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Abstract
Structural light weighting is vital for increasing energy efficiency and reducing CO2 emissions. Furthermore, for many 
applications, high heat conductivity is necessary to attain efficient energy transfer while increasing the product stiffness and 
reducing the weight. In recent years, with the development of 3D printing technology, attention has been directed toward 
porous materials that greatly contribute to weight reduction. As such, this educational research is aiming toward introducing 
the methodology of concurrent multiscale topology optimization attaining designs of lightweight, high heat conductive, and 
stiff porous structures utilizing multi-objective optimization method. The normalized multi-objective function is used in this 
research to maximize heat conductivity and stiffness. Therefore, the objective criteria are consisting of heat and mechanical 
compliance minimization. Utilizing the SIMP method, the multiscale sensitivity analysis, and optimization formulation were 
driven theoretically using adjoint method to reduce the computational cost and presented in a MATLAB code. 2D cases were 
studied, and a proper Pareto front was attained. The results showed good coupling of the macro and microscale design. The 
MATLAB code is explained and included in the appendix and it is intended for educational purposes.

Keywords  Multiphysics · Multiscale optimization · Topology optimization · Heat conductivity · Stiffness maximization · 
Multi-objective optimization · Homogenization

1  Introduction

Educational papers have become an important class of con-
tributions for expanding topology optimization research. 
In recent years, the number of educational publications on 
topology optimization subjects has increased, and their con-
tributions have had a substantial influence on both research 
and education. For example, the work of 99-line MATLAB 
that introduced the Solid Isotropic Material with Penaliza-
tion (SIMP) approach is one of the most popular instruc-
tional articles (Sigmund 2001). This work was followed 
by several compact versions as 88 line, (Andreassen et al. 
2011). Also, 99 lines were renewed (Ferrari and Sigmund 

2020). Furthermore, the level-set method was addressed by 
many educational papers such as the topological derivative-
based level-set (Challis 2010), the extension of reaction 
diffusion (Otomori et al. 2015), and parametrized level-set 
method (PLSM; Wei et al. 2018). Also the use of evolution-
ary structural optimization (ESO) was introduced (Lin et al. 
2020).

This educationally oriented research is aiming toward 
introducing the methodology of multiphysics concurrent 
multiscale topology optimization for attaining designs of 
lightweight, high heat conductive, and stiff porous struc-
tures. Furthermore, a MATLAB code that demonstrates the 
problem is introduced. In the following sections, we will 
discuss the practical importance and the logic as well as the 
necessary mathematical and physical backgrounds to attain 
this purpose.

In general, weight reduction of structures is vital for mini-
mizing energy consumption and reducing pollutant emis-
sions. For example, the role of aviation in global warming 
has prompted ongoing efforts to reduce aviation pollution 
emissions by reducing structural weight (Zhu et al. 2018).
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Also, with the advancement of engineering applications, 
the compact layout is an important aspect of modern design. 
For example, passive heat sinks due to their zero-energy 
consumption, compactness, and quiet are utilized in mas-
sive multiple-input multiple-output (MMIMO) systems 
of 5G communications, high-power LEDs (Lazarov et al. 
2018), and a variety of other industrial applications. These 
passive heat sinks are utilized as an integrated part of the 
metal package of the MMIMO and LEDs which serve the 
purpose of structural enforcement and fan heat dissipater. 
Furthermore, with the advancement in integrated circuits 
downscaling of micro and nanoelectronics, the demand is 
increased for reducing the size and the weight of the heat 
passive components as well as sustaining appropriated struc-
tural stiffness, such that the weight reduction will lead to a 
rapid decrease in the structural stiffness which makes the 
heat passive component highly susceptible to the mechanical 
forces of the operating environment. To attain heat and stiff-
ness maximization, optimization methods are used by engi-
neers, and one of the optimization trends is topology opti-
mization. For achieving the optimal design of lightweight, 
high conductive, and stiff porous structures. This goal is 
attained by utilizing several engineering concepts which 
are multiphysics modeling (i.e., the heat conductivity and 
structural stiffness for this study), multi-objective and mul-
tiscale optimization. In order not to confuse the reader, in 
the following sections, these concepts are discussed, respec-
tively. First, let us discuss topology optimization. Topology 
optimization is presented as one of the rapidly advancing 
methodologies for achieving innovative designs. Associ-
ated with additive manufacturing topologically optimized 
structures increasingly find the way in industrial applications 
to produce lightweight structures with high functionality. 
Therefore, the goal of structural topology optimization is to 
discover the best and robust material distribution to maxi-
mize structural performance to weight ratio while meeting 
various design conditions. When compared to the known 
parametric optimization, topology optimization gives the 
designers a lot more leeway, allowing them to come up with 
completely new and extremely efficient conceptual designs.

Topology optimization was first created for structures 
with mechanical loading, and it was based on a series of 
research published by Maxwell (1890) in which the trac-
tion effect on frame structures was formulated using a 
simplified version of discretization. For deterministic and 
nondeterministic problems, Maxwell developed a virtual 
energy formulation to analyze displacement and applied 
forces. Some researches were performed to utilize Max-
well lemma, but the most successful and considered as the 
foundation of topology and layout optimization is the study 
conducted by Michell (Michell 1904). Michell used the 
Maxwell lemma and did exact analysis formulation and opti-
mization. The feasible optimal design was achieved due to 

conditioning-based optimization. Many kinds of researches 
were conducted after Michell (Drucker and Shield 1956; 
Chan 1960; Hegemier and Prager 1969; Bartel 1969; Char-
rett and Rozvany 1972; Rozvany and Prager 1976; Cheng 
and Olhoff 1981), which built the basis of modern topol-
ogy optimization. Efficient integration of mathematical and 
modern computational methods was done by implementing 
the homogenization for topology optimization as a target 
of the discretized continuous optimality criterion (DCOC) 
by Bendsoe et al. (Bendsøe and Kikuchi 1988). This work 
led to the development of the concept of fictitious material 
by Bendsoe (Bendsøe 1989) which then derived the Solid 
Isotropic Material with Penalization method (SIMP) that is 
widely used in commercial finite element solver nowadays.

On the other hand, the development of nonparametric 
optimization techniques for thermal conductivity problems 
has relatively less attention compared with structural prob-
lems. The early work of thermal problems was utilizing the 
parametric optimization approaches. The implementation of 
discretization methods in the optimization of the thermal 
problem (Rao and Narayanaswami 1978; Haftka 1981) has 
been the first step toward adopting nonparametric optimiza-
tion for the thermal conductivity problem. Several attempts 
were conducted to shift toward nonparametric optimiza-
tion were performed (Saigal and Chandra 1991; Lee 1993), 
yet the most successful attempt was performed by Li et al. 
(1999) in which several examples were studied to optimize 
2D cases using evolutionary structural optimization (ESO). 
Constructal law by Bejan (1997) led to the design of conduc-
tive channels from the design domain of low conductivity. 
In his methodology, heat generation was distributed in the 
design domain. Thenceforth, the vast majority of researchers 
adopted Bejan’s approach and utilized heat compliance as 
the objective function in order to maximize structural heat 
conductivity. Li et al. (2004) have addressed the issue of 
extremum of heat conduction by adopting ESO, to topology 
optimize temperature-controlled point problem. Gersborg-
Hansen et al. (2006) investigated the use of finite volume 
as a discretization method for topology optimization for 
thermal conductivity problems. Al Ali and Shimoda (2022) 
investigated the multiscale topology optimization of 2D 
and 3D high thermal conductive structures using topology 
optimization of SIMP, ESO, as well as Level-set method. 
It is important to mention that, in addition to SIMP and 
ESO topology optimization, there are robust methods that 
are used by many researchers such as H1 gradient method 
(Liu and Shimoda 2014), Mesh morphing (Cenni et  al. 
2015), Phase field (Bourdin and Chambolle 2006; Burger 
and Stainko 2006), and Level set (Allaire et al. 2002; Abass 
et al. 2019).

Multiphysics is the process of linking various physical 
phenomena (Jabbar and Naguib 2020, 2019) such as heat 
and mass transfer, fluid flows, and solid elastic stresses. Each 
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problem has its dedicated mathematical solution based on 
its physical assumptions, fields, and boundary conditions. 
In this research, heat conduction in solid and mechanical 
stiffness is using a dedicated finite element model for each 
physics on the macro and the microscale. However, the 
design variables are the same as the design domain due to 
the implicit nature (Farin et al. 2002) of the topology opti-
mization. Topology optimization has been widely used in a 
variety of engineering challenges dictated by single phys-
ics, such as constructing optimal conductive and convec-
tive heat transfer (Zhou et al. 2016), fluid flow (Duan et al. 
2008), wave propagation (Chen et al. 2020), and piezoelec-
tricity problems (Kim et al. 2010; Yoon et al. 2018). Also, 
multiphysics problems have been successfully investigated 
with topology optimization for various fields such as fluid-
thermal problems (Yu et al. 2019), fluid permeability and 
structural stiffness (Challis et al. 2012). Multiphysics opti-
mization is attained by updating the physical–mathematical 
criteria with the optimization process. The multicriteria are 
often transformed to an appropriate multi-objective function 
layout, and the most commonly used one is the weighted 
sum of multi-objective functions. Here, the objectives are 
optimized systematically with assigning importance (by 
decreasing or increasing the “weight” of a criterion in the 
favor of another) to draw Pareto front to identify the best 
design variables that offer the best trade-off. Convexity of all 
functions within the multi-objective criteria might not have 
existed for some engineering problems. As such modify-
ing the weighted sum of multi-objective function is needed. 
The modifications are taken many forms such as normative 
weighted sum (Carpinelli et al. 2014) which is called Euclid-
ean distance for using the power of 2 (Carpinelli et al. 2014), 
or scalarization form (Shimoda et al. 1996), normalization 
(Rao and Freiheit 1991) and sometimes, the combination of 
power and normalization forms (Wu et al. 2019). The selec-
tion of the modification for the multi-objective function is 
related to the nature of the problem and the design space 
(Pardalos et al. 2017).

Although weight minimization for the multiphysics 
problem is addressed in topology optimization, weight 
minimization is reaching the physical limit of the bulk 
material. Nature is successfully dealing with this matter 
by implementing cellular structures (for example bones, 
and plants skeletons). To mimic the nature, researches 
were conducted to make porous designs instead of bulks 
to furtherly decrease the weight of the product, and with 
maintaining high strength and robustness at the same time 
(Stampfl et al. 2004; Ajdari et al. 2008; Gibson et al. 1982; 
Gibson 1989). This led to implementing multiscale opti-
mization to design macrostructure and microstructure at 
the same time (Wu et al. 2021). To perform integrated 
multiscale structural design, the macrostructures and the 
microstructures are designed simultaneously, to assimilate 

the spatial field response between microstructural proper-
ties (i.e., the effective elastic and heat conductivity ten-
sors) and the macroscale layouts. To directly optimize the 
material attribute (such as elastic tensor) of each element, 
free material optimization was proposed (Ringertz 1993; 
Bendsoe et al. 1994). Rodrigues et al. (2002) introduced 
the SIMP technique for hierarchical macrostructure and 
microstructure optimization, and many researchers have 
since done research of concurrent multiscale optimization 
(Li et al. 2019; Liu et al. 2020, 2008; Xu and Xie 2015; 
Wang et al. 2018; Yan and Cheng 2020). Some work was 
performed to extend multiscale mechanical stiffness maxi-
mization to including thermal bulk conductivity extremum 
of microscale only (Yan et al. 2015). However, multiscale 
and multiphysics concurrent topology optimization has 
not yet been performed. This work’s objective is to intro-
duce and examine the formulations of full-scale concur-
rent topology optimization for multiphysics problem of 
maximizing structural stiffness and heat conductivity on 
the macro and the microscale. The work is implementing 
the normalized weight sum of multi-objective functions 
to solve this multiphysics problems. The formulations and 
the sensitivity analysis are introduced. And since MAT-
LAB is a high-level programming language that is known 
for being used to solve a wide range of scientific problems 
with optimizing the time of coding, this paper presents a 
MATLAB program for solving the multiscale and mul-
tiphysics problem. The program was written taking into 
consideration, the simplicity, the ease of connotation of 
mathematical concepts in the program, and compatibility 
with most available MATLAB versions.

As such, the paper is organized as follows: Section 2 is 
dedicated to the mathematical modeling of multiscale topol-
ogy optimization methods introduction. In Section 3, the for-
mulations of the mathematical modeling of multi-objective 
for the multiphysics of maximizing the heat conduction and 
mechanical stiffness are discussed. The normalized sum of 
multi-objective function and sensitivity analysis are derived. 
Also, the systematic step to perform multiscale multiphys-
ics optimization is summarized. Section 4 is dedicated to 
describing the numerical implementation of Sections 2 and 
3 for the numerical layout as MATLAB code. Section 5 is 
dedicated to resenting the numerical models and presenting 
the results. Finally, the concluding remarks are presented in 
Section 6. A MATLAB code for the concurrent multiphysics 
multiscale optimization problem utilizing the SIMP method 
is also provided in Appendix 1 to provide the reader, par-
ticularly the newcomer to the topic of multiscale topology 
optimization, with a brief and easy-to-use example of how to 
perform the multiphysics multiscale problem for maximizing 
heat conduction and structural mechanical stiffness.
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2 � Mathematical modeling for mechanical 
and heat conductivity on micro 
and macroscales

A concurrent topology optimization framework is performed 
by introducing two separate representations of the design 
problem, i.e., macro and microscale domains. Macro and 
microscale design domains are discretized using two distinc-
tive finite element systems such that the design variables 
(i.e., the artificial densities) associated with discretization 
for topology optimization are �M and �m , respectively. Here, 
SIMP is adopted as a material interpolation scheme to 
describe the flow of the updating material distribution. The 
microscale structure, by design, is considered as representa-
tive volume element (RVE) which is statistically homogene-
ous with respect to the macroscale domain. By utilizing the 
numerical homogenization method, the effective properties 
are calculated for the microstructure. These effective proper-
ties are used as the macroscale’s base material constant ten-
sors, i.e., the effective conductivity tensor �H and the elastic 
tensor �H in this study. In this work, the thermal conductiv-
ity is considered uniformly distributed within the material 
with no interface layer of the void and material such that the 
interface layer of the RVE is assumed to be a single-phase 
infinitesimal solid material and void. Also, the heat is in a 
linear form such that, the high transmission rate is not been 
considered. Similarly, for elastic tensor, small deformation 
is considered (ideal elastic range). Homogenization is per-
formed numerically using finite element method by setting 
periodic boundary conditions on the RVE and calculating 
the effective properties in terms of the average field. The 
periodic boundary condition has been chosen such that the 
boundaries of opposite edges within the cell finite element 
model are linked with identical displacement functions that 
interpolate the displacement in terms of the discretization 
segments (Hollister and Kikuchi 1992). To ease the cal-
culations, the microstructure’s finite element model has to 
be bilinear and structured mesh. The detailed derivative of 
homogenization theory of RVE is not the main topic of this 
research, therefore; a brief explanation and the key equation 
for multiscale topology optimization are given in the follow-
ing section. For more detailed derivatives and investigation, 
the basics of homogenization theory, the reader may refer to 
these references (Hill 1965; Hassani and Hinton 1998; Qin 
and Yang 2008).

2.1 � Effective elasticity tensor and mechanical 
compliance derivative for multiscale

Let us start the investigation for the evaluation of the effec-
tive elastic tensor, and starting from the assumption that 

using homogenization approach, Hooks law in tensor for 
2D problem is taking the tensor form shown in Eq. (1)

To calculate effective elastic tensor of the RVE of a vol-
ume V, Eq. (2) is used:

where �H is the homogenized elastic tensor, �
ijqp

 is the elas-
tic tensor of the ingredient materials that consisting the 
RVE, �0(kl)

qp
 is the linearly independent unit strain test (as 

shown in Fig. 1), and �∗(kl)
qp

 is periodic characteristic strain 
which is obtained by solving Eq. (3)

where ��n is the arbitrary virtual displacement associated 
with unit strain case. Equation (2) is solved for the three 
cases of kl = 11, 22, and 12, respectively, within Eq. (3). 
Returning to macroscale of the problem, the structure com-
pliance in terms of the micro and macrodesign variables ( �M 
and �m , respectively) is given by

where Ui and Ki represent the nodal displacement and the 
stiffness matrix of the ith element with respect to the mac-
rostructure of the total number of the element equal to N. 
The general form of the elemental stiffness matrix is taking 
the form:

where � is the strain displacement matrix, and � is the elas-
tic tensor of the element. For microstructure case, the elastic 
tensor �m

ijqp
 is formulated to comply with the SIMP interpola-

tion scheme such that, the penalized design variable �m to 
power ( p = 3 ; Bendsøe 1989) is associated with the elastic 
tensor of the based material �0

ijqp
 such that

The associated effective elastic tensor of the microstruc-
ture �H , which is calculated using homogenization method 
as shown in Eq. (7) is used to establish the elemental elastic 
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tensor of the macroscale �macro with similar material inter-
polation scheme as for the microstructure system.

2.2 � Effective heat conductivity tensor and thermal 
compliance derivative for multiscale

For evaluating the effective heat conductivity tensor �H , and 
with similar analogy to Eq. (2) gives

where �0(kl)
qp

 represents the unit temperature gradient test, 
and �∗(kl)

qp
 periodic characteristic gradient. Also, the finite 

element representation of the steady-state heat conduction 
problem using finite element is taking the form:

where � is the nodal thermal load, � is the nodal tem-
perature, and �th is the global heat conductivity matrix. 
Topology optimization of design high thermal conductive 
structure to weight ratio is achieved by minimizing heat 
compliance CH.
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)
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(10)� = �
th
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Here, the heat compliance in terms of the macro and 
microdesign variables is given by Eq. (12).

where Ti and Ki represent the nodal temperature vector, 
and the thermal conductivity matrix of the i.th element with 
respect to the macrostructure of the total number of the ele-
ment equal to N. The general form of the thermal conductiv-
ity matrix is taking the form:

where � is the conversion matrix of temperature gradient 
to nodal temperature. For microstructure domain, the mate-
rial’s thermal conductivity tensor �m

ijqp
 is formulated simi-

larly to the elastic tensor of Eq. (7), and it is associated with 
heat conductivity tensor of the based material �0

ijqp
 and the 

microdesign variable �m such that

where �H is calculated using the homogenization method (as 
shown in Eq. (15)) and is also used to establish the elemen-
tal heat conductivity tensor of the macroscale �macro with a 
similar material interpolation scheme as for the microstruc-
ture system (As shown in Eq. (16)).
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Fig. 1   The three mechanical 
deformation modes of 2D RVE
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Figure 2 is summarizing the modeling of multiscale 
topology optimization for stiffness and heat conductivity 
problems.

(15)�
H =

1

|V| ∫
V

�
m

ijqp

(
�

0(kl)
qp

−�
∗(kl)
qp

)
dV ,

(16)�macro = �
p

M
�

H
.

3 � Multi‑objective optimization of heat 
conductivity and mechanical stiffness

In this section, we will go over the fundamentals of optimi-
zation before moving on to multiphysics optimization. Fur-
thermore, multiphysics of multi-objective optimization for 
minimizing heat, and mechanical compliance will be derived 
and summarized.

Fig. 2   Micro and macroscales 
coupling for mechanical and 
heat conductivity cases for 
multiscale optimization
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3.1 � Multiphysics topology optimization 
fundamentals

Topology optimization is a methodology that has the same 
concepts as the orthodox parametric optimization methods. 
Generally speaking, optimization is the process of finding 
the extrema of a mathematically modeled problem. The 
model consists of variables, constraints (if any), and the 
objective function. Variables define the objective function 
formulation, optimization methodology, and even the con-
straints. Constraints if it has been introduced to the opti-
mization process will guide the solution to what so-called 
feasibility scope of the solutions set. The objective function 
(presuming the smoothness through the design period) is 
the one that took the extremum process. As optimization is 
the process for which, a search for extrema is conducted for 
the design space bounded by the objective function using 
search algorithms, the extrema are identified for the func-
tion in terms of the design variable to be chosen, which also 
control the foundation of the objective function. Luckily, 
for the nonparametric optimization methods (i.e., topology 
optimization), the discretization representatives are chosen, 
which makes the change in the objective function will not 
heavily affect the design topological freedom (due to the 
implicit nature of the topology representation within the 
objective function). For this study, two distinctive sets are 
used to represent the macro ( �M ) and microartificial ( �m ) 
densities. The extrema of the objective function are consid-
ered as global when the design variables are satisfying the 
following criterion:

while strong local extrema lay on the neighborhood 
area  N(�∗

M
, �∗

m
) at which the global extrema existed. This 

remark is generally applied for many functions; however, 
the researcher should consider the functional behavior 
within the design space before considering this assump-
tion. The objective function is created and, in certain cir-
cumstances, substantially rectified in order to get the sat-
isfactory extrema. Also, the degree of objective function 

(17)
f (�∗

M
, �∗

m
) < f (�

M
, �

m
) , {�∗

M
, �∗

m
} ≠ {�

M
, �

m
},∀{�

M
, �

m
} ∈ �,

convexity is important factor to be considered to identify 
the best solution with the sensitivity analysis. The more 
convexity existed; the more global extrema solutions are 
possible. Convexity can be described clearly by the fol-
lowing: Consider the set in which the distance of each 
two points within the envelope of the objective function 
in it as follows:

The function f  is convex such that

This can be described graphically in Fig. 3 in terms 
of minimization. The global minimum in n-dimensional 
design space, is existing such that

In general, optimality smoothness is important for 
attaining a good sensitivity analysis and robust solution 
which can be achieved by approximation of the problem 
to be confined within the smooth mathematical formu-
lation. The approximation is extensively used for mod-
eling engineering problems. Getting a global extremum 
can be a difficult task since the path of the function test 
is usually confined by the local extremum (Fig. 4). For 
example, minimization problems are searching and seek-
ing the global minima (Fig. 4), so it highly probably hits a 
local minimum especially if the local minima are strong. 
Random multi-start application of the local minimization 
process is a practical approximation to find the global min-
imum. So, the minimum value was obtained after several 
“sufficient trials.” The number of trials is proportional to 
the degree of convexity.

Consider the set in which the distance of each two 
points in the Saddlepoint (Fig. 4) is

(18)
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Fig. 3   Functional example of 
convexity
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With the presumption of smoothness in second-order 
differentiation ( f (�) ∈ ℝ

2 ), the single variable function 
( F(Δ) ) along the line ( xaxb = �(Δ) = �� + Δ� ) is

The first-order derivative is

while the second-order derivative is

where �(�(Δ)) is widely known as the Hessian matrix. If the 
Hessian matrix is positive definitive for all the points within 
the chosen test set and the tangent of the function is zero, 
then the point is a strong minimum. The Hessian matrix is 
used efficiently for seeking an extremum; however, it will 
impact the computational efficiency due to the extra numer-
ous calculations. As such, this work is not using the second-
order derivative to decrease the computational cost. In order 
to extremum function, generally, a direct search algorithm is 
commonly used. It starts from a starting point of estimated 
strong convexity. The general extremum optimality criterion 
takes the form:

(22)F(Δ) = f (�(Δ)) = f (�� + Δ�).

(23)
dF(Δ)

dΔ
=

df (�(Δ))

dΔ

||||u = ∇T f (�(Δ))u,

(24)d2F(Δ)

dΔ2
= ∇T (∇T f (�(Δ))�)� = �

T
�(�(Δ))�,

where �1→3 are larger than zero.
For robustness, constraint usually implies to specify the 

searching area. These conditions whether they have equality 
or inequality properties, are playing an important role for 
confining the design to “feasible search space.” Searching 
algorithm is starting from an assumed point, and then the 
search is marching with controlled speed by the searching 
step (As shown in Fig. 4).

Extremizing function with special conditions (i.e., con-
straints) will lead to attaining what the so-called feasibility 
of the designed problem. Constraint extremum can be trans-
formed into substitute unconstraint optimization by introduc-
ing penalty function form.

where (β) is the penalty parameter. Choosing penalty param-
eters is crucial for the optimization problem. Furthermore, 

(25)

Extremum F(𝛿) = f (�i−1 + 𝛿 �i)

‖‖‖�
i − �

i−1‖‖‖ < 𝜀
1

‖‖‖∇f (�
i)
‖‖‖ < 𝜀

2

‖‖‖f (�
i) − f (�i−1)

‖‖‖ < 𝜀
3

(26)

Extremum f (�)

s.t. g(�)

}
→ ExtremumP(�) = f (�) +

∑
�g2(�),

Fig. 4   Mathematical optimiza-
tion with multiple minima
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the Lagrangian function is another method that is success-
fully applied for solving the constraint problem. This is done 
by introducing Lagrange multipliers ( �).

Constraint’s type plays an important role in solving the 
optimization problem. In general, the constraints are clas-
sified as equality constraints (g(x) = 0), and non-equality 
constraints (g(x) < 0). In this work, the Lagrange method 
with equality constraint is adopted as main method of 
updating the design variables. The process is discussed in 
detail in Sects. 4–7 and the associated program is given 
in Appendix A1-7. Optimizing with search Lagrangian is 
considerably fast, but the search speed will degrade with 
increasing the problem resolution (i.e., the number of ele-
ments in both, the macro ( ΩdM ) and microdesign ( Ωdm)
domains). There are some techniques to speed up the pro-
cess that used adaptive acceleration for the searching pro-
cess by changing the search steps based on some statistical 
measurements, yet this is beyond the scope of this paper. 
Moreover, there are metaheuristic optimization methods 
(Benaissa et al. 2021) that do not necessitate sensitivity 
analysis. However, for topology optimization, metaheuris-
tic approach will take a huge computational cost which 
makes it not suitable for the multiscale and multiphysics 
topology optimization problems.

Multiphysics problem generally consists of models that 
might not have something in common except the physi-
cal layout. The optimization of the multiphysics is taking 
the form of extremum, a set of collective sub-functions 
(i.e., multi-objective optimization). The challenging task 
is to optimize the problem in the best way possible by 
taking into consideration the conflict of the design vari-
able’s update for each sub-function (i.e., to optimize with 
a good trade-off).

In general, the solution of the multi-objective problem 
has multiple solutions. As such, solving a specific multi-
objective function formulation might require a sufficient 
condition for Pareto optimality. In the best-case scenario 
for multi-objective optimization problem, a dominant 
solution may obtain. The dominant solution by definition 
should be strictly better than all solutions for one sub-
function and least good as the other solution for the rest 
of the sub-functions. If the solution is satisfying, the later 
conditions alone are called the Pareto solution. The gen-
eral form of multi-optimization is shown in Eq. (28).

(27)

Extremum f (�)

s.t. Cond =

{

g(�) = 0
h(�) = 0

⎫

⎪

⎬

⎪

⎭

→ ExtremumP(�,�) = f (�) +
∑

�Cond.
where f (�) is the multi-objective function of the nth sub-
functions, and the design variable � is searched within the 
feasible region ( A ⊂ ℝ ). The feasibility is bounded by suit-
able constraints gi(�).

One of the most common configurations of the multi-
objective function is to transform it to a sum of the sub-
function. In this work, the multi-functions are reduced to a 
single function of the weighted sum of the multi-objective 
functions, and the weight is set before the optimization 
phase.

The fitness of the function's solution and prioritization 
is determined by the weight of an objective function ( wi ). 
When an objective function is given significant weight, it 
indicates that it has higher importance than those with a 
smaller weight (As shown in Fig. 5).

Practically, the attainability of the design variable for 
all the objective functions does not necessarily exist. This 
means that the Pareto front may not be properly represented 
for the objective functions, and the competitiveness might 
lead to a non-proper Pareto optimal solution, but first, we 
need to define what is the proper Pareto. The proper Pareto 
front contains the solution � such that for each sub-objective 
function fi , there exists at least one fj such that

(28)
find Extremum

�∈A
x ↦ f (�) = (f1(�), f2(�), .., fn(�))

A =
{
� ∈ ℝ| gi(�) ≤ 0, i = 1, 2, .., k

}
,

(29)f =

2∑
i=1

wifi.

Fig. 5   Multi-objective functions optimization
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where M is a scalar larger than 0. To efficiently achieve a 
good trade-off, the multi-objective problem is usually rear-
ranged with some modification methods (Jeyakumar et al. 
2010; Kashfi et al. 2011; Yun et al. 2001; Rao and Freiheit 
1991; Shimoda et al. 1995). The method of normalization 
has been reported as one of the most reliable methods for 
achieving proper multi-objective optimization such that no 
single function is over-privileged due to its initial value 
(Koski and Silvennoinen 1987; Rao and Freiheit 1991). In 
this work, we adopt the goal programming method (Ramos 
et al. 2014; Shimoda et al. 1995), such that it is searching for 
the goal of attaining the solution vector that makes the multi-
objective function to be as close as possible to the minimum 
of each constitutive objective functions. The Pareto front for 
goal programming method shows the best possible solutions 
for each weighting criteria, but the knee point on the Pareto 
front which has the shortest distance from the utopia point 
(Fig. 5) is considered as the general best. The normalization 
objective function for the goal programming method is tak-
ing the form:

where f Best
i

 and f Worst

i
 are calculated for each objective 

function.

3.2 � Multiphysics optimization for heat conductivity 
and mechanical stiffness maximization

In order to maximize heat conductivity, heat compliance CH 
is minimized. Using the same analogy, mechanical stiffness 
maximization is achieved by minimizing mechanical com-
pliance Cmech . The generalized form of the main mechanical 
objective function takes the form:

where v are the volume fraction constrain of the macro-()M 
and microsystem ()m . As such, transforming the objective 

(30)fj(�) < fj
(
�
∗
)
and,

fi
(
�∗
)
− fi(�)

fj(�) − fj
(
�∗
) ≤ M,

(31)f normalized
i

=
fi − f Best

i

f Worst

i
− f Best

i

,

(32)

min ∶ CH

(
�
M
, �

m

)
,Cmech

(
�
M
, �

m

)
↦ f

(
CH ,Cmech

)
= f

(
f𝜅 , fc

)

s.t.

{
�
(
�
M
, �

m

)
� = �

�
th
(
�
M
, �

m

)
� = �

�
ΩdM

�Md�M ≤ vM , 0 < �M < 1 ∀�M ∈ ΩdM

�
Ωdm

�md�m ≤ vm , 0 < �m < 1 ∀�m ∈ Ωdm

function to the normalized form is adopted in this work, and 
it takes the form of

where f ∗
c
 and f ∗

�
 are, respectively, the function at the attain-

able design for the compliance and thermal conductivity 
problems, which is calculated by optimizing each case 
separately and evaluate each objective function to the opti-
mal design. f ini

c
 and f ini

�
 are, respectively, the compliance 

of the initial topology and the thermal conductivity of the 
microstructure respectively. w1 and w2 are the weighting fac-
tors such that w1 + w2 = 1 . In terms of normalized multi-
objective functions that are used as the target of multiscale 
and multiphysics topology optimization in this work, it takes 
the form:

Optimization is necessitating sensitivity analysis in order to 
establish the search algorithm for finding the extremum point. 
For the function shown in Eq. (34), and because the denomina-
tor is a fixed value with respect to the objective function, the 
sensitivity of the function itself is given as shown in Eq. (35).

In terms of variation design, the adjoint variable method 
is utilized to provide a coherent formulation for representing 
response variation and reduce the computational time and 
numerical accumulative error, compared to numerical deriva-
tives. As shown in Eq. (34), the objective function is depend-
ing on the macro and microdesign variables, so the sensitiv-
ity has to be driven with respect to the variational densities (
�M, �m

)
 . For the case of mechanical compliance, the sensitiv-

ity takes the form:

(33)

f
(
�
M
, �

m

)
= w1f c + w2f k = w1

fc − f ∗
c

f ini
c

− f ∗
c

+ w2

f� − f ∗
�

f ini
�

− f ∗
�

,

(34)

min ∶ w1

fc − f ∗
c

f ini
c

− f ∗
c

+ w2

f𝜅 − f ∗
𝜅

f ini
𝜅

− f ∗
𝜅

s.t. ∶

{
�
(
�
M
, �

m

)
� = �

�
th
(
�
M
, �

m

)
� = �

�
ΩdM

�Md�M ≤ vM , 0 < �M < 1 ∀�M ∈ ΩdM

�
Ωdm

�md�m ≤ vm , 0 < �m < 1 ∀�m ∈ Ωdm.

(35)df =
w1dfc

f ini
c

− f ∗
c

+
w2df�

f ini
�

− f ∗
�

.

(36)Ċmech

(
�M, �m

)
= �̇

T
M
�M + �

T
M
�̇.
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�̇ is obtained by differentiating ( �
(
�
M
, �

m

)
� = �)and 

separating the variables which give

And, by substituting Eq. (36) into Eq. (37), we obtain

Because the problem is load independent; therefore, 
Eq. (38) is reduced to

Equation (39) has two parts, first one is the sensitivity 
with respect �M which is used to update the macroscale 
design domain. This derivative is shown in Eq. (40):

The second part is the microscale sensitivity �m , which 
is given in Eq. (41):

The derivative of the homogenized material’s elastic 
tensor with respect to microdesign variable d�

H(�m)
d�m

 can be 
determined by taking Eq. (2) into consideration:

And with a similar analogy, the sensitivity analysis for 
the heat compliance ĊH

(
�M, �m

)
 with respect to the mac-

rodesign variable �M is given in Eq. (43):

The second part is the derivative with respect to �m is 
given in Eq. (44):

The derivative of the homogenized material’s thermal 
conductivity tensor with respect to microdesign variable 

(37)
�̇M = �

(
�M, �m

)−1
�̇M −�

(
�M, �m

)−1
(�̇

(
�M, �m

)
�M).

(38)Ċmech = 2�̇T
M
�M − �

T
M
�̇
(
�M, �m

)
�M.

(39)Ċmech

(
�M, �m

)
= −�T

M
�̇
(
�M, �m

)
�M.

(40)

Ċmech

(
�M

)
=

𝜕Cmech

𝜕�M
= −p

(
�
p−1

M

)
�

T
M ∫
|ΩM|

�
T
M
�
H
(
�m

)
�MdΩM�M.

(41)

Ċmech

(
�m

)
=

𝜕Cmech

𝜕�m
= −

(
�
p

M

)
�

T ∫
|Ωm|

�
T
M

d�H
(
�m

)
d�m

�M dΩm �M.

(42)

d�H
(
�m

)
d�m

=
p

||Ωm
|| ∫
Ωm

(
� − �m�m

)T(
�
p−1
m

)
�
(
� − �m�m

)
dΩm .

(43)

ĊH

(
�M

)
=

𝜕CH

𝜕�M
= −p

(
�
p−1

M

)
�
T
M ∫
|ΩM|

�
T
M
�

H
�M dΩM �M.

(44)

ĊH

(
�m

)
=

𝜕CH

𝜕�m
= −�T ∫

|Ωm|
�

T
M

d�H
(
�m

)
d�m

�M dΩm �M.

d�H(�m)
d�m

 can be determined similarly to the mechanical com-
pliance case such that

The optimization process can be summarized in the fol-
lowing steps:

Step 1: Define the design domain parameters for macro 
and microscale. The input parameters are the discretiza-
tion size (number of elements in the x- and y-directions), 
the targeted volume fraction, and the material properties 
of the base materials that will be used for establishing the 
design of microstructure, concurrently with the macro-
structure design.

Step 2: Preparing the design domain and the finite ele-
ment analysis, such that a dedicated multiscale finite ele-
ment model is built for each physical phenomenon of the 
design domain. Here, for a single physical model, we are 
considering each element of the macrodesign domain as a 
unit cell to be discretized using the microscale discretiza-
tion system. Using the homogenization method, the effec-
tive macroscopic properties of the RVE are calculated by 
taking into consideration the robustly identifiable phases of 
the microscale consisting materials (Pélissou et al. 2009). 
Robustness here is referring to retrieving the ergodicity of 
mechanical properties of the chosen RVE for the macro-
structure, such that, if the RVE size is infinitesimal, it will 
cause passing material phases out of consideration (Yvonnet 
2019). As such, the size of the RVE to its sub-constructive 
phases should be big enough to assure numerical stability 
during the application of periodic conditions, as well as 
ensure a valid representation of the effective properties for 
the chosen macrostructure (Sab and Nedjar 2005).

Step 3: The calculation of the initial design values for 
the thermal and the mechanical compliances ( f ini

c
 and f ini

�
 , 

respectively) is needed as the preparation to build the sca-
larized form of the normalized multi-objective function 
(Eq. (34)).

Step 4: Calculating the optimized results for each physical 
model to identify the values of f ∗

c
 and f ∗

�
.

Step 5: Calculating the objective function of the macro 
and microscale (Eq. (34)). Because the summation of the 
weights is 1, therefore, the weighing can be written in terms 
of a general weight ( � ). As such, the weights are rewritten 
as w1 = � , and w2 = (1 − �).

Step 6: Performing the sensitivity analysis and evaluating 
the design domains with the optimality criteria, and updating 
the design domain.

(45)

d�H
(
�m

)
d�m

=
p

||Ωm
|| ∫
Ωm

(
� − �m�m

)T(
�
p−1
m

)
�
(
� − �m�m

)
dΩm .
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Step 7: Evaluating the design variables against the con-
straints function to satisfy the weight minimization condition 
for both, the macro and microdesign variables.

Step 8: Establishing the design domain by assigning the 
macrodesign variables �M as 1 for solid element and associ-
ated it with microdesign variables �m that have the value 
of 1 for solid, and 0 for the void of the microscale design 
domain. As the result, the layouts of the macrostructure and 
the microstructure are updated simultaneously. This will 
construe into a porous macrostructure with the highest pos-
sible heat conductivity and high stiffness with high weight 
reduction.

Step 9: Repeating steps 5–8 until the structural layout 
with the assigned constraint is satisfied.

The general algorithm for concurrent multiscale and mul-
tiphysics topology optimization for heat conductivity and 
mechanical stiffness maximization is illustrated in Fig. 6.

4 � MATLAB code description

The concurrent multiscale optimization steps for the mul-
tiphysics problem that are given in Sect. 3.2 are presented 
practically in a MATLAB code which is shown in Appen-
dix 1. This code is utilizing the SIMP method for topology 
optimization. The MATLAB codes of topology 88-line and 
homogenization programs by Andreassen et al. (Andreassen 
et al. 2011; Andreassen and Andreasen 2014) are used as a 
starting point. The MATLAB code consists of seven parts 
that are distributed on several separated MATLAB files for 
the purpose of providing highly customizable code for the 
readers. The MATLAB code parts are the input data part, 
the finite element preparations, calculating the normaliza-
tion factors, asymptotic homogenization, constructing the 
goal programming multi-objective function, and finally 
performing the concurrent multiscale optimization. These 
parts are divided between 7 MATLAB functions which are 
Concurrent_MOO.m, get_Initials.m, Concurrent_solver.m, 
Homogenization_full.m, elementMatVec.m, Objective_
Calculator.m, and OC_2D.m. The main program is Concur-
rent_MOO.m in which all the main optimization process 
and producing the data are happening. The other programs 

Fig. 6   Flowchart of concurrent multiscale heat and stiffness optimiza-
tion

Fig. 7   MATLAB code flow for multiphysics concurrent topology 
optimization
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are functions that are called inside the main program (i.e., 
Concurrent_MOO.m). The program flow is shown in Fig. 7.

4.1 � Input data

The main program is written in the main MATLAB file (i.e., 
Concurrent_MOO.m). The program is starting from line 4. 
In this line, the input of the microscale is listed: Micro_
nelx and Micro_nely are the numbers of elements in 
the x- and y-directions, respectively.
Micro_volfrac is the volume fraction constraint on 

the microscale vm . penal is the power of the SIMP power-
law function ( P in Eq. (16)). Micro_rmin is the mesh 
independency filter radius which will be described latter in 
the description of optimality criteria section (Fig. 8).

In the same manner, the macroscale initial design domain 
spatial configurations are listed in line 6. The input of the 
macroscale of the problem: Macro_nelx and Macro_
nely are the numbers of elements in the x- and y-directions 
respectively, and Macro_volfrac is the volume fraction 
constraint on the macroscale vM which is written in line 7. 
The element aspect ratio with respect to the macroscale spa-
tial configuration is dx and dy.

In line 9, the maximum iteration numbers maxIter 
of the optimization are identified. The mesh independence 
filtering method is density filtering which is placed in the 
function OC_2D.m. This filter is discussed in more detail in 
Sects. 4–7. Finally, the weighting factor of the multi-objec-
tive function that is described in Step5 in Sect. 3.2 is set as 
the constant eta (i.e., � ) in line 9.

4.2 � Finite element analysis of the macroscale 
structure

In our analysis, we have two models of heat and mechani-
cal physics to be built in order to calculate the heat and 
mechanical compliances. Therefore, two dedicated finite ele-
ment systems are used. Because the Eulerian base of analysis 
is used for SIMP method, i.e., the element weight which is 
represented by the design variable x is diminishing instead 
of deleting the non-desire element through the process of 
topology optimization, and it is possible to prepare the finite 
element frame prior to the optimization process. The ele-
ment used for both heat and mechanical analysis is a struc-
tured bilinear element of a uniform length of unity (Fig. 9).

Fig. 8   The input data section of MATLAB main code (Concurrent_MOO.m)

Fig. 9   Bilinear quadratic ele-
ment used



	 M. A. Ali, M. Shimoda 

1 3

207  Page 14 of 26

For the mechanical compliance physics, the finite element 
analysis preparations are presented in lines 11–22 (Fig. 10). 
The initial degree of freedom index for all elements is 
determined using the matrix Macro_nodenrs_mech, 
which is in a vector form named Macro_edofVec_mech. 
Finally, the Macro_edofVec_mech   is utilized to cal-
culate each element's eight degrees of freedoms indices and 
store it in the degree of freedom matrix Macro_edof-
Mat_mech for efficient building of the stiffness matrix in 
the optimization loop. For the case in Fig. 11, which consists 
of 25 elements, the Macro_edofMat_mech is
M a c r o _ e d o f M a t _

mech = 

⎡
⎢⎢⎢⎣

3 4 11 12 9 10 1 2

5 6 13 14 11 12 3 4

7 8 15 16 13 14 5 6

. . . . . . . . .

⎤
⎥⎥⎥⎦

← Element 1

← Element 2

← Element 3
.

Then, the Macro_edofMat_mech matrix is used 
to produce the row and column index vectors (iK_mech 
and jK_mech, respectively, in lines 15 and 16). A Kro-
necker matrix product with the 8-length unit vector is used, 

followed by a reshaping procedure. These two vectors are 
used to build the global mechanical stiffness matrix for the 
macroscale case and will not change for the whole optimiza-
tion process, such that, as been mentioned before, Eulerian 
approach is utilized in this work.

Displacement and forces are reserved in the computer’s 
ram with lines 17 and 18 (Fig. 10). The boundaries of the 
studied cases are in lines 19 and 20 (Fig. 10). Free degrees 
of freedom are identified in line 22 by subtracting the fixed 
degrees of freedom on line 20 from the full degrees of 
freedom that identified in line 21. As shown in Fig. 11, the 
degrees of freedom of the macroscale in the x- and y-direc-
tions are presented with the red and blue colors, respectively. 
The microdesign domain is following a similar analogy for 
assigning the degrees of freedom.

Similarly, for the heat conductivity problem, the finite 
element preparations are in a similar order of mechanical 
stiffness case, and it is listed in lines 24–34 (as shown in 
Fig. 12).

Fig. 11   Node definition and 
degree of freedom for mechani-
cal analysis

Fig. 10   Mechanical finite element section of MATLAB main code of the main function Concurrent_MMO.m
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4.3 � Calculating the normalization factors 
for the multi‑objective function

The next step is to calculate the factors that are used for the 
goal programming (Eq. (31)) i.e., utopia points ( f Best

i
 ) and 

nadir point ( f Worst

i
 ). These points are calculated for each 

objective function for each physics. These factors are calcu-
lated in a dedicated MATLAB functions (Concurrent_
solver.m and Objective_Calculator.m, respectively). As pre-
sented in Eq. (34), nadir points (which are the initial design’s 
mechanical and heat compliances (i.e., f ini

c
 and f ini

�
 

Fig. 12   Mechanical finite element section of MATLAB main code of the main function Concurrent_MMO.m

Fig. 13   Nadir and Utopia points for mechanical compliance of the main function Concurrent_MMO.m

Fig. 14   Nadir and Utopia points for heat compliance of the main function Concurrent_MMO.m

Fig. 15   Initial design domains of (a) the microstructure and (b) the 
macrostructure
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respectively)) as well as the mechanical utopia point ( f ∗
c
 ), 

and heat utopia point ( f ∗
�
 ) are needed to perform the multi-

objective optimization (which are the separately optimized 
results for each physical model); therefore, in lines 36 to 46, 
the values of f ini

c
 and f ∗

c
 are calculated (As shown in Fig. 13). 

Also, f ini
�

 and f ∗
�
 are calculated in lines 49–58 as shown in 

Fig. 14. As shown in Figs. 13 and 14, this process is neces-
sitating the call of several MATLAB functions. The process 
is given in more details in subsections 4–3-1 to 4–3-3.

4.3.1 � Initial design domain initiation

In line 36, the initial sets of the macro and microscale are 
calculated with the sub-function get_Initials (in the 
functionget_Initials.m in Appendix 1–2). This function is 
constructing the initial macroscale set Macro_x and the 
initial microscale set Micro_x. The macrodesign domain 
is set to have an initial value equal to the 0.5 (as shown in 
Fig. 15). In line 38, the design variables Macro_x, and 
Micro_x are assigned to intermediate variables Macro_
xPhys and Micro_xPhys to eliminate the possibility of 
accumulative error while handling.

In line 39, the elastic tensor and the associated variables 
are calculated using the function Homogenization_
full which are discussed in Sect. 4.3.2).

4.3.2 � Homogenization and elemental stiffness matrix 
functions

For our MATLAB implementation of homogenization 
(i.e., Homogenization_full that is shown in Appen-
dix 1–3), the finite element is also a bilinear (as shown in 
Fig. 9). The RVE in our case is a composite of two different 
phases, i.e., material and void. In this code, Lamé's constant 
(Juvinall 1967) representation is used. This is to decrease the 
computational time and compress the two physics’ effective 
properties calculations in one homogenization code.

Here, the same homogenization program is used for 
calculating the thermal and mechanical properties for the 
designed RVE; therefore, the identifier flag select_case 
is needed to identify which case to be calculated such that, 
for evaluating the elastic tensor, select_case should be 
1 and 2 for evaluating the heat conductivity tensor. Lines 

Fig. 16   The calculation of macro and micro-objective functions and sensitivity for macro and microscale

Fig. 17   Finite element model 
example of 25 elements
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from 2 to 11 are dedicated to preparing the input data for 
the homogenization process.

In line 8, Lambda is a vector that contains Lame's first 
parameter ( � ) for the material and void. Similarly, mu is a 
vector with Lamé's second parameter ( � ). In line 12, the 
physical compatible elemental stiffness matrix is calculated 
using the function elementMatVec. Inside element-
MatVec, the stiffness matrix is calculated as follows:

The assembly of N finite elements is denoted by the sum-
mation, and �e is the element's constitutive matrix, for which 

the 2D mechanical static physics of isotropic material is

where �� and �� are presented in Eqs. (48) and (49), 
respectively.

So, in plane strain elements, Lamé’s parameters can be 
computed from material Young's modulus Ee and the Pois-
son’s ratio �e as follows:

(46)� =

N∑
e = 1

�
T

e
�e�edVe.

(47)�e = �� + ��,

(48)�� = �e

⎡⎢⎢⎣

1 1 0

1 1 0

0 0 0

⎤⎥⎥⎦
,

(49)�� = �e

⎡⎢⎢⎣

2 0 0

0 2 0

0 0 1

⎤⎥⎥⎦
.

As such, for static mechanical case, the stiffness matrixis

The elemental stiffness matrix, which is the term between 
brackets of Eq. (51) is calculated in the function element-
MatVec (As presented in Appendix 1–5) sis>within lines 
18 to 36. Line 34 is giving the function the freedom to calcu-
late the elemental stiffness matrix directly for the sensitivity 
analysis. The forcing vector in terms of Lamé’s parameters 
is calculated with a similar analogy as above in lines 37 and 
38 (Fig. 16).

To calculate the heat conductivity tensor, the correspond-
ent �e and the degree of freedom are different (So in our 
finite element analysis of heat problem, the degree of free-
dom has similar numbering as node numbering which is 
shown in Figs. 11 and 17). �e for heat physics takes the 
form (Fig. 18):

This technique allows the utilization of compressed code 
to calculate both physics’ stiffness matrices (i.e., � and �th ) 
in a compact code (Figs. 19, 20).

Returning to the homogenization code (Homogeniza-
tion_full), the nodes and elemental degrees of freedom 
are calculated in lines 20 to 29. Lines 30 to 55 are the steps 
for the stiffness matrices assembly of homogenization prob-
lem and the calculations of the periodic characteristic strain 
and thermal gradient (i.e., �∗(kl)

qp
 and  �∗(kl)

qp
 , respectively).

The calculations of the linearly independent unit of strain 
and thermal gradient ( �0(kl)

qp
 and  �0(kl)

qp
 , respectively) are cal-

culated in lines 60 to 69. Finally, the homogenization for 
the effective Young's modulus (Eq. (2)) and for the effective 
heat conductivity (Eq. (8)) is calculated in lines 74 to 80. 
Loop has the value of 3 for mechanical physics to calculate 
the 3 by 3 effective elastic tensor and 2 to calculate the 2 by 
2 effective heat conductivity tensor for our 2D problem. In 
Line 82, the derivatives of the homogenized property tensors 
with regard to microdesign variables (Eqs. (42) and (45)) are 
calculated. It is worth to mention that, this line is note used 
for compliance calculations of ( f ini

c
 f ini
�

 f ∗
c
 , f ∗

�
).

(50)�e =
�Ee

(1 + �e)(1 − 2�e)
, �e =

Ee

2(1 + �e)
.

(51)� =

N∑
e=1

(�T

e
���edV + �

T

e
���edV).

(52)� =
∑

(�e�� + �e��).

(53)�e = �e

⎡⎢⎢⎣

1 0 0

0 1 0

0 0 0

⎤⎥⎥⎦
.

Fig. 18   The mesh independency filtering scheme
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4.3.3 � Normalization factors calculations

elementMatVec function (Appendix 1–5) is utilized to 
calculate the elemental stiffness matrix in line 40, which 
is used in the sub-function Objective_Calculator, 
to calculate f ini

c
(which is denoted by N_macro_Mech), 

for the purpose of calculating the normalized mechanical 
compliance multi-objective function (Eq. (34)). The function 
Concurrent_solver is used to calculate the f ∗

c
(which 

is denoted by U_macro_Mech). Also, the same function 

is used for calculating f ini
�

 and f ∗
�
(which is denoted by N_

macro_Heat and U_macro_Heat respectively). So, for 
Concurrent_solver (Appendix 1–4), lines from 2 to 9 
are the preparation for the single physics concurrent optimi-
zation. According to select_case, for mechanical case, 
select_case is equal to 1 and the lines from 12 to 19 
are used to calculate the objective function of the macroscale 
and the sensitivity analysis. Line 18 calculates Eq. (4) and 
the sensitivity of Eq. (40) in line 19. Also, the sensitivity of 

Fig. 19   The mesh independ-
ency filter within the optimizer 
function

Fig. 20   The spatial layout of the 
numerical examples
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the microdesign variable �m in terms of mechanical com-
pliance (Eq. (41)) is calculated in line 27. Similarly, and 
for heat transfer physics, the macroscale sensitivity analysis 
(Eq. (43)) and the microscale sensitivity (Eq. (44)) are cal-
culated in lines 40 and 48 respectively.

4.4 � Concurrent multiscale optimization

After the preparations of the normalized optimization func-
tion (i.e., f ini

c
 f ini

�
 f ∗

c
 , f ∗

�
 ), a re-initiation of the macro and 

microdesign variables (i.e., Macro_x, and Micro_x) 
as well as the intermediate design domains (i.e., Macro_
xPhys, and Micro_xPhys) have happened in lines 
60–62. Furthermore, a variable called loop is initiated to be 
used as an indication number for optimization iteration. The 
optimization is carried out in the section of lines 63–121 of 
the main function Concurrent_MMO.m. Starting from line 
63, the while condition runs till the loop function reaches 
the prescribed max iteration condition that is set in line 5 
(maxIter = 500). In line 64, loop increases by 1 at each 
iteration. The optimization starts with the calculation of the 
mechanical compliance.

In line 66, the homogenized elastic tensor (QM) and the 
derivatives of the homogenized elastic tensor (dQM) with 
regard to microdesign variable �m (as shown in equation 
Eq. (42)) are calculated. The line 67 is used to calculate the 
elemental stiffness matrix with respect to the homogenized 
elastic tensor (QM) in the function elementMatVec in 
the file elementMatVec.m (Appendix 1–5). In lines 68–72, 
the mechanical compliance and the sensitivity of the mac-
rodesign domain are calculated. In line 73, Eq. (40) is cal-
culated. Furthermore, line 74 presents the objective function 
of mechanical compliance alone fc in a similar manner for 
calculating f ∗

c
 inside Concurrent_solver function. 

The sensitivity for the macroscale is calculated in line 73. 
The sensitivities of the macroelement stiffness matrix with 
respect to microelement densities are computed using the 
derivatives of the homogenized elastic tensor with respect 
to microdesign variables (Lines 74–82).

Similarly, the finite element preparation of the heat phys-
ics is performed in lines (84–89), and the heat compliance 
objective and sensitivities are calculated in lines 90–101, 
such that the sensitivity in terms of macro and microscale 
design variables is calculated in lines 92 and 100, respec-
tively. The term (dv) sis>is calculated in line 102 which 
is called later by the optimality criteria code (OC_2D.m). 
The total sensitivities in terms of macro and microdesign 
domains for the normalized multi-objective functions are 

calculated in lines 104 and 105, respectively. The update of 
the design variables ( �

M
, �m ) is performed using the opti-

mality criteria function OC_2D.m that is called in lines 107 
for the macrodesign variable and 108 for the microdesign 
variable. Lines from 112 to 119 are dedicated for printing 
the results and showing the design of the macro and the 
microscale for each iteration.

For all cases, the material properties of the base material 
on the microscopic level are given as the following. The heat 
conductivity of the solid materials ( �0

ijqp
 ) is given in Eq. (53) 

for solid materials and infinitesimal value for the void mate-
rials to eliminate the numerical instability (Luo et al. 2006). 
Similarly for elastic tensor for solid material, ( �0

ijqp
 ) is given 

in Eq. (54).

Furthermore, for finite element systems, the problems and 
the loads are set to be dimensionless. The design domain is 
assumed to be rectangular, and finite element analysis for 
micro and macrosystems was implemented using the square 
element with a side length equal to 1 (Fig. 17). The mesh 
is structured for the whole design domain. Each physical 
model is sharing the same structural element and shares 
the design variables �M and �m ( Macro_x and Micro_x 
respectively). An example of finite element mesh consisting 
of 25 elements of nodal temperature (T), nodal displacement 
in the x- and y-directions (U, and V respectively), and ele-
ment density field of �M and �m is presented in Fig. 17.

The optimization of the heat conduction physical model 
has the volume-to-point approach, which necessitates 
a uniformly distributed heat load to be applied for the 
whole macroscale design domain. The heat load is set to 
be 0.01(P = 0.01 in line 30). The boundaries are adiabatic 
except for the section of zero-temperature portion to rep-
resent the place of the heat sink (Line 31). In general, heat 
compliance problem is by nature a monotonously decreas-
ing function (Al Ali and Shimoda 2022), so volume frac-
tion is important to implement a robust design, and for our 
design problems, volume fraction was set to be 0.5 weight 
reduction as a condition to be satisfied with the optimiza-
tion process for both, the macro ( vM ) and microscale ( vm ; 

(54)�
0

ijqp
=

[
1 0

0 1

]
,

(55)�
0

ijqp
=

⎡⎢⎢⎣

3 1 0

1 3 0

0 0 1

⎤⎥⎥⎦
.

Fig. 21   The initiation constants 
of example 1
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Macro_volfrac = Micro_volfrac = 0.5). The heat 
compliance and the sensitivity analysis are calculated and 
the sensitivity function is hierarchically inferring the mac-
rodesign variables. The microstructure has been solved with 
periodic boundary conditions. Heat compliance sensitivity in 
terms of the microdesign domain is used to update the value 
of the microdesign domain variables simultaneously with 
updating the macrodesign set at each iteration. For the physi-
cal model of mechanical compliance, the design domain is 
fixed from the support points such that the displacement in 
the x- and y-direction is set to zero. The force of magnitude 
1 is assigned to the loading points. The modeling and sen-
sitivity of the multiscale case are similar to what has been 
discussed in the heat transfer case.

4.5 � Optimality criteria program

This work is utilizing optimality criteria to update the design 
variables. The optimality criterion approach is used to solve 
the optimization problem (Eq. (34)). The optimality criterion 
is written in the function OC_2D that is listed in the MAT-
LAB file OC_2D.m (Appendix 1–7). First of all, to guar-
antee that solutions to the topology optimization problem 
exist and that checkerboard problem do not arise, a sensitiv-
ity filter is introduced to modify the sensitivities Ċmech

(
�M

)
 

Ċmech

(
�m

)
,ĊH

(
�M

)
 and ĊH

(
�m

)
 as follows:

where Hf  is the convolution operator to perform the modi-
fication, �e is the design variable at which the sensitivity is 
calculated, and �f  . The Hf  is defined as follows:

where dist(e, f ) is the distance between the center of eth ele-
ment and the center of f th . Outside of the filter region, the 
convolution operator Hf  is zero. The filtering program is 
written in OC_2D.m from lines 1 to 21. Furthermore, the 
topological derivative dv which is unity in this case is also 
modified in line 22.

After modifying the sensitivity, the following is a heuris-
tic updating technique that is identical to the one employed 
in this paper:

where � denotes a positive search step (As shown in Fig. 4). 
Moreover, � which is equal to 1/2 denotes a numerical 
damping coefficient, and B

e
 denotes the optimality condition:

(56)
̂̇C =

𝜕C

𝜕�e
=

1

�e

∑N

f=1
Hf

�N

f=1
Hf �f

𝜕C

𝜕�f

(57)Hf = r − dist(e, f ), {f ∈ N|dist(e, f ) ≤ r},

(58)�
updated
e

=

⎧⎪⎨⎪⎩

max(0, �e − �) if �eB
�
e
≤ max(0, �e − �)

max(0, �e + �) if �eB
�
e
≥ max(1, �e − �)

�eB
�
e

Otherwise

where L here is a Lagrangian multiplier, and �V
��e

 is the volu-
metric topological derivative.

Equation (58) is performed in the function OC_2D from 
lines 24 to 30.

5 � Numerical examples and discussion

In order to present the concurrent multiscale and mul-
tiphysics topology optimization for maximizing the heat 
conductivity and stiffness on the macro and the microscale, 
numerical examples using the introduced MATLAB code 
are presented in this section. The code was performed with 
the MATLAB (R2021b). The first model consists of a rec-
tangular domain of 200 elements in the x-direction and 90 
elements in the y-direction. It has a periodic square micro-
design domain of 100 element edge length. They share a 
weight reduction of 0.5 of the total volume fractions. The 
mechanical model has a fixation alongside the left edge 
while the loading is placed on a point in the third quarter 
part of the right side measured from the top, and directed 
downward (as shown in Fig. 20a). To depict the heat con-
duction physics model, the temperature at the middle of 
the left edge of the domain in Fig. 20b was set to zero. The 
domain's remaining boundaries were set as adiabatic (i.e., 
zero heat transfer). Heat generation was set to be constant 
and homogeneous throughout the domain of 0.01, which 
was meshed also with 200 by 90 elements in the x- and 
y-directions, respectively (i.e., Macro_nelx = 200 and 
Macro_nely = 90 as shown in Fig. 21). The micro-
design domain has 100 by 100 elements (i.e., Micro_
nelx = 100 and Micro_nely = 100) with periodic 
boundary conditions to comply with the numerical homog-
enization evaluation scheme. Regarding the initial micro-
design domain, it is set to have the value of 0.5 except 
the central circular domain of the radius equal to 50 ele-
ments. This central sub-design domain was set to have 
a quarter value of initial value than for the other of the 
design domain. This is to encourage achieving design by 
the optimality criteria with less computational cost (Sig-
mund 2000) as well as minimizing the grayscale area of 
the microcell (Fujioka et al. 2021). In order to have a good 
insight about the trade-off of the consisting multiphysics 
objective functions, a study is performed to optimize the 
macroscale alone for several waiting factors. The results of 
optimizing the macroscale alone (which are presented in 
Fig. 22) show a strong shift between the objective function 
which gave a strong Pareto front. The Pareto front shows 

(59)Be =

−
�C

��e

L
�V

��e

,
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a clear trade-off between the heat compliance and the 
mechanical compliance minimization such that, branch-
ing in the cases of the high value of � is presented, while 

it tends to shrink and fade with decreasing the value of 
� . Branching is good for heat dissipation yet it tends to 
decrease the structural stiffness significantly. Extending 

Fig. 22   Pareto front of first 
example for optimizing the 
macroscale only

Fig. 23   Pareto front of the con-
current multiphysics optimiza-
tion of example 1

Fig. 24   The normalized heat compliance history of the concurrent 
optimization for example 1

Fig. 25   The normalized mechanical compliance history of the con-
current optimization for example 1
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the optimization for the concurrent multiscale dimension 
is giving the results shown in Fig. 23. The influence of the 
trade-off of multi-objectives multiscale problem is shown 
on the change of the macro and the microstructures. The 
microstructure is trying to adapt to the stronger physics 
while balancing the microdesign variables with the overall 
objective of decreasing the value of the general weighting 
factor � . The Pareto front shows that the best result (knee 
point) for the first example is for the weighting factor 
( � = 0.6). The history of the heat compliance, mechanical 
compliance, and the multi-objective function are shown in 

Figs. 24, 25, and 26. All design cases result of this exam-
ple are shown in Appendix 2.

The mechanical physical model of the second studied 
example (Fig. 20c) has a square macrodesign domain of 
150 element side length (i.e., Macro_nelx = Macro_
nely = 150 as shown in Fig. 27), with a fixed left side 
and a load placed on the middle of the right side, pointing 
toward the positive y-direction.

The solid heat conduction physics has similar properties 
to the previously studied case except for the location of the 
heat sink (Fig. 20d). Similarly, the general weighting fac-
tor was changed in a similar way to the first case and shows 
the following Pareto front (Fig. 28) for the multiphysics 
optimization of the macroscale alone. The Pareto front 
for optimization of the macro and microscale is presented 
in Fig. 29. And all design cases’ result of this example is 
shown in Appendix 3. The layout transition of the mac-
rostructure for the two cases is strongly presented also on 
the microscale design, especially for case 2. This transition 
is a direct response to the effect of the physical model's 
combination. The material distribution transitions of each 
competitive physical model are changing with the bound-
ary condition of each physical model, so for the first exam-
ple (Fig. 20a and b), the boundary conditions are forcing 
the design of each domain to extend the design toward the 
middle of the left side with the exception of the mechani-
cal model which is shifted a bit toward the downside. The 

Fig. 26   The multi-objective history of the concurrent optimization for 
example 1

Fig. 27   The initiation constants 
of example 2

Fig. 28   Pareto front of second 
example for optimizing the 
macroscale only
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microdesign domain is responding by distributing the 
material diagonally for the heat conduction model but with 
a center mass around the middle to distribute the thermal 
energy inside the bulk of the microstructure. While for the 
mechanical strain energy, the microstructure is distributing 
the energy by sides alongside diagonal distribution, which 
is shown with the branching layout. Here, also distribution 
of strain energy in terms of triangular truss is allocated 
around the central circular space of the microstructure. 
Tables 1  and 2 present the best results of the only mac-
roscale and the multiscale optimization, respectively, for 
examples 1 and 2.

6 � Conclusions

This work presents concurrent multiscale and multiphysics 
topology optimization for reducing weight, and maximiz-
ing heat conductivity and structural stiffness for macro and 
periodic microstructure. The objective is to demonstrate the 
optimization formulation and examine the design criteria for 
topology optimization using MATLAB code intended for 
educational purposes. The formulations for the multiscale 
and multiphysics problems were established in this study, 
and the derivative of the sensitivity analysis was successfully 
implemented using the adjoint method to reduce the compu-
tational cost. Using MATLAB, the concurrent multiphysics 

Fig. 29   Pareto front of the con-
current multiphysics optimiza-
tion of second example

Table 1   The outline of sample firms and interviewee profile
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optimization for maximizing heat conductivity and stiffness 
is attained by minimizing the thermal and mechanical com-
pliances and was examined in several numerical examples. 
The examined cases indicate a significant shift in the objec-
tive function, resulting in a strong Pareto front. The Pareto 
front demonstrates a clear trade-off between heat compliance 
and mechanical compliance minimization, with branching 
appearing in cases when the general weighting factor is high 
for the heat objective function, and shrinking and fading as 
the general weighting factor is decreased. Although branch-
ing is beneficial for heat dissipation, it reduces structural 
rigidity greatly. Extending the optimization to the concurrent 
multiscale dimension yields a favorable heat and mechani-
cal compliance minimization trade-off. The influence of the 
multi-objective trade-off on macro and microstructure evolu-
tion is also demonstrated. The microstructure is attempting 
to adapt to the stronger physics while balancing microde-
sign with the overall goal of lowering the general weighting 
factor's value. Also, in this paper, the MATLAB code for 
multiscale topology optimization is presented to provide 
researchers and newcomers with a simple implementation of 
concurrent multiphysics and multiscale optimization. MAT-
LAB code is provided in the appendix for users’ reference, 
to be used for educational reasons. The code is distributed 
in multiple sections with a dedicated function to make the 
concurrent multiphysics and multiscale problem as compre-
hended and user-friendly as possible. Moreover, users can 
edit the code according to their requirements.
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