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Abstract
We propose a novel shape optimization method for designing a multiscale structure with the desired stiffness. The shapes of 
the macro- and microstructures are concurrently optimized. The squared error norm between actual and target displacements 
of the macrostructure is minimized as an objective function. The design variables are the shape variation fields of the outer 
and interface shapes of the macrostructure and the shapes of holes in the microstructures. Subdomains with independent 
periodic microstructures are arbitrarily defined in the macrostructure in advance. Homogenized elastic tensors are calculated 
and applied to the correspondent subdomains. The shape gradient functions are theoretically derived with respect to each 
shape variation of the macro- and microstructures, and applied to the  H1 gradient method to determine the optimum shapes. 
The proposed method is applied to several numerical examples, including Poisson’s ratio design and deformation control 
designs of an L-shaped bracket and a both ends fixed beam with holes. The results of the design examples confirm that the 
desired stiff or compliant deformation can be achieved while obtaining clear and smooth boundaries. The influence on the 
final results of the initial shape of the unit cell, the connectivity of adjacent microstructures, and interface optimization is 
also discussed.

Keywords Concurrent optimization · Multiscale optimization · Shape optimization · H1 gradient method · Homogenization 
method · Periodic microstructure

1 Introduction

Multiscale structures, examples of which are seen in plant 
skeletons and animal bones in nature, have the potential to 
provide greater performance while remaining lightweight, 
resilient, and multifunctional. Recent developments in 
3D printing, or additive manufacturing, are accelerating 
research on multiscale optimization. In a multiscale struc-
ture as shown in Fig. 1, microstructures with small holes 
or lattices are distributed inside the overall macrostructure. 

Multiscale optimization optimizes the macro- and micro-
structures on both structural scales. In early research on 
multiscale structures, the macro- and microstructures were 
optimized separately and not concurrently due to the enor-
mous amount of calculations involved.

Consequently, the homogenization method was estab-
lished as a mathematical approach in the engineering field 
for evaluating the effective material properties of composite 
materials. It was later extended as a method for topology 
optimization or as a design method for multiscale structures 
(Hornung 1991; Yvonnet 2019). The early work of Bendsoe 
and Kikuchi (1988) and Suzuki and Kikuchi (1991) pro-
posed the use of the homogenization method as a technique 
for topology optimization. In their studies, a periodic unit 
cell with a rectangular hole was defined in a macrostruc-
ture, and the size of the hole was optimized. Although it 
was a revolutionary method, there was a problem that it was 
difficult to fabricate fine structures with the manufactur-
ing technology available at that time. The Solid Isotropic 
Material with Penalization (SIMP) method (or the density 
method) has been used for topology optimization instead of 
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the homogenization method because of its convenience since 
the latter half of the 1990s (Wu et al. 2021).

In recent years, with the development of manufacturing 
technologies such as 3D printing, it has become possible 
to manufacture fine and complicated shapes that were pre-
viously considered difficult. The homogenization method 
has been investigated thoroughly in order to bridge the 
macro- and microstructures. Research on multiscale topol-
ogy optimization using the homogenization method has 
attracted a great deal of attention anew. In 2002, Rodrigues 
et  al. (2002) described hierarchical optimization of the 
macro- and microstructures using the SIMP method. Liu 
et al. (2008) proposed a concurrent multiscale optimization 
method using SIMP and the Porous Anisotropic Material 
with Penalization (PAMP) method for optimizing micro- and 
macrostructures of two-dimensional elastic bodies. Wang 
et al. (2016) presented an example of multiscale concurrent 
optimization of a two-dimensional elastic body using the 
level-set method. Sivapuram et al. (2016) presented concur-
rent topology optimization of macro- and microstructures 
using the level-set method for the purpose of rigidity design. 
Gao et al. (2019) presented a MATLAB code for concur-
rent multiscale optimization of 2D and 3D structures using 
a modified SIMP approach, in which mean compliance is 
minimized. Li et al. (2019) presented a concurrent multi-
scale optimization method for a two-dimensional elastic 
structure by varying the length–width ratio of the hole in 
the periodic cell. Although not concurrent multiscale opti-
mization, the homogenization method has been applied for 
attractive metamaterial designs such as negative Poisson's 
ratio properties (Xu and Xie 2015; Jha and Dayyani 2021; 
Zhang and Khandelwal 2019; Ai and Gao 2017) and zero 
Poisson's ratio (Jha and Dayyani 2021).

In recent studies, researchers have been interested in 
connectivity (or compatibility) issues of microstructures 
in actual 3D printing. When optimized microstructures are 
actually distributed within the macrostructure, the walls of 
adjacent microstructures might not be properly connected 
due to mismatches (Wang et al. 2018, 2020). This leads 
to disconnection of the macrostructure or performance 
reduction. For the problem of microstructure connectivity 
in topology optimization, Du et al. (2018) introduced con-
nectivity indicators that fill unconnected sections between 
adjacent microstructures. Zhang et al. (2019) proposed an 
optimization method based on the variable thickness sheet 
method (VTS) for two- or three-dimensional microstruc-
tures, in which kinematical connectors were introduced. 
Liu et al. (2020) proposed different microstructures for 2D 
and 3D structures, in which they defined the connection 
area between microstructures using concurrent multiscale 
topology optimization. Zhou et al. (2019) studied a two-
dimensional inverse homogenization method for design-
ing functionally graded materials consisting of graded 
microstructures, and applied connectivity constraints and 
an interpolation formulation for cell distribution to ensure 
connectivity while maintaining the gradient distribution. 
Garner et al. (2019) presented a method to find the optimal 
connectivity between topology-optimized microstructures 
for designing functionally graded materials using an inverse 
homogenization method and a linearly varied volume frac-
tion constraint, in which the cells were optimized consider-
ing the assembly of adjacent cells. Furthermore, Radman 
et al. (2013) proposed stepwise topology optimization of 
microstructures for two- and three-dimensional structures 
to maintain microstructure connectivity. Zhou and Li 
(2008) proposed a method with kinematic constraints and 

Fig. 1  A multiscale structure 
consisting of five subdomains 
with various microstructures
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pseudo-loads for ensuring connectivity in two-dimensional 
structures. Post-treatment methods have also been proposed 
for obtaining a continuous design from a multiscale design 
that separates the macrostructure and the microstructure 
(Pantz and Trabelsi 2008).

In almost all the concurrent multiscale structural optimi-
zation studies reported to date, topology optimization was 
conducted for optimizing macro- and microstructures. Many 
of the proposed methods are based on a gradient approach, 
but evolutionary methods are also used. For example, Xu 
and Xie (2015) presented a method using the bi-directional 
evolutionary structural optimization (BESO) method, in 
which two-dimensional structures were optimized with two 
types of distributed microstructures within the macrostruc-
ture. Huang et al. (2013) studied compliance minimization 
of a macrostructure by optimizing the microstructures using 
the BESO method. Yan et al. (2014) investigated compliance 
minimization using the BESO method for concurrent multi-
scale topology optimization of 2D and 3D structures. Zhao 
et al. (2018) utilized the method of moving asymptotes for 
addressing the optimization of compliance control issues in 
multiscale and multi-material problems, which have many 
more design variables than a single material. Evolutionary 
methods including the evolutionary structural optimization 
(ESO) method do not guarantee convergence to the solution, 
but have the advantage of not requiring sensitivity analy-
sis and not causing the grayscale problem. Another feature 
of such methods is that multiple local solutions including 
the global optimum solution can be obtained by changing 
parameters like the element elimination ratio. However, the 
results obtained by evolutionary methods depend on the 
discretization scheme. Genetic algorithm (GA) and particle 
swarm optimization (PSO) also have the feature that multi-
ple local solutions including the global optimum solutions 
can be obtained. However, they do not seem to be suitable 
for concurrent multiscale optimization that requires large-
scale computation, and their use in this regard has not been 
reported so far as the authors know.

In concurrent multiscale topology optimization with the 
SIMP method or the ESO method, the results obtained have 
stepped or non-smooth boundaries along the finite elements 
the same as with general topology optimization. When the 
level-set method is used, the obtained boundaries are not 
stepped theoretically. However, since boundaries cross the 
elements, it is necessary to add or generate nodes on the 
boundaries. Actually, with every topology optimization 
method, a smoothing treatment such as isosurface processing 
is required for 3D printing, after topology optimization. This 
treatment causes both structural performance and volume 
errors compared with before the treatment.

There have been very few studies on multiscale shape 
optimization. Barbarosie (2003) studied shape optimization 
of 2D microstructures using the inverse homogenization 

method to obtain the desired material properties. The authors 
presented a shape optimization method of microstructures 
based on the  H1 gradient method for stiffness maximization 
of the macrostructure (Fujioka et al. 2021). As far as the 
authors know, no other paper has been published on shape 
optimization of concurrent multiscale structures.

Unlike topology optimization, the initial topology is kept 
in shape optimization until the final shape is obtained. In 
general, this may be a disadvantage in terms of the degrees 
of design freedom. However, due to functional and manufac-
turing requirements, designers may not want to change the 
topology of the micro- and macrostructures. For example, 
designers may want to create a closed cell microstructure 
or to avoid complicated microstructures for manufactur-
ing, and do not want to make multi-connected structures 
or many holes to prevent strength reduction. In such cases, 
shape optimization may be suitable. In stiffness design with 
topology optimization, the obtained shapes of the unit cells 
are quite simple because of periodicity (Li et al. 2018; Xu 
et al. 2021). Accordingly, the application of shape optimiza-
tion to the unit cell design is not necessarily inferior in terms 
of the degrees of design freedom.

In this study, we propose a shape optimization method 
for concurrent multiscale optimization of macro- and micro-
structures, which is based on the  H1 gradient method. The 
 H1 gradient method is a non-parametric shape optimization 
method proposed by Azegami (1994). The method has so 
far been applied to many design problems such as maximum 
stress and displacement minimization (Shimoda et al. 1997), 
robust optimization of frame, shell, and solid structures (Shi-
moda et al. 2019), and shape and topology optimization of 
laminated shell structures (Shimoda et al. 2021). The main 
features of this method are that it (1) obtains the clear and 
smooth optimal (free-form) shape, (2) does not need any 
parameterization of the design variables, (3) eliminates re-
meshing in practical use, and (4) solves the large design 
problem efficiently by using a distributed-parameter optimi-
zation approach. A detailed description of the  H1 gradient 
method, including its other features, is given in Sect. 4.

In this study, we apply the  H1 gradient method to con-
current shape optimal design of multiscale structures for 
the first time, and propose a novel concurrent multiscale 
shape optimization method for stiffness control, i.e., dis-
placement control of the target points. After arbitrarily sec-
tioning a macrostructure into subdomains with independent 
microstructures, the shapes of the outer and the interface 
boundaries of the macrostructure are optimized concurrently 
with the shapes of the unit cells of the microstructures. The 
homogenization method is used to bridge the macrostructure 
and microstructures.

The novel aspects of the present paper from an academic 
standpoint are as follows: (1) Proposal of a newly researched 
concurrent multiscale shape optimization method, which 
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allows large degrees of design freedom by freely moving 
the outer shape and the interfaces in addition to multiple 
microstructures. The zigzag shape problem (or numerical 
instability) caused by moving all the nodes is stabilized by 
using the  H1 gradient method. (2) The sensitivity functions 
including the adjoint equations for stiffness control with 
respect to the shape variations of the macro- and microstruc-
tures and the interfaces are theoretically derived. (3) The 
validity and superiority of the proposed concurrent method 
are demonstrated by comparing concurrent optimization 
with sequential optimization. (4) Considering the application 
of multiscale optimization to vibration and strength prob-
lems, topology optimization is shown to have some difficult 
problems to be solved such as accurate stress calculation 
on the boundaries and undesirable local vibration in void 
regions. Furthermore, topology optimization cannot cur-
rently be applied to out-of-plane shape design of plate and 
shell structures. The proposed method for shape optimiza-
tion can solve these problems, and this paper provides the 
basis for its future expansion to such design issues.

The main useful points of the proposed method based 
on shape optimization are as follows: (1) One advantage of 
this method is that a detailed, clear, and smooth boundary 
shape can be obtained. This is advantageous for transferring 
the obtained finite element (FE) data to a 3D printer. Simple 
microstructures obtained with the proposed method are pref-
erable considering periodicity and manufacturability. (2) As 
mentioned above, in standard topology optimization based 
on the level-set method, SIMP method, and ESO method, a 
proper post-treatment like isosurface processing is required 
to create smooth surfaces. This treatment causes both struc-
tural performance and volume errors compared with before 
the treatment. The proposed shape optimization method does 
not need any post-treatment and never induces errors. (5) 
Squared error with target displacement in an arbitrary region 
is used as the objective function. This is also useful in actual 
design work for a wider range of design application than the 
minimization of compliance. (6) Using the hole shape in a 
unit cell as the design boundary also offers the advantage 
that it is not necessary to worry about the connectivity of 
unit cells between subdomains. (7) The total area of micro-
structures is appropriately divided into the subdomains of 
a macrostructure depending on the magnitude of the sen-
sitivity function. (8) Since a smooth and detailed shape is 
required, a stress evaluation that is essential in design can be 
performed. (9) It is also useful when the designer does not 
want to change the topology from the initial shape, which 
can be considered as a kind of manufacturing constraint. 
(10) Providing designers with an alternative method to 
topology optimization is important from the viewpoint of 
design diversity, selection, and adaptability according to the 
intended purpose.

This paper is organized as follows: Sect. 2 is dedicated 
to the formulation of a multiscale optimization problem. 
In Sect. 3, the Lagrange function is defined, and the shape 
gradient functions are derived using the material derivative 
method. Section 4 focuses on demonstrating the  H1 gradi-
ent method and its flow chart. In Sect. 5, numerical cal-
culation results are presented to prove the effectiveness of 
the proposed method, and the conclusions of this study are 
summarized in the final part. The notations and the vari-
ables are summarized in the Appendix. The derivation of 
the shape gradient functions is also described in detail in 
the Appendix.

2  Formulation of multiscale optimization 
problem

Concurrent multiscale shape optimization is performed in 
this study using the  H1 gradient method, which is applied 
to both the macro- and microstructures to determine their 
detailed, clear, and smooth shapes explicitly.

The design variables are the shape variation VM(I) dis-
tributed on the outer boundary in subdomain I with an inde-
pendent microstructure in the macrostructure, the shape var-
iation VB(KL) distributed on the interface boundary between 
subdomains K and L of the macrostructure (Haug et al. 1986; 
Pantz 2005; Shi and Shimoda 2015), and shape variation of 
the holes in the microstructures V(I) . (⋅)M denotes a variable 
of the macrostructure. Figure 2 shows an example of a mac-
rostructure with three independent microstructures.

The objective function is to minimize the squared error 
F
(I)

M
(uM − wM , uM − wM) between the actual displacement 

uM and the target displacement wM at the target point in 
subdomain I with an independent microstructure in the mac-
rostructure, and the constraints are the state equation of the 
macrostructure (Eq. 3) and the homogenization equation of 
the microstructures (Eq. 6). This objective function can be 
applied to both stiff and compliant structural designs. Equa-
tions (4) and (5) are the conditions to be considered for the 
displacements and the Cauchy stress vector at the interfaces 
in the state equation of the macrostructure.

The macroscale domain is represented by ΩM , the dis-
placement vector distributed within ΩM of the boundary ΓM 
is denoted by uM , and the target displacement distributed is 
wM . ΓD is the boundary for defining the target displacement 
in the macrostructure. ΓD can be defined not only on a loaded 
boundary but also on an arbitrary boundary. uM(I) is the dis-
placement vector of subdomain I ΩM(I) in the macrostructure 
ΩM ; it has the associated boundary denoted by ΓM(I) , and 
each subdomain I has the elastic tensor of EM(I) . ΓM(I,J) is 
the interface boundary between subdomain I and adjacent 
subdomain J. Ω(I) is the associated unit cell domain I.
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In order to evaluate the homogenized characteristics of 
the microstructures in the macrostructure, the characteris-
tic displacement � (I)kl of microstructure I for component kl 
is calculated for the associated unit initial strain field I(I)kl 
(See Fujioka et al. (2021) for the state of deformation of the 
unit cell upon application of the unit initial strain field). ( ⋅ ) 
denotes the virtual displacement, N is the number of domain 
divisions, and H1

0
 denotes the Sobolev space of order 1.

(1)
find V

M(I)
, V

B(KL)
, V

(I)
, (I = 1, 2,… ,N),

(K,L) = (1, 2), (2, 3), (3, 1),…

(2)that minimizes

N∑
I=1

FM(I)(u
M(I) − w

M(I), uM(I) − w
M(I))

(3)

subject to

N∑
I=1

aM(I)(u
M(I),u

M(I)
) −

N∑
I=1

hM(I)(u
M(I),u

M(I)
)

=

N∑
I=1

lM(I)(u
M(I)

), ∀u
M(I)

∈ UM

(4)
u
M(I) = u

M(J), (I = 1, 2, 3), (J = 1, 2, 3), (I ≠ J) on ΓM(I,J),

(5)
EM(I)
ijkl uM(I)

k,l nM(I)
j = −EM(J)

ijkl uM(J)
k,l nM(J)

j ,

(I = 1, 2, 3), (J = 1, 2, 3), (I ≠ J) on ΓM(I,J)

The virtual work due to the internal force of the micro-
structures and the macrostructure is given by Eqs. (7)–(9), 
the virtual work due to the external force of the macrostruc-
ture is given by Eq. (10), and the squared error between 
the target displacement and the actual displacement of the 
macrostructure. FM(I)(⋅, ⋅) in Eq. (2) is defined by Eq. (11), 
and U(I)

Y
 shows the Y-periodic allowable displacement field 

of microstructure I as shown in Eq. (12). UM in Eq. (3) 
denotes the kinetically admissible displacement field of the 
macrostructure.

(6)
a(I)(�

(I)kl − I
(I)kl

,�
(I)kl

) = 0,
∀�

(I)kl
∈ U

(I)

Y
,

(k, l = 1, 2), (I = 1, 2,⋯ ,N)

(7)

a(K)(�
(K)kl,�

(K)kl
) = ∫

Ω(K)

E
ijmn

� (K)kl
m,n

�
(K)kl

i,j
dΩ(K), (K = 1, 2,⋯ ,N)

(8)aM(K)(u
M(K),u

M(K)
) = ∫

ΩM(K)
E
M(K)

ijkl
u
M(K)

k,l
u
M(K)

i,j
dΩM(K), (K = 1, 2,⋯ ,N)

(9)

hM(K)(u
M(K),u

M(K)
) = �

ΓM(K,L)

E
M(K)

ijkl
u
M(K)

k,l
n
M(K)

j
u
M(K)

i
dΓM(K,L),

(K = 1, 2,⋯ ,N), (L = 1, 2,⋯ ,N), (K ≠ L)

(10)lM(K)(u
M(K)

) = ∫
ΓM(K)

Piu
M(K)

i
dΓM(K), (K = 1, 2,⋯ ,N)

Fig. 2  Design boundaries and subdomains of a multiscale structure with three independent microstructures
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where nM(K) is the outward unit normal vector on subdomain 
K, and P is the surface force vector on the macrostructure. In 
order to bridge the macro- and microstructures, the elastic 
modulus of the macrostructure is obtained from the micro-
structures using the homogenization method. The homog-
enization elastic modulus is obtained with Eq. (13) using 
the characteristic displacement � (I)kl obtained with Eq. (6) 
and the unit cell area |Y| (Suzuki and Kikuchi 1991; Bendsoe 
and Kikuchi 1988).

3  Definition of Lagrange function 
and derivation of shape gradient 
functions

In this section, we define the Lagrange function based on 
the problem formulation above and derive shape sensitivity 
functions (called shape gradient functions) for the macro- 
and microstructures. The shape gradient functions for the 
outer boundary and the interface boundaries of the macro-
structure and the boundaries of the unit cells are calculated 
by the Lagrange multiplier method, the adjoint variable 
method, and the material derivative formula (Choi and Kim 
2005). The sensitivity calculation of the interface boundaries 
is based on methods presented in previous papers (Haug 
et al. 1986; Pantz 2005; Shi and Shimoda 2015). As will be 
mentioned in a later section, the optimal shape variations are 
determined by the derived shape gradient functions.

The Lagrange function for the case of three subdomains 
in the macrostructure (i.e., N = 3) takes the form:

We assume that the derivatives of elastic modulus E′
ijmn

 
and Ikl′

m,n
 of the microstructures are zero. The derivatives of 

surface force P�
= 0 , the derivative of the elastic modulus of 

subdomain I is EM(I)� = 0 , and the displacement prescribed 

(11)

FM(K)(u
M(K),wM(K)) = ∫

ΓD

u
M(K)

i
w
M(K)

i
dΓD, (K = 1, 2,⋯ ,N)

(12)

U
(K)

Y
=

{
�
(K)kl

∈ H1
0

(
Y;ℝ2

) ||| �
(K)kl

is Y − periodic in subdomainK
}
,

(k, l = 1, 2), (K = 1, 2,⋯ ,N)

(13)EM(I)
ijkl = 1

|Y| ∫Ω(I)

(

Eijkl − Eijmn
��kl(I)

m

�yn

)

dΩ(I), (I = 1, 2,⋯ ,N)

(14)

L =

3∑
I=1

FM(I)

(
u
M(I) − w

M(I), u
M(I) − w

M(I)
)

+

3∑
I=1

{
−aM(I)

(
u
M(I), ū

M(I)
)
+ hM(I)

(
u
M(I), ū

M(I)
)
+ lM(I)

(
ū
M(I)

)

−∫
ΩM(I)

2∑
k=1

2∑
l=1

a(I)
(
𝝌 (I)kl − I

(I)kl
, �̄� (I)kl

)
dΩM(I)

}

boundary ΓD and the boundary on which the external force 
acts do not change shape.

The material derivative L̇ of the Lagrange function with 
respect to the variations of the outer boundary and the inter-
face boundary of the macrostructure, and the boundaries of 
the unit cells of the microstructures is shown in Eq. (15). ( ⋅ )� 
and ( ⋅ ) denote the shape derivative and the material deriva-
tive, respectively (Haug et al. 1986; Choi and Kim 2005). 
Finally, the shape gradient density functions can be derived 
as Eqs. (16)–(18).

where

GM(I) expressed by Eq. (16) denotes the shape gradient 
density function for the macro outer boundary of subdomain 
I of the macrostructure, and GB(KL) expressed by Eq. (17) 
denotes the shape gradient density function for the interface 
boundary between macrostructure areas K and L (Eq. 22), 
and G(I) expressed by Eq. (18) denotes the shape gradient 
density function for the hole boundary of unit cell I. n(I) is 
the outward unit normal vector on the design boundary of 
unit cell I. GM(I)( ≡ GM(I)nM(I)),GB(KL)( ≡ GB(KL)nB(K)) , and 
G

(I)( ≡ G(I)n(I)) are vector functions called shape gradient 
functions.

In Eqs. (16)–(18), � (I)kl and � (I)kl are determined by Eqs. 
(19) and (20), respectively. Equation (19) is the same as Eq. 
(6). Equation (20) is the adjoint homogenization equation for 
the unit cells. uM(I) and uM(I) are determined by Eqs. (21) and 
(22). Equation (21) is the same as Eq. (3). Equation (22) is 
the adjoint equation for the macrostructure.

(15)

L̇ = ⟨G,V⟩ =
3
∑

I=1
∫ΓM(I)

GM(I)VM(I) ⋅ nM(I)dΓM(I) + ∫ΓM(1,2)
GB(12)VM(1) ⋅ nM(1)dΓM(1,2)

+ ∫ΓM(2,3)
GB(23)VM(2) ⋅ nM(2)dΓM(2,3) + ∫ΓM(3,1)

GB(31)VM(3) ⋅ nM(3)dΓM(3,1)

+
3
∑

I=1
∫ΩM(I)

(

∫Γ(I)
G(I)V (I) ⋅ n(I)dΓ(I)

)

dΩM(I)

(16)GM(I) = −E
M(I)

ijkl
u
M(I)

k,l
u
M(I)

i,j
, (I = 1, 2, 3),

(17)

GB(KL) = −
(

EM(K)
ijkl uM(K)

k,l uM(K)
i,j − EM(L)

ijkl uM(L)
k,l uM(L)

i,j

)

+ EM(K)
ijkl uM(K)

k,l nM(K)
j

(

uM(K)
i,q − uM(L)

i,q

)

nM(K)
q ,

(K,L) = (1, 2), (2, 3), (3, 1)

(18)
G(I) = − 1

|Y|

(

Eijkl − Eijmn
�� (I)kl

m

�yn

)

uM(I)
k,l uM(I)

i,j

−
2
∑

k=1

2
∑

l=1

(

Eijmn�
(I)kl
m,n � (I)kl

i,j − EijmnI
kl
m,n�

(I)kl
i,j

)

, (I = 1, 2, 3)

(19)
a(I)(�

(I)kl − I
(I)kl,�

(I)kl�
) = 0, ∀�

(I)kl�
∈ U

(I)

Y
, (k, l = 1, 2), (I = 1, 2, 3)
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When calculating the macrostructure and unit cells using 
the finite element method, the mean shape gradient density 
function Ĝ(I) of each domain is calculated by the weighted 
arithmetic mean of the element. When EN and AM(I)

el
 are 

defined as the number of elements in each domain and the 
element area, respectively, Ĝ(I) is expressed using Eq. (23) 
(Fujioka et al. 2021).

The shape gradient functions thus derived are applied to 
the  H1 gradient method in order to determine the optimal 
shapes of the macro- and microstructures.

4  Optimization system with  H1 gradient 
method

4.1  H1 gradient method

The  H1 gradient method, a non-parametric shape optimiza-
tion method, is a gradient method in a function space for 
obtaining the optimal shape variation distributed on the 
design boundary (Azegami and Wu 1994; Shimoda et al. 
1997). In this study, we apply this method to optimize the 
shapes of both the macrostructure and the microstructures. 
Generally, shape optimization methods have issues regard-
ing re-meshing in the shape updating process and ill-con-
ditioning of the obtained shape (or numerical instability 

(20)

a(I)(�
(I)kl�,�

(I)kl
) =

1

|Y|
[
∫
Ω(I)

(E
ijmn

� (I)kl�
m,n

)dΩ(I)

]
u
M(I)

k,l
u
M(I)

i,j
,

∀� (I)kl� ∈ U
(I)

Y
, (k, l = 1, 2), (I = 1, 2, 3)

(21)

3∑
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(
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M(I)�
)
−
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(
u
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M(I)�
)
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M(I)�
∈ U

(22)
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(
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)

=
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−
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(
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,∀uM(I)� ∈ U

(23)

Ĝ(I) =
1

∫
ΩM(I) dΩ
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G
(I)

el
A
M(I)
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that causes a zigzag shape). These issues have been trou-
blesome for designers and have required some corrective 
techniques. The  H1 gradient method can solve both issues 
simultaneously.

With the  H1 gradient method, the optimal shape variation 
can be obtained by applying the shape gradient function 
derived on the design boundaries of a fictitious linear elastic 
body as a Neumann or Robin boundary condition. That is, 
instead of directly moving the nodes of the design boundary 
using the sensitivity function, a distributed load propor-
tional to the sensitivity function is applied to the design 
boundary to change the shape, so that not only the boundary 
nodes but also the internal nodes are appropriately changed. 
Therefore, re-meshing is practically unnecessary. Moreo-
ver, since the sensitivity function is given on the design 
boundary as a distributed load, a smooth boundary without 
zigzags is maintained without any additional smoothing 
process. The positive definiteness of the stiffness matrix of 
the fictitious linear elastic body plays an important role in 
reducing the objective function with this gradient method. 
This smoothing effect was mathematically verified by 
functional analysis (Azegami et al. 1997). Therefore, the 
resulting design can be manufactured directly by additive 
manufacturing.

In this study, the shape gradient functions based on Eqs. 
(16), (17), and (18) are applied to Eqs. (24) and (25) as 
external forces in the normal direction to the outer boundary 
of the macrostructure, the interface boundaries, and the hole 
boundaries of the microstructures. Equation (24) is the weak 
form of the governing equation of the  H1 gradient method 
for the optimal shape variations of the outer boundary VM(I) 
and the interface shape VB(KL) of the macrostructure. Equa-
tion (25) is also the weak form of the governing equation of 
the  H1 gradient method for the optimal shape variations of 
the microstructure V(I).

Figures  3 and 4 show schematics of Eqs. (24) 
and (25), respectively. The optimal shapes are 
updated using the obtained shape variations such as 
xnew = x+ V

M(I), xnew = x+ V
B(KL), xnew = x+ V

(I).

where ΔsM and Δs are small positive coefficients (called 
“variation coefficients”) that are multiplied by the shape gra-
dient functions of the macro- and microstructures to adjust 
the size of the obtained shape variation field, respectively. 
v
M and v are the virtual displacement vectors of the macro-

structure and microstructures, respectively. CM and CΘ are 

(24)

aM(I)

(
V

M(I) + V
B(KL)

, v
M
)
= −

⟨
ΔsM(GM(I) + G

B(KL)), v
M
⟩
,

∀v
M
∈ CM , (I = 1, 2, 3),

(K,L) = (1, 2), (2, 3), (3, 1),

(25)a(I)
(
V

(I), v
)
= −

⟨
ΔsG(I), v

⟩
∀v ∈ CΘ , (I = 1, 2, 3)
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kinematically admissible function spaces that satisfy the 
constraints of shape variations such as rigid body displace-
ment or design constraints in the macrostructure and micro-
structures, respectively. When the state and adjoint equations 
of Eqs. (19)–(22) are all satisfied, reduction of the objective 
function is expressed by Eq. (26) (Azegami and Wu 1994; 
Shimoda et al. 1997).

In a concurrent multiscale shape optimization problem, 
if a certain microstructure distribution is defined, the cor-
responding macrostructure is determined, and conversely, 
if a certain macrostructure is defined, the corresponding 
microstructure distribution is determined. In order to 
obtain the appropriate microstructure and macrostructure 
concurrently from innumerable combinations, we used a 
method of approximately equalizing the number of con-
vergences of both in this study. The amount of shape vari-
ations can be controlled by ΔsM and Δs in Eqs. (24) and 
(25). When the coefficient of the microstructure is larger, 

(26)

ΔL ≃

3∑
I=1

⟨
G

M(I)
,ΔsMVM(I)

⟩
+

3∑
I,J=1

⟨
G

M(KL)
,ΔsMVM(I)

⟩

+

3∑
I=1

⟨
G

(I)
,ΔsV(I)

⟩
< 0, (I ≠ J)

the microstructure changes faster. If the value is extremely 
large, it is equivalent to micro-to-macro hierarchical 
optimization. Although it is possible to define ΔsM and 
Δs empirically, in this paper, after optimizing the macro-
structure and microstructures independently in advance, 
the coefficients of variations are adjusted based on the 
assumption of a linear relationship between the coefficients 
of variations and the number of convergences. It will be 
noted that although the relationship between the two is gen-
erally not linear because the shape obtained by concurrent 
optimization is different from those of independent opti-
mizations, in this paper, we use this simple linear method.

4.2  Concurrent shape optimization system

Figure 5 shows a flowchart of the concurrent multiscale 
shape optimization system developed in this study. In the 
first step, the initial shapes of the macrostructure and the 
microstructure, the design boundary, and the target dis-
placement of the macrostructure are defined. Next, the state 
equation of the microstructure (Eq. 6) is solved using a 
commercial FEM code to obtain the homogenization elas-
tic tensor (Eq. 13). The state equation of the macrostruc-
ture (Eq. 3) is solved using the obtained homogenization 
elastic tensor in each subdomain, and the squared error 

Fig. 3  Schematics of shape variation analyses of macrostructures

Fig. 4  Schematics of shape 
variation analyses of the micro-
structure (or unit cell). (b) A 
unit cell of the microstructure

(2)G¯
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between the target and the actual displacements (Eq. 2) is 
calculated.

The optimization process will continue until converg-
ing to the optimal design criteria. If it does not converge, 
the shape gradient functions of the macro- and microstruc-
tures are re-evaluated, and shape variation analyses (Eqs. 24 
and 25) are performed to update the shapes of the design 
boundaries. Equations (24) and (25) are also solved using a 
commercial FEM code. Another advantage for designers is 
that an optimization system can be easily constructed using 

a commercial FEM code without differentiating the stiffness 
matrices.

5  Numerical calculation results

Simple numerical examples were intentionally selected 
based on structural mechanics and strength of materials so 
that the validity of the obtained shape and the appropriate-
ness of the method could be confirmed.

Fig. 5  Flowchart of concurrent shape optimization system
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5.1  Microscale optimization and interface 
optimization

First, the proposed method was applied separately to micro-
scale optimization and interface optimization of a macro-
structure in order to confirm the effectiveness of the pro-
posed optimization method for each design problem.

5.1.1  Microscale optimization

This section presents only the optimization results for the 
microstructure. The target displacements can be arbitrarily 
defined and the squared error between the actual and the 
target displacements is minimized. The target displacements 
were calculated in advance to design Young’s modulus and 
Poisson’s ratio. It was assumed that the macrostructure con-
sisted of one domain, and that the hole in the microstructure 
was optimized to obtain the desired Young’s modulus and 
Poisson’s ratio.

The initial shape of the microstructure is shown in Fig. 6a. 
The design boundary was the shape of the hole boundary 
in the unit cell. Figure 6b shows the initial microstructure 
arranged as 3 × 3 unit cells, and (c) shows the calculated 
homogenized elastic tensor. Equation (27) was used as the 
elastic matrix of the solid area in the unit cell.

Figure 7a and b shows the macro- and microstructure 
and the boundary conditions used for designing Young’s 
modulus and the macrostructure for designing Poisson’s 
ratio, respectively. The macrostructure was a square of 500 
mm × 500 mm in size with 1 mm thickness. In the Young’s 
modulus design, the macrostructure was fixed on the left 

(27)E =

⎡⎢⎢⎣

3.0000 1.0000 0.0000

3.0000 0.0000

sym. 1.0000

⎤⎥⎥⎦
MPa

edge and distributed loads (total 30 N) were applied on the 
right edge. The displacement prescribed boundary ΓD was 
defined along the right edge. The target displacements on the 
right edge w1 were calculated using Eq. (28), where Young’ 
modulus in the x1 direction was Ex1 and the total load was F.

Figure 8 shows the optimization results for the target 
Young’s moduli in the x1 direction for 1.0, 1.2, and 1.5 MPa, 
respectively. The target values of w1 for 1.0, 1.2, and 1.5 
MPa were calculated as 30.0, 25.0, and 20.0 mm, respec-
tively. The final squared error ratios normalized to the initial 
structure were 1.18 ×  10–5, 1.54 ×  10–4, and 1.23 ×  10–4 for 
the target Young’s moduli of 1.0, 1.2, and 1.5 MPa, respec-
tively. The results confirm that the optimized microstructures 
were obtained for the desired Young’s moduli because the 
squared errors between the target and actual displacements 
were reduced to almost zero in all three cases. When the tar-
get Young’s modulus was 1.5 MPa, the finite element analy-
sis of the microstructure stopped because of mesh crushing. 
It was then re-meshed in order to continue the calculation.

Next, the same macro- and microstructures were used in 
the Poisson’s ratio design as in the Young’s modulus design. 
The macrostructure was fixed on the left edge and forced dis-
placements were applied on the top and right edge as shown 
in Fig. 7b. The displacement prescribed boundaries ΓD were 
defined along the top and bottom edges. The target displace-
ments on the right edge w2 were calculated using Eq. (29).

where Poisson’s ratio was � and the forced displacement was 
Δl = 1 mm.

(28)w1 =
F

Ex1

(29)w2 = �
Δl

2

(a) (b) (c)

Fig. 6  Initial shape of the microstructure
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Figure 9 shows the optimization results for the target 
Poisson’s ratios of − 0.05, 0.0, and 0.5, respectively. The 
target values of w2 were 0.025, 0.0, and 0.25 mm for − 0.05, 
0.0, and 0.5, i.e., the squared error ratios normalized to 
the initial structure as 1 were 2.04 ×  10–3, 8.41 ×  10–3, and 
1.48 ×  10–4 for − 0.05, 0.0, and 0.5, respectively. The results 
confirm that the optimized microstructures obtained the 
desired Poisson’s ratios because the squared errors between 
the target and actual displacements were reduced to almost 
zero in every case. It was also confirmed that different lateral 
holes were obtained according to the target displacements, 
and that the holes were clear and smooth.

5.1.2  Interface optimization

This section describes the numerical results for interface 
optimization. Figure 10 shows the unit cells with a center 
hole used for interface optimization and their calculated 
homogenized elastic moduli. The unit cell size of (a), (b), 
and (c) was 1 × 1 mm. The hole diameter was 0.2, 0.6, and 
0.9 mm for (a), (b), and (c), respectively. Equation (27) was 

used as the elastic modulus of the solid area in all unit cells. 
The interface boundaries between the subdomains in the 
macrostructure were optimized.

Figure 11 shows the problem definitions and the results 
obtained for two cases. The macrostructure of 100 × 200 mm 
in size was fixed on the right and left edges, and a downward 
distributed load (total: 2.2 N) was applied on a part of the 
top and bottom edges. The macrostructure was sectioned 
into three subdomains with independent microstructures, as 
shown in Fig. 11.

Displacement prescribed boundaries ΓD were defined on 
the loaded edges on the top and bottom. The target value 
of the vertical displacements on ΓD was set as zero ( w2 = 0 
mm), corresponding to stiffness maximization. In this analy-
sis, the interface boundaries were optimized under the area 
constraints for each subdomain. In Fig. 11, the same colors 
are used for the macrostructures and the unit cells (e.g., the 
unit cell in red was distributed in the red subdomain).

As case 1, when unit cell C with the biggest hole in 
Fig. 10c was distributed in the upper and lower subdomains 
and unit cell A with the smallest hole in Fig. 10a was dis-
tributed in the middle subdomain, the objective function was 

Fig. 7  Macrostructures and boundary conditions for microscale design

Fig. 8  Optimization results for Young’s modulus design Fig. 9  Optimization results for Poisson’s ratio design
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reduced by 10.7 % for maximum stiffness. It can be seen in 
Fig. 11a that the two interface boundaries obtained were 
symmetrical.

As case 2, when unit cells B, A, and C in Fig. 10 were, 
respectively, distributed in the upper, middle, and lower sub-
domains, the interface boundary between the middle and 
lower domains changed markedly and the objective function 
was reduced by 5.5 % for stiffness maximization as shown in 
Fig. 11b. It was confirmed that the interface shapes obtained 
were clear and smooth. These results also confirmed that the 
sensitivity function for the interface boundaries functioned 
well.

5.2  Concurrent multiscale optimization 
of both ends fixed beam with holes

The proposed method was applied to concurrent multiscale 
shape optimization of a both ends fixed beam with holes. 
As an initial unit cell of the microstructure, unit cell B in 
Fig. 10b and Eq. (27) were commonly used for all design 
examples in this section. As mentioned in Sect. 4.1, in all 
concurrent multiscale design examples in this paper, the 
macro- and microstructures were optimized separately in 
advance, and the amount of shape variation was adjusted so 
that the number of iterations until the convergence would 
become approximately equal.

5.2.1  Mono‑scale optimization and concurrent multiscale 
optimization

This section presents the calculated results for concurrent 
optimization, comparing only the macroscale and microscale 
optimizations.

Figure 12a–c shows the macrostructure of a both ends 
fixed beam with holes, the half FE model of the macrostruc-
ture used, and the design boundaries of the macrostructure, 
respectively. A distributed load (total: 2.5 N) was applied on 
the upper edge. The displacement prescribed boundary ΓD 
was defined at a part of the upper edge as shown in Fig. 12b. 
The target displacements ( w2 = −50.0 mm) were defined 
uniformly in the direction of x2 . The shapes of the two holes 
and the lower edge were the design boundaries of the mac-
rostructure as shown in Fig. 12c. Only the half domain of 
the macrostructure was optimized considering symmetricity. 
The domain was sectioned into eight subdomains, which had 
independent microstructures. In this optimization example, 
the outer boundaries, the interface boundaries between the 
subdomains, and the boundaries of the holes in the micro-
structure were optimized.

Figure 13a shows the initial and optimized structures for 
concurrent optimization, b shows the iteration history (verti-
cal axis: squared error ratio normalized to the initial struc-
ture as 1; horizontal axis: number of iterations), and c shows 
the deformed shapes of the initial and optimized structures, 
respectively. The squared error ratio of the optimized struc-
ture was 1.62 ×  10–3. The objective function converged stably 
and decreased by 99.8% compared with the initial shape. It 
was confirmed that the target deformation of the boundary 
ΓD was achieved as shown in Fig. 13b and c as expected, that 
the optimized microstructures had different shapes according 
to the shape sensitivity distributions, and that the outer and 
interface boundaries moved substantially.

For comparison, Fig. 14a and b shows the results only 
for the microscale optimization and the macroscale opti-
mization, respectively. In the microscale optimization, the 
macrostructure was sectioned into eight subdomains. The 

(a) (b) (c)

Fig. 10  Unit cells with the holes used
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squared error ratio of the optimized structure was 1.05 ×  10–1 
and 3.19 ×  10–3 in the micro- and macroscale optimizations, 
respectively. Both values were larger than that obtained by 
concurrent optimization due to the difference in the total 
number of degrees of design freedom. It was also confirmed 
that all optimal shapes obtained for the macro- and micro-
structures had clear and smooth boundaries.

5.2.2  Concurrent optimization of microstructure and outer 
boundaries of macrostructure

We investigated the influence of the interface boundary opti-
mization on the final results. Figure 15 shows the optimiza-
tion results only for the outer boundary of the macrostructure 
and the holes of the microstructures without any interface 
optimization. The macrostructure was also sectioned into 
eight subdomains. The squared error ratio of the optimized 
structure was 1.95 ×  10–3. A comparison of Figs. 15 and 14 
reveal that the optimized shapes of the macro- and micro-
structures are similar because the sensitivity function of 
the outer boundaries of the macrostructure was dominant. 

There is not much difference either in the objective function 
compared with Figs. 13a and 15. The interface boundaries 
affected the final performance, but the effect was not very 
large in the concurrent multiscale optimization.

5.2.3  Concurrent optimization considering 
the connectivity of adjacent microstructures

As mentioned in Sect. 1, one issue of multiscale optimi-
zation concerns connectivity (or compatibility) of adjacent 
microstructures in additive manufacturing. The proposed 
shape optimization method automatically achieves unit cell 
connectivity between subdomains when the hole shapes 
within the unit cells are defined as the design boundaries. 
However, if the outer boundaries of the unit cell are added to 
the design boundaries, it is necessary to consider connectiv-
ity between subdomains.

A concurrent multiscale shape optimization was con-
ducted considering connectivity using a simple and widely 
used method to investigate the influence on the final results. 

Fig. 11  Problem definitions and results of interface optimization
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The same design problem as in Sect. 5.2.2 was solved con-
sidering connectivity.

Figure 16 shows the concurrent optimization results. 
This optimization exercise assumed that each subdomain 
was surrounded by a narrow solid area, which is applicable 
to all kinds of microstructures involving the connectivity 
issue. The squared error ratio of the optimized structure 
was 3.86 ×  10–2, and the objective function was reduced by 
96.1%. The reduction was less than in Fig. 13 because the 
degrees of boundary design freedom were smaller. However, 
the optimized structure has good connectivity between the 
subdomains for additive manufacturing.

5.2.4  Hierarchical optimization of microstructure 
and macrostructure

This section compares the proposed concurrent optimiza-
tion method with hierarchical (or sequential) optimiza-
tion. Figure 17a and b shows the results of optimizing the 
macrostructure first and then optimizing the microstruc-
tures (noted as “macro → micro”), and the results of opti-
mizing the microstructures first and then optimizing the 
macrostructure (noted as “micro → macro”), respectively. 
In Fig. 17a, the squared error ratio after macroscale opti-
mization was 2.18 ×  10–3 and the squared error ratio of the 

optimized structure was 3.55 ×  10–4. In Fig. 17b, the squared 
error ratio after microscale optimization was 1.05 ×  10–1 
and the squared error ratio of the optimized structure was 
1.98 ×  10–3. A comparison of the optimized structures con-
firmed that both were a little bit different depending on the 
order of optimization.

The objective functions of the initial and optimized 
structures in all cases are compared in Fig. 18. The verti-
cal axis is the squared error ratio normalized to the initial 
structure, and the horizontal axis indicates the methods used. 
Indicated are the initial structure, the optimized structure 
of macroscale optimization (Fig. 14b), the optimized struc-
ture of microscale optimization (Fig. 14a), the optimized 
structure of the proposed concurrent optimization (Fig. 13), 
the optimized structure of concurrent optimization without 
interface optimization (Fig. 15), the optimized structure of 
concurrent optimization considering connectivity (Fig. 16), 
the optimized structure of hierarchical optimization (macro 
→ micro in Fig. 17a), and the optimized structure of hierar-
chical optimization (micro → macro in Fig. 17a).

In all cases except for microscale optimization, the 
squared error ratios converged to approximately zero. A 
detailed examination of the results reveals that the smaller 
the degrees of design freedom, the smaller the decrease 
in the squared error ratio as expected. The results for the 

Fig. 12  Initial macrostructure
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proposed concurrent method are good. However, the best 
performance was obtained by hierarchical optimization 
(macro → micro). If the coefficients of variation ΔsM and 
Δs are optimally adjusted, it appears that both results may 
be reversed. Basically, changing the outer shape of the mac-
rostructure has the largest effect, so doing this first with the 
hierarchical method produced better results. However, the 
concurrent method is advantageous in terms of calculation 
efficiency because the number of finite element calcula-
tions in one iteration required for sensitivity calculations 
was smaller in the concurrent optimizations than in the hier-
archical optimizations. In addition, as there was a definite 
design problem dependency, the best approach may be to use 
the two methods selectively.

5.2.5  Stiff and compliant designs

It is possible to define the target displacements arbitrarily 
with the proposed method as mentioned above. This sec-
tion describes the application of the proposed concurrent 

method for obtaining arbitrary stiffness. In Fig. 19a, the tar-
get displacement w2 was 0 mm, so the squared error ratio 
of the optimized structure was 9.21 ×  10–3. In Fig. 19b, the 
target displacement w2 was − 100 mm, so the squared error 
ratio of the optimized structure was 3.52 ×  10–2. Figure 19c 
shows the deformed shapes of the initial and optimized 
structures. The objective function decreased greatly in each 
optimization. The optimized structures had different shapes 
as expected. It was confirmed that a stiff or compliant struc-
ture could be designed with the proposed method according 
to the target displacement. It was also confirmed that all 
optimal shapes obtained for the macro- and microstructures 
had clear and smooth boundaries.

5.3  Concurrent and mono‑scale optimizations 
of L‑shaped bracket

As another design example, the proposed method was 
applied to an L-shaped bracket with eight subdomains as 
shown in Fig. 20. The bracket was fixed at the upper edge 

Fig. 13  Results of concurrent optimization of the both ends fixed beam
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and a distributed load (total: 0.28 N) was applied along the 
right edge as shown in Fig. 20a.

5.3.1  One prescribed boundary problem

The displacement prescribed boundary was defined along 
the right edge ΓD

side
 to which the distributed load was 

applied. The uniform target displacements were defined 

as w1 = −30.0 mm on ΓD
side

 . The design boundaries were 
the inner and outer boundaries of the bracket as shown in 
Fig. 20. The initial shape of the microstructure was unit cell 
B in Fig. 10b, and the elastic modulus of Eq. (27) was used 
for the solid area (or the unit cell material).

For comparison, the calculation results for mono-scale 
optimization of the micro- and macrostructures are shown 
in Fig.  21a and b, respectively. In the microstructure 

Fig. 14  Results of mono-scale 
optimization

Fig. 15  Concurrent optimiza-
tion results for the both ends 
fixed beam without interface 
optimization
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optimization, the eight independent unit cells were opti-
mized. The normalized squared error ratios were reduced by 
3.37 ×  10–1 in the microscale optimization and by 7.67 ×  10–2 
in the macroscale optimization.

Figure 22a–c shows the initial and optimized shapes of 
the L-shaped bracket for concurrent optimization, the itera-
tion history, and the deformed shapes of the initial and opti-
mized structures, respectively. The squared error ratio of the 
optimized structure was 2.90 ×  10–2. The objective function 

Fig. 16  Results of concurrent 
optimization without interface 
optimization for the both ends 
fixed beam considering connec-
tivity between subdomains

Fig. 17  Hierarchical optimization results for the beam with both ends fixed
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converged stably and decreased by 97.1% compared with 
the initial structure. It was confirmed that the target defor-
mation was achieved and that the proposed method worked 
well. It was also confirmed that all optimal shapes obtained 
for the macro- and microstructures had clear and smooth 
boundaries.

5.3.2  Multi‑prescribed boundary problem

As another design example, the proposed method was 
applied to a multi-prescribed boundary problem. Both ΓD

bottom
 

and ΓD
side

 were defined as the displacement prescribed bound-
ary. ΓD

bottom
 was newly defined on a part of the bottom edge 

with a uniform target displacement of w2 = −10.0 mm as 
shown in Fig. 23a. ΓD

side
 and the target displacement were the 

same as in Sect. 5.3.1 (i.e., w2 = −30.0 on ΓD
side

 ). The initial 
shape of the microstructure and the elastic modulus of the 
unit cell were also the same as in Sect. 5.3.1. The design 
boundaries in Case (1) were the inner and outer boundaries 
of the bracket as shown in Fig. 23b and the hole shapes of 
the unit cells in the subdomains ①–⑧. In case 2, the side 
boundary of the macrostructure was added to Case 1 as 
shown in Fig. 23c.

Figure 24a and b shows the optimized macrostructure and 
unit cells for Case 1, respectively. Figure 25 shows the defor-
mation mode obtained for Case 1. We can see that ΓD

side
 was 

not deformed uniformly contrary to the aim. The objective 
function (or squared error) decreased by only 90.8% due 
to the severe target displacement. Therefore, as Case 2, we 
added the side boundary as a design boundary to achieve 
the target displacement as shown in Fig. 23c. Figure 26a 
and b shows the optimized macrostructure and unit cells 

for Case 2, respectively. Figure 27 shows the deformation 
mode obtained for Case 2. We can see that the displace-
ments on ΓD

side
 approached uniformity. The objective func-

tion decreased by 92.5%, but the target displacement was 
not completely attained. In order to achieve multiple target 
displacements in this design problem, it is presumably nec-
essary to add more design boundaries and to increase the 
number of subdomains.

5.4  Initial shape dependency of final results

The proposed gradient-based method has initial shape 
dependence, similar to the general gradient-based optimiza-
tion method. This section presents a calculation example of 
the initial shape dependency of the final results. Figure 28 
shows a macrostructure under tension and its boundary con-
ditions. The left edge was restrained as shown in the figure, 
and a distributed load was applied to the right edge. The 
displacement prescribed boundaries were defined along the 
upper and lower edges as ΓD

upper
 and ΓD

lower
 . There was one 

subdomain. Figure 29 shows two types of initial unit cell 
shapes, the initial displacements, the squared errors, and 
target displacements on ΓD

upper
 and ΓD

lower
.

Case 1 had a circular hole, and Case 2 had a rectangular 
hole and filleted shape along the outer boundary. The opti-
mized shapes of both cases were compared. In Case 1, only 
the shape of the hole was used as the design boundary, and 
in Case 2, the shape of the hole and the outer shape were 
defined as design boundaries. The target displacements were 
defined as w2 = 0.4 on ΓD

upper
 and w2 = − 0.4 on ΓD

lower
 for both 

Cases 1 and 2.

Fig. 18  Comparison of squared 
errors of initial and optimized 
structures
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Figure 30 shows the optimized shape and the squared 
errors for Cases 1 and 2. It is seen that the obtained shapes 
are significantly different between the two cases. Since 
Case 1 had a small degree of design freedom the squared 

error was reduced by only 17.8%, and the target displace-
ment was not achieved. In contrast, the squared error 
became almost zero in Case 2 and the target displacement 
was achieved.

Fig. 19  Optimization results for the both ends fixed beam with two types of target displacement
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Fig. 20  Initial macrostructure

Fig. 21  Results of mono-scale optimization
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When the displacement squared error is used as the objec-
tive function, the initial shape affects the final shape, so the 
definition of the initial shape is important. To achieve the 
target displacement, some trial and error is required, but 
it is important to increase the degrees of design freedom. 

Specifically, it is important to increase the design bound-
aries, determine the initial shape while assuming the 
deformed shape, increase the number of subdomains, and 
refer to actual past calculation results.

Fig. 22  Results of concurrent optimization of L-shaped bracket

Fig. 23  Multi-prescribed boundary problem of L-shaped bracket
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6  Conclusions

We have proposed concurrent shape optimization of multi-
scale structures, using the  H1 gradient method for control-
ling the stiffness of the macrostructure. The macrostruc-
tures were sectioned into arbitrary subdomains having 
independent microstructures. The effective elastic modulus 
in the macrostructure was calculated using the asymptotic 
homogenization method in order to bridge the macro and 
microstructures. The squared error between the actual and 
the target displacements was used as an objective function 
for designing both stiff and compliant structures. The design 
boundaries were the outer and interface shapes of the mac-
rostructure and holes in the microstructures. The constraint 
conditions were the state equations for the macrostructure 
and the homogenization equations for the microstructures. 

Fig. 24  Results obtained for 
the multi-prescribed boundary 
problem in Case 1

Fig. 25  Deformation mode for the multi-prescribed boundary prob-
lem in Case 1

Fig. 26  Results obtained for 
the multi-prescribed boundary 
problem in Case 2
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The shape gradient functions for all design boundaries were 
theoretically derived. In the numerical examples to confirm 
the effectiveness of the proposed method, the microscale and 
interface optimizations were initially verified on the basis 
of Young’s modulus and Poisson’s ratio design problems. 
The effectiveness of the proposed concurrent optimization 
method was then confirmed using a both ends fixed beam 
and an L-shaped bracket. Mono-scale optimization and hier-
archical optimization were also performed and the results 
were compared. All the results showed that clear and smooth 
design boundaries were obtained for both macro- and 

microstructures as expected. The objective functions also 
stably converged and decreased to almost zero. This means 
that the stiffness of multiscale structures can be controlled 
to an arbitrary level or a compliant value with the proposed 
method.

In future work, we plan to develop a concurrent multi-
scale shape optimization method for vibration and strength 
designs based on the current proposed method, and extend 
its application to shape design problems for plate and shell 
structures with out-of-plane shape variation of macro- and/
or microstructures.

Fig. 27  Deformation mode for the multi-prescribed boundary prob-
lem in Case 2

Fig. 28  A macrostructure under 
tension and boundary condi-
tions

Fig. 29  Initial unit cells and 
target displacements

Fig. 30  Calculated results for Cases 1 and 2
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Appendix

List of symbols

( ⋅ )
M Variables for the macrostructure

( ⋅ )M Function defined for the macrostructure
V

(I) Shape variation vector (or field) of unit cell I

V
M(I) Shape variation vector distributed on the outer 

boundary of subdomain I in the macrostructure
V

B(KL) Shape variation vector distributed on the inter-
face boundary between subdomains K and L in 
the macrostructure

uM Actual displacement vector of the macrostructure
�M Target displacement vector of the macrostructure

F
(I)

M
( ⋅, ⋅ ) Squared error of subdomain I in the macrostruc-

ture
aM(I)(⋅ , ⋅) Bilinear form for internal virtual work of subdo-

main I in the macrostructure
hM(I)(⋅, ⋅) Bilinear form for virtual work by the Cauchy 

stress vector on the interface Boundary of 
subdomain I in the macrostructure

lM(I)(⋅) Linear form for external virtual work of subdo-
main I in the macrostructure

a(I)(⋅ , ⋅) Bilinear form for internal virtual work of unit 
cell I

ΩM Domain of the macrostructure
ΓM Boundary of macrostructure domain ΩM

ΓD Boundary for defining the target displacement in 
the macrostructure

uM(I) Displacement vector in subdomain I in the 
macrostructure

ΩM(I) Subdomain I in the macrostructure
ΓM(I) Boundary of subdomain I in the macrostructure

E
M(I) Elastic tensor of subdomain I in the macrostruc-

ture.
ΓM(I,J) Interface boundary between subdomains I and J 

in the macrostructure
Ω(I) Domain of unit cell I
� (I)kl Characteristic displacement vector of microstruc-

ture I for unit initial strain component kl
I
(I)kl Unit initial strain tensor with the component kl 

of unit cell I

( ⋅ ) Virtual displacement or adjoint displacement or 
Lagrange variable

N Number of domain divisions
H1

0
Sobolev space of order 1

U
(I)

Y
Y-periodic allowable displacement space of unit 

cell I
UM Allowable displacement space of the macrostruc-

ture

nM(K) Outward unit normal vector of subdomain K
n(K) Outward unit normal vector of microstructure K.
P Surface force vector on the macrostructure.
|Y| Periodic unit area of the microstructure.
( ⋅ )

� Shape derivative.
( ⋅ ) Material derivative.
G

M(I) ( = GM(I)n(I)) Shape gradient function for subdomain I in the 
macrostructure.

GM(I) Shape gradient density function for subdomain I 
in the macrostructure.

GB(KL) Shape gradient density function for the interface 
boundary between subdomains K and L.

G(I) Shape gradient density function for microstruc-
ture I

Ĝ(I) Mean shape gradient density function in micro-
structure I

EN Number of elements in each subdomain

A
M(I)

el
Area of element el in subdomain I in the macro-

structure
ΔsM Small positive coefficient for macrostructure
Δs Small positive coefficient for microstructure

v
M Virtual displacement vector of the macrostruc-

ture
v Virtual displacement vector of the microstructure
CM Kinematically admissible function space for the 

macrostructure
CΘ Kinematically admissible function space for the 

unit cell

Derivation of Eq. (13)

The calculation process for deriving Eq. (15) from Eq. (14) 
is described here.

Equation (30) shows the material derivative of the first 
term on the right side of Eqs. (14), and (31), (32), (33), 
and (34) are the second, third, fourth, and fifth terms, 
respectively.

(30)L̇ = 2

3∑
I=1

FM(I)

(
u
M(I) − w

M(I), uM(I)�
)

(31)

−

3∑
I=1

{
aM(I)

(
u
M(I)�,u

M(I)
)
+ aM(I)

(
u
M(I),u

M(I)�
)}

−

3∑
I=1

∫
ΓM(I)

E
M(I)

ijkl
u
M(I)

k,l
u
M(I)

i,j
nM(I)
s

VM(I)
s

dΓM(I)

−

3∑
I=1

∫
ΩM(I)

[
1

|Y| ∫Ω(I)

(
−E

ijmn

�� (I)kl�
m

�yn

)
dΩ(I)

+
1

|Y| ∫Γ(I)

(
E
ijkl

− E
ijmn

�� (I)kl
m

�yn

)
n(I)
s
V (I)
s
dΓ(I)

]
u
M(I)

k,l
u
M(I)

i,j
dΩM(I)
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where, �M(I) is the curvature of the interface boundary on 
subdomain I. The relationships between the normal vectors 
(Eq. 35), the curvatures (Eq. 36), the displacements (Eq. 37), 
the domain variations (Eq. 38), and the equilibrium forces 
based on the Cauchy stress vector (Eq. 39) at the interface 
boundary ΓM(I,J) are used to derive Eq. (30)–(34) (Shi and 
Shimoda 2015).

(32)

+

3∑
I=1

{
hM(I)

(
u
M(I)� , u

M(I)
)
+ hM(I)

(
u
M(I), u

M(I)�
)}

+∫
ΓM(1,2)

[(
E
M(1)

ijkl
u
M(1)

k,l
n
M(1)

j
u
M(1)

i

)
,q n

M
q
+ E

M(1)

ijkl
u
M(1)

k,l
n
M(1)

j
u
M(1)

i
�M(1)

]
nM(1)
s

VM(1)
s

dΓM(1,2)

+∫
ΓM(1,3)

[(
E
M(1)

ijkl
u
M(1)

k,l
n
M(1)

j
u
M(1)

i

)
,q n

M
q
+ E

M(1)

ijkl
u
M(1)

k,l
n
M(1)

j
u
M(1)

i
�M(1)

]
nM(1)
s

VM(1)
s

dΓM(1,3)

+∫
ΓM(2,1)

[(
E
M(2)

ijkl
u
M(2)

k,l
n
M(2)

j
u
M(2)

i

)
,q n

M
q
+ E

M(2)

ijkl
u
M(2)

k,l
n
M(2)

j
u
M(2)

i
�M(2)

]
nM(2)
s

VM(2)
s

dΓM(2,1)

+∫
ΓM(2,3)

[(
E
M(2)

ijkl
u
M(2)

k,l
n
M(2)

j
u
M(2)

i

)
,q n

M
q
+ E

M(2)

ijkl
u
M(2)

k,l
n
M(2)

j
u
M(2)

i
�M(2)

]
nM(2)
s

VM(2)
s

dΓM(2,3)

+∫
ΓM(3,1)

[(
E
M(3)

ijkl
u
M(3)

k,l
n
M(3)

j
u
M(3)

i

)
,q n

M
q
+ E

M(3)

ijkl
u
M(3)

k,l
n
(3)

j
u
M(3)

i
�M(3)

]
nM(3)
s

VM(3)
s

dΓM(3,1)

+∫
ΓM(3,2)

[(
E
M(3)

ijkl
u
M(3)

k,l
n
M(3)

j
u
M(3)

i

)
,q n

M
q
+ E

M(3)

ijkl
u
M(3)

k,l
n
(3)

j
u
M(3)

i
�M(3)

]
nM(3)
s

VM(3)
s

dΓM(3,2)

(33)+

3∑
I=1

{
lM(I)

(
u
M(I)�

)}

(34)
−

3∑
I=1

∫
ΩM(I)

2∑
k=1

2∑
l=1

{
a(I)

(
� (I)kl� ,�

(I)kl
)
+ a(I)

(
� (I)kl − I

kl
,�

(I)kl�
)}

dΩM(I)

−

3∑
I=1

∫
ΩM(I) ∫Γ(I)

∑
k,l=1,2

(
Eijmn�

(I)kl
m,n

�
(I)kl

i,j
− EijmnI

(I)kl
m,n

�
(I)kl

i,j

)
nsVsdΓ

(I)dΩM(I)

(35)n
M(I) = −nM(J), (I = 1, 2, 3), (J = 1, 2, 3), (I ≠ J)

(36)�M(I) = −�M(J), (I = 1, 2, 3), (J = 1, 2, 3), (I ≠ J)

(37)u
M(I) = u

M(J), (I = 1, 2, 3), (J = 1, 2, 3), (I ≠ J)

(38)V
M(I) = V

M(J), (I = 1, 2, 3), (J = 1, 2, 3)

When the following Eqs. (40)–(43) are satisfied, Eq. 
(30)–(34) is re-expressed as Eq. (44). Here, Eq. (40) is the 
state equation for � (I)kl in the unit cell and is the same as Eq. 
(6). Eq. (41) is the adjoint equation for � (I)kl . Eq. (42) is the 
state equation for uM(I) in the macrostructure and is the same 
as Eq. (3). Equation (43) is the adjoint equation for uM(I).

Finally, L̇ is expressed as Eq. (15), and the shape gradient 
functions are derived as expressed in Eqs. (16)–(18).

(39)
E
M(I)

ijkl
u
M(I)

k,l
n
M(I)

j
= −E

M(J)

ijkl
u
M(J)

k,l
n
M(J)

j
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(40)
a(I)(�

(I)kl − I
(I)kl,�
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(I)kl�
∈ U
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Y
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(41)
a(I)(�

(I)kl�,�
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∫Ω(I)

(E
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� (I)kl�
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