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Abstract
The question of how methods from the field of artificial intelligence can help improve the conventional frameworks for topol-
ogy optimisation has received increasing attention over the last few years. Motivated by the capabilities of neural networks 
in image analysis, different model-variations aimed at obtaining iteration-free topology optimisation have been proposed 
with varying success. Other works focused on speed-up through replacing expensive optimisers and state solvers, or reduc-
ing the design-space have been attempted, but have not yet received the same attention. The portfolio of articles presenting 
different applications has as such become extensive, but few real breakthroughs have yet been celebrated. An overall trend in 
the literature is the strong faith in the “magic”of artificial intelligence and thus misunderstandings about the capabilities of 
such methods. The aim of this article is therefore to present a critical review of the current state of research in this field. To 
this end, an overview of the different model-applications is presented, and efforts are made to identify reasons for the overall 
lack of convincing success. A thorough analysis identifies and differentiates between problematic and promising aspects 
of existing models. The resulting findings are used to detail recommendations believed to encourage avenues of potential 
scientific progress for further research within the field.
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1  Introduction

Topology Optimisation (TO) is a mathematical approach 
to mechanical and multiphysics design aimed at maxim-
ising structural performance. Spatial optimisation of the 
distribution of material within a defined domain subject 
to sets of physical and geometric constraints, effectively 
increases the design freedom compared to other design 
approaches. Since the introduction of the homogenisation 
approach for topology optimisation (Bendsøe and Kikuchi 
1988), the field has become an increasingly popular aca-
demic field as well as a practical design tool for industry, 
also fuelled by the developments in Additive Manufacturing 

(AM) permitting production of more complex features to 
better exploit the increased design freedom gained from 
TO. While the homogenisation approach demonstrated 
the promise of TO, it was considered to consist of com-
plex operations and resulted in indistinct blurry optimised 
designs. Therefore, the SIMP (Solid Isotropic Material with 
Penalisation) approach (Bendsøe 1989; Zhou and Rozvany 
1991) soon became the preferred method. This approach 
considers the relative material-density in each element of 
the Finite Element (FE) mesh as design variables, allow-
ing for a simpler interpretation and optimised designs with 
more clearly defined features. Later, alternative approaches 
to TO emerged, among others, evolutionary algorithms 
(Xie and Steven 1997), the level-set method (Allaire et al. 
2002; Wang et al. 2003), feature-mapping methods (Norato 
et al. 2004; Guo et al. 2018; Wein et al. 2020) and stochas-
tic metaheuristics such as Simulated Annealing (SA) and 
Genetic Algorithms (GA). The latter non-gradient based TO 
algorithms have been proven inefficient and intractable for 
practical problems (Sigmund 2011).

Common for the implementation of the different solu-
tion methods is that they use an iterative procedure to create 
a complex mapping from problem-defining characteristics 
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(i.e. supports, loads and objective function) to an opti-
mised structure. To ensure coherence with laws of physics 
the structure is governed by a system of partial differential 
equations. As the considered approach to TO is based on 
nested analysis and design, this system of equations must be 
solved for the intermediate solution in each iterate of these 
procedures. For problems increasing in size and complexity 
obtaining this solution becomes a highly computationally 
expensive process posing a challenge in large-scale topology 
optimisation. As accuracy and obtained detail of solutions 
are highly dependent upon the element size in FE-analysis, 
the applicability of topology optimisation for real-life design 
cases is limited by this computational complexity. Therefore, 
current developments within the field are strongly motivated 
by the desire to either limit the number of iterations needed 
to obtain an optimised structure or the computational cost 
of completing an iteration.

The technological development in high-performance 
computing has not only provided important support in the 
progress of topology optimisation, but also in other increas-
ingly popular research fields such as Artificial Intelligence 
(AI). Especially prominent is the growth within the field 
of Machine Learning (ML) and its subfield Deep Learning 
(DL), offering promising capabilities in pattern recognition 
and approximation of complex relations. Machine learning is 
roughly a collection of model-frameworks for applied func-
tion approximations when explicit descriptions of input-tar-
get mappings are difficult or impossible (Goodfellow et al. 
2018). The field has also evolved towards establishing ML-
models for approximating probability distributions rather 
than predicting specific targets (Lee et al. 2017). Due to 
such developments within the field, there has been an emer-
gence of algorithms that are able to solve specific tasks, i.e. 
object or face recognition, better than humans (Goodfellow 
et al. 2018). It is especially advances within image analysis 
by Artificial Neural Networks (ANNs) and deep learning 
which have motivated the growing research interest in apply-
ing such technologies to increase the efficiency of topol-
ogy optimisation. Assuming a regular finite element mesh 
is used to discretise the design-domain, one obtains a direct 
relation between pixels in an image and the material-den-
sity distribution throughout the elements in the mesh. This 
makes the application of well-known image analysis type 
models directly applicable to the discretised domain in terms 
of data representation. Further, as topology optimisation in 
itself consists of several approximate mappings achieved by 
iterative solvers, i.e. for solving the PDEs or optimising the 
sub-problem in each iteration, the idea of reduced and more 
direct substitutes for these operations is alluring.

In the past few years there has been an increase in pub-
lications applying AI-frameworks in an attempt to reduce 
the computational cost of TO. Many of these proposed 
frameworks are motivated by the resemblance between an 

element-based material distribution and an image, and the 
significant developments within deep learning for pattern 
recognition in image analysis. Increasing attention has, 
however, not yet yielded much significant progress. The 
existing literature demonstrates several dead ends, where 
non-transparent presentations of results oversell the promise 
of model architectures with unrealistic expectations. Neural 
network models are in some works treated as magic black-
boxes with capabilities exceeding human limits, overlook-
ing well-known limitations within the AI field. The idea 
of iteration-free TO by use of deep learning is particularly 
prominent, but also problematic. This review article is a 
reaction to these apparent misconceptions about the current 
state of AI, and what these models are capable of. Much 
like Sigmund (2011) was a response to then current trends 
in non-gradient TO, this review seeks to clarify why many 
existing AI-applications in TO seem unfruitful.

It is noted that the field of using neural networks for 
inverse design generally is expanding rapidly, not only in 
mechanics but also in a wide range of different fields, and 
not only in TO but also for many other varieties of design 
parameterisations. This review will mainly concentrate on 
TO formulations in solid mechanics, but also include some 
discussions about alternative physics applications. Consider-
ing the rapid growth and expansion of this field, there is no 
guarantee that all relevant works are included in this review, 
however, it is believed that the selection of papers discussed 
are representative of the current state of the art.

The paper is structured as follows; Sect. 1.1 gives a brief 
introduction to machine learning and neural networks, 
Sect. 2 presents the literature considered in this review and 
the different applications of neural networks presented in 
these articles, Sect. 3 addresses how to assess and evaluate 
such solution frameworks in TO, Sect. 4 discusses the limi-
tations of current AI-technology and how these are reflected 
in the reviewed literature, Sect. 5 formulates some recom-
mendations for further research into AI-aided TO and Sect. 6 
summarises the important findings and comments on future 
prospects.

1.1 � Artificial intelligence and neural networks

Artificial intelligence is a branch of the computer science 
field aiming to simulate intelligent behaviour using com-
puters (Tiwari et  al. 2018). The conceptual idea of AI 
has been present for decades, but the real acceleration in 
research interest has only been apparent over the last few 
years. The resurrection and increasing popularity is a reac-
tion to technological developments improving computing 
power and techniques, where especially the introduction 
of GPUs for more efficient parallel processing has been 
crucial or the determining factor. Currently, AI is one of 
the hottest research topics due to the prospects of efficient 
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computer-driven applications and the dream of obtaining 
AI systems capable of matching or succeeding human capa-
bilities. General AI refers to the concept of a machine able 
to mimic the intelligence of humans and can be applied to 
serve any relevant function. This type of AI is, however, not 
yet realised and the feasibility of obtaining such machines 
is unknown. Research, therefore, mostly concerns itself 
with the area of Narrow AI, which is designed for specific 
applications.

Within Narrow AI especially the sub-field of machine 
learning, and subsequently deep learning, has received 
increased attention. These sub-disciplines are focused on 
exploiting existing data to make algorithms or models 
capable of solving specific problems or serving particular 
functions.

Machine learning refers to the group of methods engi-
neered to complete specific computational tasks intelligently 
by learning from existing data. The field distinguishes itself 
from general computational sciences as it aims to automate 
the task of analytical model building using data and experi-
ence, relieving the degree of human analysis and hardcoded 
rules needed. This separation between what is seen as human 
and artificial intelligence is not consistently agreed upon in 
the scientific community. Some go as far as deeming any-
thing that is programmable as being AI, which would imply 
that conventional TO is also AI. The authors of this review 
paper do, however, support the definition presented by Cope-
land (2016), which describes the distinction by

So rather than hand-coding software routines with a 
specific set of instructions to accomplish a particular 
task, the machine is “trained”using large amounts of 
data and algorithms that give it the ability to learn how 
to perform the task.

A “traditional” gradient-based algorithm is indeed hand-
coded and does not have any such built-in learning aspects. 
All changes and update rules are pre-programmed. Given 
deterministic computing conditions and perfect arithmetics, 
repeated applications will arrive at the exact same final solu-
tion, even if the algorithm navigates through a complicated 
design space. Potential variations in final solutions may be 
caused by imperfect arithmetics or non-deterministic com-
puting, i.e. due to parallel execution, but these variations 
are not deliberate actions the algorithm does to improve 
performance for the next run, and hence nothing is learned. 
The same can be said about genetic algorithms. Given the 
same starting conditions and random seed, the algorithm 
will always converge to the same solution. If later solving 
a slightly perturbed design problem, there is no mechanism 
for exploiting knowledge from the previous study to improve 
the solution obtained for the new problem. With this defini-
tion, it is thus not correct to categorise TO in its traditional 
form as AI.

To illustrate what actually does qualify as AI, based on 
the presented definition, this section aims at introducing the 
core concepts of machine learning relevant for topology 
optimisation. The methods applied in the papers reviewed 
are specialised models based on versions and combinations 
of those to be presented in this brief theoretical introduction.

The majority of ML-methods used for topology optimisa-
tion are deep learning frameworks, meaning they are based 
on the use of Artificial Neural Networks (ANNs). Therefore, 
the following theory will focus on introducing such ANN-
based methods. This family of methods is popular due to 
the associated design-flexibility resulting in possible modi-
fications for a wide variety of applications (Janiesch et al. 
2021). An ANN mimics information processing in biological 
systems by modelling connected processing units referred to 
as neurons, where the connections between them represent 
signal transmissions.

In simple terms ANNs are used to represent non-linear 
functions, mapping some n-dimensional input to some 
m-dimensional output. Fig. 1 illustrates the general structure 
of an ANN where the neurons are represented by nodes and 
the signal transmissions as edges. The network consists of 
three elementary types of layers, namely input, hidden and 
output layers. Data are passed to the network in the input 
layer, and passed on through the hidden layers using the 
neural connections, before the mapped result is passed to the 
output layer. During each connection the signal from the ori-
gin node is multiplied by a weight and added to a bias before 
being passed through an activation function associated with 
the destination node. Different activation functions may be 
used for separate parts of the network, and the general defini-
tion is that such a function determines how the weighted sum 
of the neural input is transformed to the appropriate neural 
output. The typical choices of such activation functions is 
what introduces non-linearity in the ANN.

Fig. 1   General structure of an ANN illustrating how the input-array x 
flows through the layers of the network and is translated to some out-
put-array y . Different network architectures are achieved by varying 
the number of hidden layers, the number of nodes within each hidden 
layer and the connections between the nodes in different hidden layers
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The different layers in an ANN as such represent nested 
function evaluations of the input data to obtain the desired 
output format. The nature of the overall model is determined 
by the network architecture in terms of number of hidden 
layers and number of neurons associated with each of these 
layers, as well as the weights, biases and activation functions 
used. The weight and bias parameters of a network are deter-
mined through the training process, where the model is fitted 
to the desired application based on available data. Training 
an ANN can be seen as a form of complex regression analy-
sis or an optimisation problem, aimed at obtaining the best 
cost function for the model based on the desired input-output 
characteristics. Depending on the specific application this 
cost function may include simple measures like prediction 
accuracy or more complex measures such as distributional 
transport or equilibria to min-max games as discussed fur-
ther below. There are several different learning algorithms 
available for such tasks, these are typically categorised by 
the characteristics of the desired model and the available 
data for knowledge extraction.

Figure 2 gives a general overview of learning methods in 
terms of training strategy and how they relate to TO appli-
cations. Supervised and unsupervised learning constitute 
the most commonly considered strategies for fixed datasets 
while reinforcement learning is a different experience-based 
approach (Goodfellow et al. 2016). Transfer learning acts 
as an extension applicable to any of the other strategies. 

To further elaborate on the fundamentals of ML it is also 
relevant to give an introduction to the mathematical models 
commonly applied within each of these categories.

Supervised learning is used when the training data con-
sists of inputs with known corresponding output values, 
i.e. the x-values and desired y-values of Fig. 1 are known 
for each data sample. In this case the parameters of the 
network are updated as to minimise the prediction error, 
i.e. the loss function, between the model-obtained ( x ) and 
target output ( y ) across each of the training samples, such 
that an approximate map from input to output is achieved. 
Supervised learning is commonly applied when the aim is 
to achieve iteration-free TO (Abueidda et al. 2020; Yu et al. 
2019) or when an efficient approximation of sensitivities is 
desired (Qian and Ye 2021). In the first case the inputs could 
be the problem boundary conditions and applied loads while 
the outputs are corresponding pre-optimised structures. In 
the latter case the inputs also include information about the 
structural design, i.e. the element density values, and the 
outputs could for instance be the displacement field or strain 
energy density for each element in the structure.

Unsupervised learning is used when the model should 
detect underlying patterns without any predefined output 
images. Instead, the formulation of the loss function alone 
controls the objective of the learning process. Care is there-
fore needed to ensure that the loss function measures the 
performance for the intended task, accounting for all aspects 

Fig. 2   An overview of the common learning strategies from ML used for ANNs and their respective areas of application in TO
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of what defines a desired output. On the other hand, this 
feature makes unsupervised learning more suited than super-
vised learning for problems where there are multiple useful 
outputs for each input. This would, however, require that 
one is only interested in one of the possible outputs for each 
input and that there exists an appropriate function for meas-
uring the quality of the output. The unsupervised approach 
to achieving iteration-free TO could therefore circumvent 
the generation of pre-optimised structures by including the 
compliance and volume fraction constraint in the loss func-
tion (Halle et al. 2021). Unsupervised learning can also be 
used directly as an optimisation process of a reparameterised 
design representation (Chandrasekhar and Suresh 2021c; 
Deng and To 2021), or post-processing of an optimised 
structure by de-homogenisation (Elingaard et al. 2022).

Reinforcement learning is a process for discovering poli-
cies for how to best choose a sequence of actions to evolve 
a system from an initial state to reach some predefined goal. 
The loss function equivalent for this learning procedure 
is defined by a reward-punishment scheme evaluating the 
quality of an action. Reinforcement learning differs from 
unsupervised learning in that the possible system states and 
actions must be pre-defined. This strategy is useful for con-
ducting optimisation tasks which can be reformulated as a 
Markov decision process like binary optimisation of trusses 
by evolutionary strategies (Hayashi and Ohsaki 2020). In 
this case, the system states correspond to a truss structure, 
formed by a set of members, the actions are the removal of 
some structural members, and the punishment or reward is 
measured by whether the chosen action leads to a viola-
tion of constraints (i.e. compliance or stress). As such, the 
goal is to achieve an optimised structure satisfying the con-
straints by iteratively removing structural members, and the 
trained model is used to determine what structural members 
to remove at each iteration. This learning strategy can also 
be used for exploration of the design space by choosing dif-
ferent parameter settings for topology optimisation (Sun and 
Ma 2020; Jang et al. 2022)

Transfer learning refers to when a pre-trained model 
developed to solve a specific task is re-purposed to a second 
task using the parameters and biases of the pre-trained net-
work as initial settings in the training process for the new 
task. Knowledge gained from training the model to handle 
the initial task is as such used to limit the effort in terms 
of data samples and computational time needed to obtain 
good performance for solving a different but related task. 
The applicability and viability of transfer learning heavily 
depends on the generality of the initial task or how closely 
the different tasks are related. Transfer learning could be 
used to improve the performance of a model trained for iter-
ation-free TO on new problems with boundary conditions, 
length scale or constraints different from those covered in 
the training cases for the original model.

Several of the solution frameworks contained in this 
review incorporate what is deemed active or online learn-
ing. This could either indicate that transfer learning is con-
ducted during the optimisation procedure to improve the 
performance for the specific problem being solved, or that 
the learning procedure is re-started for each instance, where 
sequential transfer learning ensures adaption to the current 
problem. As for transfer learning, both supervised and unsu-
pervised learning can be utilised in this way.

Based on some initial guesses for the weights and biases, 
an optimisation procedure is used to iteratively update the 
parameters to improve the performance measured by the 
loss function. There are different learning algorithms with 
different settings available to perform this training process, 
and an appropriate choice of method and settings is up to 
the designer.

In supervised and unsupervised learning some version 
of a gradient-based optimisation algorithm like gradient 
descent and Levenberg-Marquardt is commonly employed to 
determine the best choice for model parameters. The concept 
of backpropagation is often exploited to compute the desired 
gradients. Backpropagation simply refers to the procedure 
of computing the gradient of the loss function with respect 
to the model parameters using the chain rule, very similar 
to TO with multiple filtering operations (Wang et al. 2011). 
Reinforcement learning problems are represented as Markov 
Decision processes and differ from the other training catego-
ries in that the sequence of actions chosen are dependent. 
Therefore, the frameworks of the applied training algorithms 
are inspired by Dynamical Programming or probabilistic 
methods like Monte Carlo simulation.

In addition to the training procedure setup, the activation 
functions and the network architecture must be determined. 
The network architecture is defined by the number of hidden 
layers, the number of nodes in each of these layers and the 
connectivity between nodes of different layers. These char-
acteristics are commonly referred to as the network hyper-
parameters and can both be determined manually or by a 
separate optimisation-like routine (Goodfellow et al. 2016).

The number of hidden layers is used to distinguish 
between shallow and Deep Neural Networks (DNNs). It is 
especially within the deep learning segment that technologi-
cal advances have had an important influence, as an increas-
ing number of hidden layers and thus an increasing model 
complexity, requires both more robust learning algorithms 
and more efficient hardware technology. As the number of 
parameters in a network grows, so does the memory con-
sumption and time needed for training. Therefore it is crucial 
to exploit the flexibility in the network structure to increase 
performance for the desired task, while limiting the size of 
the network.

There are some well-established network architecture 
types that form the foundations for most ANN models. 
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Feedforward Neural Networks (FNN) or Multilayer Per-
ceptrons (MLPs) are acyclic ANNs where information only 
moves forward from the input layer, through the hidden lay-
ers sequentially, towards the output layer (Goodfellow et al. 
2016). Feedforward neural networks are usually used for 
supervised learning of data that is neither sequential nor 
time-dependent. A network is fully connected if each neuron 
is connected to all neurons in the next layer. Such networks 
are useful as no special assumptions need to be made about 
the structure of the input. The drawback is however that this 
generality may hamper the model performance and require 
unnecessarily high computational costs.

Convolutional Neural Networks (CNNs) are a special case 
of feedforward networks which are not fully connected, and 
where weight sharing is used to make the networks transla-
tion equivariant. Translation equivariance means that the 
network has the same output for given features, regardless 
of where they are located in the input. CNNs are particularly 
useful for treating regular grids such as 2D or 3D images 
(Janiesch et al. 2021). A crucial ingredient in a CNN is the 
use of an ANN as a filter which can be seen as a sequence of 
discrete convolutions where each is followed by a non-linear 
mapping. Considering the input image to be the discrete 
function being convolved, the network weights define the 
convolution function while the activation functions intro-
duce the non-linearity in the network. The concept of weight 
sharing means that the same filter can be placed in different 
locations of the input image reusing the same weights to 
extract the same features. Typically, many layers of such fil-
ters are used, paired with pooling, downsampling, or upsam-
pling between layers. The term CNN refers to the entirety of 
the network constructed by these multiple layers of filters. 
Note that the weights are not shared between layers but only 
within each layer.

As such, weight sharing allows for the network to be 
trained to recognise the same objects anywhere in the image, 
even if the object placement is not varied in the training 
dataset. Another important benefit of weight sharing is that 
the size of the network is reduced, in terms of the num-
ber of parameters one need to adjust during training. The 
CNN-architecture therefore allows for using fewer training 
data samples to create a smaller network with improved 
performance.

The mentioned network architectures are suitable for 
supervised training and generating discriminative models, 
which are usually used for regression or classification with 
known output features. Alternatively, there are generative 
models that aim to learn some data distribution through 
unsupervised learning. One such model is the Variational 
Autoencoder (VAE) which aims at learning how to efficiently 
represent the data by compressing it to a latent vector, and 
consequently how to translate from such a latent vector back 
to the original input format. The corresponding network thus 

has an encoder-decoder structure similar to CNN, but the 
purpose is to accomplish a proficient dimensionality reduc-
tion of the data. Based on a trained VAE, new data instances 
can then be generated by sampling in the latent space and 
subsequently applying the decoding procedure. This allows 
for training a VAE to reduce the dimensionality of the design 
representation such that optimisation can be performed by 
iteratively updating the latent vector (Guo et al. 2014). The 
drawback of the VAE is that when used to generate new 
data one can obtain blurry samples as a consequence of the 
learned average data representation.

Generative Adversarial Networks (GANs) take a differ-
ent approach to the generative task by coupling a generator 
network with a discriminator used to judge the quality of 
the data samples created by the generator. The training of a 
GAN constitutes a min-max game between the two networks 
where the generator aims at improving its ability to create 
“fake” data samples imitating the available training data, 
while the discriminator is trained to distinguish whether 
some input data sample is a generated fake or not. By this 
procedure the GAN learns how to create new seemingly real 
data samples. The provided data samples could consist of 
TO-optimised structures, where the generator then learns 
to generate new believable structural layouts and the dis-
criminator learns how to detect inappropriate structures. 
In application the provided data samples could consist of 
TO-optimised structures, where the generator then learns 
to generate new believable structural layouts and the dis-
criminator learns how to detect inappropriate structures. The 
model can then be used within a framework for diversifying 
design options for a specific mechanism (Oh et al. 2019; 
Rawat and Shen 2018)

A third family of generative models is Normalising 
Flows (NFs) which, in contrast to VAEs and GANs, explic-
itly learns the probability density function of the input data 
(Kobyzev et al. 2021). These models are constructed by 
invertible transformations mapping the complex distribu-
tion of observed data to a standard Gaussian latent variable. 
The latent space is in this case of the same dimensional-
ity as the input and does therefore not suffer from the loss 
of information by averaging as VAEs do, where the latent 
space commonly serves as a compression of the input data. 
The invertible nature of the NF models allows for loss-less 
reconstruction of the input data and generative potential. 
This generative potential allows for high-dimensional image 
(Kingma and Dhariwal 2018; Dinh et al. 2016) and point 
cloud (Yang et al. 2019) generation and could be utilised for 
TO in a similar manner to VAE and GANs. NFs can further 
be used to map between image and point cloud representa-
tions (Pumarola et al. 2020) which could indicate potential 
for post-processing of TO optimized structures. To the best 
of our knowledge, there are no works in the current literature 
utilising NFs for TO.
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As such, an overview of the modelling principles at the 
core of ML-applications for TO has been presented. How 
these strategies are combined and exploited to aid in the 
development of TO solution frameworks is covered in more 
detail by the following literature review.

2 � Literature review

Initially the motivation behind combining AI with TO was 
related to the increasingly successful utilisation of deep 
learning models for image analysis and generation. This 
is reflected within the currently most popular applications 
of AI in TO, where some NN-architecture is trained in the 
hopes of generating viable structural images given prob-
lem descriptive inputs. In such approaches, one seeks to 
develop an AI-methodology replacing the need for conven-
tional iterative optimisation methods. Other applications of 
AI-methods related to sub-procedures of the optimisation 
process are however also receiving increasing interest, with 
the hopes that one can develop models to support or fully 
replace certain computationally expensive components of 
the solution procedure.

2.1 � Overview

The current literature on AI in TO can be categorised into 
five main groups. For the purpose of this review, these cat-
egories are defined as Direct design, Acceleration, Post-pro-
cessing, Reduction and Design diversity. This section will 
give a quick overview over what these categories entail and 
connect them to the principal AI concepts utilised within 
each category.

Direct design refers to the strategy of creating learning 
models to directly predict an optimal structure when given 
some problem descriptive characteristics, and as such the 
aim is to achieve optimal structures “instantly”, in an itera-
tion-free manner.

Acceleration refers to learning models used as supple-
ments to conventional iterative solution methods, with the 
aim of reducing the computational costs. This is typically 
achieved through replacing the FE-analysis with some 
approximate model at a subset of the iterations, or by con-
structing a direct mapping between intermediate structures 
effectively skipping some subset of iterations.

Post-processing is defined as the modification of struc-
tures obtained through conventional TO or homogenisation 
usually aimed at ensuring manufacturability by changing the 
shape, determining microstructure configurations, smooth-
ing of boundaries or as a substitute for de-homogenisation 
approaches.

Reduction is performed with the aim of reducing the size 
of the design space by constructing a model that describes 

the topology in a more compact way. This reparameterisa-
tion then allows for iterative optimisation with fewer design 
variables, which effectively speeds up the solution proce-
dure. Note that such approaches resemble standard Model 
Order Reduction methods, but with the distinction that the 
nature of the AI approaches is different, since these are not 
explicitly programmed.

Design-diversity concerns generating multiple design 
solutions to the same topology optimisation problem and 
is somewhat related to finding the Pareto-front in multi-
objective optimisation. A set of several candidate structures 
exhibiting different desired characteristics are generated 
providing multiple different design options to choose from.

For ease of describing trends within the different applica-
tion areas Table 1 sorts most of the reviewed articles into 
appropriate, more specific sub-categories of each of the five 
main groups.

2.2 � Categorisation

Within each of the five main categories presented, the 
research is built on similar fundamental ideas and motiva-
tions. Further, the resulting model performances exhibit 
mostly comparable strengths and weaknesses. Therefore, 
this section will focus on the contents of each category in 
a collective manner, highlighting works if distinction is 
deemed necessary.

2.2.1 � Direct design

The direct design model approach is currently one of the 
most popular applications of AI in TO, and the aim is to 
directly achieve an optimised structure for a given problem 
definition, completely removing the need for expensive itera-
tive procedures. Commonly this is achieved by implement-
ing neural network architectures popular in image segmenta-
tion, like CNN or GAN. The structural design representation 
is typically defined by element densities within a regular 
FE-mesh, similar to the conventional SIMP approach, but 
some base their structural representation on geometrical fea-
tures inspired by Feature Mapping or Moving Morphable 
Components (MMC) techniques (Zheng et al. 2021b; Hoang 
et al. 2022).

The considered optimisation problem is usually mini-
mum compliance subject to a volume constraint, but other 
applications like thermal conduction problems, Li et al. 
(2019) and Lin et al. (2018), are also considered. Model 
inputs consist of boundary conditions, applied forces 
and volume fraction, given in spatial representation by 
a sequence of input matrices with dimensions equal to 
those of the considered FE-mesh. In certain works, addi-
tional inputs related to initial stress or strain (Nie et al. 
2020b; Yan et al. 2022) and displacement fields (Wang 
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et al. 2021c) are also included. The trained network is then 
used to map these inputs to some final structural design, 
either by regression as continuous grey scale element-den-
sity values, or by classification as binary black-and-white 
values indicating whether material is present within an 
element or not. Garrelts et al. (2021) presented a slightly 
different approach aiming at training a model to also han-
dle rotated pictures taken of hand-sketched boundary 
conditions as input, and then mapping this image to an 
optimised Michell structure.

Most of the direct design models are trained in a super-
vised (CNN) or semi-supervised (GAN) manner where a 
large number of optimised structures are used as training 
output target samples. This means that at least one complete 
run of conventional TO must be completed for each problem 
case considered in the training process. Therefore it is criti-
cal to limit the size of the needed training dataset as well as 
the number of elements in each sample to make the compu-
tational time for building the desired model viable. This is 
however in conflict with obtaining a well-performing model 
that is able to handle a wide variety of different problems, 
as neural networks perform better on inputs that are similar 
to the previously seen training samples. These factors are 
likely the reason for most direct design models in the litera-
ture focusing on problems with fixed or very similar support 
conditions, only varying the volume fraction and applied 
loads, where the number of and possible placements of loads 
typically also come with limitations.

Common for most of these network architectures, is that 
they avoid fully connected layers. Therefore, in theory, they 
allow for flexibility in terms of the dimensions of and num-
ber of elements in the considered FE-mesh. Still, the pre-
sented training and test problems are typically restricted to 
a small fixed mesh where the input matrices and the output 
image for the network are explicitly defined by the dimen-
sions of this fixed mesh, such that this potential adaptability 
is not exemplified. Further, when the network is only trained 
for the same regular mesh dimensions as a direct mapping 
from boundary conditions to an optimised structure, it is 
unclear whether the model is readily translated to problems 
with different mesh dimensions or resolutions, even given 
the inherent flexibility of the CNN. Zheng et al. (2021c) 
made some effort to ensure mesh flexibility by designing 
a network for a larger reference mesh with a mechanism 
for defining empty elements, such that the mesh dimensions 
could be varied within this reference domain. Their approach 
implies that the fixed-dimension reference mesh is defined 
before training, where it must be large enough to encompass 
the meshes of all problems the network will be used to solve 
in the future. In this review, it is found that none of the pub-
lished direct design models explore whether it is possible to 
fully exploit the generality offered by CNN-types networks, 
in terms of input image dimensions.Ta
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If the network architecture is designed specifically for 
certain mesh dimensions, then the network size increases 
with the number of elements in the mesh, resulting in more 
parameters to be determined during training and a larger 
memory consumption for storing the model. In turn, this 
also increases the cost of obtaining training samples, as 
finer meshes imply more time needed to optimise a struc-
ture using conventional TO. It appears that such perceived 
mesh dependency of the direct design models is a limiting 
factor for research within this class of approaches. Further, 
the expense of generating high-resolution training samples 
and the increased structural complexity associated with 
higher resolution FE-meshes, are likely determining factors 
explaining why most of the current literature only consid-
ers low-resolution meshes, typically with fewer than 4,000 
elements and at the most 26,000 elements (Lei et al. 2019; 
Li et al. 2019; Zheng et al. 2021c), which is five orders of 
magnitude below state-of-the-art TO methods using two bil-
lion elements (Baandrup et al. 2020).

Yu et  al. (2019) considered 2D coarse grid problem 
cases with fixed boundary conditions, randomly sampled 
volume fraction between 0.2 and 0.8, and random single-
point directional force application. By repeated sampling 
and application of open-source topology optimisation code 
(Andreassen et al. 2011) 100,000 corresponding optimised 
structures are generated, where a random subset of 80,000 of 
these are used for training and validating the network, while 
the remaining 20,000 are used for testing. The restricted 
sampling space, the large number of generated structures 
and the random selection of training and test data means 
that there is a high likelihood of each test-sample being simi-
lar to one of the training cases. Still, the reported results 
show that the prediction ability of the model is lacking when 
applied to the test-cases as larger structural disconnections 
are apparent in the predicted structures. Thus, thousands of 
expensive datasamples are collected to train a network which 
fails at solving problems strongly related to those seen by 
the network during training. Nakamura and Suzuki (2020) 
used the results reported by Yu et al. (2019) as a benchmark 
for their direct design network. By increasing the number 
of optimised structures used for training and validation of 
the model to 330,000, within the same sample-space, they 
reported a greater prediction accuracy in terms of pixel-wise 
density errors, as expected when allowing for more than 
three times the number of training instances. However, the 
worst case solutions still exhibit structural disconnections, 
implying a large prediction error in terms of the compliance 
of the design.

To illustrate both why such disconnections may occur 
and their effect on the structural performance, a simple test 
case inspired by the type of problems considered by Yu et al. 
(2019) and Nakamura and Suzuki (2020), is presented in 
Fig. 3-4. By reducing the density of two of the elements 

in the original structure (4a), the central bar is almost dis-
connected completely (4b). Applying volume-preserving 
thresholding (Sigmund and Maute 2013) the corresponding 
solid-void structures (4c) and (4d) are obtained, where a full 
disconnection is now obtained. The structural compliance 
with respect to the boundary conditions (Fig. 3) is indicated 
for each of the four presented structures. The presented test 
case is as such modelled on a square domain with a clamped 
left side, subjected to an external single-point load of hori-
zontal magnitude 0.5 and vertical magnitude 1.0 applied to 
the top right node. 

Table 2 presents the mean average density error (MAE) as 
well as the relative increase in compliance (Gap) when com-
paring the connected and disconnected structures for both 
the grey scale and black-and-white designs. Firstly, it can be 
observed that for the grey scale structures, if the MAE was 
used to assess the difference between the two, they would 
be nearly identical. However, the compliance of the semi-
disconnected structure is 12.9% higher than for the origi-
nally connected. After thresholding to fully black-and-white 
designs this effect is intensified, as the MAE remains below 
0.4%, but the compliance is more than doubled. Therefore, if 
the model is trained with an increased focus on minimising 
errors related to image-reconstruction (e.g. MAE or Binary-
Cross-Entropy) there is a risk of overlooking adverse effects 
when it comes to model performance. The works of Luo 
et al. (2021) and Behzadi and Ilies (2021) corroborate this 
suspicion, as physical performance or topology awareness is 
included in the loss function of the direct design model and 
a reduction in structural disconnections is observed. Halle 
et al. (2021) further considered fully unsupervised learn-
ing for direct TO where no disconnections are observed in 
the illustrated examples, but occurences of discontinuities 
and a loss of fine features are still presented. Note that with 
increased physical information embedded in training, FEA 
is needed each time the loss function is evaluated, making 
the actual training procedure much more computationally 
expensive. This could, however, reduce the overall cost of 

Fig. 3   Problem boundary conditions considered for exemplifying the 
effect of grey scale and structural disconnections
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training data generation by obtaining higher accuracy using 
fewer optimised structures for training.

By presenting both the grey scale and 0-1 designs, other 
important aspects of comparing optimised structures are also 
highlighted. Firstly, considering the compliances of the two 
connected structures from Fig. 4, volume-preserving thresh-
olding improves the structural performance significantly. 
Secondly, a partial disconnection by a low-density region 
in grey scale may result in a full disconnection when thres-
holded to a 0-1 design, which leads to a significant increase 
in compliance. As such, thresholding is important to reveal 
the true structural performance. Therefore, in line with the 
recommendations of Wang et al. (2021b), solid-void designs 
are advised for a fair comparison of optimised structures.

Based on the presented example, it is explained why 
MAE alone is not sufficient for either training a direct design 
model nor evaluating performance of a solution framework, 
as this measure may erroneously overestimate the perfor-
mance of a structure. Further, the degree of grey scale may 
influence compliance comparisons between structures. 
Either a structure with more grey scale can be at a disadvan-
tage or it can fail to capture a crucial structural disconnec-
tion. Hence, it is clearly a fundamental mistake to compare 
discrete to grey scale designs, or vice versa.

Bielecki et  al. (2021) proposed an extended direct 
design approach utilising a three-step procedure. Given 
the problem-defining boundary conditions a DNN is first 

trained to realise a structure by determining the material 
distribution within the design-domain. Thereafter a CNN 
is used for structure refinement achieving reduced grey 
scale and smoother boundaries. In the last step conven-
tional TO is applied for a maximum of 5 iterations to post-
process the structure to ensure physical consistency and 
volume-constraint coherence, i.e. removing disconnections 
and ensuring that constraints are satisfied. The model was 
trained separately for 2D and 3D problems with fixed mesh 
sizes of 80x80 and 20x20x20 elements, respectively. Simi-
lar conditions for sampling of training data were utilised in 
both cases, where different volume fractions and supports 
or loads in corner nodes constituted the sampling space. 
To avoid rigid body motion, 3 out of 8 and 6 out of 24 
degrees of freedom (DOFs) were fixed throughout for 2D 
and 3D cases, respectively. In total 614,304 samples were 
optimised and used for training for the 2D case, while for 
the more time-consuming 3D-case the training set size was 
restricted to 45,000 samples. Test-cases used for model 
assessment are obtained by sampling from the same prob-
lem space as for the training data generation. Comparative 
results are not reported across all 1,000 test samples, but 
a significant speed-up is obtained and for the presented 
results the compliance values are at least as good as those 
obtained by conventional TO. This holds true for both the 
2D and 3D cases, but as a significantly smaller fraction of 
the problem space is used for training the 3D-model, the 
overlap between training and test problems is expected to 
be smaller. Due to the large number of optimised struc-
tures needed for training, the construction of the model 
is computationally expensive. Further, as the problem 
instances considered are sampled within a very restricted 
subset of possibilities that utilise the same coarse mesh 
resolution, transferring this framework to problems outside 
the training instance distribution is expected to increase 
the computational cost further.

Fig. 4   Compliance minimisation example for boundary conditions in 
Fig. 3 (subject to a volume fraction constraint of 0.2) illustrating the 
effect of disconnections on a 32x32 mesh. The grey scale structure (a) 

is obtained by top88(32,32,0.2,3,1.5,2) (Andreassen et al. 
2011). Disconnections are imposed (b) and thresholding is applied to 
obtain the 0-1 counterparts (c)-(d)

Table 2   The relative pixel-wise (MAE) and compliance error (Gap) 
between the original structure and the disconnected version for the 
grey scale and black-and-white cases from Fig. 4

Grey scale Black-and-white

MAE 0.0014 0.0039
Gap 0.1288 2.0148
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A common trend amongst the papers within the direct 
design category is the requirement of a large set of TO-opti-
mised structures, which becomes computationally expensive 
to collect and is likely the reason why these papers only 
consider very coarse scale fixed meshes and few variations 
in boundary conditions. Even with a large amount of train-
ing data and a very restricted problem space most works 
present results with poor structural performance. The use of 
image-reconstruction type loss functions only is a popular 
way of training the presented ANNs, significantly reducing 
the training time compared to if structural performance was 
to be integrated. Image-based errors do, however, not reflect 
the quality of a structure and thus the network learns based 
on an incorrect measure. There are other reasons for why the 
premise of this application category is flawed, which will be 
covered later in Sects. 3 and 4.

2.2.2 � Acceleration

The application of AI-methods for accelerating TO is receiv-
ing increasing attention, where approaches both aim at lim-
iting the number of iterations and complex computations 
needed within a conventional iterative optimisation proce-
dure. The strategies in this category offer a more diverse pro-
file than for the previously described direct design models, 
but there are some key similarities in the motivational ideas 
behind the presented works.

Sensitivity analysis An AI-method is considered to apply 
to sensitivity analysis when the aim is to replace or reduce 
the need for exact evaluations of sensitivities. Some of the 
works (Aulig and Olhofer 2013; Olhofer et al. 2014; Aulig 
and Olhofer 2015) contained in this section are only appli-
cable, in the sense that they actually facilitate a speed-up, in 
cases where the sensitivities are difficult to obtain by con-
ventional FEA and adjoint analysis. The claim of existence 
of such TO problems is often heard, but seldom exemplified. 
Other works (Chi et al. 2021; Qian and Ye 2021; Keshavar-
zzadeh et al. 2021b) try to reduce the computational load 
of, or completely eliminate, FE-analysis needed in the TO 
process.

Common for these approaches is that they aim to train a 
model to approximate complex computations by some func-
tional relation. With this purpose some feed-forward neural 
network is constructed and trained as a regression model 
using supervised learning. Typically the network inputs con-
sist of at least the current element densities. In some cases 
the loading conditions are also included and for procedures 
where FEA is still present in some form, displacement or 
strain energies are also supplied.

A single pass through the network may apply to one indi-
vidual element, a patch of elements within the structure or 
all elements in the structure simultaneously. Approaches 
only considering subsets of elements at a time can allow for 

increased generalisation ability in that mesh- and problem-
dependencies are potentially reduced, but on the other hand, 
important global information may be overlooked. Further, 
FE-analysis of a single structure and its density histories 
can provide a larger set of training samples with varying 
characteristics. As such, data generation is in most cases 
significantly cheaper than for the direct design models and 
there is potential to naturally capture greater input-diversity. 
By considering such sub-structures, the similarities between 
training and test data could be expected to increase, even 
with vastly different boundary conditions and load cases.

Lee et al. (2020) proposed a solution framework based on 
the conventional Optimality Criteria (OC) method, where 
two separate CNN-models are trained to predict compli-
ance and volume fraction, respectively. For compliance 
this means that the need for FEA to evaluate the structural 
integrity is eliminated, replacing the computations with a 
less complex functional approximation. The conventional 
computation of the volume fraction is of linear complexity 
which is now replaced by some non-linear function repre-
sented by the corresponding CNN. The overall idea is that 
these neural networks will reduce the computational load 
of each iteration in the optimisation process, resulting in a 
significant speed-up. Most of the presented experimental 
results are focused on the network’s ability to predict volume 
fraction and compliance for a given structure, and thus the 
integration of the model in a TO process, where element 
sensitivities are needed, is not detailed. The MBB-beam and 
cantilever beam with fixed mesh discretisation and varying 
volume fractions are considered throughout the paper, both 
for training and testing. A full assessment of the method 
performance is therefore difficult, due to large similarities 
between training and test cases. Papadrakakis et al. (1998) 
and Sasaki and Igarashi (2019) similarly presented ANNs 
trained to predict objective and constraint values of a struc-
ture, aimed at replacing the fitness-evaluations in each itera-
tion of a GA framework. Qiu et al. (2021) trained networks 
to iteratively remove material from a fully solid domain, 
similarly to evolutionary structural optimisation, but without 
the use of FEA in the actual optimisation procedure.

Aulig and Olhofer (2013); Olhofer et al. (2014) and Aulig 
and Olhofer (2015) focused on designing regression-type 
ML-models for predicting sensitivities when the adjoint 
approach is unattainable (not exemplified in their work) 
such that finite differencing is the only alternative. Standard 
compliance minimisation problems are used as examples, 
for which the formulas for exact sensitivities are known. 
The model inputs are related to the element densities and 
displacements (computed by FEA). In compliance minimi-
sation the exact gradient of an element with respect to the 
objective is a function of these same features. This means 
that a good performance in terms of sensitivity accuracy 
can be expected for this exact problem formulation, but no 
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conclusions about transferrability to other formulations can 
be made. A framework for further limiting the computational 
cost of the finite differencing alternative is also presented. 
Here the computational load of FEA is reduced by adaptive 
sampling of elements needed for exact evaluation, reducing 
the degrees of freedom in the FEA. This strategy is, how-
ever, not related to ML or NNs, and thus outside the scope 
of this review.

If the desired effect of the model is to reduce the compu-
tational load of FEA, but not necessarily completely remov-
ing this analysis technique from the optimisation procedure, 
another option for training the model is to facilitate for 
online learning. Online learning refers to when the model is 
not trained on pre-collected data, but rather trained during 
application to adapt to a specific problem. For the consid-
ered purpose, this entails that the model is trained during 
the optimisation run where FEA is then only completed in 
a subset of iterations and the obtained solutions are used in 
a sequential transfer learning procedure with an increasing 
number of data samples. Chi et al. (2021), and similarly 
Zhang et al. (2021a), presented such an approach where a 
transfer learning-based procedure is conducted after each 
set of new training data additions as to iteratively make the 
model more precise. The authors propose to perform the 
optimisation as a two-scale approach where a coarse grid 
version of the structure is subject to FEA at each iteration, 
while the trained model is applied to map these results to a 
finer mesh where FEA is only applied at a subset of the itera-
tions. These approaches are as such not only concerned with 
sensitivity analysis, but utilise a multi-level TO approach 
to obtain the computational reductions associated with the 
sensitivity analysis. The presented results show promise and 
accuracy of the fine grid sensitivity predictions appear to 
improve with this online-approach. The approach and result-
ing speed-up are similar to those of multi-resolution tech-
niques (Groen et al. 2017; Nguyen et al. 2012).

The main challenges for ANNs aimed at reducing the 
computational cost spent on FEA during optimisation are 
two-fold. Firstly, some approaches build on erroneous 
premises where the conventional alternatives are assumed 
less efficient than they really are, leaving these approaches 
redundant. Secondly, models developed for very specific 
problem instances become too restricted to be used as a 
general framework for TO. As for the multi-resolution 
online-learning approaches, these may be affected by coarse 
mesh restrictions of fine features when projected to a higher 
resolution. This phenomenon is common for the two-scale 
methods reviewed and will be covered in more detail when 
covering the upscaling category in Section 2.2.3.

Convergence If a model is trained to map between inter-
mediate solution structures with the aim of reducing the total 
number of iterations in the optimisation procedure, it is said 
to pertain to accelerating convergence. Typical choices of 

methods are based on either a direct design-like model (Ye 
et al. 2021; Joo et al. 2021) or some time-series inspired 
forecasting (Kallioras et al. 2020). The direct design-type 
models map the input grey scale image of an intermediate 
design to an almost converged structure. Alternatively, the 
time-series inspired methods consider the trajectories of the 
densities of the individual elements and seek to directly map 
each element from a given iteration to a close to converged 
state.

The first approach inherits most of the challenges asso-
ciated with direct design models. If the full image is to 
be mapped at once, the constructed model is likely to be 
mesh-dependent. Ensuring diversity and accuracy for dif-
ferent problem characteristics is difficult and comes with a 
large computational cost related to data sample generation. 
It does, however, benefit from the fact that more descrip-
tive data is available as network inputs. From the performed 
optimisation iterations, used to reach the intermediate struc-
ture, both the displacement field and density history of the 
elements are known and can be used as inputs to the model.

Sosnovik and Oseledets (2017) trained a CNN to translate 
the grey scale image of the structure obtained after k SIMP 
iterations to a final black-and-white design. The training 
dataset was generated by running 100 iterations of SIMP 
on pseudo-random problem formulations on a 40x40 mesh. 
As inputs to the network the element densities at iteration 
k ≤ 100 and the latest change in densities from iteration k−1 
to iteration k are supplied as two grey scale images. Different 
strategies for sampling k in each training sample were tested, 
and the output target considered was the black-and-white 
image obtained by thresholding the optimised structure at 
k = 100 . The trained model is shown to outperform stand-
ard thresholding for the training dataset, but when tested on 
new problem formulations, heat conduction problems, the 
performances become similar. Performances are measured 
by binary similarities between structures, and no measures 
for compliance or volume fraction of the obtained struc-
tures are reported. Structural results are also illustrated for 
problems similar to the training datasamples on finer grids 
(up to 72x108 elements), but the effect seems to simply be 
smoothing of boundaries compared to coarser structures. 
Joo et al. (2021) proposed a similar approach, but instead of 
mapping the full structure at once, their model divided the 
structural image into overlapping sub-modules, which then 
separately are mapped to an optimised sub-structure, and the 
complete structure is subsequently obtained by integrating 
over these sub-modules.

One benefit of considering the structural image as patches 
or a whole instead of element wise is that some information 
about the interaction between the elements can be retained 
and learned by the CNN. In the time-series approach how-
ever, there is an assumption of independent density-trajec-
tories of each element which might be problematic exactly 
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because of the fact that the elements must have appropriate 
interaction to form a viable structure. Some of these inter-
actions may be observable for the network given similari-
ties in their iterative density histories before the mapping is 
applied. A benefit of this approach is that the generalisation 
ability of the proposed method is likely to increase as there 
is less mesh- and problem-dependency reflected in the train-
ing samples. Success of this method does, however, depend 
on the expected iterative trajectories being similar even for 
different problem definitions. A moving structural member 
will lead to bell-type trajectories, meaning the direction of 
the density-trajectory of the concerned elements change sev-
eral times during the full iteration history. The assumption 
is therefore that an element’s density-trajectory during the 
first few iterations is sufficient to distinguish the elements 
for which this happens, no matter what structural problem 
is considered.

Kallioras et al. (2020) proposed a time-series approach 
where the iterative element density histories over the first 
36 SIMP iterations were used as input to a neural network 
which individually maps the element densities to close-to-
converged values to form a structure from which SIMP is 
continued until convergence. The model used is a Deep-
Belief Network (DBN) which is a type of ANN where 
feature detection to achieve dimensionality reduction is 
conducted in each layer. As such, the input vector of the 
iterative density history of an element is gradually reduced 
to a final density value throughout the network. The net-
work was trained on data samples consisting of the itera-
tive history obtained from solving versions of the cantilever 
and simply supported beams with different length-scales 
and discretisations. The number of finite elements in these 
training samples ranged from 1,000-100,000, where four 
sets of boundary conditions for two different length-scales 
were solved for each resolution. When testing the model on 
problems different from the training cases, a computational 
speed-up is achieved. The speed-up is reported in terms of 
the number of SIMP-iterations needed to reach convergence, 
compared to the conventional approach. The obtained solu-
tions have compliance values approximately matching those 
of the SIMP-obtained benchmarks. It should be noted that 
the comparisons to the conventional SIMP-approach is done 
in grey scale, which as shown in Fig. 4 may significantly 
underestimate the actual stiffness of a structure and thus the 
comparative results may not be representative.

Common for the presented convergence applications is 
that they assume part of the iterative density-history early 
in the optimisation procedure is sufficient to determine the 
nature of the final result. This can be a problematic assump-
tion for problem instances where structural members move 
during optimisation causing large changes in both the indi-
vidual element densities and the density field as a whole. 
The time-series approach based on individual pixel density 

histories is especially unlikely to succeed, but there may still 
be potential for approaches considering the global design 
change (Muñoz et al. 2022). It is reasonable to assume that 
given previous iteration history it is possible to predict the 
density-change after a subset of consecutive iterations, but 
by eliminating significant parts of the iterative search one is 
likely to face some of the same challenges as for the direct 
design applications.

2.2.3 � Post‑processing

AI-methods are considered as post-processing procedures 
when an optimised structure is used to generate the model 
input. As such, this application category pertains to methods 
for interpolating the given structure to a finer mesh resolu-
tion or shape optimisation and feature extraction for manu-
facturability purposes.

Shape optimisation When the aim of the formulated 
model is to alter the features of the obtained structure to 
ensure practical and cost-efficient manufacturability require-
ments are satisfied the method is said to perform post-pro-
cessing by shape optimisation. Design aesthetics may also 
motivate such applications, where for instance Vulimiri et al. 
(2021) considered TO for minimal compliance while adher-
ing to some reference design for structural patterns like cir-
cles or spider-webs.

Two of the works presented in this category, Lin and Lin 
(2005) and Yildiz et al. (2003), each proposed versions of 
ANN designed to perform hole-classification in a TO-opti-
mised structure. Lin and Lin (2005) proposed a two-stage 
procedure where the first ANN is trained to recognise the 
underlying basic geometric shape of the hole, when given 
an input in the form of invariant moments describing the 
geometric characteristics of the hole in the optimised struc-
ture. The second stage consists of several ANNs, one for 
each basic geometry group defined for the first ANN, and 
they are each trained to fit a detailed shape template for the 
hole, within their basic geometry group. The input format 
used is a set of distance and area-ratios of the hole image 
represented in a dimension-independent manner, and the net-
work uses this information to map the hole to one of twelve 
predefined geometric shape templates within the considered 
shape-category. Yildiz et al. (2003) trained a single ANN 
which uses the grey scale image of the TO-optimised struc-
ture as input and computes confidence measures for each 
hole in the structure, based on the perceived similarities to 
four basic feature templates. The identified hole-shapes are 
then used to formulate a feature based part model which is 
subjected to shape optimisation to obtain the desired final 
structural layout. The main challenges associated with the 
presented works relate to the fact that they both rely on man-
ually defined sets of possible shapes. Further, as the sizes of 
these sets are limited it is unclear whether anything is gained 
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from applying AI-based models to perform the identification 
tasks. Yildiz et al. (2003) also found, by testing different 
ANN architectures, that the best results were obtained when 
the ANN only contained one hidden layer. This raises the 
question of whether alternative and simpler deterministic 
methods could achieve similar results.

Hertlein et al. (2021) proposed a direct design type GAN-
model with integrated manufacturing constraints for addi-
tive manufacturing and paired it with a post-processing pro-
cedure utilising conventional TO. The inputs to the model 
consist of channels relating directly to the 64x64 mesh con-
sidered, indicating supports and loads as well as build plate 
orientation to account for the manufacturability. The input 
encoding is constructed such that existence of material is 
encouraged in elements where the optimised structure is 
expected to have material, here defined by the locations of 
loads and build plate. The output from the GAN is a grey 
scale image representing the optimised topology. Training 
data are obtained running conventional TO (Andreassen 
et al. 2011) with an integrated overhang filter as presented 
by Langelaar (2017). It is also suggested that the resulting 
structure is post-processed by running some number of itera-
tions of this conventional alternative, to further eliminate 
overhanging features and correct any compliance-related 
inaccuracies.

Overall, this type of application of AI-technology is not 
well-studied in the literature. This might be due to the intro-
duction of filters and manufacturability constraint in the TO 
problem formulation and solution process reducing the need 
for post-processing, or that alternative conventional methods 
for post-processing with satisfactory performance exist. It 
would be of great benefit if ML could be used to extract 
CAD geometries from optimised designs, as many manufac-
turing methods require a format for structural representation 
which is not directly attainable from density-based designs. 
The viability of obtaining such a model is, however, not 
guaranteed. There is a body of literature on reverse engi-
neering methods (Buonamici et al. 2018). These methods 
reconstruct CAD models from acquired 3D data in the form 
of triangle meshes or point clouds. Some methods produce 
constructive solid geometry (CSG) models (Du et al. 2018). 
These methods are often based on detecting primitive shapes 
in the input (Li et al. 2011) whereas Eck and Hoppe (1996) 
generated B-Spline patches from the input. Such methods 
could be exploited for post-processing of TO-optimised 
structures.

Upscaling The works belonging to the post-processing 
upscaling category typically consider a coarse grid struc-
ture optimised using conventional methods and apply some 
type of neural network to translate this structure to a finer 
mesh. There are various approaches to how to format the 
input to the considered model where Wang et al. (2021a) 
and Yu et al. (2019) evaluated the entire structural image 

of element densities as input while Napier et al. (2020) and 
Xue et al. (2021) divided the structure into patches of ele-
ment densities that are processed individually but may have 
some overlap in terms of what elements belong to each 
patch. The latter option is likely to be the most beneficial in 
terms of generalisation ability, especially as the models have 
the potential to be more or less mesh-independent. Further, 
the patch-based approach may allow for fewer optimised 
high-resolution structures to be used for training data, and 
thus overall significant computational cost-savings may be 
achieved. One concern is, however, that the applied model 
does not have any concept of the structure as a whole, such 
that only boundary fine-tuning and no topology refinement 
is obtained.

Kallioras and Lagaros (2021) proposed a method (DL-
scale) that somewhat differs from this approach as they 
apply deterministic upscaling, iteratively paired with the 
DBN convergence acceleration framework proposed in 
Kallioras et al. (2020). This work does therefore not apply 
AI-methodology for the actual upscaling, but is mentioned 
here as the reported results still reflect some of the com-
mon challenges within this category. Even though it is true 
that they observe significant speed-up for increasingly finer 
grids it becomes evident that the solutions obtained by the 
modified approach has a reduced capability of capturing 
finer features, when compared to the corresponding SIMP 
optimised structures. Further, for several of the reported 
cases, the level of grey scale appears to be higher for the 
DL-scale obtained structures, and as the minimum compli-
ances compared in each test case are computed for grey scale 
images, it is unclear whether the overall better objective val-
ues obtained using DL-scale actually are representative. The 
lack of finer structural components when applying upscaling 
is a common occurrence in the literature, and works like 
Wang et al. (2021a) illustrate how the attempt to capture 
fine features might lead to structures with a large degree of 
blurry grey scale areas or even structural disconnections. 
Essentially, details on the fine scale are limited by the coarse 
scale resolution, which effectively works as a crude length-
scale constraint.

Elingaard et al. (2022) proposed a CNN for mapping 
a set of lamination parameters on a coarse mesh to a fine 
scale design promoting very fine features. The network is 
as such used as a computationally efficient substitute for 
de-homogenisation (Pantz and Trabelsi 2008; Groen and 
Sigmund 2018) to overcome the current bottleneck in extrac-
tion of fine scale results in homogenisation-based topology 
optimisation. As inputs to the network the orientations from 
a homogenisation-based TO solution are used. The network 
is then used to upsample this information to an intermedi-
ate density field, which is post-processed using a sequence 
of graphics-based steps running in linear time to obtain the 
final high-resolution one-scale design. Unsupervised training 
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is utilised to avoid the need for generating expensive targets 
and cheap input data generation for training is ensured by 
sampling from a surrogate field of low-frequency sines. The 
training is as such performed independently of the physical 
properties of the underlying structural optimisation problem, 
which makes the method mesh and problem independent. 
By numerical experiments, it is found that this approach 
achieves a speed-up of factor 5 to 10, compared to current 
state-of-the-art de-homogenisation approaches.

Common for the presented two-scale approaches aimed 
at translating structural information from a coarse to a fine 
grid, using the same measures, mainly densities or sensi-
tivities, is that the coarse scale mesh imposes length-scale 
constraints on the fine grid. This means that little informa-
tion is gained by utilising ANNs to perform this mapping, 
when compared to conventional interpolation techniques. 
This challenge does not occur if the ANN is applied for 
de-homogenisation, as here it serves as a tool for replacing 
a computational process which is a part of a pre-existing 
upscaling scheme where details are constructed from coarse 
scale information based on predefined rules.

2.2.4 � Reduction

The typical approach for achieving reduction or problem 
re-parameterisation by use of AI-methods is to construct 
one or more inter-connected neural networks with the aim 
of representing a structure using fewer design variables and 
thus decrease the computational load of the optimisation 
procedure. This can be done by training a VAE for feature 
extraction and exploiting the reduced dimensionality of the 
obtained latent space to conduct the optimisation on this 
latent vector. Alternatively, the network can be constructed 
as a direct surrogate for the optimisation process such that 
the training of the network is equivalent to solving the given 
optimisation problem exploiting that the parameters and 
biases of the network are sufficient as design variables.

Guo et al. (2018) considered a multi-objective thermal 
conduction problem for which a VAE is trained in a super-
vised manner, with the aim of minimising the reconstruc-
tion-error of the encoder-decoder network. The model is 
then tested by integration in various conventional optimisa-
tion frameworks, including gradient-based methods, genetic 
algorithms and hybrid versions of the two. By encoding the 
intermediate structure, design-updates can be executed in 
the reduced latent space. The new latent vector can then 
be translated to an interpretable structure by the decoder, 
which is next subjected to physical analysis. As such, FEA 
is still needed for the full design space, using the same mesh 
discretisation, meaning the computational cost of computing 
objective and sensitivities remains the same as for the con-
ventional methods. Nevertheless, there might be a potential 
gain in performance by reducing the number of iterations 

required, as the number of FEAs reported to reach conver-
gence varies between the different solution frameworks 
tested. However, few test cases are reported and little com-
parison to state-of-the art procedures is conducted.

Chandrasekhar and Suresh (2021c) used an ANN to re-
parameterise the density function, and thus in principle 
making the density representation independent of the FE-
mesh. When integrating the new structural descriptor into 
a conventional solution framework, the weights and biases 
of the ANN become the design-variables that are optimised 
through unsupervised learning with a loss function corre-
sponding to a weighted sum of structural compliance and 
volume-constraint violation. This is equivalent to conven-
tionally optimising a new design representation, meaning 
that the network is not subjected to any actual learning. 
Thus, this is an example of using an ANN without the learn-
ing aspect.

Later, Chandrasekhar and Suresh (2021b) showed how 
this framework can be extended to a multi-material TO prob-
lem where the distribution of two or more materials within 
the structure is obtained simultaneously with the optimised 
topology, and Chandrasekhar and Suresh (2021a) added a 
Fourier-series extension to the ANN to impose length-scale 
control. In either case, FEA is evaluated on the same FE-
mesh, which in each iteration is constructed by sampling 
densities for the needed spatial coordinates using the ANN. 
As such, conventional physical analysis on a discretised grid 
is still necessary to compute the sensitivities of the objec-
tive (in this case also the loss function) with respect to ele-
ment densities, after which the sensitivities with respect to 
network parameters can be determined by classical back-
propagation. A promising feature of this application is 
that because of the analytical density-field representation, 
sharper structural boundaries can be obtained. Currently, 
however, the structures are projected on a fixed FE-mesh 
for analysis which means that the boundary effectively is 
blurred. Further, there is a loss of fine features in the struc-
tures obtained by the new solution procedure, and detail 
does not appear to increase much with finer meshes. The 
results presented in Chandrasekhar and Suresh (2021a) also 
indicate that artefacts from the coarse discretisation may 
cause non-physical structures in the upscaled results. Moreo-
ver, as >90% of the optimisation time is spent on the FEA, 
this approach is unlikely to provide any promising speed-up 
unless additional measures are implemented to reduce the 
efforts needed to complete this evaluation process.

Deng and To (2020) presented a re-parameterisation 
approach similar to that of Chandrasekhar and Suresh 
(2021c), but with an increased focus on enabling represen-
tation of detailed 3D-geometries. Their method is coined 
deep representation learning and several different test-cases 
illustrate the increased ability to achieve structures including 
finer features. A comparative study to conventional TO is 
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not detailed in the article, but the results do encourage fur-
ther exploration of this method’s capabilities. Additionally, 
applications related to post-processing, and more specifi-
cally extraction of CAD models for manufacturability, could 
potentially benefit from this approach.

Other similar versions of re-parameterisation applications 
are also attempted in the literature. Chen and Shen (2021) 
perform online training of a GAN to obtain an optimised 
structure. The model is trained to firstly ensure volume-con-
straint satisfaction and secondly compliance value minimisa-
tion in an iterative manner. Hoyer et al. (2019) and Zhang 
et al. (2021b) altered the approach to directly enforce the 
constraints in each iteration, reducing the loss function to 
compliance only. Deng and To (2021) replaced the level-
set function with an ANN, Zehnder et al. (2021) combined 
the method with a second ANN aimed at predicting dis-
placements to achieve mesh-free TO, and Greminger (2020) 
ensured manufacturability in each iteration by manipulations 
in the latent space of a trained GAN. Hayashi and Ohsaki 
(2020) and Zhu et al. (2021) performed reparameterisation 
by reinforcement learning for truss structure optimisation. 
As most of these approaches still perform FE-analysis on the 
full mesh in each iteration, reported speed-ups are mainly 
caused by a reduction in the number of iterations until con-
vergence. Another common trend for these works is that the 
resulting structures have fewer fine scale features than the 
corresponding solutions obtained by conventional TO. One 
could therefore speculate whether the reduction in iterations 
is a result of the re-parameterisation causing a perceived 
larger filter radius or coarser mesh.

Most of the works utilising ANNs for reductions in the 
dimensionality of design representation do not rely on 
typical learning techniques, as the network is re-initialised 
before optimisation each time. Here the NN architectures 
are simply used as a reparameterisation of the density field 
which is then subjected to a conventional optimisation pro-
cedure. An evident challenge for such approaches is the 
decreased ability in representing fine features when using 
fewer network-defining parameters.

2.2.5 � Design‑diversity

Generative design is the process of exploring different 
design options satisfying structural performance require-
ments and selecting a suitable subset fulfilling various 
specifications. A good subset of structures would present 
visually different good-quality design candidates, providing 
the option of selecting the final design based on other prac-
tical or visual demands not integrated in the optimisation 
model. Such demands could be the personal preference of a 
designer wanting a visually pleasing structure, which may 
not be directly quantifiable by mathematical constraints. To 
this end, ML-applications for design-diversity are aimed at 

maximising the aesthetic variety of the search space in the 
exploration phase or at determining the best subset in the 
selection phase.

Rawat and Shen (2018, 2019b); Shen and Chen (2019) 
and Rawat and Shen (2019a) presented a series of papers 
considering the same GAN-CNN paired framework. The 
GAN is here trained using 3,024 conventionally optimised 
structures to generate new unseen structural variations, 
while the CNN is trained to predict the volume fraction, 
penalty parameter and filter radius corresponding to these 
new solutions. The same fixed boundary conditions are 
considered throughout the papers, but only the 2D formula-
tion is considered in the first three while Rawat and Shen 
(2019a) extend the model to 3D. The proposed framework 
provides a way of exploring the parametric solution space 
for a single problem requiring fewer direct optimisations, 
thus reducing computational time. In this manner, a larger 
number of design options for a structure can be investigated. 
The obtained structural results for the CNN-GAN pairing 
similarly to the direct design models exhibit some discon-
nections and noisy boundaries, motivating a post-processing 
procedure exploiting different filters to obtain a smoother 
design. This post-processing procedure is utilised through-
out all above-mentioned papers, and is found to significantly 
improve the generated designs, but not completely remove 
all occurrences of noise or disconnected features.

Oh et al. (2019) similarly integrated a GAN in the explo-
ration process to more efficiently generate new and differ-
ent designs by replacing some of the topology optimisa-
tion runs needed. The network is trained to generate viable 
wheel designs that appear different from some given refer-
ence structure, such that it can expand the set of diverse 
designs more quickly. Sun and Ma (2020) and Jang et al. 
(2022) proposed alternative processes for exploration in gen-
erative design utilising reinforcement learning to maximise 
the design diversity. Sun and Ma (2020) employed different 
exploration tactics to alter the search trajectory of density-
based TO methods by integrating reinforcement learning in 
the TO-process. Jang et al. (2022) combined reinforcement 
learning for parameter selection with GAN, similarly to Oh 
et al. (2019), for faster generation of new designs. Yoo et al. 
(2021) expanded on the generative model from Oh et al. 
(2019) where ANNs are also applied for both upscaling the 
2D design to a 3D CAD design and prediction of physical 
performance.

A natural extension to design diversity is to consider 
multi-objective optimisation problems, where the explora-
tion and selection relates to the determination or selection 
of a variety of options from the Pareto-front. Sato et al. 
(2019) utilised clustering and association rule analysis for 
selection of a beneficial subset of structures. The fundamen-
tal idea is to train a machine learning model to recognise 
determining similarities and differences between structural 
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composition and performance, such that comparable designs 
can be grouped together. The selection of a limited subset 
which contains designs spanning a wide variety of structural 
options can then be obtained by sampling from each of the 
obtained groups.

ANNs for design diversity appear to have value in creat-
ing visually different designs. Much like for the direct design 
applications, the structural integrity of the newly generated 
designs cannot necessarily be trusted, and thus post-pro-
cessing would be advised before the final design selection.

2.2.6 � Other applications and physics

There is a wide variety of different NN-applications in 
the literature, and not all structural TO frameworks were 
deemed to fit within the frames of the presented categorisa-
tion. Some of these are, however, still worth mentioning as 
they contribute to a more complete picture of the current 
state of the field.

Even before the real emergence of ML-assisted TO as its 
own field, a few preliminary works considered using NN-
like models to support size and shape optimisation. Adeli 
and Park (1995a); Park and Adeli (1995) and Adeli and Park 
(1995b) presented one of the earliest works utilising NN-
models for structural optimisation. A neural dynamics model 
was presented, corresponding to an ANN with one variable 
layer and one constraint layer, meaning that the network size 
is related to number of design variables and constraints in 
the optimisation problem. Papadrakakis et al. (1998) and 
Papadrakakis and Lagaros (2002) later proposed a NN to 
replace the structural analysis within an optimisation frame-
work based on Evolution Strategies (ES), obtaining a non-
gradient optimisation procedure. The approach proved to 
provide significant speed-up compared to a “standard” ES 
optimisation algorithm, a family of methods later judged 
insufficient (Sigmund 2011). Luo et al. (2020) proposed 
another non-gradient TO framework, the Kriging-based 
MFSE method, utilising Gaussian process regression to 
build a surrogate model and a material-field series expansion 
representation of the structural design. Results indicated that 
a much larger number of FE-evaluations are needed to obtain 
convergence compared to gradient-based TO methods.

Lynch et al. (2019) and Jiang et al. (2020) proposed 
ML-strategies to aid in tuning of parameters used in TO 
by SIMP and MMC to limit the number of re-optimisations 
needed when uncertainties in the appropriate choice of 
optimisation parameters is present. Perry et al. (2020) 
tested different clustering and sampling approaches used 
for subset-selection within a visualisation framework 
aimed at illustrating the solution space for TO problems 
and the relationship between changes in boundary condi-
tions and optimal solutions. Nie et al. (2020a) presented 
a CNN to predict stress-field distribution of a cantilever 

structure with external loads applied to the free end of var-
ying magnitude and orientation and a selection of domain 
shapes (rectangular, trapezoid and holes). The isotropic 
material properties, mesh discretisation and supports were 
considered fixed. 100,000 instances were used for training, 
each requiring FEA to obtain the target values. As the test 
cases presented were sampled from the same restricted 
problem space as the training data, no efforts were exhib-
ited to ensure clear distinction between training and test 
data. This means that accuracy in the obtained predictions 
does not necessarily prove the model has learned anything.

Li et al. (2021) presented a GAN utilising online train-
ing to replace stochastic alternatives in failure sampling 
during subset simulation for optimisation of periodic 
structures. Yim et al. (2021) proposed an ANN for pre-
dicting topology and end-effector location of a planar link-
age mechanism given the path description. Barmada et al. 
(2021) utilised a VAE to predict magnetic field distribu-
tion of a die press to accelerate optimisation of a die press 
with an electromagnet for orientation of magnetic powder. 
Bonfanti et al. (2020) proposed a CNN for predicting the 
deformation properties of an image of mechanical actua-
tors within a Monte Carlo/simulated annealing strategy 
for optimisation. As such, this approach is effectively 
an acceleration framework, but due to the image-related 
nature of the approach and the large number of training 
samples, nearly one million structural images, many of the 
same arguments against claims of improved performance 
compared to conventional TO methods as for direct design 
approaches, like e.g. Bielecki et al. (2021), can be made.

NN approaches have also become popular and largely 
adopted by researchers outside the structural optimi-
sation field. Probably, due to the lack of knowledge or 
insight into TO, partly due to simple access to NN and 
GA schemes and partly due to reviewers that are not aware 
of TO advances, there is a rapidly growing trend for such 
papers in physics oriented journals. Examples are Abuei-
dda et al. (2019); Chen and Gu (2020); Gu et al. (2018); 
Kim et al. (2021b), that solve typical linear TO problems 
on coarse grids for crack-propagation and Jiang and Fan 
(2019); Jiang et al. (2021), that solve nano-photonic grat-
ing problems.

Abueidda et al. (2019) and Gu et al. (2018) trained a CNN 
to predict the mechanical properties of a two-phase (soft or 
stiff material) chequerboard composite material to replace 
the need for FEA within a GA optimisation framework. 
Kim et al. (2021b) proposed an extended framework incor-
porating active learning such that the predictor can adapt to 
the specific problem considered, during optimisation. The 
additional data samples used in this iterative transfer learn-
ing are obtained by validating the selected solution pool, 
obtained by convergence of GA using the DNN for function 
evaluations, by FEA. The true target values for these, ideally 
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well-performing, composites are then known and can thus be 
used to fine-tune the DNN before the next GA run.

Chen and Gu (2020) proposed a general-purpose inverse 
design approach utilising a predictor-designer DNN-pair-
ing. The predictor is trained to approximate a physics-based 
model or complex function and the designer utilises this 
learned mapping to perform optimisation of some specified 
desired properties. An integrated feedback-loop allows for 
continued improvement of the predictor as a response to 
the output from the designer. Maximisation of toughness in 
a 2-phase composite material subjected to individual base 
material volume constraints was presented as a case study 
of the presented framework. A fixed discretisation of 16x16 
elements is considered, and for three different volume frac-
tions one million composite designs are sampled and their 
toughness evaluated by FEA to form the dataset. 800,000 of 
the samples for each volume fraction are used for training 
and 200,000 for testing. From the active learning from the 
feedback loop mechanism, new training and test samples of 
higher value toughness are evaluated by FEA and added to 
the dataset during optimisation.

Inverse homogenisation and composites Inverse homog-
enisation (Sigmund 1994) and design of metamaterials is 
another rapidly growing application area of AI in TO - not 
only in structural applications but also e.g. in optics and 
nano-photonics (Jiang and Fan 2019; Jiang et al. 2021). 
A feature of inverse homogenisation and meta material 
design problems that may make them better suited for AI 
approaches compared to structural problems is the limited 
number and position independent nature of load cases for 
such problems. Typically, in order to e.g. determine effective 
mechanical properties of a periodic material, just three load 
cases are needed in 2D and six in 3D, which in each case 
are independent of the design and geometry of the unit cells. 
Hence, the need for training data is significantly reduced. At 
the same time, however, variability in the outcome is also 
significantly reduced raising the question of whether an AI-
approach is even needed for such problems. For example, 
there is no need for complex training if the goal is to pro-
vide stiffest possible microstructures for given macroscopic 
stress fields. In this case, analytically optimal multi-scale 
microstructures, rank-N laminates, are known and can be 
converted to simpler single-scale microstructures with little 
effort and loss as described in e.g. Träff et al. (2019).

Similarly to direct design AI-applications for struc-
tural TO, Kollmann et al. (2020) trained a CNN to achieve 
iteration-free TO by predicting the optimal material layout 
directly from given problem-defining parameters for grey 
scale microstructure design problems. Wang et al. (2020) 
developed a VAE-ANN pairing to transform the inverse 
design problem for unit cell solid-void microstructures to 
sequences of simple vector operations in the latent space. 
The VAE is for this purpose trained to achieve a smooth 

latent space capable of representing geometric information 
about different microstructures. Sui et al. (2021) employed 
reinforcement learning to automate the design process of 
digital materials and Garland et al. (2021) used a CNN to 
predict properties of solid-void lattice materials, both to be 
incorporated within non-gradient GA frameworks.

As the microscale design problem offers reduced design 
freedom compared to structural TO, utilising a large num-
ber of training samples to train a direct design-like ML-
application increases the likelihood of training and test-data 
overlap. Therefore, the measured performance of such ANN-
frameworks may be questioned. The ability to extract geo-
metrical families as in Wang et al. (2020) is, however, a ben-
eficial trait of the presented approach. The works utilising 
ANNs to remove the need for FEA within a GA framework 
claim success based on the NN’s ability to outperform con-
ventional GA for problems with very few design variables, 
ignoring the large number of training samples used and the 
computational effort this entails. Utilising several thousands 
of samples to train a NN to speed up the optimisation of a 
7x7 element mesh by claiming negligible training time gives 
a disproportionate representation of actual gain as a large 
part of the full solution space will be covered already in the 
training set. As such, the presented results do not actually 
prove the claimed viability of such GA frameworks. Further, 
these observations tie into how these works are found to 
suffer from similar issues to those discussed for other direct 
design approaches.

Guo et al. (2021) presents a more comprehensive over-
view of how ML has been applied within the field of mate-
rial design in general. These developments are covered with 
great optimism, but the authors also highlight the common 
treatment of ML-models as black-box solvers for complex 
problems. Related to this, the review also observes that treat-
ing material design as image-to-image mappings, similar to 
the direct design applications for structural TO in the previ-
ous section, is widespread within this field.

Multiscale TO Multiscale TO (MSTO) is the approach of 
obtaining both the optimal structural topology on the macro-
level as well as the local microstructure material layout (Wu 
et al. 2021). In fact, this was the approach used in the origi-
nal works on topology optimisation by Bendsøe and Kikuchi 
(1988) and Bendsøe (1989). In Bendsøe and Kikuchi (1988), 
effective properties of near-optimal rectangular hole micro-
structures were precomputed and interpolated, whereas they 
were computed analytically for optimal so-called rank-n 
microstructures in Bendsøe (1989). Recently, several works 
have used AI to learn the effective properties of various 
micro-architectures, effectively replacing the interpolations 
or analytical expressions from the original works (Kim 
et al. 2021a; White et al. 2019; Yilin et al. 2021; Zheng 
et al. 2021a; Wang et al. 2022; Elingaard et al. 2022; Chan-
drasekhar and Suresh 2021b; Chan et al. 2021; Wang et al. 



On the use of artificial neural networks in topology optimisation﻿	

1 3

Page 19 of 36  294

2021d). With such off-line computations, either analytical, 
interpolated or learned, very efficient MSTO algorithms 
can be constructed. The challenge of ensuring connectivity 
between local microstructures is taken care of by imposition 
of periodicity, which results in simple geometries but pos-
sibly deteriorated performance (Wu et al. 2021), by mapping 
techniques (Kim et al. 2021a; Chan et al. 2021; Wang et al. 
2021d) or by special microstructure parameterisations that 
by construction satisfy connectivity (Zheng et al. 2021a; 
Wang et al. 2022; White et al. 2019; Yilin et al. 2021), but 
do not necessarily meet the theoretical bounds.

Kim et al. (2021a) and Chan et al. (2021) utilised an ANN 
to model material properties for functionally graded com-
posite structures. White et al. (2019) utilised an ANN to 
model the elastic response of the microscale material within 
a gradient-based MSTO framework where the parameters 
describing the local microstructures were used as design 
variables. Yilin et al. (2021) similarly proposed a CNN for 
predicting the effective elasticity tensor and its gradients 
for voxel-based non-parametric microstuctures, and Zheng 
et al. (2021a) for spinodiod microstructures. Wang et al. 
(2022) proposed a data-driven TO approach to multiscale 
cellular design for natural frequency optimisation including 
multiple choices for microstructure classes. By defining a 
finite set of different material choices, Chandrasekhar and 
Suresh (2021b) integrated a multi-material blending scheme 
in the previous ANN reparameterisation approach for TO 
(Chandrasekhar and Suresh 2021c). Da et al. (2022) used 
an ML-inspired sampling procedure to construct a data-
base of microstructure unit cells integrated in an approach 
to produce connected microstructures for indirect control 
of fracture resistance. Wang et al. (2021d) trained an ANN 
as a surrogate for modelling the geometry-property relation 
for parameterised microstructures to avoid homogenisation 
analysis during optimisation, while Elingaard et al. (2022) 
utilised a CNN as a surrogate for conventional de-homoge-
nisation procedures.

The idea of using AI approaches to provide effective prop-
erties for multiscale approaches seems promising, especially 
for more complex non-linear problems where CPU-heavy 
path-dependent microstructure simulations would render a 
full multi-scale approach extremely expensive. Here, a costly 
off-line training at the microstructure level will be compen-
sated in the form of much more efficient overall modelling 
and optimisation procedures.

3 � Assessments

An overview of the works implementing AI-methods for use 
in TO was given in Section 2. Within each of the presented 
application-categories several challenges and disadvantages 
were identified and discussed. This section will elaborate on 

some of these issues. First the importance and requirements 
for computational costs and generality of method applica-
bility will be discussed followed by an assessment of the 
quality of solutions obtained and presented in the literature.

3.1 � Computational cost and applicability

Disregarding the quality of obtained solutions, this section 
will focus on the overall merit of the different approaches 
in terms of the generalisation ability and associated com-
putational costs. The motivation behind this focus is that 
the range of problems for which a model is applicable and 
the computational effort associated with generating training 
samples, running the learning algorithm and applying the 
proposed procedure to obtain a solution are factors strongly 
influencing the actual usefulness of the suggested frame-
work. If a solution method is computationally expensive to 
prepare and tune and can only be applied to very specific 
problem cases, as seen for most of the direct design applica-
tions, it is not likely to provide any benefits regardless of the 
solution quality. Whether the structural results are promis-
ing should only be a determining factor in the evaluation 
of a method that offers a sufficient balance of speed-up and 
generality.

The computational cost of a method is not only related 
to the actual solution time, but time spent on collecting data 
and training might also have a significant impact as the com-
putational cost of a conventional iterative TO solution pro-
cedure is typically what AI-technology is aimed at reducing. 
For instance, Nakamura and Suzuki (2020) sampled 333,000 
TO-optimised structures as training and validation data. This 
means that their resulting direct design model should be 
applied at least 333,001 times to similarly sized problems for 
any actual speed-up to be gained. Due to the need for target 
samples, examples of good-quality solution structures to dif-
ferent problems, this holds true for any direct design model 
developed utilising a (semi-)supervised training approach.

If the range of problems the trained model is able to 
handle is extensive, an expensive training process becomes 
less concerning, but should still be a factor. Given a very 
large dataset, even a naive ML-model may perform well on 
a range of new problems. Consider a model which simply 
finds the example from the training data which is the most 
similar to the new problem, and returns this example’s cor-
responding solution. In this case, the larger and more diverse 
the database known by the model, the better it will perform 
for most test cases. However, if a new problem has a sig-
nificantly different optimal solution than any of the training 
samples, a new data sample similar to the new problem must 
be obtained by optimisation and added to the model’s data-
base before it is able to solve the problem. Thus, the model is 
not able to learn such that it can predict anything new. Indi-
cations of this behaviour could be seen for the direct design 
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model for fixed supports proposed by Yan et al. (2022), 
where the predicted results for the test-cases resemble those 
optimised by SIMP in overall composition, but some of the 
predicted solutions to test instances were missing material 
where the load was applied. This could indicate that the test 
case corresponded to a small shift in load locations com-
pared to one of the training instances, resulting in an infea-
sible solution, and implying that the model had not learned 
the significance of applied load positions.

Considering the different application categories the 
threshold for achieving actual speed-up can be reduced in 
that the data needed is of a different, easier-to-obtain, nature 
or by increasing the degree of unsupervised learning when 
training the model. There are, however, still some non-direct 
design approaches that require computationally expensive 
training. Lin et  al. (2018) and Sosnovik and Oseledets 
(2017) utilised a direct design-like model to directly map 
from an intermediate structure obtained by SIMP to a con-
verged structure. Thus the proposed approaches also require 
training data consisting of a large number of convention-
ally optimised structures, and with the added computational 
cost of performing SIMP iterations to reach the intermediate 
designs for new problems, not much is gained in terms of 
solution time speed-up.

Keshavarzzadeh et al. (2021a) suggested an approximate 
way of computing the breakeven threshold for how many 
problems and AI-based solution framework must be applied 
before any actual gain in speed-up is obtained. This meas-
ure is obtained based on the computational cost in terms of 
FEAs needed for both obtaining the training data and execut-
ing the proposed procedure. It is not an exact representation 
of the computational costs as the use of optimisation algo-
rithms in both the training of the network and the completion 
of the procedure may infer additional notable costs. Further, 
the computational cost of FE-analysis is computed as an 
approximative function of the number of elements in the 
FE-grid. The considered formula does, however, allow for 
comparing several different approaches and problem sizes 
in a relatively fair manner.

Let � ∈ ℕ
+ denote the desired breakeven threshold (i.e. 

the number of optimisations that must be performed before 
the considered method outperforms conventional TO meth-
ods) and Ctrain the computational cost of training. Given the 
computational cost of solving a problem over an FE-mesh of 
N ∈ ℕ

+ elements using both SIMP, CSIMP(N) , and the pro-
posed framework, CAI(N) , the threshold � can be computed 
as in equation (1).

For the direct design models reviewed in this paper, the 
breakeven threshold is commonly equal to the number of 

(1)� =
Ctrain

CSIMP(N) − CAI(N)

training samples used. This is because the mesh size N is 
approximately (or exactly) the same for the training samples 
and the problem formulations for which the model is applied 
and, as FEA is not needed to execute the suggested AI-
framework, one obtains CAI(N)=0 . This mesh dependency 
is not represented in the given threshold computation, but is 
still a significant factor in terms of determining whether a 
proposed solution framework will be a reasonable alternative 
to conventional methods. If, for instance, a method that has 
a medium-level breakeven threshold, is restricted in terms 
of mesh size and dimensions and is focused on a limited set 
of boundary and load conditions, the perceived breakeven 
threshold might actually be much higher. This is because 
with limited applicability, there might not exist more than 
� relevant problem cases that one could ever wish to solve.

Such considerations relate to the generalisation ability 
of a method. Judging the exact generalisation ability of a 
method can be challenging, but the aim should be to develop 
solution procedures that are as close to universal in terms of 
problem definition as well as mesh dimensions and resolu-
tions as possible. Ideally the method should at the least be 
applicable to different sets of loads, boundary conditions 
length-scales etc. within the current problem setting. Fur-
ther, it would be beneficial if the model is easily extendable 
to different objective functions and constraints as well.

Fewer limitations of model applicability imply greater 
generalisation ability. However, it is not necessarily expected 
that a useful application offers a universal solution approach 
to any problem. This is likely neither realistically achievable 
nor a quality found in conventional methods. The traditional 
TO methods are inexact in nature, relying on many different 
parameter settings, filters and search algorithms. One chosen 
combination of these is not likely to achieve universality and 
successfully solve any imaginable problem formulation. It 
is however possible to fit most problem formulations to the 
required “inputs” for conventional methods, and in many 
cases one can achieve satisfactory results with little param-
eter tuning. It is therefore fair to expect that e.g. a change 
of physics or constraints require retraining. However, for 
the purpose of pure compliance optimisation, one should 
assume that a single model setting is realisable. Generali-
sation ability can therefore relate to both the direct appli-
cability of a method and its transferability. Transferability 
refers to how easily the model can adapt to new problems 
by changing parameters or network architecture, while still 
achieving good results.

To present an idea of how computational cost and gen-
eralisation ability compare for some of the key concepts 
presented in the literature, the breakeven threshold (1) from 
Keshavarzzadeh et al. (2021a) is first adapted to approximate 
computational costs for a greater variety of applications.

For computing the breakeven threshold an estimation of 
computational cost associated with performing one FEA for a 
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problem meshed using N elements is defined by CFE(N) = N2 . 
This is based on the computational order of O(bw2m) asso-
ciated with solving a linear sparse system with a m × m 
coefficient matrix and bandwidth bw . Assuming that for a 
2D linear elasticity FE-problem discretised using 4-noded 
rectangular elements with equal number of elements in the 
x- and y-direction, nx = ny , the number of equations is given 
m = 2(nx + 1)(ny + 1) = 2(nx + 1)2 . Further, the best case 
node-numbering of such a mesh achieves a bandwidth of 
bw = nx + 1 , and the number of overall elements N is given 
N = n2

x
 . Thus, the process of solving this system is of compu-

tational complexity O(bw2m) = O((nx + 1)4) = O(N2) , which 
is used directly as the estimate for completing one FEA.

Let N denote the set of considered mesh resolutions, smethod
N

 
the number of samples at mesh size N ∈ N needed by the 
method and tmethod

N
 the average number of FEAs the method 

uses to obtain a sample at mesh size N. Based on these defini-
tions the computational cost of a method can be computed 
by (2).

The computational cost of obtaining the training dataset 
can thus be computed given the different mesh sizes con-
sidered, the needed number of samples for each mesh size 
and the cost of obtaining a sample at each mesh size. Ctrain 
is as such the sum of the computational cost associated with 

(2)Cmethod(N) =
∑

N∈N

smethod
N

⋅ CFE(N) ⋅ t
method
N

obtaining each training sample, while CSIMP(N) is the cost 
of the average number of FEAs needed by SIMP to solve a 
given test problem of size N. CAI(N) depends on the specific 
framework considered. For direct design models this cost is 
zero, for post-processing upscaling methods this cost usu-
ally corresponds to CSIMP(�N) where 𝛼 < 1 , while within the 
acceleration category this computation varies considerably 
between the individual applications. As this measure is still 
approximative it is not the exact threshold value that should 
be of interest, but the order of magnitude which is believed 
to be appropriate even with different estimations for CFE(N).

For quantifying the generalisation ability of the applica-
tions no corresponding measure is available. Therefore a set 
of criteria are developed to manually judge the perceived 
generalisation ability of an application based on method 
description and presented results. These criteria are listed 
in Table 3, and relate more to the range of possible problem 
applications than the actual performance in terms of solu-
tion qualities. Poor results, in terms of structural disconnec-
tions or difficulty adhering to the constraints, do in practice 
have an influence on the generalisation ability, as the models 
should be able to feasibly solve the intended test problems. 
However, to limit the level of subjectivity in the generalisa-
tion score, this is not accounted for.

The generalisation ability for a method is calculated as 
a weighted sum of the levels across the four categories in 
Table 3, and is as such subjectively judged on a scale from 0 
to 36. From the given weights, the main determining factors 

Table 3   Components of method generalisation ability described in levels of achievements

Depending on model applicability for different BCs, mesh dimensions and loading conditions the levels are used as indicators for computing an 
overall generality score. The last category is related to how similar the training and test problems presented are. The last row indicates the weight 
prescribed to each category when computing the total score which is the weighted sum of the levels across the four categories, resulting in a gen-
erality scale ranging from 0 to 36. Note that computing the generality score for a given method does involve subjective assessment. Therefore, 
this score is not intended as a precise way to compare two specific methods. Rather, the aim is to provide a measure of how application catego-
ries compare and provide an illustration of overarching trends

Category/level Supports Mesh Loads Test≈Train

0 Fixed Small fixed Single-point restricted Sampled from the same limited 
pool

1 fFew (2-3 or very similar) Larger fixed Single-point many options Small difference (i.e. changing 
supports marginally resulting 
in small visual difference)

2 Some (multiple options, but 
still similar problems)

Limited variation possible 
(i.e. 2-3 choices for different 
aspect-ratios or resolutions)

Multiple limited (i.e. ≤ 10 
loads or placements 
restricted domain bound-
ary)

Some difference (i.e. definite 
difference aspect-ratios or 
loads)

3 Many (a set of clearly different 
options)

Many (some flexibility both in 
terms of shape and resolu-
tion)

Multiple many (either no 
upper bound on no. loads 
or no restriction on place-
ments)

Medium difference (i.e. ensured 
difference loads and BCs)

4 Any (method appears applica-
ble to any set of reasonable 
support options)

Any (complete mesh-inde-
pendence)

Any (no restrictions apply) Significant difference (BCs, 
loads, mesh-shape and resolu-
tion different)

Weight 3 2 3 1
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are mesh dependency and the variety of viable problem defi-
nitions the application can handle (category 1-3). As such, a 
solution framework is appointed a low generalisation abil-
ity if it is developed for a fixed FE-mesh with training and 
test problem instances limited by fixed boundary conditions, 
while a high score is allotted if there is no mesh dependency 
and the application is believed to work for any reasonable 
boundary conditions. The fourth category relates to the simi-
larity between the training and test data-sets, as to penalise 
instances where no direct effort is put towards making these 
clearly distinguishable. Generally, this is a very important 
factor for any ML model, as overlaps between test and train-
ing data are likely to lead to inflated performance measures, 
overestimating the capabilities of the model. This factor is 
still given a lower weight in this specific assessment, related 
to the choice of differentiating more between generality and 
solution quality. The overall purpose of this quantification of 
generalisation ability is not to serve as an absolute and true 
instrument for evaluating AI-based solution methods in TO, 
but rather as a measure for illustrating the current state of the 
field and how the application categories compare.

Figure 5 illustrates the breakeven threshold compared to 
the perceived generalisation ability for a selection of meth-
ods in the literature reviewed. It is noted that only literature 
providing sufficient information to estimate the computa-
tional cost is considered. Further, only methods that are 
directly comparable to conventional iterative solution meth-
ods like SIMP are included. Therefore the presented appli-
cations belong to the direct design, acceleration or upscal-
ing categories, which is illustrated by the different marker 
colours. The dual-coloured scatter points indicate that the 
associated solution framework is a hybrid between the two 
corresponding categories. For instance, Li et al. (2019) used 
a direct design model to directly predict an optimised low-
resolution structure before applying upscaling to achieve the 

final desired structural layout. Chi et al. (2021) and Kallioras 
and Lagaros (2021) both utilised upscaling as an integrated 
part of the acceleration-based iterative procedures proposed.

As both presented measures, breakeven threshold and 
generalisation ability, are approximative, the datapoints are 
in general not explicitly linked to the corresponding works 
in the presented figure. It is however evident that solution 
methods belonging to the direct design category perform 
worse than the other alternatives as seen by their high break-
even thresholds and low generalisation abilities. The best 
scoring direct design model (Zheng et al. 2021c) is given 
a higher generality score than the other similar approaches 
due to the incorporation of zero-padded buffers in the net-
work input format to allow for different mesh dimensions 
and resolutions. However, due to the only guaranteed dif-
ference between training and test data being the mesh size 
and the limited sample space for problem characteristics, it 
is still seen as having a low generalisation ability. The lower 
breakeven threshold is obtained by considering overall finer 
mesh discretisation for the test problems than for the training 
problems. Even though 7,500 optimised structures are used 
for training, the breakeven threshold is approximated to be 
lower than 1,000.

For the acceleration and upscaling categories the per-
formances are more varied across the different approaches, 
where worst case is similar to the poorest of the direct 
design models while best case approaches a negligible 
breakeven threshold and high generalisation score. Two 
acceleration-based methods are given the lowest general-
ity score, both due to the restricted problem spaces con-
sidered. The first (Lin et al. 2018) restricts the problem 
to a small, fixed mesh, 2D thermal conduction problem 
where only the volume fraction, heat source and sink are 
varied. One of the two highest breakeven thresholds for 
the considered acceleration-methods is also reported for 

Fig. 5   Comparing, for different 
methods in the reviewed litera-
ture, the perceived generalisa-
tion ability along the x-axis to 
when speed-up is achieved, by 
the breakeven threshold � , along 
the y-axis. The datapoints are 
coloured based on the applica-
tion category to which they 
belong
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this model, linked to the use of SIMP paired with a direct 
design-like model mapping an intermediate solution to a 
final design. The second (Qian and Ye 2021) has a sig-
nificantly lower threshold because ANNs are used for 
objective and sensitivity predictions within a conventional 
SIMP framework, such that fully optimised designs are 
not needed for training. In terms of generality, the model 
is, however, trained and tested considering a set of fixed 
boundary conditions with different single-point loads, 
resulting in a poor performance.

The overall best scoring work is that of Chi et al. (2021) 
which has a breakeven threshold close to zero and is given 
a generality score of 36. As the method is based on a con-
cept of online learning integrated in a two-scale optimisa-
tion procedure no cost is associated with pre-training of 
the model and the overall computational cost to achieve 
an optimised structure is lower than that of conventional 
methods, and thus a speed-up is achieved regardless of 
how many times the model is used. This approach is also 
what makes the degree of generality so high, as the net-
work input and output format can be adapted to each indi-
vidual problem.

There are some promising works that exhibit great gen-
eralisation abilities but are not included in the evaluation 
in Fig. 5 due to deficiencies in reported computational 
costs. This holds true for most of the reduction-category 
frameworks. The relevant works apply an ANN for repa-
rameterising the geometric representation and optimise a 
given topology through online training of the network. 
This means that the network model in itself is independ-
ent of the boundary conditions, but adapts to the given 
problem during optimisation similarly to a conventional 
TO process. As such, there is little to no computational 
cost associated with offline data collection and network 
training, contributing to a lower breakeven threshold. Fur-
ther, the generality of these frameworks is expected to be 
high in terms of solving different problem formulations. 
Zhang et al. (2021b) exemplified this by applying their 
proposed method to minimum compliance problems (both 
with and without stress constraints), compliant mechanism 
design and a 2D heat conduction problem. An extended 
framework for nonlinear elasticity was also proposed and 
tested. The complications with assessing such reduction 
methods arise from the fact that FEA is still needed for 
the full mesh in each iteration, as it is required for evalu-
ating the loss function of the ANN. As FEA is the most 
expensive operation in conventional topology optimisa-
tion (and used here for approximately measuring speed-
up), the gain in computational efficiency of such methods 
rely on a reduction in the number of iterations needed to 
reach convergence. Such behaviour is observed for some 
selected comparisons to SIMP reported in the literature, 
but no extensive analysis allows for conclusive judgement.

3.2 � Solution quality

After having assessed the merit of the different solution 
frameworks in terms of generalisation ability and compu-
tational cost as in Section 3.1 evaluation of solution qual-
ity in terms of structural performance should be included 
as a third dimension for judging overall performance. 
Overall it is deemed that any model with higher breakeven 
threshold and lower generalisation ability should be disre-
garded regardless of solution quality. However, as most of 
the works represented by data-points located in the top left 
of Fig. 5 describe direct design models, it is worth noting 
the problematic solution qualities discussed in Section 2.1 
and the common occurrence of disconnections as in Fig. 4.

For the remaining works, for which the combination of 
generalisation ability and breakeven threshold is consid-
ered reasonable, the solution quality and speed-up are the 
integral measures of quality. Speed-up here refers to the 
actual solution time, and thus, provided a trained model 
and solution framework, the reduction in computational 
cost of solving a problem compared to conventional state-
of-the-art methods. Therefore, it would be desirable to 
evaluate methods in a similar manner as in Fig. 1, but now 
for mechanical performance and solution time.

It is found that a majority of the papers do not present 
performance metrics allowing for fair quantifiable com-
parison of results. There are several different reason for 
the presented results not being suitable for assessment. 
Firstly, there is a tendency to only present the mean value 
of the selected performance metrics for the test instances, 
or to only present the results for a few illustrative prob-
lems from the test set. Such formats for reporting results 
may not be representative of the full distribution of per-
formance across the entire set, potentially hiding outliers 
for which very poor performance is observed. Secondly, 
the overlap between the training and test sets may be large, 
by i.e. randomly sampling from the same restricted pool of 
problem combinations, which is likely to overestimate the 
performance and not be representative if different problem 
characteristics are considered. Thirdly, the choice of per-
formance measures are often related to pixel-wise density 
errors only, neglecting to evaluate the actual structural 
properties of the obtained structure. Lastly, the compari-
son to conventionally obtained benchmarks is not done in 
a fair manner. Many works compare the obtained results, 
in terms of relevant measures such as structural compli-
ance, to grey scale structures obtained by SIMP using a 
large filter radius. It was shown in Fig. 4 how compliance 
is reduced significantly when the structure is thresholded 
to a solid-void design. Further, a large filter radius means 
that the structure will contain fewer fine features, which 
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may influence the structural performance of the resulting 
design negatively1. Also, as several of the proposed frame-
works do not contain mechanisms for directly enforcing 
the volume constraint, this is also an important property, 
as more material results in lower compliance. Inspired by 
these challenges, and to allow for future fair comparisons 
of quality, recommendations for how to test the model will 
be given in Section 5.2.

Many applications within the upscaling and acceleration 
categories exhibit similar problems in terms of the solu-
tion quality assessment, based on the reported experimental 
results. Firstly, very few coarse grid cases are considered 
for testing, and in some cases they are very similar to train-
ing. Secondly, the reported results tend to focus on average 
elementwise-density errors which means that quantitative 
assessments of actual structural performances and expected 
worst case behaviour are prohibited. Generally, illustrations 
of the obtained structures, for selected test-instances, using 
both conventional and AI-based methods do, however, show 
a high degree of grey scale and tendencies for disconnec-
tions. The frameworks including features of upscaling tend 
to yield blurry boundaries resulting in structures without the 
fine features of those obtained by conventional methods, due 
to length-scale restrictions provided by the coarse mesh. Xue 
et al. (2021) showed the only noticeable occurrence of the 
AI-based method obtaining a structure with finer features 
than those obtained by SIMP. These structures also exhibited 
lower compliances than the corresponding benchmarks, but 
as the benchmarks were obtained by enforcing a large filter 
radius, it is unclear whether the results are better than what 
can be obtained by SIMP overall.

The reduction category applications are typically tested 
on a wider range of problems and mesh discretisations, 
but the results presented tend to lack transparency as for 
the above-mentioned methods. A clear benefit is that the 
obtained structures appear to have a smoother and sharper 
structural representation than the presented solutions within 
the other highlighted categories. As regular FEA is used to 
extract the structural geometry for analysis, this feature is, 
however, not utilised in a beneficial manner. What is also 
prominent is the loss of finer features, compared to conven-
tionally obtained solutions to the identical problems. This 
loss in detail could, in some cases, be a consequence of the 
reduced geometric representation not being able to describe 
the more complex features. A reason for fewer iterations 
needed in these reduction-based procedures could there-
fore be related to the size of the feasible solution space. 
Optimised structures illustrated in Deng and To (2021) do 
indicate that capturing the finer features is achievable with a 

larger number of hidden layers. Zhang et al. (2021b) argued 
that the thicker structure with fewer holes is an advantage of 
their proposed method as these properties make the structure 
easier to manufacture. Here it is relevant to note that one 
easily can reduce the fine features resulting from SIMP by 
increasing the filter radius or lowering the mesh resolution, 
and that several strategies for achieving length-scale control 
and manufacturability have been reviewed in Lazarov et al. 
(2016). In fact, for the MBB-beam example presented in 
Zhang et al. (2021b) a similar structure with a lower compli-
ance can be achieved by considering a coarser mesh when 
applying SIMP for optimisation (Fig. 6a), and then upscal-
ing the optimised structure using the imresize image-
scaling procedure in Matlab with bicubic interpolation, 
before applying a volume preserving threshold to obtain a 
0-1 design (Fig. 6b). The corresponding Matlab-code for 
performing this sequence of operations is found in Appendix 
A. Doing so decreases both the computational cost of FEA 
in each iteration, as well as the number of iterations needed 
(Fig. 6).

4 � AI limitations

State-of-the art ANNs have achieved a level of pattern rec-
ognition abilities exceeding human abilities. This develop-
ment has been made possible by the availability of mas-
sive sets of labelled data and increased computing power. 

Fig. 6   A solution to the MBB test case from Zhang et  al. (2021b) 
obtained by optimising on a coarser grid (a), resizing the image using 
Matlab built-in function with bicubic interpolation followed by vol-
ume perserving thresholding (Sigmund and Maute 2013) to obtain 
higher resolution solid-void structure (b)

1  Sigmund and Maute (2013) included a few lines of Matlab code to 
perform a volume-preserving threshold.
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High-level ANNs contain tens or hundreds of hidden layers 
and are trained utilising high-performance GPUs and hun-
dred of thousands to millions of data samples. For instance, 
AlexNet, the first ANN to adopt an architecture consisting 
of consecutive convolutional layers and a leading model for 
object-detection, was trained on 1.2 million labelled data 
samples and has obtained the ability to recognise 1,000 
different objects (Krizhevsky et al. 2017). An ANN learns 
directly from the provided data with limited human influence 
on what it learns. These models are powerful tools because 
they allow for a complexity enabling pattern recognition that 
is not explicitly defined by human understanding. Successful 
application of these models do, however, often rely on care-
fully curated data, and the measured accuracy of an ANN 
is typically measured using standard benchmark datasets. 
The measured accuracy depends greatly on the nature of 
the chosen test data, where greater similarities to the train-
ing data implies a higher measured accuracy (Goodfellow 
et al. 2018).

The current leading deep learning technology is funda-
mentally brittle, as it breaks in unpredictable ways when 
exposed to unfamiliar domains (Heaven 2019). A small 
perturbation or added noise to input samples may lead to 
incorrect predictions with high confidence and the same 
input is able to break a wide variety of model architectures 
trained on different datasets (Kurakin et al. 2016). Such fail-
ures are strongly related to ANNs not actually understanding 
the world or comprising any knowledge of salient features, 
which are core factors in human recognition. ML-models are 
traditionally developed under the assumption that the envi-
ronment it is operating within is benign both during training 
and validation and that the sample-space distribution is the 
same as for the training data in any future tests. There exists 
measures for increasing the robustness of ANNs in form of 
data augmentation (Goodfellow et al. 2016) or adversarial 
examples (Kurakin et al. 2016), but increasing robustness 
against one type of error could weaken the model against 
others. It is commonly believed that augmentations to the 
current model-framework providing additional reasoning 
abilities could aid in overcoming this brittleness (Heaven 
2019).

When utilising these frameworks to solve different tasks 
it is therefore important to be realistic about what the pos-
sible capabilities of any ML-model are. Many of the articles 
included in this review appear to overestimate the abilities 
of current ML-technology, ignoring that these models sim-
ply are complex versions of regression and classification 
and treating them as some black-box “magic” solver able to 
handle any complex task.

The direct design approaches are often based on genera-
tive methods (e.g. GANs or VAEs). The assumption of such 
methods is that the output should belong to a specific dis-
tribution, and generative methods aim at generating outputs 

(for instance a 2D or 3D image) that belong to such a dis-
tribution. In practice, generative methods, and most CNN-
type networks, often learn a mapping from a latent space 
of much smaller dimension to the output image. It might 
seem reasonable to assume that one could simply interpret 
(or map) the boundary conditions for a TO problem as (or 
to) a point in the latent space which is subsequently mapped 
directly to a mechanical structure using a mapping that is 
learnt from examples. Given sufficient examples, one might 
expect this to work. Unfortunately, there are good reasons to 
believe that such strategies will always fail. The main reason 
is that relatively small changes to the boundary conditions 
can lead to a very different solution being optimal. Thus, 
any learning-based approach would face the challenge that 
a small perturbation of the boundary conditions could lead 
to a big change in the optimal structure. Unless the types of 
problems that can be solved with a hypothetical direct design 
approach based on a generative method, are strictly limited, 
it is clear that an unbounded number of examples could be 
necessary to learn all the discontinuities in the mapping 
from latent space to mechanical structure. An example of 
this is illustrated in Fig. 7, where the problem described in 
Fig. 7a is optimised for two single-point load cases. The first 
case describes a vertically applied load, and the obtained 
structure is given in Fig. 7b. For the second case the applied 
load is applied at a slight angle and the optimised structure 
is now given in Fig. 7c.

The difference between the optimised structure of the first 
and second considered load case is that the first is simply 
one vertical bar to counteract the applied load, while the 
second has an additional thin bar to also supply support in 

(a)

(b)

(c)

Fig. 7   Test-case illustrating the potentially significant effect small 
changes in boundary conditions can have on the optimal material lay-
out. The boundary conditions (a) with corresponding optimised 0-1 
designs for (b): Fx=0, Fy=1 and (c): Fx=0.0099998, Fy=0.99995
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the horizontal direction. Table 4 compares the compliances 
of these two optimised structures when they are subjected 
to each of the two load cases. It becomes evident that the 
small load-angle perturbation results in a collapse of the 
first structure (Fig. 7b) while the second structure (Fig. 7c) 
performs similarly in both cases.

Further arguments could be made about the individual 
element-density time-series acceleration approach proposed 
by Kallioras et al. (2020) also suffering from the lack of 
understanding of physical properties. For many problems, 
it is plausible that the iterative history of element densities 
will map to a reasonable structural composition, but this 
cannot be guaranteed for all problems. As the model does 
not know the relations between neighbouring elements there 
is no guarantee that even a smooth structure will emerge 
when combining the individual predicted trajectories. This 
is not to discourage that simple mappings between interme-
diate solutions in the optimisation process may aid in faster 
convergence, especially as SIMP iterations are run on the 
mapped structure to ensure physical consistency in the final 
design. One should however be cautious of the fact that this 
does not guarantee increased performance, and especially 
not for problems with moving members during the later 
iterations.

The approach of reducing the number of exact high-reso-
lution FE-solutions in a multi-scale framework proposed by 
Chi et al. (2021) might be a more rewarding application of 
approximate mappings. During several iterations of the TO 
process, approximate sensitivities may be sufficient to make 
progress in the overall optimisation, as also investigated for 
conventional TO (Amir and Sigmund 2011). Therefore, 
understanding the problem may not be necessary to perform 
this task, and errors in the predictions are less likely to have 
major effect on the overall results. A fast increase in predic-
tion errors as a function of the number of iterations since 
the last exact sample may indicate that model-improvements 
could be fruitful.

The upscaling category on an overall level likely suffers 
from similar lack of physical understanding as the direct 
design models. It is observed that the applied models mainly 
perform boundary smoothing, which is understandable if the 
mapping between resolutions is simply seen as an image-
resizing task by the ANN. The work of Elingaard et al. 
(2022) is an outlier within this category, as here the ANN is 

utilised to perform de-homogenisation. As physical under-
standing is not necessary to translate the input vector-field to 
an intermediate density field the abilities of ANN to perform 
pattern recognition may be very useful in such an applica-
tion. However, it is found that the post-processing procedure 
utilised could benefit from some alterations to replace the 
u-shaped branching with v-shaped ones, which are known 
to provide better structural performance.

5 � Recommendations

The motivation behind implementing an AI-model to be 
used in TO should rest on some belief that it will improve 
the overall solution framework, compared to conventional 
procedures. As the limiting factors for large-scale TO are 
related to memory consumption as a result of the design 
representation and computational time associated with the 
calculations required in the applied iterative solution proce-
dures, the aim should be to reduce the cost of at least one of 
these challenges without compromising performance with 
respect to the other. Scientific contributions are only signifi-
cant if they increase the scope of viable applications. This 
could be solving any problem faster than conventional state-
of-the-art approaches or extending the range of problems 
that can be solved, both in terms of size and complexity.

These statements are not to diminish the value of proofs-
of-concept in a new application area of AI, but there should 
be convincing arguments and proofs supporting the capabili-
ties of the presented ideas. Such considerations should focus 
both on how the method compares to current state-of-the-art 
and the range of problems that can be handled appropriately. 
New solution procedures should be accompanied by con-
vincing descriptions of why they contribute positively to 
the scientific progress within the field. If insufficient results 
are obtained, a thorough reflection of why the motivating 
hypothesis or method-construction was wrong would be of 
great benefit for the field moving forward.

AI-technology has become an immensely popular 
research topic due to the prospective abilities of methods 
within the field. It is however important to recognise that 
the current capabilities of even state-of-the-art applications 
are limited and susceptible to errors. The application area 
of such models should therefore be robust with regards 
to possible model errors not having significant negative 
effects on the system as a whole. Further, the tasks at which 
existing technologies excel are limited and mostly related 
to pattern recognition. Methods such as neural networks 
are good at data reconstruction and feature extraction, but 
are insufficient when it comes to higher level understand-
ing and data interpretation. This again is not to discour-
age research focused on applying AI-methods for TO. The 
combined choices of model types, model-configurations 

Table 4   The compliance of the optimised structures in Fig. 7 (b) and 
(c) with respect to different �-values changing the loading conditions 
in (a)

Design (b) (c)

�=0 7.255 7.372
� = 0.01 1,649,351,760 7.5591



On the use of artificial neural networks in topology optimisation﻿	

1 3

Page 27 of 36  294

and applications are endless, and successful choices may 
provide meaningful contribution to scientific progress. To 
approach such useful choices one should however ensure 
understanding of the different model choices and practice 
critical evaluation of both the potential and longevity of the 
modelling framework itself, as well as the observed perfor-
mance through testing.

Based on the ideas and results observed in the current 
literature, this section will therefore provide what is believed 
to be basic but useful guidelines for researchers interested in 
pursuing different application of AI in TO. To this purpose 
recommendations for what to consider when developing a 
model as well as how to properly assess its resulting perfor-
mance are listed in the following.

5.1 � When designing the model

When choosing a model type and its configurations the aim 
should be to determine which settings are likely to per-
form best for the intended application. With AI-methods 
this can be difficult as model design is not an exact science, 
but efforts should still be made to research different options 
and how they have successfully been applied in other fields. 
Doing so, it is also paramount to account for all aspects hav-
ing an influence on the problem at hand, and remembering 
that relational properties should be provided to the model as 
one cannot expect the model to magically realise the envi-
ronment it is applied within. Some concrete comments on 
the choices made in the current literature will highlight how 
such challenges can manifest, but as this very much is a new 
and open research field a complete guide cannot be provided.

After having identified the desired task, efforts should 
be focused on determining appropriate inputs, outputs and 
loss function. The analysis of breakeven threshold and gen-
eralisation ability in Section 3.1 illustrates the effect of data 
formatting on the computational performance of the model. 
It is found that in current works the training data generation 
requires a high computational cost which is often incorrectly 
deemed negligible. It is fair to assume that the more versatil-
ity the obtained model can provide, the more training time 
one can justify. However, most of the reviewed works having 
greater generalisation abilities typically present methods that 
have lower training costs. The reason for this is likely related 
to the fact that cheaper training data often is more removed 
from any specific problem instance, such that patterns the 
model learns from are relevant for a wider variety of cases.

The chosen model output is therefore a deciding factor 
in the model design phase. These outputs should be realis-
tically attainable by the chosen model and preferably in a 
format that allows for a wide range of problems and mesh 
dimensions. Further, it is beneficial if benchmark targets 
can be computed somewhat efficiently as to evaluate the 
accuracy of the output. This means that neural networks 

aimed at directly predicting an entire output structure like 
the described direct design models might be unrealistic 
and very limited in terms of generality. Another limiting 
effect of using optimised structures to train the model is 
that it is likely to be influenced by the nature of the conven-
tional solver used and the select set of parameters, where 
for instance using a larger filter radius to obtain the train-
ing samples may result in the model never considering finer 
features as optimal.

The formatting of the input and loss function is also an 
important aspect, as the information contained should, ide-
ally, be sufficiently able to describe the unique properties of 
a considered problem instance, such that there is a believ-
able relation between the input and the output. The input 
should allow for different problem dimensions while the 
input dimensions are kept limited to reduce the size of the 
network. Therefore it is recommended that greater efforts 
are made towards defining an appropriate loss function to 
capture more complex system relations.

These aspects means that one should seek more com-
plex loss functions relating more to physical properties that 
require FEA in the evaluation of results and less to image-
based prediction error. The norm should be to move away 
from designing mesh and boundary condition specific mod-
els and towards more adaptable frameworks than what is 
seen in most of the current literature. Further, it is recom-
mended to consider automated post-processing as a valid 
option to refine the final structures to i.e. limit the occur-
rence of disconnections. In many cases this can be done in 
an inexpensive manner, such that the computational time is 
not significantly affected.

Overall, the most important reflection points are related 
to how many different problem types or settings the method 
can handle without retraining, while supplying good-quality 
results.

5.2 � When testing the model

When testing the model the aim should be to accurately 
determine whether the performance for the intended task 
is sufficient. This relates both to the statistics presented for 
model evaluation and the benchmarks used for comparison.

Figure 4 in Sect. 2.2 proved how the pixel-based den-
sity error is not an appropriate error measure when evalu-
ating structural performance, as a small pixel-based error 
may imply good performance even for disconnected struc-
tures. Image-related error measures in isolation say more 
about the exactness of the reconstruction than whether the 
approach was successful in solving the TO problem. The 
physical performance of the obtained solution in terms of 
the desired properties defined by the optimisation objective 
and constraints should therefore be the main focus. When 
testing the model on several problem cases it is also crucial 
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to include the entire distribution of the obtained results. This 
is to ensure that worst case behaviour is identified, because 
in structural design, even one insufficient solution can have 
detrimental consequences.

In terms of benchmarking it is both important to ensure 
the desired test cases are notably different from all cases 
considered during training and that the comparison to con-
ventional methods is done under fair circumstances. Firstly, 
this means that it is not sufficient to test on random problems 
that are sampled from the same limited pool as the training 
data. Secondly, it should be assured that the two compared 
structures are defined on the same length-scale and thresh-
olded to a black-and-white design, satisfying the same vol-
ume fraction. Some of these latter requirements might differ 
depending on the considered optimisation problem, but as 
most works are concerned with compliance minimisation 
subjected to a volume constraint, it is convenient to base the 
recommendation on this type of problem.

If comparison to other similar AI-based models is con-
ducted, all aspects should be considered and one should aim 
at ensuring the same testing conditions. As such, similar 
problems should be solved, the same performance measures 
should be used and training time, including data generation, 
should be included in the assessment. If a larger number of 
data samples or longer training time is allowed, increased 
prediction performance may be observed without the model 
architecture actually being better.

5.3 � Benchmark cases

The previous section exemplified how results should be pre-
sented and compared to conventional approaches for stand-
ard minimum compliance problems, and has encouraged 
proving performance for a wider range of problems. What 
has not been covered, however, is how appropriate problems 
for benchmarking should be chosen.

Constructing a set of specific benchmark problems that 
should be included to prove the validity of a conventional 
TO framework is difficult in itself, but for NN-based frame-
works this becomes even more challenging as it also depends 
on how the NN is applied and what data is used for training. 
Firstly, if a model is trained on these specific benchmarks, 
then good performance for these problems is not an indica-
tion of the model’s general capabilities. Secondly, the differ-
ent ways in which ANNs can be applied within TO further 
individualises what appropriate benchmarking is. Therefore, 
instead of presenting a finite set of problems to include, this 
section will cover some important considerations when 
choosing the test-cases for a specific ANN-framework and 
how to evolve from a proof-of-concept to certified state-of-
the-art legitimacy of the proposed approach.

The basic The first level of difficulty for benchmark 
problems can be directly related to the definition of 

generalisation ability in Table 3, where the aim should 
be to justify the highest score possible. An approach for 
achieving a high score could be to select a small set of 
domain shapes different from the training problems and 
for each of these shapes consider separate combinations 
of mesh resolutions, supports and loads.

Based on how the ANN is integrated within the opti-
misation framework, i.e. what application category the 
presented model belongs to, there may be additional con-
siderations that become important when benchmarking. 
If the ANN is used to perform a sub-task in the optimisa-
tion process it is of interest to assess performance for this 
specific task, in addition to how the overall optimisation 
procedure is improved. This means that for ANNs trained 
to perform FEA the accuracy of the obtained sensitivities 
should also be assessed. Approximate sensitivities could 
lead to good-quality optimised results, but the accuracy 
may still have effects on the reliability of the approach for 
future cases. Further, for convergence type frameworks 
mapping between intermediate designs to skip parts of the 
optimisation process, the output from the model, before 
continued iteration, is also of interest. This last point is of 
particular interest because if the achieved speed-up is the 
result of pixel-rounding or moving average type changes, 
one can avoid the expensive training and obtain more gen-
eral frameworks performing equally well.

The issue of coarse mesh restrictions on the minimum 
length-scale of high resolution structures obtained by two-
scale applications has been a prominent topic through-
out the review. Assessments of this effect should thus be 
included for these methods. One potential approach could 
be to illustrate the underlying coarse mesh of the fine scale 
result. Restrictions on the complexity of the obtained 
structures were also evident for re-parameterisation 
approaches due to the reduced design representation and 
solution space. The question for such approaches could 
therefore be whether one can control the length-scale or 
impose local volume constraints to force fine features in 
the optimised structure (Wu et al. 2018).

Lastly, there are some works claiming that the proposed 
NN-frameworks are justified only for problems where 
conventional approaches are less efficient or effective. In 
such cases it is crucial that the provided benchmark cases 
belong to the problem-categories for which the framework 
is intended to be beneficial.

The generalisation ability measure includes no require-
ments about changes in problem definition (material 
parameters, objective function, constraints) or the scale of 
the different mesh resolutions. For developing new meth-
ods for TO it is not expected that one can instantly outper-
form state-of-the-art large-scale TO (millions of elements 
and constraints), but it strengthens the proof-of-concept 
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to provide qualitative arguments for how the framework 
allows for future scalability and transferability.

The intermediate The basic benchmark-selection 
approach should be the minimum to illustrate the potential 
of a framework in a proof-of-concept manner, in addition to 
a fair qualitative justification of the method. The next step 
in proving whether the framework is competitive is to con-
sider whether it allows for changes in the problem definition. 
This could be included by considering the same benchmark 
problems as from the basic approach, but now altering or 
extending the underlying optimisation problem.

Admittedly, the basic benchmark problems considered 
in the TO community have a tendency to be overly sim-
plistic, e.g. by considering minimisation of physical perfor-
mance subject to a linear volume constraint. This formula-
tion allows for using bi-section algorithms for determining 
Lagrange multipliers and results in designs that are inde-
pendent from base material stiffness. Similarly, in learning-
based approaches, a formulation with a volume constraint 
makes training easier and results independent of material 
properties. For gradient approaches combined with flex-
ible optimisers like the Method of Moving Asymptotes 
(MMA) (Svanberg 1987), switching the objective and con-
straint functions is straightforward. However, for a learning-
based approach, especially aimed at direct design, training 
becomes increasingly challenging due to varying volume 
fractions of final designs and the need for quantitative evalu-
ation of the constrained response function.

Hence, a challenging test case, with a high degree of 
industrial and practical relevance, would be to solve vol-
ume minimisation subject to compliance constraints. For 
additional complexity one could also consider solving for 
different material properties. For extending the problem 
one can consider additional constraints, such as additional 
compliance, displacement, local stress or local volume con-
straints. These changes are all readily implementable within 
conventional gradient-based frameworks and are thus impor-
tant factors for judging whether the ANN-based method is 
competitive in a broader more applicable sense.

The advanced State-of-the-art TO has come a long way, 
and is now capable of solving large-scale problems with 
hundreds of millions of elements, millions of local con-
straints, a vast variety of alternative physics (a.o. thermo-
fluidics, micro electro mechanical systems) and solved using 
unstructured meshes on irregular domains. The latter point 
is of particular interest as the reviewed NN-frameworks for 
TO exclusively consider regular meshes, which do not guar-
antee the necessary accuracy for practical applications. The 
ultimate end-goal for a procedure should be to improve on 
the performance of conventional methods for such problems 
or to achieve capabilities for new even more complex or dif-
ficult problems. This is, as specified, not necessary for proof-
of-concept when presenting new solution frameworks, but 

this should be the ultimate goal for true scientific progress 
within the field.

6 � Conclusion

6.1 � Current status for AI in TO

The recent surge in publications presenting research into 
exploiting AI-technology for TO is likely motivated by 
such technologies’ positive impact on the field of computer 
vision. With the desire to eliminate the need for iterative 
solution procedures in structural optimisation, a large num-
ber of neural network models have been suggested, clearly 
inspired by the success of using deep learning for image seg-
mentation and generation tasks. These direct design models 
are however found to produce poor designs, be expensive 
to obtain and be very restricted in terms of the variety of 
problems and mesh resolutions they can handle. Their insuf-
ficient performance has, however, not reduced the popularity 
of the premise of iteration-free TO. It is true that conven-
tional TO consists of a computationally expensive iteration 
process, but the iterative nature in itself is not what makes 
true large-scale TO impractical. Rather, it is the expense of 
the inter-iteration computations that pose the real challenge. 
Therefore, it is postulated that the idea of a direct iteration-
free TO should be discarded and that the focus should shift 
towards alleviating the computational load of the costly 
components within the iterative process.

This literature review includes descriptions of several 
other application areas, relating to for instance acceleration 
of the optimisation procedure and post-processing of opti-
mised results. These methods allow for designing models 
with more specific tasks that have a more realistic possibility 
of being handled by an approximative mathematical model. 
Designing viable models for these purposes is proven to be 
a challenge, as there is still a lack of convincing results pre-
sented in the literature. Few of the reviewed articles exhibit 
promise towards actual scientific progress, but the alterna-
tives for such methods are not exhaustively researched, and 
greater potential is expected. Therefore, one should defi-
nitely not reject all prospects for utilising AI-technology to 
aid in TO.

What is important for overall success within this field, is 
to adopt a more critical perspective when it comes to evalu-
ating ideas and results both pertaining to work done by one-
self and others. Throughout this review it has become clear 
that there is a lack of understanding both related to model 
viability and interpretation of results. This is seen both by 
presenting ML-models with tasks they cannot realistically 
solve, and insufficient reporting of experimental results. Fur-
ther, there is a trend of describing the output from research 
works in terms of what the aim was to achieve, instead of 
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what was achieved. To ensure further progress, it is crucial 
to present ones research results with full transparency, and 
to accurately assess the work of others when citing literature.

The recommendations made in this review article are 
meant to instigate the above-mentioned needed changes. To 
summarise the important points of the analysis results, 6 
questions to consider when working with AI in TO are pre-
sented. This list is inspired by the recommendations made by 
Marcus and Davis (2019) for assessing AI research results. 

1.	 Disregarding the theoretical expectations, what does the 
AI system actually achieve?

2.	 How general is the approach? (E.g. can it capture all 
aspects of the problem, or just mimic the provided train-
ing data?)

3.	 Is there a transparent and thorough presentation of per-
formance? (E.g. is the worst case performance presented 
and is the computational gain fairly represented?)

4.	 If it is claimed that an AI system outperforms its con-
ventional counterpart, then on what aspects/measures, 
and how much better?

5.	 How far does successfully solving the presented example 
instances take us toward achieving AI-based state-of-
the-art solution methods?

6.	 How robust is the system and what is its generalisation 
ability? Could it work equally well with other problem 
characteristics (boundary conditions, loads, etc.), with-
out demanding re-training?

Addressing the above points should at least include listing of 
breakeven thresholds (1) and generalisation ability (Table 3) 
or equally transparent alternatives where these measures are 
not feasible. Further, a fair presentation of solution qualities 
and comparisons to the most relevant benchmarks, is also 
expected. Such a proper assessment of method capabilities 
should be a minimum requirement before publication.

Interestingly, it is observed that only 14 out of 111 ML-
papers discussed in this review have appeared in the Struct 
Multidisc Optim (SMO) journal. A large majority of papers 
seems to appear in “non-optimisation”and physics journals, 
where readers and reviewers may have been less exposed to 
efficient topology optimisation approaches and, hence, more 
likely to accept the concept of learning-based methods for 
inverse design. Even if this review is published in SMO, the 
ambition and hope is that its message will spread to other 
journals and scientific societies, such that future research 
efforts are spent in meaningful ways.

6.2 � Future promise

As mentioned, the most promising ideas for applications of 
AI in TO in the current literature, relates to acceleration of 
the iterative optimisation process or post-processing opti-
mised results for manufacturability. An obvious approach 
that could offer substantial speed-up is to reduce the number 
of FEAs needed throughout the optimisation procedure. This 
could be obtained by either removing a part of the iterative 
process (Kallioras et al. 2020) or replacing the FEA for a 
polynomial process in a subset of the iterations (Chi et al. 
2021; Sasaki and Igarashi 2019). Multi-scale approaches 
where ML-models are used to map analytical results on a 
coarse grid to approximate values on a fine grid do also seem 
viable, but the results should then be appropriately compared 
to other multi-grid methods.

Relating to this, the concept of physics-informed neural 
networks (PINNs), first introduced by Raissi et al. (2019), 
has lately gained increasing traction and is useful for learn-
ing tasks in the presence of physical laws that should be 
respected. By encoding structured information into the 
loss function of a neural network utilising the principles 
of PINNs, one could for instance obtain an approximate 
model describing the solution to a set of partial differential 
equations that would function as a substitute for FEA. So 
far experimental results show that this approach requires 
fewer data samples to train a more generalised model. Due 
to a current lack of combinations with TO this is beyond 
the scope of this review, but it is believed that this could 
be an interesting path for further research in the field. This 
approach may allow for both more efficient and accurate 
approximations of the governing equations in a topology 
optimisation problem, as well as modelling of more com-
plex and highly nonlinear mechanical properties. However, 
optimisation is known to optimise numerical errors before 
physics (cf. the checkerboard problem), and therefore cau-
tion should be taken when working with potentially inac-
curate numerical physics descriptions.

Post-processing of TO-optimised structures utilising ML-
methodology is currently an underrepresented application 
area in the literature that may deserve more attention in the 
future. Especially, converting the TO-optimised structure 
representation to a format suited for different manufactur-
ing techniques may have a positive effect on the possibilities 
for applying TO in real-life product design processes. Also, 
as shown in Elingaard et al. (2022), ML has promise for effi-
cient de-homogenisation which strengthens the capabilities 
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of the more efficient homogenisation-based TO method. As 
such, one can achieve more efficient optimisation procedures 
also without changing the main optimisation process itself.

Further, the structural representation, typically in the form 
of discretised FE-grids, is a main reason for both the com-
putational time and memory requirements associated with 
large-scale TO. Therefore, significant improvements could be 
achieved by appropriate re-parameterisations of the TO-models, 
where the problem size is reduced in terms of number of design 
variables or the information needed to sufficiently represent 
a structure. This is, however, only true provided that FEA is 
also removed from the usual mesh. As there exists several 
ML-methods that have proven to be good for feature extrac-
tion through down-sampling, this could be another interesting 
research avenue, related to the PINNs. Note that any such new 
method should be compared to current state-of-the-art model 
order reduction methods and not to full scale standard TO.

Overall, the research into using AI-technology in TO has 
barely begun. This review has mainly focused on the use of 
ANNs, but it is believed that many crucial arguments read-
ily translate to other types of ML-models. A select group of 
applications have so far shown promising results for future 
development, but most works exhibit unrealistic expecta-
tions for what such models can learn. To further advance the 
use of AI in TO, there is therefore a need for greater knowl-
edge and understanding of existing AI capabilities amongst 
researchers applying such technology. As new technology 
continues to emerge, some of the recommendations in this 
paper may change, but the proposed considerations for how 
to evaluate new frameworks will most probably not.

Appendix A

See Fig. 8.
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