 33.7%. It can be obtained that the selected optimized 
controller shows superior performance in reducing peak 
floor displacement, peak floor acceleration, and RMS floor 
displacement compared to the human-designed fuzzy logic 
controller, except for RMS floor acceleration. Correspond-
ingly, the control forces and input currents required by the 

optimized controller are generally larger than the human-
designed fuzzy logic controller, as shown in Fig. 14.

To explore the differences between the optimized FLC 
and human-designed FLC, the membership functions 
and rule base of the selected (optimized) fuzzy control-
ler are respectively depicted in Fig. 15 and Table 5 for 
further analysis. By comparing with Fig. 2 and Table 2, 
it is found that the membership functions and rule base 
of the optimized fuzzy controller vary greatly from those 
of the human-designed fuzzy logic controller. However, 
if we only optimize the membership functions (or rule 
base) and keep the rule base (or membership function) 
of the human-designed FLC, the obtained Pareto-optimal 
solutions shown in Fig. 16 indicate that optimizing mem-
bership functions can achieve better control performance 
compared to optimizing rule base. It is mainly because 
the membership functions of the human-designed FLC are 
assumed to be uniformly distributed without any theoreti-
cal foundation, while the rule base is formulated based on 
analyzing the fundamental mode of vibration.

Fig. 12  Pareto-optimal solutions 
for the linear structural system 
under different optimization 
cases

(a) J1 versus J5 (b) J2 versus J5
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5.1.3  Robustness of the optimized fuzzy controller

Apart from the control performance, robustness is also an 
important indicator for evaluating the effectiveness and 
performance of a control scheme, which is mainly used to 
measure the capability against the performance deterioration 
caused by uncertainties associated with structural properties 
and external excitations.

5.1.3.1 Influence of  seismic excitations To assess the 
robustness of the optimized fuzzy controllers to the uncer-
tainty associated with external excitations, the MR damper-
based example structure subjected to two other earthquakes, 
i.e., Kobe (1995) and Northridge (1994), are investigated. 

The two recorded seismic accelerograms are scaled to have 
the same peak ground acceleration as that of the El Centro 
(1940) earthquake which is used for optimization. Qualita-
tive and quantitative comparisons with respect to the struc-
tural responses obtained from different control scenarios are 
shown in Fig. 17 and Table 6, respectively. It is observed 
that both the FLC-HD and the selected FLC-GAS control-
lers are robust to the uncertainties of seismic excitations; 
and, the selected FLC-GAS controller still shows superior 
performance in mitigating seismic responses compared to 
the human-designed fuzzy logic controller when the seismic 
excitation is varied.

(a) Time histories of seismic responses of the 3rd floor (b) Peak inter-story drift
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Fig. 13  Seismic responses of example structure under different control scenarios

(a) Time histories of control force (b) Time histories of input current
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5.1.3.2 Influence of  structural properties To assess 
the robustness of the optimized fuzzy controllers to the 
uncertainty associated with structural properties, struc-
tural responses of MR damper-based example structure 
using the selected FLC-GAS and FLC-HD controllers are, 
respectively, computed for stiffness degradations of 15%, 

25%, and 35%. The corresponding structural responses 
in terms of peak interstory drift are depicted in Fig. 18. 
As can be seen, both the selected fuzzy controller and 
the human-designed fuzzy logic controller can effec-
tively reduce the seismic-induced structural responses 
when the example structure experiences 15%, 25%, and 
35% stiffness degradations, indicating their robustness 
to the uncertainties of structural properties. Besides, it is 
observed that the selected fuzzy controller can reduce the 
structural responses to a relatively larger extent compared 
with the human-designed fuzzy logic controller.

5.2  Nonlinear structural system

5.2.1  Structure model

The example structure explored here is a ten-story nonlin-
ear shear frame equipped with MR dampers, as shown in 
Fig. 19(a). The lumped masses of the structure are given 
as m1 = 5.18, m2 = 4.92, m3 = 4.59, m4 = 4.13, m5 = 4.00, 
m6 = 4.00, m7 = 4.00, m8 = 4.00, m9 = 4.00, m10 = 4.00 
(×  108 kg), and the initial interstory stiffnesses are given 
as k1 = 2.92, k2 = 2.11, k3 = 1.96, k4 = 1.82, k5 = 1.55, 
k6 = 1.55, k7 = 1.55, k8 = 1.55, k9 = 1.55, k10 = 1.55 
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Fig. 15  Membership function obtained from selected FLC-GAS

Table 5  Rule base of selected 
FLC-GAS

Acceleration Velocity
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Fig. 16  Pareto fronts obtained 
by only optimizing the member-
ship functions or rule base
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(×  105 N/m). Rayleigh damping is utilized here, with the 
damping ratio being 0.05. The nonlinear interstory hys-
teretic behavior is represented by the Bouc−Wen model 
(Ma et al. 2004), as shown in Fig. 19(b). The parameters 
of the Bouc−Wen model can refer to (Peng et al. 2021b; 
Li et al. 2011). The maximum damping capacity of the MR 
damper is also set as 1000 kN. The NS component of the 
El Centro earthquake (1940) is used as the input seismic 
ground motion.

For high-rise buildings, more MR dampers are often 
required and the layout of MR dampers needs to be well 
designed. In this respect, apart from the FLC parameters, 
the damper deployment, i.e., the quantity of MR dampers 
installed on each floor, is also considered for optimization 

here, in an attempt to achieve a better control performance. 
Therefore, more design parameters need to be optimized, 
which has increased the dimension of the optimization prob-
lem. In the meantime, it is worth noting that, compared with 
the linear structural system, the optimization for the nonlin-
ear structural system is more computationally demanding 
due to the nonlinearity and associated complexity involved 
in structural dynamics.

According to the analysis results obtained from the lin-
ear structure, the Gaussian membership function is rec-
ommended for constructing and optimizing fuzzy logic 
controllers in terms of accuracy and fewer undetermined 
parameters; and there is no need to simultaneously con-
sider the asymmetry in both membership functions and 

(a) Kobe (1995) (b) Northridge (1994)
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Fig. 17  Time histories of seismic responses of the 3rd floor under different control scenarios and earthquakes

Table 6  Comparison of 
control objectives under 
different control scenarios and 
earthquakes

Control 
objective

El Centro (1940) Kobe (1995) Northridge (1994)

FLC-HD Selected FLC-
GAS

FLC-HD Selected FLC-
GAS

FLC-HD Selected 
FLC-GAS

J1 0.757 0.568 0.687 0.456 0.594 0.496
J2 0.864 0.679 0.858 0.531 0.826 0.676
J3 0.600 0.288 0.501 0.272 0.474 0.240
J4 0.663 0.665 0.546 0.459 0.542 0.421
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rule base. Hence, from the perspective of optimization effi-
ciency and effectiveness, only three optimization cases are 
considered for the nonlinear structural system, as listed 
in Table 7. It is worth noting that, in the first optimiza-
tion case, the human-designed fuzzy rules are used and 
only the parameters involved in membership functions and 
damper deployment are considered, because the human-
designed fuzzy rules have been proved to be more effec-
tive than the human-designed membership functions in 
FLC design. Besides, in view of structural size restriction 
and economical aspect, two constraints are considered for 
restricting the quantities of MR dampers on each floor and 
total floors, i.e.,

where pi denotes the number of MR dampers on the ith floor 
and Nmr represents the total number of MR dampers.

(20)Subject to:

{
0 ≤ pi ≤ 3 (i = 1,… , 10)

Nmr = sum(pi) ≤ 10 (i = 1,… , 10)

5.2.2  Pareto‑optimal solutions

The final Pareto-optimal solutions in the form of normalized 
structural responses versus normalized control force for the 
nonlinear structural system obtained from different optimi-
zation cases are illustrated in Fig. 20. It is observed that the 
Pareto fronts of the nonlinear structural system show more 
irregularity and complexity compared with those of the lin-
ear structural system, which is mainly attributed to the non-
linearity involved in the structural dynamics of the former. 
Besides, it is noticed that the control force ranges provided 
by the FLC-GAS-D and the FLC-GSA-D optimization cases 
are relatively smaller than that of the FLC-GA-D optimi-
zation case. Then, below the threshold line of maximum 
damper force 1000 kN (J5 = 1.0), the Pareto-optimal solu-
tions obtained from the FLC-GA-D optimization case are 
relatively closer to the vertical axis than those obtained from 
the other two cases, indicating a better performance in struc-
tural control. This phenomenon has proved again that the 
proposed fuzzy rules are effective in constructing optimal 

Fig. 18  Peak interstory drift 
under different stiffness degra-
dation levels
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fuzzy logic controllers for structural control. With the pro-
posed fuzzy rules, one only needs to optimize the parameters 
involved in membership functions for FLC design, which 
can largely reduce the number of design parameters.

The objective functions versus the total number of MR 
dampers obtained from different optimization cases are 

compared in Fig. 21. As can be seen, for all three optimiza-
tion cases, the structural responses (J1 ~ J4) show a decreas-
ing trend with the increasing number of MR dampers, espe-
cially for the displacement responses (see J1 and J3 in the 
three subfigures); and when the total number of MR dampers 
remains unchanged, e.g., the total number of MR dampers 

Table 7  Summary of 
optimization cases for the 
nonlinear structural system

Cases Variable 
number

Design variables

Membership function Rule base MR damper 
deployment

FLC-GA-D 47 Asymmetric Gaussian Human-designed rules Considered
FLC-GAS-D 72 Asymmetric Gaussian Symmetric rules Considered
FLC-GSA-D 78 Symmetric Gaussian Asymmetric rules Considered
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Fig. 20  Pareto-optimal solutions for the nonlinear structural system under different optimization cases
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taking 10, the structural responses vary owing to the varia-
tions in damper distribution (different deployments of MR 
dampers on floors) and FLC configuration (different design 
variables as shown in Table 7).

To further investigate the damper layout properties, the 
optimal solutions to the damper deployment are first nor-
malized by the bounds of the design space and then mapped 
into a 10-dimensional polygon loop (p1 to p10 denotes the 
1st floor to the 10th floor), as shown in Fig. 22. In this poly-
gon loop-based design space, the upper and lower bounds of 
a design variable are respectively represented by the outer 
and inner rings of the polygon loop (the point on the inner 
ring denotes none of dampers; the point on the outer ring 
denotes 3 dampers). It is observed that MR dampers are 
mainly installed on the bottom floors especially in the opti-
mization cases of FLC-GAS-D and FLC-GSA-D, as large 
seismic force is concentrated on the bottom floors.

Subsequently, to probe the characteristics of the opti-
mized fuzzy logic controllers, the optimal solutions to 
the membership functions and fuzzy rules obtained from 
the 3 optimization cases are collected here for analysis. 
For clarity, the solutions to the membership functions are 
first normalized by the bounds of the design space and 
then mapped into a 37-dimensional polygon (representing 
37 design parameters involved in membership functions). 
In the polygon-based design space, the upper and lower 
bounds of a design variable are respectively represented 
by the vertex and the center of the polygon; see Fig. 23. 
Subsequently, similar operations have been conducted to 
the solutions of the fuzzy rules; see Fig. 24, in which 7 
solid and dash circles from the outer loop to the inner 

loop respectively represent PL, PM, PS, ZE, NS, NM, and 
NL, respectively. As a comparison, the proposed fuzzy 
rules are also illustrated in Fig. 24, which are represented 
by red hollow triangles connected by red dash lines. It is 
observed that the solutions to the membership functions 
obtained from the FLC-GAS-D optimization case mainly 
concentrate in the central area of the design space, while 
those obtained from the other two cases show more dis-
persion, especially for the FLC-GA-D case; see Fig. 23a. 
Besides, the solutions to the fuzzy rules from the FLC-
GAS-D optimization case also show more concentration 
than those obtained from the FLC-GSA-D optimization 
case. Therefore, the solution space of the FLC-GAS-D 
optimization case is relatively more narrowed compared 
with the other two optimization cases. This has explained 
the reason why the Pareto-optimal solutions derived from 
the FLC-GAS-D optimization case are not as good as 
those from the other two cases.

5.2.3  Robustness of the optimized fuzzy controller

As the multiobjective optimization approach provides a set 
of Pareto-optimal solutions, an engineer is able to select an 
appropriate design for the specific performance requirement. 
Here, the solution, which can achieve the minimum value 
in terms of the sum of J1, J2, J3, and J4, is selected from 
each optimization case. Therefore, three solutions have been 
respectively selected from the FLC-GA-D, FLC-GAS-D and 
FLC-GSA-D optimization cases, denoted as ①, ②, and ③; see 
Fig. 20. The damper deployment, rule base and membership 
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Fig. 21  Objective functions versus the total number of MR dampers for different optimization cases
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(a) FLC-GA-D (b) FLC-GAS-D (c) FLC-GSA-D

p1

p2

p3p4

p5

p6

p7

p8 p9

p10

p1

p2

p3p4

p5

p6

p7

p8 p9

p10

p1

p2

p3p4

p5

p6

p7

p8 p9

p10

Fig. 22  Optimal solutions to the damper deployment

(a) FLC-GA-D (b) FLC-GAS-D (c) FLC-GSA-D

a1,1

a1,2

a1,3

a1,4

a1,5

a2,1

a2,2
a2,3

a2,4
a2,5a3,1a3,2a3,3a3,4

a3,5
b1,1

b1,2
b1,3

b1,4

b1,5

b2,1

b2,2

b2,3
b2,4

b2,5b3,1b3,2 b3,3 b3,4 b35
h1

q1
h2

q2

h3

q3

Fout

a1,1

a1,2

a1,3

a1,4

a1,5

a2,1

a2,2
a2,3

a2,4
a2,5a3,1a3,2a3,3a3,4

a3,5
b1,1

b1,2
b1,3

b1,4

b1,5

b2,1

b2,2

b2,3
b2,4

b2,5b3,1b3,2 b3,3 b3,4 b35
h1

q1
h2

q2

h3

q3

Fout

a1,1

a1,2

a1,3

a1,4

a1,5

a2,1

a2,2
a2,3

a2,4
a2,5a3,1a3,2a3,3a3,4

a3,5
b1,1

b1,2
b1,3

b1,4

b1,5

b2,1

b2,2

b2,3
b2,4

b2,5b3,1b3,2 b3,3 b3,4 b35
h1

q1
h2

q2

h3

q3

Fout

Fig. 23  Optimal solutions to the membership functions
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function configuration corresponding to the three selected 
solutions are respectively illustrated in Fig. 25a–c.

Three fuzzy logic controllers are then constructed 
according to the selected solutions. By combining the con-
structed controllers with the proposed inverse modeling 
technique, 3 improved semi-active control systems are 
obtained for mitigating the seismic responses of the non-
linear structure. The controllers’ robustness to the uncer-
tainties involved in structural stiffness and earthquake 
excitations are then explored. The structural responses of 
the original controlled structure have been compared with 
those of the same controlled structure with 15%, 25%, and 
35% stiffness degradations or the same controlled struc-
ture under different earthquake ground motions, as shown 
in Figs. 26 and 27, in which a good agreement can be 

observed, indicating the robustness of the developed semi-
active control systems to the uncertainties in structural 
properties and external loadings.

6  Conclusions

An improved semi-active control scheme is developed in this 
study by combing the NSGA-II optimized FLC with a newly 
proposed inverse modeling technique of MR damper. For 
validation and comparison, two example structures equipped 
with MR dampers are addressed. The main conclusions are 
summarized as follows:

Fig. 25  Damper deployment, 
rule base and membership func-
tion configuration of the three 
selected solutions
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(1) A human-designed fuzzy logic controller is developed 
by assuming uniformly distributed membership func-
tions and applying the law of the fundamental vibration 
mode-based fuzzy rules. The proposed rule base has 
been proved to be useful in the FLC design.

(2) Based on the modified Bingham-plastic model, an 
inverse modeling technique is developed for identify-
ing the input current of MR damper.

(3) Various sets of Pareto-optimal solutions have been 
obtained from different optimization cases. Com-
parison results show that optimized fuzzy controllers 
show much better control performance than the human-
designed one.

(4) To achieve a balance between optimization efficiency 
and effectiveness, it is not recommended to design a 

fuzzy logic controller with both asymmetric member-
ship functions and rule base.

(5) Compared with the Bell-shaped membership function, 
the Gaussian membership function is recommended for 
the FLC design in terms of optimization efficiency and 
effectiveness.

(6) The improved semi-active control system shows 
desired capability and robustness in mitigating seismic 
responses of both the linear and nonlinear structural 
systems.

An effective and robust semi-active control scheme has 
been proposed in this study, but the corresponding numerical 
investigations are limited to linear and nonlinear plane struc-
tures. An in-depth analysis of the proposed control scheme 
in real-life engineering structures is an ongoing work.

(a) Stiffness degradation (15%) (b) Stiffness degradation (25%) (c) Stiffness degradation (35%)
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Fig. 26  Comparison between structural responses of the original controlled structure and the same controlled structure under different stiffness 
degradation levels

Fig. 27  Comparison between 
structural responses of the 
same controlled structure under 
different earthquake ground 
motions
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