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Abstract
The finite step length (FSL) method is extensively used for structural reliability analysis due to its robustness and efficiency 
compared with traditional Hasofer–Lind and Rackwitz–Fiessler (HL-RF) method. However, it may generate a large compu-
tational effort when it faces some complex nonlinear limit state functions. This study explains the basic reason of inefficiency 
of the FSL method and proposes an enhanced finite step length (EFSL) method to improve the ability for solving complex 
nonlinear problems, and then apply it to reliability-based design optimization (RBDO). The tactic is to present an iterative 
control criterion to compensate for the deficiency of the FSL method in the oscillation amplitude criterion, which solves the 
problem of large computational effort caused by unchanged step length during the iterative process. Then, a comprehensive 
step length adjustment formula is presented, which can adaptively adjust the step length to achieve fast convergence for limit 
state functions with different degrees of nonlinearity. Following that, the proposed method is combined with the double loop 
method (DLM) to improve the efficiency and robustness for solving complex RBDO problems. The robustness and efficiency 
of the proposed method compared to other commonly used first-order reliability analysis methods are demonstrated by five 
numerical examples. In addition, four design problems are used to validate the proposed EFSL-based DLM which is effec-
tive for solving complex nonlinear RBDO problems.

Keywords Reliability analysis · First-order reliability method · Finite step length method · Iterative control criterion · 
Reliability-based design optimization

1 Introduction

Uncertainties widely present in the material parameters, 
geometries, external loads, and other aspects, which have 
important implications for structural reliability (Jiang et al. 
2020; Schueller and Pradlwarter 2007). To assess the impact 

of uncertainties on engineering structures, structural reli-
ability analysis methods have been constantly evolving over 
the past decades. Generally, these methods can be classified 
into five categories: sampling methods (Hu and Du 2013), 
expansion methods (Keshavarzzadeh et al. 2016), surrogate-
based methods (Yang et al. 2021), integration methods (Xu 
and Dang 2019), most probable point (MPP)-based methods 
including the first-order reliability method (FORM) (Hasofer 
and Lind 1974; Rackwitz and Flessler 1978) and the sec-
ond-order reliability method (SORM) (Wang et al. 2020). 
Among them, FORM is one of the most important methods 
for assessing the structural reliability, which was recom-
mended to use by the Joint Committee of Structural Safety.

When performing reliability analysis by FORM, the cal-
culation of reliability index becomes a problem of finding 
the optimum solution in a constrained optimization problem. 
So far, the approaches for solving the constrained optimi-
zation problems are categorized as optimization scheme 
and iterative algorithm. The optimization scheme gener-
ally solves the problem well, but the solution process may 
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require to use Hessian matrix or inverse matrix, which leads 
to a complex solution process (Gong and Yi 2011). Unlike 
optimization scheme, iterative algorithm has the advantage 
of being simple and efficient. Typically, the HL-RF method 
is one of the most used iterative algorithm, which was pre-
sented by Hasofer and Lind (1974) and complemented by 
Rackwitz and Fiessler (1978). Due to the simplicity and 
efficiency of the HL-RF method, it is extensively used for 
structural reliability analysis. For weakly nonlinear limit 
state functions, the HL-RF method can quickly obtain a con-
vergent result. But, for highly nonlinear limit state functions, 
the HL-RF method may converge slowly or even show a 
phenomenon of non-convergence, such as bifurcation, chaos, 
and periodic oscillation (Yang 2010; Zhang et al. 2021a).

To improve the numerical stability of the HL-RF method, 
several methods have been developed. Through introducing 
merit function, iHL-RF (Liu and Kiureghian 1991) increases 
the robustness of the HL-RF method by using Armijo rule 
to select an appropriate step length. According to the chaos 
control principle (Keshtegar 2016), the stability transfor-
mation method (STM) (Yang 2010), the adaptive stability 
transformation method (ASTM) (Meng et al. 2018), and the 
directional stability transformation method (DSTM) (Meng 
et al. 2017) were developed to enhance their capability in 
solving nonlinear limit state functions. Yang et al. (2020) 
reduced the risk of periodic oscillations, bifurcations, and 
chaos by modifying the search direction during the itera-
tive process and establishing a new step length adjustment 
formula. Gong and Yi (2011) derived a new finite step 
length (FSL) method using adjustment formula to acceler-
ate the convergence process and improve the robustness of 
algorithm. Roudak et al. (2017) proposed to introduce two 
adjusting parameters in the HL-RF method to adaptively 
adjust step length during the iterative process, preserving 
the simplicity property while improving its convergence per-
formance. Keshtegar and Meng (2017) presented a hybrid 
relaxed HL-RF method considering the impact of relaxed 
factor to accelerate the convergence process.

It is worth noting that FORM not only can be used to assess 
structural reliability, but can also be applied into RBDO that 
seeks a compromise between safety and cost (Yang et al. 
2022). Usually, RBDO is categorized into three types: double 
loop method (DLM) (Chiralaksanakul and Mahadevan 2005; 
Youn and Choi 2004; Zhu et al. 2021), decoupled method 
(Chen et al. 2013b; Du and Chen 2004; Yu and Wang 2019), 
and single loop method (Biswas and Sharma 2021; Lind and 
Olsson 2019). Among them, DLM theoretically has better 
robustness, which consists of an internal reliability constraint 
loop and an external optimization loop. DLM includes reli-
ability index approach-based DLM (RIA-based DLM) and 
performance measure approach-based DLM (PMA-based 

DLM) (Aoues and Chateauneuf 2010). For RIA-based DLM, 
the FSL method is applied in reliability constraint loop due to 
its simplicity and efficiency. However, DLM combined with 
FSL may suffer from the problem of poor convergence perfor-
mance when facing complex nonlinear limit state functions.

In this study, an EFSL method is proposed to enhance the 
efficiency and robustness for complex limit state functions. 
The major contributions of the proposed method are summa-
rized as follows. Firstly, employing a state parameter to make 
up for the deficiencies of the FSL method in the oscillation 
amplitude criterion and solving the problem of large com-
putational effort due to the unchanged step length. Secondly, 
developing a comprehensive step length adjustment formula 
to accelerate the iterative convergence process by adaptively 
adjusting the step length for limit state functions with different 
degrees of nonlinearity. Finally, the proposed EFSL method is 
combined with DLM to improve the efficiency and robustness 
for solving complex nonlinear RBDO problems.

The rest of this paper is organized as follows. In Sect. 2, four 
traditional FORM iterative methods are simply introduced. In 
Sect. 3, the EFSL method is developed and a comprehensive 
step length adjustment formula is proposed. In Sect. 4, five 
examples are used to verify the efficiency and robustness of the 
proposed EFSL method. In Sect. 5, four RBDO design prob-
lems are solved using the proposed EFSL method combined 
with DLM. In Sect. 6, conclusions are given.

2  Review of FORM iterative algorithm

The purpose of FORM is to acquire reliability index and calcu-
late structural failure probability (Koduru and Haukaas 2010). 
The reliability index can be calculated through obtaining the 
most probable point (MPP), which is the closest distance 
from origin to limit state surface in the standard normal space 
(U-space). According to the reliability index, the failure prob-
ability is defined as

where Pf  denotes the failure probability; Φ stands for the 
cumulative distribution function (CDF); � represents the 
reliability index; and �∗ is a vector of MPP coordinates in 
the U-space.

The solution of the reliability index � can be transformed 
into a constrained optimization problem, which can be 
expressed as

(1)Pf = Φ(−�) = Φ(−‖�∗‖),

(2)
find �∗

� = min ‖�‖
s.t.G(�) = 0
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In the following, four traditional FORM iterative algo-
rithms are briefly reviewed. For convenience of description, 
the limit state function can be expressed as

where � denotes a vector comprised by random variables.
When � obeys independently normal distribution, it 

should satisfy � = � + �� . The vectors � and � are the 
mean and standard deviation of random variable � . When 
the correlated random variables are involved, the random 
variables should be transformed into independent standard 
normal variables by Rosenblatt or Nataf transformation (Liu 
and Kiureghian 1986; Rackwitz and Flessler 1978).

2.1  HL‑RF iterative algorithm

The formulation of the HL-RF (Hasofer and Lind 1974; 
Rackwitz and Flessler 1978) method can be expressed as

where k refers to the iterative number; �k and �k+1 are the 
random variable vectors at the kth and (k + 1)th iterative 
steps in the U-space, respectively; g

(
�k

)
 represents the value 

of limit state function at �k . ∇g
(
�k

)
 denotes the gradient 

vector and �k stands for the vector of normalized search 
direction at �k , which is represented as

2.2  Stability transformation method

The iterative formulation of the stability transformation 
method (STM) (Yang 2010) is formulated as

where � refers to the chaos control factor, whose value ranges 
from 0 to 1 (Meng et al. 2017). � denotes an involutory 
matrix; � represents a function vector of random variable.

(3)Z = G(�) = g(�) = g
(
X1,X2,… ,Xn

)
,

(4)�k+1 =

(
∇g

(
�k

))T
�k − g

(
�k

)
‖‖‖∇g

(
�k

)‖‖‖
�k,

(5)�k=
∇g

(
�k

)
‖‖‖∇g

(
�k

)‖‖‖

(6)�k+1 = �k + ��
(
�
(
�k

)
− �k

)

(7)�
(
�k

)
=

(
∇g

(
�k

))T
�k − g

(
�k

)
(
∇g

(
�k

))T
∇g

(
�k

) ∇g
(
�k

)
,

2.3  Directional stability transformation method

The iterative formula of the directional stability transforma-
tion method (DSTM) (Meng et al. 2017) is defined as

where �k represents the current normalized search direction 
vector. The search direction can be divided into circumfer-
ential and radial directions, while DSTM only controls the 
iteration step length in circumferential direction, reducing 
the computational effort of STM.

2.4  Finite step length method

The basic formula of the FSL method (Gong and Yi 2011) 
can be expressed as

where �k+1 refers to a finite sensitivity vector at point �k ; � 
is the step length, which should satisfy greater than 0 (Gong 
and Yi 2011).

When � → ∞ , the iterative formula of the FSL method 
is identical to that of the HL-RF method. It implies that 
the HL-RF method is a particular form of the FSL method 
when � → ∞ . During the iterative process, the update of step 
length is determined by the following criterion

When Eq.  (14) is satisfied, one can set �k+1 = �k∕c . 
Herein, c is a step length adjusting coefficient, which is usu-
ally taken between 1.2 and 1.5 (Gong and Yi 2011).

(8)�k+1 = �k�k

(9)�k =

(
∇g

(
�k

))T
�k − g

(
�k

)
‖‖‖∇g

(
�k

)‖‖‖

(10)�k =
�k + ��

(
�
(
�k

)
− �k

)
‖‖‖�k + ��

(
�
(
�k

)
− �k

)‖‖‖
,

(11)�k+1 = �k+1�k+1

(12)�k+1 =
�k − �k∇g

(
�k

)
‖‖‖�k − �k∇g

(
�k

)‖‖‖

(13)�k+1 = −
g
(
�k

)
−
(
∇g

(
�k

))T
�k

∇g
(
�k

)T(
�k+1

) ,

(14)
‖‖‖�

k+1 − �k‖‖‖ ≥ ‖‖‖�
k − �k−1‖‖‖
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3  The proposed method

3.1  Derivatives of the enhanced finite step length 
method

The robustness and effectiveness of the FSL method was 
verified, but it still has two problems need to be overcome. 
The first problem is that when facing complex nonlinear 
limit state functions, the oscillation amplitude in each itera-
tion gradually decreases throughout the iterative process, 
and the step length updated criterion Eq. (14) does not work. 
The consequence is that the step length � does not change 
during the iterative process, although the oscillation exists, 
leading to a larger computational effort. Since the criterion 
in Eq. (14) is closely related to the oscillation amplitude, 
which is called as oscillation amplitude criterion. The sec-
ond problem is that when the criterion in Eq. (14) works dur-
ing the iterative process, the single step length adjustment 
formula of the FSL method and the unpredictable degree of 
nonlinear limit state functions lead to inability to adaptively 
adjust step length.

To solve the above-mentioned problems, a new step 
length updated strategy is proposed for the FSL method to 
enhance the capability for solving complex nonlinear prob-
lems. Herein, the proposed method is referred to as an EFSL 
method.

For the first problem, the purpose is to overcome the 
shortcomings of the oscillation amplitude criterion. Inspired 
by previous work in Jiang et al. (2017), a state parameter 
is adopted as criterion to prevent this situation, which is 
represented as

where M represents a state parameter, which is initially set to 
zero. Mt is a target state parameter, which is recommended 
to set as 2.

During each step of the iteration, the state parameter M 
will be added by 1 when Eq. (14) is not satisfied, and � 
does not change at this time. Conversely, the state parameter 
M becomes 0 when Eq. (14) is satisfied. The step length 
� will be adjusted at this time and the step length adjust-
ment formula is given subsequently. When Eq. (15) is satis-
fied, whether or not the criterion in Eq. (14) is satisfied at 
this time, the step length � will be adjusted. After the step 
length adjustment, the state parameter M is changed to zero 
again. The reason for the recommended value of target state 
parameter Mt in Eq. (15) is that when the criterion M=Mt 
is satisfied, the step length � should be updated to resolve 
such problem that the oscillation exists but the step length 
� keeps fixed value. Therefore, the value of Mt should be 
set neither too large nor too small. If the value of Mt takes 
too large or too small, it is not conducive to adjust the step 

(15)M=Mt,

length � . According to the test experiences, taking 2 is an 
appropriate choice.

For the second problem, a comprehensive step length 
adjustment formula is developed, and the step length � is 
adaptively adjusted in the face of different degrees of non-
linearity limit state functions. The step length � is large for 
the weakly nonlinear limit state functions and the step length 
� is small for the highly nonlinear limit state functions. The 
proposed comprehensive compensation adjustment formula 
consists of two parts, whether the criterion in Eq. (14) is 
satisfied or not.

When the criterion in Eq. (14) is satisfied, a new step 
length adjustment formula is developed, which is expressed 
as

where n represents a chaotic number, which satisfies 
n ∈ (0, 1) ; c is a control parameter, which satisfies 0 < c < 4 . 
The chaotic number n and control parameter c in Eq. (16) 
play an important role to adjust the step length. To reduce 
the step length � , the chaotic number n and control parameter 
c should satisfy the following criterion

where n satisfies n ∈ (0, 1) and c satisfies 0 < c < 4 . In the-
ory, all the possible combinations of n and c satisfying the 
above criterion can be used. However, the recommended 
values of these two parameters are given as n = 0.05 and 
c = 2 according to the experience.

When the step length is updated, the state parameter M 
becomes zero. To ensure smooth convergence, a new crite-
rion is defined as

When Eq. (18) is satisfied, the adjustment formula of � 
is expressed as

When the criterion in Eq. (14) is not satisfied, the state 
parameter M will be added by 1. When the state parameter 
M satisfies Eq. (15), a new step length adjustment is pre-
sented, which is defined as

This equation can effectively balance the adaptive 
adjustment of the step length � when facing weakly and 
highly nonlinear limit state functions. It should be noted 
that when updating the step length using Eq. (20), the state 

(16)�k+1 = cn(1 − n)�k,

(17)cn(1 − n) < 1,

(18)�k+1 ≤ 0.15

(19)�k+1 = e−0.125(k+1)

(20)𝜆k+1 =

⎧
⎪⎨⎪⎩

𝜆k∕10, 𝜆k > 10

𝜆k∕1, 5 ≤ 𝜆k ≤ 10

𝜆k∕0.05, 0 < 𝜆k < 5
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parameter M will become zero again, and then move to the 
next iteration.

Since the nonlinear degree of limit state functions can-
not be predicted in advance, the initial value of � should be 
relatively large. The initial value of �0 is shown as

3.2  Step and flowchart of the proposed EFSL 
method

The detailed algorithm steps of the proposed EFSL method 
are summarized in Table 1. The flowchart of the proposed 
EFSL method is shown in Fig. 1.

4  Illustrative examples of structural 
reliability analysis

In this section, some nonlinear numerical examples are 
solved with the proposed EFSL method. The reliability 
analysis results are compared in terms of accuracy, effi-
ciency, and robustness to those by other methods, which 
include HL-RF method (Hasofer and Lind 1974; Rackwitz 
and Flessler 1978), STM (Yang 2010), DSTM (Meng et al. 
2017), and FSL method (Gong and Yi 2011). The control 
factors � of STM and DSTM are taken as 0.10 and 0.05. 
The mean vector �� and two additional different points are, 
respectively, selected as the initial points for different reli-
ability analysis methods in the following examples. The 
involutory matrix � is considered as a unit matrix, which is 
applied to STM and DSTM. The convergence criterion for 
all these iterative algorithms is ‖‖�k+1 − �k‖‖∕‖‖�k+1‖‖ < 10−6 . 
The Monte Carlo simulation (MCS) method (Xiao et al. 
2020) with 1 × 107 samples is used for calculating �MCS to 
validate the accuracy of the proposed method. To illustrate 
that the �MCS used in the examples is sufficiently accurate, 
the plots of the number of sampling points versus �MCS 

(21)�0 = 215

are provided to show the convergence, which are given 
in Figs. 2, 4, 6, 8, and 10. The number of sampling points 
is taken as 105 , 5 × 105 , 106 , 5 × 106 , 107 , 5 × 107 and 108 , 
respectively.

The statistical data of limit state functions for Exam-
ples 1–5 are shown in Table 2. In addition, the reliability 
analysis results of different methods, including calcula-
tion of MPP ( �∗ ), iteration number, number of function 
evaluations (F-evaluations), and calculation of reliability 
index � are given in Tables 3, 4, 5, 6, 7, 8, 9, 10, 11, and 
12. The number of F-evaluations is the sum of the number 
of performance function g call and the number of gradient 
function ∇g call. Herein, the sensitivity analysis is evalu-
ated by the analytical method. The iterative histories of 
the comparative methods are illustrated in Figs. 3, 5, 7, 
9, and 11.

Example 1 The limit state function of the first example is 
highly nonlinear and includes two independent random 
variables in normal distribution (Gong et al. 2014). As 
illustrated in Table 3, all the comparative methods with the 
exception of HL-RF method can converge. The proposed 
EFSL method obtains the MPP �∗ = (0.3093, 4.0401) and 
yields the reliability index � = 4.0519 , which are approxi-
mately similar to the results in Gong et al. (2014). The plot 
of the number of different sampling points versus �MCS is 
shown in Fig. 2. The reliability index calculated by the MCS 
method with 107 samples is �MCS = 3.7031 . In terms of the 
accuracy and robustness of these methods, when the mean 
vector �� is selected as the initial points, the proposed EFSL 
method has similar accuracy with STM, DSTM, and FSL 
method for the same convergence criteria. When point (1, 
1) and point (‒1, ‒1) are chosen as initial points, DSTM 
yields different MPPs and reliability indices compared to 
other methods. This reflects that the DSTM is sensitive to 
the choice of initial point and less robust, and inversely dem-
onstrates the high accuracy and robustness of the proposed 
EFSL method.

Table 1  The detailed algorithm steps of the proposed EFSL method

Step 1 Define a limit state function g(�) , mean vector �� and standard deviation vector �� of random variable and stopping criterion � = 10−6 . 
Set k = 0 and �� = ��

Step 2 Transform random variable vector � into a standard normal vector �
Step 3 Set the value of initial step length �0 , chaotic number n , control parameter c and state parameter M
Step 4 If 0 ≤ k < 2 , then �k+1 , �k+1 and �k+1 can be calculated using Eqs. (11)–(13); if k ≥ 2 and ‖‖�k − �k−1‖‖ ≥ ‖‖�k−1 − �k−2‖‖ , the step length 

� can be calculated using Eqs. (16)–(19); if k ≥ 2 , ‖‖�k − �k−1‖‖ < ‖‖�k−1 − �k−2‖‖ and M = Mt , then the step length � can be calculated 
using Eq. (20). Once the step length � is determined, the state parameter M is changed to 0 again

Step 5 The values of �k+1 , �k+1 and �k+1 can be calculated according to Eqs. (11)–(13)
Step 6 Transform the standard normal vector �k+1 back to a random variable vector �k+1

Step 7 If ‖‖�k+1 − �k‖‖∕‖‖�k+1‖‖ < 𝜀 , the iteration stops and the results of �k+1 , �k+1 and �k+1 are output, then the iterative algorithm is finished; 
else k = k + 1 , and then go back to Step 2
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In terms of the efficiency of these methods, the pro-
posed EFSL method has the fewest average number of 
iterations and number of F-evaluations. The average con-
vergence speed of the proposed EFSL method is approxi-
mately three times higher than that of the FSL method. 
The STM, FSL, and proposed EFSL method are robust, 

but the proposed EFSL method is more efficient. When the 
mean vector �� is selected as the initial points, the detailed 
iterative histories of these comparative methods are shown 
in Fig. 3, which can be obviously found that the proposed 
EFSL method has the highest efficiency compared to other 
methods.

Fig. 1  Flowchart of the pro-
posed EFSL method
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Example 2 The limit state function of the second example is 
a nonlinear exponential function, which includes two inde-
pendent random variables in normal distribution (Meng et al. 
2017). As illustrated in Table 5, when the mean vector �� 
and two additional different points are selected as the initial 
points, all the comparative methods with the exception of the 
HL-RF method can converge and yield the reliability index 
� = 2.8873 . These results are consistent with the results in 
Jiang et al. (2015). The plot of the number of different sam-
pling points versus �MCS in this example is shown in Fig. 4. 
The reliability index calculated by the MCS method with 
107 samples is �MCS = 3.0687 . In terms of accuracy, the pro-
posed EFSL method has similar accuracy with STM, DSTM, 
and FSL method for the same convergence criteria.

In terms of the robustness and efficiency of these meth-
ods, from the average number of iterations and number of 
F-evaluations shown in Tables 5 and  6, the proposed EFSL 
method generates the fewest iteration number and F-evalua-
tions number. Therefore, the proposed EFSL method has the 
highest convergence speed compared with other methods. 
Similarly, the STM, DSTM, and FSL method are all robust, 
but the proposed EFSL method is more efficient. When the 
mean vector �� is selected as the initial points, the detailed 
iterative histories of these comparative methods are shown 
in Fig. 5 to verify the high efficiency of the proposed EFSL 
method.

Example 3 The third example is also a nonlinear problem, 
which includes three independent random variables in nor-
mal distribution (Gong et al. 2014). From Table 7, when 
the mean vector �� and two additional different points are 
selected as the initial points, all the comparative methods 
with the exception of the HL-RF method can converge suc-
cessfully. The proposed EFSL method obtains the MPP 
�∗ = (0.8344,−0.7324,−3.5348) and yields the reliability 
index � = 3.7050 , which are consistent with the results in 
Yang et al. (2020). The plot of the number of different sam-
pling points versus �MCS is shown in Fig. 6. The reliability 
index calculated by the MCS method with 107 samples is 
�MCS = 3.7236 . In terms of accuracy, the proposed EFSL 
method has similar accuracy with STM, DSTM, and FSL 
method for the same convergence criteria.

In terms of the efficiency and robustness of these com-
parative methods, the proposed EFSL method has the fewest 
average number of iterations and number of F-evaluations. 
The proposed EFSL has the highest convergence speed 
compared with other methods. The STM, DSTM, and FSL 

105 5×105 106 5×106 107 5×107 108

Numbers of sampling point

3.66

3.68

3.7

3.72

3.74

3.76

3.78

3.8

3.82
M
C
S

Fig. 2  The plot of the number of different sampling points versus 
�MCS in Example 1

Table 2  The statistical data of limit state function for Examples 1–5

No Limit state function Random variables Distribution Mean Standard deviation

1 g(�) = −0.16
(
X1 − 1

)3
− X2 + 4 − 0.04 cos

(
X1X2

)
X1,X2 Normal 0 1

2 g(�) = e1+0.4X1−X2 + e5−2X1−X2 − 1 X1,X2 Normal 0 1
3

g(�) = X3 +
(

X1−1.1

1.5

)2

−
(

X2−0.2

3

)2

+ 3.6
X1,X2,X3 Normal 0 1

4
g(�) = X2X3X4 −

X5X
2

3
X2

4

X6X7

− X1

X1 Gumbel 0.01 0.003

X2 Normal 0.3 0.015
X3 Normal 360 36
X4 Lognormal 226 × 10−6 11.3 × 10−6

X5 Normal 0.5 0.05
X6 Normal 0.12 0.006
X7 Lognormal 40 6

5
g(�) = 2 + 0.015

�
9∑
i=1

X2

i

�3

− X10

Xi(i = 1, 2,… , 10) Normal 1 0.5
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method are robust, but the proposed EFSL method is more 
efficient. When the mean vector �� is selected as the initial 
points, the detailed iterative histories of these comparative 
methods are shown in Fig. 7, which can be obviously found 
that the proposed EFSL method has the highest efficiency 
compared to other methods.

Example 4 This example is a complex limit state function 
including seven independent random variables with three 
different distributions (Gong et al. 2014). From Table 9, 
when the mean vector �� is selected as the initial points, 
all the comparative methods can successfully find MPP 
and yield the reliability index � = 2.7471 . These results are 

consistent with the results in Gong and Yi (2011). The plot 
of the number of different sampling points versus �MCS is 
shown in Fig. 8. The reliability index calculated by the MCS 
method with 107 samples is �MCS = 3.3985 . Although the 
reliability index changes slightly at different initial points, 
the same reliability index is obtained for all reliability analy-
sis methods at the same initial point. Therefore, in terms of 

Table 3  Reliability analysis 
results of the comparative 
methods in Example 1

Initial point Methods Control factors MPP ( �∗) Iterations F-evaluations β

g ∇g

(0, 0) HL-RF / Not converged – – – –
STM 0.1 (0.3093,4.0401) 111 111 111 4.0519

0.05 (0.3093,4.0400) 213 213 213 4.0518
DSTM 0.1 (0.3093,4.0401) 40 40 40 4.0519

0.05 (0.3093,4.0401) 81 81 81 4.0519
FSL / (0.3093,4.0401) 88 88 88 4.0519
EFSL / (0.3093,4.0401) 31 31 31 4.0519

(1, 1) HL-RF / Not converged – – – –
STM 0.1 (0.3093,4.0401) 108 108 108 4.0519

0.05 (0.3093,4.0400) 207 207 207 4.0518
DSTM 0.1 (3.5809,1.2576) 160 160 160 3.7953

0.05 (3.5809,1.2576) 290 290 290 3.7953
FSL / (0.3093,4.0401) 98 98 98 4.0519
EFSL / (0.3093,4.0401) 36 36 36 4.0519

(− 1, – 1) HL-RF / Not converged – – – –
STM 0.1 (0.3093,4.0401) 115 115 115 4.0519

0.05 (0.3093,4.0400) 222 222 222 4.0518
DSTM 0.1 (3.5810,1.2575) 205 205 205 3.7953

0.05 (3.5810,1.2574) 401 401 401 3.7953
FSL / (0.3093,4.0401) 91 91 91 4.0519
EFSL / (0.3093,4.0401) 32 32 32 4.0519

Table 4  The average number of iterations for the comparative meth-
ods in Example 1

Methods Control factors Average 
number of 
iterations

HL-RF / –
STM 0.1 111

0.05 214
DSTM 0.1 /

0.05 /
FSL / 92
EFSL / 33
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Fig. 3  The iterative histories of the comparative methods in Example 
1
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accuracy, all the comparative methods have similar accuracy 
for the same convergence criteria.

In terms of the robustness and efficiency of these meth-
ods, from the average number of iterations and number 
of F-evaluations as shown in Tables 9 and 10, the HL-RF 
method has a high efficiency in this problem compared to 
STM, DSTM, and FSL method, but the proposed EFSL 
method has the fewest average number of iterations and 
number of F-evaluations. The average convergence speed 
of the proposed EFSL method is about eleven times higher 
than that of the FSL method. The proposed EFSL method 

has the advantage of being as simple and efficient as the 
HL-RF method, while ensuring the robustness. When the 
mean vector �� is selected as the initial points, the detailed 
iterative histories of these comparative methods are shown 
in Fig. 9, which can be obviously found that the proposed 
EFSL method has the highest convergence speed compared 
to other methods.

Table 5  Reliability analysis 
results of the comparative 
methods in Example 2

Initial point Methods Control factors MPP ( �∗) Iterations F-evaluations β

g ∇g

(0, 0) HL-RF / Not converged – – – –
STM 0.1 (1.7113,2.3255) 151 151 151 2.8873

0.05 (1.7113,2.3255) 292 292 292 2.8873
DSTM 0.1 (1.7113,2.3256) 40 40 40 2.8873

0.05 (1.7113,2.3256) 77 77 77 2.8873
FSL / (1.7113,2.3256) 51 51 51 2.8873
EFSL / (1.7113,2.3256) 29 29 29 2.8873

(1, 1) HL-RF / Not converged - - - -
STM 0.1 (1.7113,2.3255) 122 122 122 2.8873

0.05 (1.7113,2.3255) 233 233 233 2.8873
DSTM 0.1 (1.7113,2.3256) 34 34 34 2.8873

0.05 (1.7113,2.3256) 65 65 65 2.8873
FSL / (1.7113,2.3256) 64 64 64 2.8873
EFSL / (1.7113,2.3256) 35 35 35 2.8873

(− 1, − 1) HL-RF / Not converged - - - -
STM 0.1 (1.7113,2.3255) 181 181 181 2.8873

0.05 (1.7113,2.3255) 352 352 352 2.8873
DSTM 0.1 (1.7113,2.3256) 37 37 37 2.8873

0.05 (1.7113,2.3256) 69 69 69 2.8873
FSL / (1.7113,2.3256) 46 46 46 2.8873
EFSL / (1.7113,2.3256) 35 35 35 2.8873

Table 6  The average number of iterations for the comparative meth-
ods in Example 2

Methods Control factors Average 
number of 
iterations

HL-RF / –
STM 0.1 151

0.05 292
DSTM 0.1 37

0.05 70
FSL / 54
EFSL / 33

105 5×105 106 5×106 107 5×107 108

Numbers of sampling point

2.9

2.92

2.94

2.96

2.98

3

3.02

3.04

3.06

3.08

3.1

M
C

S

Fig. 4  The plot of the number of different sampling points versus 
�MCS in Example 2
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Example 5 The limit state function of the final example is 
complex and highly nonlinear, which includes ten independ-
ent random variables in normal distribution (Roudak et al. 
2017). From Table 11, when the mean vector �� and two 
additional different points are selected as the initial points, 
HL-RF method cannot converge and other methods except 

STM with � = 0.05 obtain the reliability index � = 3.7515 . 
These results are consistent with the results in Yang et al. 
(2020). The plot of the number of different sampling points 
versus �MCS is shown in Fig. 10. It can be seen from Fig. 10 
that the �MCS with 105 samples is not converged. The reli-
ability index calculated by the MCS method with 107 is 
�MCS = 4.5336 . Since this limit state function is highly non-
linear, there are some errors in these comparative methods. 
In terms of accuracy, the proposed EFSL method has similar 
accuracy with DSTM, STM, and FSL method for the same 
convergence criteria.

In terms of the robustness and efficiency of these meth-
ods, the proposed EFSL method has the fewest average 
number of iterations and number of F-evaluations, and the 
average convergence speed is about six times higher than 
that of the FSL method. The STM, DSTM, and FSL method 
are robust, but the proposed EFSL method is more efficient. 
When the mean vector �� is selected as the initial points, the 
iterative histories of these comparative methods are shown 
in Fig. 11, which can be obviously found that the proposed 
EFSL method has the highest convergence speed compared 
to those of other methods in this study.
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Fig. 5  The iterative histories of the comparative methods in Example 
2

Table 7  Reliability analysis 
results of the comparative 
methods in Example 3

Initial point Methods Control factors MPP ( �∗) Iterations F-evalua-
tions

β

g ∇g

(0, 0, 0) HL-RF / Not converged – – – –
STM 0.1 (0.8344, − 0.7323, −3.5348) 349 349 349 3.7050

0.05 (0.8344, − 0.7321, − 3.5348) 645 645 645 3.7050
DSTM 0.1 (0.8344, − 0.7323, − 3.5348) 340 340 340 3.7050

0.05 (0.8344, − 0.7321, − 3.5348) 626 626 626 3.7050
FSL / (0.8344, − 0.7324, − 3.5348) 219 219 219 3.7050
EFSL / (0.8344, − 0.7324, − 3.5348) 87 87 87 3.7050

(1, 1, 1) HL-RF / Not converged – – – –
STM 0.1 (0.8344, − 0.7323, − 3.5348) 388 388 388 3.7050

0.05 (0.8344, − 0.7321, − 3.5348) 724 724 724 3.7050
DSTM 0.1 (0.8344, − 0.7323, − 3.5348) 425 425 425 3.7050

0.05 (0.8344, − 0.7321, − 3.5348) 808 808 808 3.7050
FSL / (0.8344, − 0.7324, − 3.5348) 220 220 220 3.7050
EFSL / (0.8344, − 0.7324, − 3.5348) 88 88 88 3.7050

(− 1, − 1, − 1) HL-RF / Not converged - - - -
STM 0.1 (0.8344, − 0.7323, − 3.5348) 252 252 252 3.7050

0.05 (0.8344, − 0.7321, − 3.5348) 433 433 433 3.7050
DSTM 0.1 (0.8344, − 0.7325, − 3.5347) 364 364 364 3.7050

0.05 (0.8344, − 0.7327, − 3.5347) 678 678 678 3.7050
FSL / (0.8344, − 0.7324, − 3.5348) 223 223 223 3.7050
EFSL / (0.8344, − 0.7324, − 3.5348) 92 92 92 3.7050
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5  The proposed method in combination 
with RBDO

This section introduces the typical formulation of RBDO and 
DLM, and then the proposed EFSL method is combined with 
DLM. The EFSL-based DLM is compared with the conven-
tional optimization method through four nonlinear RBDO 
examples to verify the efficiency and robustness of the EFSL-
based DLM. The comparison methods used in this study are 
chaos control (CC) method-based DLM (DLM/CC) (Yang and 
Yi 2009), modified chaos control (MCC) method-based DLM 
(DLM/MCC) (Meng et al. 2015), hybrid mean value (HMV) 
method-based DLM (DLM/HMV) (Du and Choi 2008), and 
FSL method-based DLM (DLM/FSL) (Gong and Yi 2011). 
The proposed EFSL-based DLM is abbreviated as DLM/
EFSL.

5.1  Typical RBDO formulation

The RBDO mathematical model is defined as (Chen et al. 
2013a; Yang et al. 2020)

where f
(
�,��,��

)
 stands for an objective function; � refers 

to a vector of deterministic design variable; �� denotes the 
mean of random variable vector � ; �� indicates the mean of 
random parameter vector � ; Prob(⋅) is the failure probability 
operator; performance function gi(�,�,�) ≤ 0 is defined as 
a failure event; the probabilistic constraint is defined as fail-
ure probability less than or equal to the maximum permis-
sible target failure probability Pt

fi
 ; �L and �U are the lower 

and upper bounds of � ; �L
�
 and �U

�
 are the lower and upper 

bounds of �.

5.2  Double loop method

Due to the uncertainty of � and � , the response of perfor-
mance function is also uncertain. The structural failure prob-
ability can be defined as (Youn and Choi 2004)

where f�,�(�,�) represents the joint probability density 
function. The multidimensional integral of Eq. (23) is com-
putationally expensive and difficult to solve (Aoues and Cha-
teauneuf 2010). To avoid direct integration of Eq. (23), two 
representative methods were developed including reliability 

(22)

find �,��

min f
(
�,��,��

)
s.t. Prob

(
gi(�,�,�) ≤ 0

) ≤ Pt
fi
i = 1, 2,… , n

�L ≤ � ≤ �U ,�L
�
≤ �� ≤ �U

�

,

(23)

Prob
(
gi(�,�,�) ≤ 0

)
=Fgi

(0) ≤ �gi(�,�,�)≤0
⋅ ⋅ ⋅� f�,�(�,�)d�d�,

Table 8  The average number of iterations for the comparative meth-
ods in Example 3

Methods Control factors Average 
number of 
iterations

HL-RF / –
STM 0.1 330

0.05 601
DSTM 0.1 376

0.05 704
FSL / 221
EFSL / 89

105 5×105 106 5×106 107 5×107 108

Numbers of sampling point

3.6
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Fig. 6  The plot of the number of different sampling points versus 
�MCS in Example 3
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index approach (RIA) (Zhu et al. 2021) and performance 
measure approach (PMA) (Hamza et al. 2020; Lee et al. 
2008).

5.2.1  Reliability index approach

Reliability index approach replaces the probabilistic con-
straints in Eq. (22) with reliability indices as constraints, 
which can be transformed into the following form (Zhu 
et al. 2021)

Table 9  Reliability analysis results of the comparative methods in Example 4

Initial point Methods Control factors MPP ( �∗) Iterations F-evalua-
tions

β

g ∇g

(0.01,0.3,360,0.000226,0.5,0.12,40) HL-RF / (0.0209,0.2938,329.7288,0.0002,0.5011,
0.1199,39.3692)

7 7 7 2.7471

STM 0.1 (0.0209,0.2938,329.7254,0.0002,0.5011,
0.1199,39.3692)

109 109 109 2.7471

0.05 (0.0209,0.2938,329.7216,0.0002,0.5011,
0.1199,39.3692)

206 206 206 2.7471

DSTM 0.1 (0.0209,0.2938,329.7257,0.0002,0.5011,
0.1199,39.3694)

87 87 87 2.7471

0.05 (0.0209,0.2938,329.7246,0.0002,0.5011,
0.1199,39.3739)

131 131 131 2.7471

FSL / (0.0209,0.2938,329.7269,0.0002,0.5011,
0.1199,39.3708)

61 61 61 2.7471

EFSL / (0.0209,0.2938,329.7270,0.0002,0.5011,
0.1199,39.3692)

6 6 6 2.7471

(0.0105,0.305,360.5,0.0002265,0.505,0.
1205,40.5)

HL-RF / (0.0209,0.2938,329.6313,0.0002,0.5011,
0.1199,39.8628)

7 7 7 2.7542

STM 0.1 (0.0209,0.2938,329.6280,0.0002,0.5011,
0.1199,39.8628)

109 109 109 2.7542

0.05 (0.0209,0.2938,329.6241,0.0002,0.5011,
0.1199,39.8628)

205 205 205 2.7542

DSTM 0.1 (0.0209,0.2938,329.6281,0.0002,0.5011,
0.1199,39.8634)

78 78 78 2.7542

0.05 (0.0209,0.2938,329.6358,0.0002,0.5011,
0.1199,39.8670)

126 126 126 2.7542

FSL / (0.0209,0.2938,329.6337,0.0002,0.5011,
0.1199,39.8633)

69 69 69 2.7542

EFSL / (0.0209,0.2938,329.6297,0.0002,0.5011,
0.1199,39.8628)

6 6 6 2.7542

(0.011,0.31,361,0.000227,0.51,0.121,41) HL-RF / (0.0210,0.2937,329.5343,0.0002,0.5011,
0.1199,40.3565)

7 7 7 2.7613

STM 0.1 (0.0210,0.2937,329.5308,0.0002,0.5011,
0.1199,40.3565)

108 108 108 2.7613

0.05 (0.0210,0.2937,329.5269,0.0002,0.5011,
0.1199,40.3565)

204 204 204 2.7613

DSTM 0.1 (0.0210,0.2938,329.5312,0.0002,0.5011,
0.1199,40.3570)

77 77 77 2.7613

0.05 (0.0210,0.2939,329.5308,0.0002,0.5012,
0.1199,40.3626)

112 112 112 2.7613

FSL / (0.0210,0.2937,329.5369,0.0002,0.5011,
0.1199,40.3568)

71 71 71 2.7613

EFSL / (0.0210,0.2937,329.5328,0.0002,0.5011,
0.1199,40.3565)

6 6 6 2.7613
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where � t
i
 denotes the target reliability index of the ith 

constraint.
Then, the reliability index �i can be computed by the fol-

lowing optimization problem

where the most probable point �MPP in U-space is obtained 
from Eq. (25), and �i=‖‖�MPP

‖‖.

5.2.2  Performance measure approach

Performance measure approach transforms the probabilis-
tic constraints in Eq. (22) to performance measures as con-
straints (Hamza et al. 2020):

where gi denotes the probabilistic performance measure of 
the ith probabilistic constraint.

The minimum performance target point �MPTP can be 
computed by inverse reliability analysis, which can be 
expressed by the following formula (Hamza et al. 2020)

The study shows that PMA is more robust compared to 
RIA and is not susceptible to the value of reliability index 
(Aoues and Chateauneuf 2010).

5.3  Integration of the EFSL method with DLM

It is verified that the proposed EFSL method has a good 
ability for solving nonlinear limit state functions in Sect. 4. 
Therefore, the proposed EFSL method is considered to be 
combined with DLM to improve the ability of DLM for solv-
ing complex RBDO problems. The proposed DLM/EFSL 
can be expressed as

(24)

find �,��

min f
(
�,��,��

)
s.t. �i

(
�,��,��

) ≥ � t
i
i = 1, 2,… , n

�L ≤ � ≤ �U ,�L
�
≤ �� ≤ �U

�

,

(25)

find �MPP

min ‖‖�MPP
‖‖

s.t. gi
(
�MPP

)
= 0

,

(26)

find �,��

min f
(
�,��,��

)
s.t. gi

(
�,�MPTP,�MPTP

) ≥ 0 i = 1, 2,… , n

�L ≤ � ≤ �U ,�L
�
≤ �� ≤ �U

�

,

(27)

find �MPTP

min g
(
�MPTP

)
s.t. ‖‖�MPTP

‖‖ = � t

(28)
(
�MPTP,�MPTP

)
= T−1

(
�MPTP

)

Table 10  The average number of iterations for the comparative meth-
ods in Example 4

Methods Control factors Average 
number of 
iterations

HL-RF / 7
STM 0.1 109

0.05 205
DSTM 0.1 81

0.05 123
FSL / 67
EFSL / 6

105 5×105 106 5×106 107 5×107 108

Numbers of sampling point
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Fig. 8  The plot of the number of different sampling points versus 
�MCS in Example 4
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Table 11  Reliability analysis results of the comparative methods in Example 5

Initial point Methods Control factors MPP ( �∗) Iterations F-evaluations β
g ∇g

(1,1,1,1,1,1,1,1,1,1) HL-RF / Not converged – – – –
STM 0.1 (0.5456,0.5456,0.5456,0.5456,0.54

56,0.5456,0.5456,0.5456,0.5456,
2.2886)

126 126 126 3.7515

0.05 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2885)

242 242 242 3.7514

DSTM 0.1 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

43 43 43 3.7515

0.05 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

84 84 84 3.7515

FSL / (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

219 219 219 3.7515

EFSL / (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

25 25 25 3.7515

(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 
0.5, 0.5)

HL-RF / Not converged – – – –

STM 0.1 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

106 106 106 3.7515

0.05 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2885)

202 202 202 3.7514

DSTM 0.1 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

46 46 46 3.7515

0.05 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

91 91 91 3.7515

FSL / (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

219 219 219 3.7515

EFSL / (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

26 26 26 3.7515

(1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 
1.5, 1.5)

HL-RF / Not converged – – – –

STM 0.1 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

149 149 149 3.7515

0.05 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2885)

289 289 289 3.7514

DSTM 0.1 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

47 47 47 3.7515

0.05 (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

93 93 93 3.7515

FSL / (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

39 39 39 3.7515
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(29)find �,��

min f
�
�,��,��

�
s.t.𝛽k

i
≥ 𝛽 t

i
i = 1, 2,… , n

�L ≤ � ≤ �U ,�L
�
≤ �� ≤ �U

�

where 𝛽k
i
=
����

k
i

���
�k

i
= �k

i
𝛽k
i

𝜆k−1=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

215, k < 3

⎧⎪⎨⎪⎩

𝜆k−2∕10, 𝜆k−2 > 10

𝜆k−2∕1, 5 ≤ 𝜆k−2 ≤ 10

𝜆k−2∕0.05, 0 < 𝜆k−2 < 5

,
����

k−1 − �k−2��� <
����

k−2 − �k−3���,M = Mt, k ≥ 3

cn(1 − n)𝜆k−2,
����

k−1 − �k−2��� ≥ ����
k−2 − �k−3���, k ≥ 3

e−0.125(k−1), 𝜆k−1 ≤ 0.15,
����

k−1 − �k−2��� ≥ ����
k−2 − �k−3���, k ≥ 3

�k

i
=

�k−1
i

− 𝜆k−1∇g
�
�k−1

i

�
����k−1

i
− 𝜆k−1∇g

�
�k−1

i

����
𝛽k
i
= −

g
�
�k−1

i

�
−
�
∇g

�
�k−1

i

��T
�k−1

i

∇g
�
�k−1

i

�T�
�k

i

�

Table 11  (continued)

Initial point Methods Control factors MPP ( �∗) Iterations F-evaluations β
g ∇g

EFSL / (0.5456,0.5456,0.5456,0.5456,0.54
56,0.5456,0.5456,0.5456,0.5456,
2.2886)

27 27 27 3.7515

Table 12  The average number of iterations for the comparative meth-
ods in Example 5

Methods Control factors Average 
number of 
iterations

HL-RF / -
STM 0.1 127

0.05 244
DSTM 0.1 45

0.05 89
FSL / 159
EFSL / 26

5×105 106 5×106 107 5×107 108

Numbers of sampling point

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

M
C
S

Fig. 10  The plot of the number of different sampling points versus 
�MCS in Example 5
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5.4  Illustrative examples of RBDO

The robustness and efficiency of the proposed DLM/
EFSL method are demonstrated by four design prob-
lems including numerical and structural examples. The 
optimizer “fmincon” is used as a tool to perform the 
optimization loop. The convergence criterion is set as 
‖‖�k+1 − �k‖‖∕‖‖�k+1‖‖ < 10−6 for the inner loop, and the 
convergence criterion is set as ‖‖�k+1 − �k‖‖∕‖‖�k+1‖‖ < 10−3 
for the outer loop. The efficiency of the optimization 
method depends mainly on the number of function call, 
which includes the number of constraint function call and 
the number of objective function call. In addition, the 
number of constraint function call is the sum of the num-
ber of performance function call and the number of gradi-
ent function call. Since sensitivity analysis is evaluated by 
using the analytical method in this study, the evaluation 
of sensitivity is counted as one function call. Therefore, 
the evaluation of a constraint function and its sensitivity is 
counted as two function calls. The reliability index of the 
performance function is calculated by the MCS method at 
the obtained optimal design point and compared with the 

target reliability index to evaluate error of the proposed 
DLM/EFSL.

5.4.1  Design problem 1

This nonlinear benchmark example, which is extracted from 
Aoues and Chateauneuf (2010), includes two independ-
ent random variables X1 and X2 with normal distribution 
Xi ∼ N

(
�Xi

, 0.32
)
 and three nonlinear performance function 

constraints. The target reliability indices for three constraint 
functions are � t

i
= 3 (i = 1, 2, 3) and the initial point is set as 

�0
�
= [5.0, 5.0]T . The RBDO problem is formulated as

The optimization results of the comparative meth-
ods are summarized in Table 13, in which all the meth-
ods can successfully converge to the same optimum 
�� = (3.4391, 3.2866) except for DLM/CC. These results 
are consistent with the results in Aoues and Chateauneuf 
(2010). In terms of the accuracy, the proposed DLM/EFSL 
is more accurate than DLM/CC. For efficiency, DLM/EFSL 
generates the lowest number of function calls of 978, which 
proves that DLM/EFSL is more efficient than the compara-
tive methods.

The reliability indices of the constraint function calcu-
lated by the MCS method at the optimal point are �MCS

i
 . 

From Table 13, all the methods except DLM/CC have same 
error (− 0.0278, 0.0541,∞ ). It means that the proposed 
DLM/EFSL improves the computational efficiency while 
retaining a high level of accuracy.

(30)

find �� =
[
�X1

,�X2

]T
min f

(
��

)
= �X1

+ �X2

s.t. P
[
gi(�) ≥ 0

] ≥ Φ
(
� t
i

)
, i = 1, 2, 3

0 ≤ �X1
≤ 10, 0 ≤ �X2

≤ 10

�0
�
= [5.0, 5.0]T,�� = [0.3, 0.3]T

where g1(�) = X2
1
X2

/
20 − 1

g2(�) = (X1 + X2 − 5)2∕30 + (X1 − X2 − 12)2∕120 − 1

g3(�) = 80∕(X2
1
+ 8X2 + 5) − 1

� t
1
= � t

2
= � t

3
= 3

Table 13  Optimization results 
of the comparative methods in 
Example 5.4.1

Methods Objective Optimum Iterations Number of function 
call

�MCS

1
�MCS

2
�MCS

3

Objective Constraint

DLM/CC 6.7252 (3.4390,3.2861) 6 21 4740 2.9711 3.0531 Infinite
DLM/MCC 6.7257 (3.4391,3.2866) 6 21 3135 2.9722 3.0541 Infinite
DLM/HMV 6.7257 (3.4391,3.2866) 6 21 1161 2.9722 3.0541 Infinite
DLM/FSL 6.7257 (3.4391,3.2866) 5 18 1890 2.9722 3.0541 Infinite
DLM/EFSL 6.7257 (3.4391,3.2866) 5 18 960 2.9722 3.0541 Infinite

0 20 40 60 80 100 120
Iterations (k)

0

0.5

1

1.5
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R
el
ia
bi
lit
y
in
de
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STM( =0.1)
STM( =0.05)
DSTM( =0.1)
DSTM( =0.05)
FSL
EFSL

Fig. 11  The iterative histories of the comparative methods in Exam-
ple 5
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5.4.2  Design problem 2

This nonlinear mathematical problem, which is extracted 
from Lee and Song (2011), includes two independent 
random variables X1 and X2 , which obey normal distri-
bution Xi ∼ N

(
�Xi

, 0.22
)
 and three highly nonlinear per-

formance function. The target reliability indices for three 
probabilistic constraints are set as 2 and the initial point is 
�0
�
= [1.0, 1.0]T . The RBDO problem is defined as

The optimization results of the comparative methods are 
summarized in Table 14. From Table 14, all the methods 
can successfully converge and these methods can obtain 
the same optimal solution �� = (0.5000, 2.3619) except for 
DLM/CC, which is approximately similar to the result in 
Jiang et al. (2017). In terms of accuracy, all the compara-
tive methods have similar accuracy for the same conver-
gence criteria. From the number of function calls, except 
for the DLM/HMV, the proposed DLM/EFSL generates 

(31)

find �� =
[
�X1

,�X2

]T
min f

(
��

)
= �X1

+ �X2

s.t. P
[
gi(�) ≥ 0

] ≥ Φ
(
� t
i

)
, i = 1, 2, 3

0.5 ≤ �X1
≤ 4, 0.5 ≤ �X2

≤ 4

�0
�
= [1.0, 1.0]T,��=[0.2, 0.2]

T

where g1(�) = −9 + 5 sin
(
X1 − 1

)2
+ 5X2 − X1X2

g2(�) = −11 + 5 cos
(
−X1 − 1

)2
+ 5X2 + 1.5X1X2

g3(�) = 38 + 6 sin
(
X1 − 1

)2
− 12X2 − X1X2

� t
1
= � t

2
= � t

3
= 2

the lowest number of function calls of 1878. It proves that 
DLM/EFSL has accurate and efficient characteristics.

The reliability indices of the three probabilistic con-
straints calculated by the MCS method at the optimal point 
are �MCS

i
 . From Table 14, all the methods except DLM/CC 

have the same error (0.0567, 0.2847, 1.5113). It means 
that the proposed DLM/EFSL improves computational 
efficiency while retaining a high level of accuracy.

5.4.3  Cantilever beam design problem

This example is a vertical and lateral bending problem of 
cantilever beam extracted from Shan and Wang (2008), 
which includes two highly nonlinear performance func-
tions, two independent design variables, and four random 
parameters. The tip of this beam is subjected to lateral and 
vertical loads of Z and Y. The random design variables are 
the width w and thickness t of the cross-section. The physi-
cal significance of the objective function is to minimize 
the weight of the cantilever beam. The length L is 100 in 
and the cantilever beam under lateral and vertical loads is 
shown in Fig. 12.

There are two failure modes for this cantilever beam. One 
failure mode refers to yielding at the fixed end of the cantile-
ver, i.e., the combined force of these two forces produces the 
stress M greater than the yield strength S; another is the tip 
displacement D exceeding the permissible value D0 = 2.5�� . 
Two random variables and four random parameters obey 
normal distribution, as shown in Table 15.

Table 14  Optimization results 
of the comparative methods in 
Example 5.4.2

Methods Objective Optimum Iterations Number of function 
call

�MCS

1
�MCS

2
�MCS

3

Objective Constraint

DLM/CC 2.8618 (0.5000,2.3618) 4 15 3399 2.0564 2.2842 3.5117
DLM/MCC 2.8619 (0.5000,2.3619) 4 15 1875 2.0567 2.2847 3.5113
DLM/HMV 2.8619 (0.5000,2.3619) 4 15 1087 2.0567 2.2847 3.5113
DLM/FSL 2.8619 (0.5000,2.3619) 5 18 1944 2.0567 2.2847 3.5113
DLM/EFSL 2.8619 (0.5000,2.3619) 5 18 1860 2.0567 2.2847 3.5113

L=100 in

t
w

Y

Z

Fig. 12  Cantilever beam under lateral and vertical loads

Table 15  Statistical properties of random parameters in Example 
5.4.3

Random parameter Mean SD

Lateral load Z 500 100
Vertical load Y 1000 100
Young’s modulus E 29 ×  106 1.45 ×  106

Yield strength S 40,000 2000
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The target reliability indices for two probabilistic con-
straints are set as � t

i
= 3, i = 1, 2 and the initial point is 

�0=[2.5, 2.5]T . The RBDO problem is described as

where stress M and tip displacement D can be formulated as

(32)

find � = [w, t]T

min f (�) = w ⋅ t

s.t. P(Stress M∶M ≤ S) ≥ Φ
(
� t
1

)
P
(
Tip displacement D∶D ≤ D0

) ≥ Φ
(
� t
2

)
0 ≤ w ≤ 5, 0 ≤ t ≤ 5

,

The optimization results of the comparative methods are 
summarized in Table 16. From Table 16, all the methods 
with the exception of DLM/CC obtain the same objective 
function value 9.5202, corresponding to the same optimum 
point (2.4460, 3.8922). These results are consistent with 
the results in Yang and Gu (2004). It means that the DLM/
EFSL has a high degree of accuracy. Regarding the number 
of function call, DLM/EFSL generates the lowest function 
call number of 351 and the highest convergence speed. This 
example indicates that DLM/EFSL performs well in terms of 
both convergence performance and computational efficiency.

5.4.4  Vehicle side impact problem

Vehicle impacts occur frequently in traffic accidents. 
Because the mechanical properties of the body on both sides 
of the vehicle are relatively weak, improving the degree of 
side impact resistance of the vehicle is of great importance 
to the safety of passengers. Hence, the proposed DLM/
EFSL is now applied to the vehicle side impact design. 
The finite element analysis model (Youn et al. 2004; Zhang 
et al. 2021b), which consists of 85,941 shell elements and 
96,122 nodes, is shown in Fig. 13. In the vehicle side impact 
finite element simulation, the barrier impacts the side of the 

(33)M =
600

wt2
Y +

600

w2t
Z

(34)D =
4L3

Ewt

√(
Y
/
t2
)2

+
(
Z
/
w2

)2

Table 16  Optimization results 
of the comparative methods in 
Example 5.4.3

Methods Objective Optimum Iterations Number of function call

Objective Constraint

DLM/CC 8.7401 (2.6322,3.3205) 8 27 2082
DLM/MCC 9.5202 (2.4460,3.8922) 8 27 1455
DLM/HMV 9.5202 (2.4460,3.8922) 8 27 546
DLM/FSL 9.5202 (2.4460,3.8922) 6 21 426
DLM/EFSL 9.5202 (2.4460,3.8922) 6 21 330

Fig. 13  Schematic of vehicle 
side impact model (Zhang et al. 
2021b)

Table 17  EEVC criteria for vehicle side impact

Performance EEVC regulation Safety 
rating 
criteria

Initial design

Abdomen load (kN) 2.5 ≤ 1.0 0.663
Rib deflection (mm)
Upper 42 ≤ 32 28.5
Middle 42 ≤ 32 29.0
Lower 42 ≤ 32 34.0
VC (m/s)
 Upper 1.0 ≤ 0.32 0.22

Middle 1.0 ≤ 0.32 0.21
Lower 1.0 ≤ 0.32 0.31
Public symphysis 

force (kN)
6 ≤ 4.0 4.067

HIC 1000 ≤ 650 229.4
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vehicle at a velocity of 49.89 kph. One simulation of this 
finite element model using the RADIOSS software on SGI 
Origin 2000 takes about 20 h. This study uses the European 
Enhanced Vehicle-Safety Committee (EEVC) side impact 
criteria to enable the vehicle to meet the specified internal 
and regulatory side impact requirements. The EEVC side 
impact criteria, which is shown in Table 17, include abdo-
men load, rib deflections, VC’s (viscous criteria), pubic sym-
physis force, and Head Injury Criterion (HIC). In addition, 
the velocity of the front door at the B-pillar and the velocity 
of the B-pillar at the middle point need to be considered in 
the side impact design.

To achieve the goal of reducing weight of vehicle while 
ensuring the safety of personnel, an optimal model for the 
side impact of vehicle considering ten safety constraints is 
developed. The RBDO problem is formulated as

(35)

min Weight(��)

s.t. P(Abdomen load: FAbd ≤ 1.0kN) ≥ Ps

P(Upper/Middle/Lower Rib deflection: Defrib_u∕rib_m∕rib_l ≤ 32mm) ≥ Ps

P(Upper/Middle/Lower VC: VCupper/middle/lower ≤ 0.32m/s) ≥ Ps

P(Pubic symphysis force: Forcepublic ≤ 4.0kN) ≥ Ps

P(Velocity of B - pillar at middle point: VelocityB - pillar ≤ 9.9mm/ms) ≥ Ps

P(Velocity of front door at B - pillar: Velocitydoor ≤ 15.7mm/ms) ≥ Ps

�L
�
≤ �� ≤ �U

�
, �� ∈ R

7

�L
�
= [0.5, 0.45, 0.5, 0.5, 0.875, 0.4, 0.4]T

�U
�
= [1.5, 1.35, 1.5, 1.5, 2.625, 1.2, 1.2]T

Table 18  Statistical properties of random variables and parameters in 
Example 5.4.4

Random variables and parameters Mean SD

B-Pillar inner X1 �X1
0.03

B-Pillar reinforcement X2 �X2
0.03

Floor side inner X3 �X3
0.03

Cross member X4 �X4
0.03

Door beam X5 �X5
0.05

Door belt line reinforcement X6 �X6
0.03

Roof rail X7 �X7
0.03

Material of B-Pillar inner X8 0.345 0.006
Material of floor side inner X9 0.345 0.006
Barrier height X10 0 10
Barrier hitting position X11 0 10

Table 19  Optimization results of the comparative methods in Example 5.4.4

Methods Objective Optimum Iterations Number of func-
tion call
Objective Constraint

DLM/CC 29.5567 (0.7871,1.3500,0.6886,1.5000,1.0705,1.2000,0.7283) 6 59 53,548
DLM/MCC 29.5564 (0.7871,1.3500,0.6885,1.5000,1.0706,1.2000,0.7284) 6 59 24,277
DLM/HMV 29.5578 (0.7872,1.3500,0.6887,1.5000,1.0706,1.2000,0.7284) 7 67 28,972
DLM/FSL 29.5578 (0.7872,1.3500,0.6887,1.5000,1.0706,1.2000,0.7284) 10 88 180,776
DLM/EFSL 29.5578 (0.7872,1.3500,0.6887,1.5000,1.0706,1.2000,0.7284) 10 88 18,768

Table 20  Calculation of 
constraint functions at the 
optimal point by MCS method 
in Example 5.4.4

Methods �MCS

1
�MCS

2
�MCS

3
�MCS

4
�MCS

5
�MCS

6
�MCS

7
�MCS

8
�MCS

9
�MCS

10

DLM/CC Infinite 3.0015 4.4370 2.9999 Infinite Infinite Infinite 2.4321 4.9354 3.2021
DLM/MCC Infinite 3.0018 4.3470 3.0002 Infinite Infinite Infinite 2.4317 4.9354 3.2025
DLM/HMV Infinite 3.0017 4.3502 3.0001 Infinite Infinite Infinite 2.4323 4.9354 3.2029
DLM/FSL Infinite 3.0017 4.3502 3.0001 Infinite Infinite Infinite 2.4323 4.9354 3.2029
DLM/EFSL Infinite 3.0017 4.3502 3.0001 Infinite Infinite Infinite 2.4323 4.9354 3.2029
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The optimal model includes seven random variables 
X1–X7 and four random parameters X8–X11, and their sta-
tistical characteristics are given in Table 18. They are inde-
pendent and normally distributed. The mean values of X8 
and X9 are set as 0.345. The target reliability indices for 
ten probabilistic constraints are set as � t = 3 , correspond-
ing to the target reliability of 99.8650%. The initial point is 
�0
�
=[1.0, 0.9, 1.0, 1.0, 1.75, 0.8, 0.8]T.

Weight = 1.98 + 4.90�
X1
+ 6.67�

X2
+ 6.98�

X3
+ 4.01�

X4
+ 1.78�

X5
+ 2.73�

X7

FAbd = 1.16 − 0.3717X2X4 − 0.00931X2X10 − 0.484X3X9 + 0.01343X6X10

Defrib_u = 28.98 + 3.818X3 − 4.2X1X2 + 0.0207X5X10 + 6.63X6X9

− 7.77X7X8 + 0.32X9X10

Defrib_m = 33.86 + 2.95X3 + 0.1792X10 − 5.057X1X2 − 11X2X8 − 0.0215X5X10 − 9.98X7X8 + 22X8X9

Defrib_l = 46.36 − 9.9X2 − 12.9X1X8 + 0.1107X3X10

VCupper = 0.261 − 0.0159X1X2 − 0.188X1X8 − 0.019X2X7+0.0144X3X5

+ 0.0008757X5X10 + 0.08045X6X9 + 0.00139X8X11 + 0.00001575X10X11

VCmiddle = 0.214 + 0.00817X5 − 0.131X1X8 − 0.0704X1X9+0.03099X2X6 − 0.018X2X7

+ 0.0208X3X8 + 0.121X3X9 − 0.00364X5X6 + 0.0007715X5X10 − 0.0005354X6X10 + 0.00121X8X11

VClower = 0.74 − 0.61X2 − 0.163X3X8 + 0.001232X3X10 − 0.166X7X9 + 0.227X2
2

Forcepublic = 4.72 − 0.5X4 − 0.19X2X3 − 0.0122X4X10 + 0.009325X6X10 + 0.000191X2
11

VelocityB - Pillar = 10.58 − 0.674X1X2 − 1.95X2X8 + 0.02054X3X10 − 0.0198X4X10 + 0.028X6X10

Velocitydoor = 16.45 − 0.489X3X7 − 0.843X5X6 + 0.0432X9X10 − 0.0556X9X11 − 0.000786X2
11

The optimization results of the comparative methods 
and the constraint functions at the optimal point, which are 
verified against the MCS method, are listed in Tables 19 
and 20, respectively. From Table 19, DLM/HMV, DLM/
FSL, and DLM/EFSL obtain the same objective function 
value 29.5578, but DLM/CC and DLM/MCC converge 
to objective function value 29.5567 and 29.5564. These 
results are approximately similar to the results in Yang 
and Gu (2004). It means that these comparative methods 
have similar degree of accuracy. In terms of efficiency, 
DLM/EFSL generates the lowest number of function calls 
compared to other comparative methods in the vehicle side 
impact problem, which demonstrates the superior compu-
tational efficiency of DLM/EFSL.

The reliability indices of constraint functions at the opti-
mal point are shown in Table 20. From Table 20, the DLM/
HMV, DLM/FSL, and DLM/EFSL have the same error 
( ∞ , 0.0017, 1.3502, 0.0001, ∞ , ∞ , ∞ , − 0.5677,1.9354, 
0.2029). It means that DLM/EFSL improves efficiency 
while retaining a high level of computational accuracy.

(36)

6  Conclusions

Although the FSL method has achieved some improvement 
in robustness and effectiveness compared with improved 
HL-RF method, it cannot compensate for the deficiency 
of the FSL method in the oscillation amplitude criterion 
and adaptively adjust the step length for limit state func-
tions with different degrees of nonlinearity. As a result, the 

FSL method may result in generating larger computational 
effort and lower efficiency gains.

In this study, an EFSL method is proposed to overcome 
the shortcomings of the FSL method. The efficiency and 
robustness of the proposed EFSL method compared to 
other commonly used methods like HL-RF, STM, DSTM, 
and FSL method are verified by five examples. Consider-
ing that the proposed method has good capability for solv-
ing nonlinear reliability analysis problems, the proposed 
EFSL method is combined with the DLM to enhance the 
efficiency for solving complex RBDO problems. Four 
design problems are employed to verify the computational 
performance of DLM/EFSL, compared with methods, such 
as DLM/CC, DLM/MCC, DLM/HMV, and DLM/FSL. It is 
found that in design problem 2, DLM/EFSL is less compu-
tationally efficient than DLM/HMV but higher than DLM/
CC, DLM/MCC, and DLM/FSL, while DLM/EFSL has 
the highest computational efficiency in other three design 
problems.
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In conclusion, the proposed EFSL method improves the 
efficiency and robustness by adopting a new iterative control 
criterion and a comprehensive step length adjustment for-
mula, which allow adaptive step length adjustment for differ-
ent degrees of nonlinear limit state functions. Furthermore, 
DLM/EFSL is also a robust and efficient RIA-based DLM. 
To some extent, it has positive significance for structural 
reliability analysis and RBDO problems.
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