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Abstract
We present a sequential topology and shape optimization framework to design compliant mechanisms with boundary stress 
constraints. In our approach, a density-based topology optimization method is used to generate the configuration of the 
mechanisms. Afterwards, a node-based shape optimization is invoked to obtain an exact boundary representation. A special-
ized, optimality criteria-based design update is formulated for the shape optimization. To avoid impractical hinges with point 
connections, stress constraints are imposed. The stress constraints are imposed using two strategies: Local stress constraints 
on the nodes of the boundary or global P-norm stress constraints in the domain. Further, an adaptive shape refinement 
strategy is adopted to increase the design space of shape optimization and to capture the fine-scale details of the geometry. 
Finally, numerical experiments are presented, showing that the proposed approach can be effectively applied to the design 
of compliant mechanisms with stress constraints.

Keywords  Compliant mechanisms · Stress constraints · Topology optimization · Shape optimization

1  Introduction

Compliant mechanisms are used to transmit force by elastic 
deformation. The design of compliant mechanisms poses a 
unique challenge, it requires the structure to be stiff enough 
to support the applied loads and also to be flexible enough 
to meet the kinematic requirements. Among several meth-
ods to design such a mechanism, topology optimization is 
the natural choice. However, within the context of topology 
optimization, there is no universally accepted formulation 
to design compliant mechanisms (Deepak et al. 2008; Zhu 
et al. 2020). One of the key reasons for so many formulations 
is to avoid narrow hinges (point flexures) in the resulting 
mechanism. The stresses in these hinges often exceed the 
material stress limit.

A mechanics-based approach to avoid narrow hinges 
is to impose stress constraints in the design problem. The 

use of stress constraints in the design of compliant mecha-
nisms has been employed by De Leon et al. (2015). Here, a 
global p-norm of the von-Mises stress is used as constraint. 
Although narrow hinges were eliminated in the design by 
employing stress constraints, the authors expose some chal-
lenges. The imposing of stress constraints does not yield 
mesh-independent design. The method was then extended 
to geometric and material nonlinearity in De Leon et al. 
(2020). The use of nonlinear models helps to represent the 
real world situation more aptly. However, in both the works, 
the hinge region contained gray material (not fully solid 
cells) and lacked the exact representation of the geometry. 
de Assis Pereira and Cardoso (2018) presented two strate-
gies of imposing the limit on stresses: local and global stress 
constraints. In their work, it was concluded that the best 
strategy to obtain hinge-free mechanisms is the combination 
of proper size control by a filter radius, a refined mesh and 
consideration of stress constraints. Even here, the results 
have gray elements around the hinges and lack the exact 
geometric representation of the structure.

Lopes and Novotny (2016) considered a compliant mech-
anism design under stress constraints based on topology 
derivatives and a level set domain representation. The pro-
posed approach was able to control the undesirable narrow 
hinges in the mechanism. In the context of level set based 
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methods, Chu et al. (2018) presented a multi-material opti-
mization of compliant mechanisms with stress constraints. 
The results show that multi-material structures without 
undesirable hinges are obtained and the stress constraints in 
different materials are simultaneously satisfied. In Emmen-
doerfer et al. (2020), local stress constraints were considered 
in the context of level set method for the design of compli-
ant mechanisms. Here, an augmented Lagrangian approach 
and level set implicit boundaries were used to handle local 
stress constraints. The authors were able to obtain compliant 
mechanisms without point flexures.

A robust formulation was applied to design compliant 
mechanism with stress constraints by da Silva et al. (2019). 
This approach helps in tackling manufacturing uncertainties. 
Here, a stress failure criterion was considered in each pro-
jected field, in order to ensure that compliant mechanisms 
satisfy the stress failure criterion even in the presence of 
uniform manufacturing variations. It was found that the tra-
ditional deterministic approach was non-robust with respect 
to uniform boundary variations when compared to the robust 
formulation approach. The robust formulation was further 
extended to nonlinear elasticity along with a path-generation 
formulation by da Silva et al. (2020). The nonlinear analysis-
based optimized structure was able to provide solutions with 
good performance in situations of large displacements. The 
path-generating formulation was able to provide solutions 
that follow the prescribed control points, including stress 
robustness.

All the aforementioned works employ density-based 
derivatives to arrive at the desired design. Recently, there is 
a growing number of publications that combine shape and 
topology optimization techniques to obtain a design with 
crisp boundaries. Especially in the context of stress con-
straints, the maximum stresses are on the boundary of the 
structure. Hence, it is very important to use shape sensitivity 
information to control the boundary variations.

There are different approaches to combine shape and 
topology optimization. Eschenauer et al. (1994) introduced 
a bubble method, in which design updates are mainly driven 
by shape optimization. When the shape updates do not result 
in further improvement of the design, a topological change 
in form of a spherical hole (bubble) is introduced. This 
increases the design space and the shape optimization pro-
cess continues.

Christiansen et al. (2014) and Lian et al. (2017) applied 
Deformable Simplicial Complex (DSC)-based topology 
and shape optimization. The method represents the sur-
face explicitly and discretizes the domain into a simplicial 
complex which adapts both structural shape and topology. 
Riehl and Steinmann (2015) used a staggered approach 
for optimization. The domain variation is specified by 
modification of boundary nodal points. Once the mini-
mum topological sensitivity is no longer encountered at 

the design boundary, a hole in the domain is generated 
using the topological sensitivity and the procedure contin-
ues for the newly established design boundary.

Stankiewicz et al. (2021) coupled topology and shape 
optimization into a single optimization problem. They 
exploit the embedding domain discretization (EDD) 
method to couple the shape and topology update. The 
structured embedding domain is assigned a pseudo-den-
sity field which is updated based on topology sensitivity. 
The boundary of the embedded body serves as a variable 
shape, which is updated by the shape sensitivity. In their 
work, it can be noticed that the initial design improve-
ments were mainly driven by the topology updates, and in 
the later stage, the shape optimization drives the improve-
ments. This motivated the present work to use the topology 
and shape updates sequentially.

Sequential use of topology and shape optimization is 
favorable due to their complementary nature. Topology 
optimization is robust in synthesizing the design from a 
simple initial configuration, e.g., a rectangle in the two-
dimensional case. However, the result of topology opti-
mization has typically rough boundaries and does not 
represent the exact geometry of the structure. In contrast, 
shape optimization gives an exact geometry of the struc-
ture. However, it is not robust enough to arrive at com-
plex designs starting from a simple initial configuration. In 
our framework, we sequentially use topology optimization 
followed by shape optimization to have the best of both 
approaches. This sequential framework is used to design 
compliant mechanisms with stress constraints.

In this article, we tackle the challenge to obtain a com-
pliant mechanism with an explicit geometric descrip-
tion starting from a simple initial configuration (e.g., a 
rectangle in two dimensions). Topology optimization is 
employed to generate a rough mechanism layout. Next, 
a node-based shape optimization is performed using the 
embedding domain method. In the shape optimization, we 
impose stress constraints to obtain a durable design. To 
impose the local stress constraints, the stresses must be 
evaluated on the boundary. We present a novel procedure 
to evaluate the stress on the boundary in the embedding 
domain setting. To handle the stress constraints in shape 
optimization, an augmented Lagrange sub-problem is 
defined. To solve the augmented Lagrange sub-problem, 
we have novel adaptation of optimality criteria method for 
shape optimization.

The paper is organized as follows. In Sect. 2, the sequen-
tial framework to design complaint mechanisms is presented. 
Here, we explain the topology and shape optimization prob-
lems used to design the mechanisms. In Sect. 3, the results 
are presented. To illustrate the method, a compliant inverter 
and gripper benchmark problems are solved. The paper is 
concluded with some remarks in Sect. 4.
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2 � Method

A possible goal of the compliant mechanism design prob-
lem is to maximize the displacement at the output port, 
for a given input force, subjected to a restriction on the 
amount of material, while keeping the stresses under a 
certain limit. Such a design problem is shown in Fig. 1. 
The design domain is � . A Dirichlet boundary condition 
is prescribed on �D . The input port �in is subjected to an 
input force f in . The output port is represented by �out 
where the displacement should be maximized. The actua-
tor stiffness at the input port is represented by the spring 
kin, and the workpiece stiffness is represented by the spring 
kout . The design framework involves three steps: (a) Topol-
ogy optimization; (b) Shape generation; (c) Shape optimi-
zation. In this section, these three phases are presented.

2.1 � Topology optimization

Topology optimization distributes material in a fixed 
design domain to meet the design criteria. A density-based 
approach for topology optimization is employed in this 
work. In the density-based approach, the design domain is 
discretized into finite elements, and each element is asso-
ciated with a relative density varying from 0 (represents 
void) to 1 (represents solid). In our implementation, we 
use the modified SIMP approach (Sigmund 2007).

The problem definition for topology optimization of the 
compliant mechanism is given as follows:

where � is the variable pseudo-density (design variable), u is 
the displacement field obtained by solving the linear elastic 
boundary value problem, L is a unit vector, V  is the restric-
tion on the allowed volume of the material, �e is the density 
corresponding to the eth finite element, and Ne is the number 
of finite elements (design variables).

The problem in Eq. 1 is solved using the optimality crite-
ria optimization algorithm, as outlined in Bendsoe and Sig-
mund (2013). Further, to have a minimum feature size and 
to avoid mesh dependency, we perform sensitivity filtering 
as explained in Sigmund (2001).

2.2 � Shape generation

After topology optimization, the boundary of the optimized 
configuration has to be extracted. The results of the topology 
optimization are in a pixilated form. To obtain a geometry 
from the pixilated result of topology optimization, we use 
the alpha shape generation algorithm (Akkiraju et al. 1995). 
In our implementation, we resort to the alpha shape genera-
tion implementation from the CGAL library (The CGAL 
Project  2021; Da  2021).

A typical pixilated configuration after the topology opti-
mization is shown in Fig. 2a. To generate a shape around the 
solid cells, we first need to extract the centers of all the cells 
above a certain density threshold as shown in Fig. 2b. Next 
we generate an alpha shape enclosing these points as seen in 
Fig. 2c. As we can see, the obtained shape is not smooth. It 
has jagged edges due to the pixilated nature of the topology 
optimization results. At this point, we compute the nodal 
averaging vector, which for each node, contains a displace-
ment information necessary to reach an average position of 
their respective adjacent nodes. We then move the shape by 
a step length of 0.5 along these nodal averaging vector to 
obtain a smooth surface as shown in Fig. 2d.

2.3 � Shape optimization

We incorporate the shape optimization method using an 
embedding domain (EDD) technique, introduced by Riehl 
and Steinmann (2017). In this approach, the physical domain 
boundary represents the variable shape. The shape is dis-
cretized into segments. The nodes of these segments are the 
design variables for the shape optimization.

In the EDD method, the variable shape of the structure 
is embedded within a uniform finite element background 

(1)

min
�

Fcm ∶= −�
�out

u (�) ⋅ L dA

st. Gvol ∶= �
�

�(x)dV − V ≤ 0

0 ≤ �e ≤ 1 e = 1,… ,Ne,

,

Fig. 1   Compliant mechanism design problem
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mesh, which is then used for the solution of the physical 
state problem. An adaptive mesh refinement-based bound-
ary tracking procedure is adopted to accurately represent the 
structure. After the boundary tracking, the cells are catego-
rized as interior, exterior, and boundary cells based on their 
relative position with respect to the physical domain bound-
ary. Further, while solving the BVP, the exterior cells are 
excluded from the computation. The interior cells are treated 
as traditional finite element cells. For the boundary cells, 
we use a Gauss point oversampling integration rule, where 
each Gauss point is checked whether it is inside or outside 
the shape. If it is inside the shape, it has a standard contri-
bution to the system matrix. If the point is outside, only 
a weak contribution is added to the system. The Dirichlet 
boundary conditions are imposed by a penalty function. The 
Neumann boundary conditions are imposed by performing 
line integration over the shape. A detailed explanation and 
implementation aspects of EDD are presented in Riehl and 
Steinmann (2017) and Stankiewicz et al. (2021).

2.4 � Shape optimization strategy

Based on the fact that a local stress constraint is introduced 
to the design problem of compliant mechanisms, a large 
number of constraints must be considered in the optimiza-
tion problem. To deal with it, we employ the Augmented 
Lagrangian formulation (Emmendoerfer and Fancello 2014; 
Da Silva and Cardoso 2017; de Assis Pereira and Cardoso 

2018). To illustrate the Augmented Lagrangian formulation, 
consider a generic shape optimization problem:

where f (� ) is the objective function, gi(� ) is the ith inequal-
ity constraint, and Ng is the number of inequality constraints.

The Augmented Lagrangian sub-problem for the optimi-
zation problem in Eq. 2 is defined as follows:

where �i are the Lagrange multipliers associated with the 
gi inequality constraint, r is a penalty parameter and the 
Macaulay brackets operator, ⟨⋆⟩ is defined as max(⋆, 0).

After solving the jth sub-problem, the Lagrange multipli-
ers �i and the penalty r are updated according to

(2)

min
�

f (� )

st. gi(� ) ≤ 0 i = 1,… ,Ng

gvol ∶= �
�

dV − V ≤ 0

,

(3)
min
�

L(� ,�, r) = f (� ) +
r

2

⎧
⎪
⎨
⎪⎩

Ng�

i=1

��i

r
+ gi(� )

�2
⎫
⎪
⎬
⎪⎭

st. gvol ≤ 0

,

(4)�
j+1

i
=

⟨
�
j

i
+ rjgi(� ), 0

⟩

Fig. 2   Steps involved in shape generation: a Density distribution after topology optimization. b Centers of solid cells for alpha shape generation. 
c Alpha shape enclosing the given points. d Alpha shape after smoothing by nodal averaging
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The shape sensitivity of the augmented Lagrangian, L is 
obtained on the continuum level and transformed into 
boundary integral form (Choi and Kim 2004). To avoid jag-
ged boundaries and mesh dependency, we have adapted the 
traction method by Azegami and Takeuchi (2006). We use 
the traction method adapted for the embedded body (Stank-
iewicz et al. 2021) and geometric smoothing. Finally, to 
represent the shape accurately, we use the adaptive shape 
refinement strategy proposed by Stankiewicz et al. (2021). 
The adaptive shape refinement increases the design space 
of shape optimization and helps capture fine-scale details 
of the geometry.

2.4.1 � Shape update by Optimality Criteria Method

The sub-problem in Eq. 3 is solved using the Optimality 
Criteria Method (OCM). For the fundamentals of the OCM, 
one can refer to Rozvany (1992, 2012). Here, we present a 
brief description of our adaptation for shape optimization. 
We start with defining the Lagrange function for the optimi-
zation sub-problem in Eq. 3.

where � is the Lagrange multiplier for the volume constraint. 
The optimality condition with respect to variations of the 
domain is

The update scheme is formulated such that the above condi-
tions are satisfied. The design variables, i.e., vertices x on 
the boundary, are updated along the descent direction of 
the Lagrange function, i.e., Eq. 7. To have a stable smooth 
design update, a move limit on the design update is intro-
duced through the traction method. This controls how much 
a vertex is allowed to update in each step. The move limit 
is introduced as a constraint in the traction method, refer to 
the appendix Sect. B for detail.

However, � is still unknown in Eq. 7. Hence, the value of 
� is computed using Eqs. 8 and 9. Using these two condi-
tions, a line search is performed along the search direction 
provided by Eq. 7. The update scheme is summarized in 
Algorithm 1. To perform the line search, the BVP is not 

(5)rj+1 =𝛾rj , 𝛾 > 1.

(6)min
�

L = L(� ,�, r) + �gvol,

(7)�L

��
=

�L

��
+ �

�gvol

��
= 0 Stationary condition ,

(8)gvol ≥ 0 Primal Feasibility condition ,

(9)�gvol = 0 Complementary condition ,

(10)� ≥ 0 Dual Feasibility condition ,

solved and the gradients are not computed again, which is a 
major advantage of this method.

2.5 � Compliant mechanism with local stress 
constraint

2.5.1 � Stress evaluation on the boundary

To impose the local stress constraints on the vertices of the 
shape boundary, we have to evaluate the stress values at 
these vertices. Due to EDD solution of the BVP, the stress 
values should not be interpolated from the shape function 
of the BVP. This is, because the accuracy of interpolation 
depends on the relative position of the boundary cell with 
respect to the shape. To illustrate the dependency, we con-
sider two scenarios presented in Fig. 3a, b. In first case, the 
cell is only partially inside the shape, as shown in Fig. 3a. 
The solution field in this cell will have larger error due to 
its weak stiffness according to the EDD method. Hence, if 
we evaluate the stress based on shape function interpola-
tion, then the stress values will not be accurate. While, in 
the second case, a large area of the cell is within the shape 
as shown in Fig. 3b, the evaluation of the stress based on 
shape function interpolation will have better, but still not 
satisfactory accuracy.

A robust way to evaluate the stress on the shape is to use 
the L2 projection (Zienkiewicz and Zhu 1987) of the stresses 
on the shape. The right-hand side of the projection system 
is formed by considering the contribution of all the domain 
cells cut by the shape segments. As illustrated in Fig. 3c, 
each shape segment is further split into subsegments cut by 
the edges of domain cells. The nodes of the subsegments are 
indicated by squares in Fig. 3c. On each of these segments, 
two Gauss points are considered and stress values are evalu-
ated by shape function interpolation. The contributions are 
assembled at the respective vertices of the shape segments. 
The stress values form the L2 projection are then used to 
impose the local stress constraints on the boundary.
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2.5.2 � Local stress constraint design problem

We are now ready to address compliant mechanisms with 
local stress constraints on the boundary, which are defined 
as follows:

where 
[
�VM

]
p
 is the von-Mises stress at the pth design node, 

�a is the prescribed allowable stress, and Np is the number 
of points.

The Augmented Lagrangian functional of the problem 
in Eq. 11 without the volume constraint is

The computation of the sensitivity of the above expression 
is presented in the appendix in Sect. A.1.

(11)

min
�

Fcm ∶= −�
�out

u ⋅ L dA

st. G�p
∶=

[
�VM

]
p

�a
− 1 ≤ 0 p = 1,… ,Np

Gvol ∶= �
�

dV − V ≤ 0

,

(12)L = Fcm +
r

2

⎧
⎪
⎨
⎪⎩

Np�

p=1

�
�p

r
+ G�p

�2
⎫
⎪
⎬
⎪⎭

.

2.6 � Compliant mechanism with global stress 
constraint

The compliant mechanism design problem with global 
P-norm stress constraint in the domain can be defined as 
follows:

As before we define the Augmented Lagrangian formulation 
of the problem in Eq. 13 without the volume constraint,

The computation of the sensitivity expression is presented 
in the appendix in Sect. A.2.

2.7 � Summary of the novelties of the method

We have presented all the components involved in a sequen-
tial topology and shape optimization of a compliant mecha-
nism with stress constraints. The novelty of this framework 
is a sequential approach to exploit the best features of both 
topology and shape optimization to obtain the final opti-
mized design. Topology optimization is used to obtain an 
initial design. The alpha shape generation method is then 
utilized to obtain the boundary of the geometry. Finally, 
shape optimization using the embedding domain method is 
employed to fine tune the design.

To impose the stress constraints in shape optimization, 
the stresses must be evaluated on the boundary. We have 
presented a novel procedure to evaluate the stresses on the 
boundary while using an embedded domain method. To han-
dle a large number of stress constraints in shape optimiza-
tion, an augmented Lagrange sub-problem is defined.

A novel adaptation of OCM to shape optimization is pre-
sented to solve the sub-problem. Traditionally, OCM is not 
suitable for shape optimization since it requires the volume 
constraint to be satisfied. In most traditional shape optimiza-
tion problems, we start with an initial configuration such that 
the volume constraint is not satisfied, and hence, OCM was 
unsuitable. However, in our framework, the topology opti-
mization generates an initial design with volume constraint 
satisfied. This enables us to adapt the simple and efficient 
OCM to shape optimization.

(13)

min
�

Fcm ∶= −�
�out

u ⋅ L dA

st. G�||P||
∶=

[
1

∫
�
dV �

�

[
�VM

�a

]p
dV

] 1

p

≤ 0

Gvol ∶= �
�

dV − V ≤ 0

.

(14)L = Fcm +
r

2

{⟨
�

r
+ G�||P||

⟩2
}
.

Fig. 3   Stress evaluation on the boundary
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2.8 � A note on implementation

Our program is built on the open-source finite element 
library deal.II, v. 9.2 (Arndt et al. 2020). We have imple-
mented topology optimization based on Sigmund (2001, 
2007). At the end of topology optimization, a point cloud 
of all the solid cells is extracted. This point cloud is the 
input for the alpha shape generation algorithm. We use the 
alpha shape generation algorithm implementation from the 
CGAL library (The CGAL Project  2021; Da  2021), which 
is integrated into our code. The result of the alpha shape 
generation is a co-dimensional mesh (surface) that will be 
an input for shape optimization. The shape optimization 
using the embedding domain method is based on Riehl 
and Steinmann (2017) and Stankiewicz et al. (2021), and 
it is implemented using deal.II in the same code. All the 
above-mentioned steps require a tailor-made implementa-
tion in our code.

3 � Results

We present numerical investigations performed for two 
benchmark examples (De Leon et al. 2015; da Silva et al. 
2019): (a) A force inverter mechanism; see Fig. 4 and (b) 
A gripper mechanism; see Fig. 15. In both examples, we 
start with topology optimization to maximize the displace-
ment at the output port. Starting from the configuration 
obtained from topology optimization, we subsequently 
perform shape optimization with stress constraints. The 
shape optimization is performed for different values of 
allowable stresses, and the results are presented.

The following input parameters are used throughout 
the result section: L = 100 in Figs. 4 and  15, Young’s 
Modulus E = 1 , Poisson’s ratio of � = 0.3 , applied load 
of fin = 1 , and input stiffness of kin = 1 . The output spring 
stiffness is considered as follows: (a) kout = 0.001 , for the 
inverter problem, and (b) kout = 0.005 , for the gripper 
problem. Both mechanisms have a volume constraint of 
V = 0.25V0.

3.1 � Force inverter

The first example is a force inverter. In this mechanism, the 
output port is expected to move in the opposite direction 
to the force at the input port. The problem setup is shown 
in Fig. 4. For topology optimization, we have used a mesh 
of 100 × 50 elements and a filter radius of 3.2 to design the 
compliant mechanism. In the present sequential approach, 
we can use a coarse mesh in the topology optimization 
phase, as it is used to only obtain a configuration of the 
mechanism. Further, we terminate the topology optimization 
once the percent of gray cells falls below 10%.

3.1.1 � Topology optimization

The configuration of the mechanism after the topology opti-
mization is shown in Fig.  5. To generate the boundary of the 
optimized configuration, the alpha shape generation algo-
rithm is invoked. The alpha value in the alpha shape genera-
tion is set to the dimension of the element used in topology 
optimization. The generated shape is shown in Fig. 6.

3.1.2 � Local stress constraint

We performed shape optimization of the force inverter 
with local stress constraints on the vertices of the shape 

Fig. 4   Force inverter problem setup

Fig. 5   Topology optimization result for force inverter mechanism

Fig. 6   Shape generation of force inverter from the result of topology 
optimization in Fig. 5
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boundary. To evaluate the influence of the stress con-
straints, three different allowable stresses were pre-
scribed. The resulting geometry of the optimized struc-
ture for different allowable stresses is presented in Fig. 7. 
It is observed that as the allowable stress increases, the 
thickness of the hinge decreases. Further, it is evident 
from the plot in, Fig. 8 that there is an inverse relation 
between output displacements and allowable von-Mises 
stresses.

In Fig. 9, the distribution of the shape vertices can be 
seen. We can clearly see the concentrated distribution of 
nodes at the regions of high curvature of the shape. The 
use of the adaptive shape refinement scheme allows us to 
represent the shape precisely.

Finally, the distribution of stresses in the structure is 
shown in Fig. 10. A homogeneous distribution of stresses 
is observed, and they are within the allowable limits.

3.1.3 � Global P‑norm stress constraint

We have performed shape optimization of the force inverter 
with a global P-norm stress constraint in the domain. In the 
present example, P = 15 is chosen. Similar to the local stress 
constraint case, to evaluate the influence of the stress con-
straint, three different allowable stresses are prescribed. The 
resulting geometry of the optimized structure for different 
allowable stress is shown in Fig. 11. Analogous to the local 
stress constrained structure, it is observed that as the allow-
able stress increases, the thickness of the hinge decreases. 
Additionally, it is evident from the plot in, Fig. 12, that 
as the stress constraint is relaxed, the objective is further 
minimized.

In Fig. 13, the comparison of the shape designed with dif-
ferent allowable stresses is depicted. Here, it can be noticed 
that the higher the allowable stress, the farther the hinge 
is moving diagonally away from the input force. Here, the 
shape optimization is not only modifying the thickness of the 
hinges but also moving the location of the hinge to achieve 
the desired performance.

Finally, the distribution of stress in the structure is shown 
in Fig. 14. It is evident that the stress is within the allowable 
limits.

At this point, we compare the performance of local stress 
constraints vs a global stress constraint. A summary of the 
comparison is presented in Table 1. It can be observed that 
the mechanisms with global stress constraints have slightly 

Fig. 7   Optimized shape of force inverter with local stress constraints on the boundary. a Optimized for an allowable stress of 0.04. b Optimized 
for an allowable stress of 0.05. c Optimized for an allowable stress of 0.06

Fig. 8   Evolution of compliant mechanism objective of force inverter 
when subjected to local stress constraint. The three lines correspond 
to different values of prescribed allowable stresses

Fig. 9   Distribution of shape vertices in the optimized design
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higher stresses when compared to the mechanisms with local 
stress constraints. In both cases, it is clear that as the allow-
able stresses increase, the performance of the structure is 
better.

3.2 � Gripper

The second example is a gripper mechanism. The intent of 
this mechanism is to transform an input force in horizontal 
direction to an output force in vertical direction. The prob-
lem setup is shown in Fig. 15. We use a mesh of 100 × 50 
elements and the filter radius of 3.2 to design the gripper 
mechanism. We terminate the topology optimization once 
the percent of gray cells falls below 10%.

Fig. 10   Stress distribution in force inverter subjected to local stress constraint

Fig. 11   Optimized shape of force inverter with global stress constraints in the domain

Fig. 12   Evolution of compliant mechanism objective of force inverter 
when subjected to global stress constraint

Fig. 13   Comparison of design evolved for different allowable stress 
values with global stress constraint
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3.2.1 � Topology optimization

The configuration of the gripper after the topology optimiza-
tion phase is depicted in Fig.  16. The alpha shape generation 
algorithm is then invoked to generate the shape of the grip-
per. The generated shape is shown in Fig. 17.

3.2.2 � Local stress constraint

Similar to the previous example, we now perform shape 
optimization of the gripper with local stress constraint on 
the boundary nodes. To study the influence of the stress con-
straint, three different allowable stresses are prescribed. The 
geometry of the optimized structure for different allowable 
stress is shown in Fig. 18. The inverse relation on the hinge 

thickness and the value of allowable stress can be observed 
in the figure. Also in the plot in Fig. 19, a compromise 
can be observed in the prescribed allowable stress and the 
objective.

The stress distribution in the gripper is shown in Fig. 20. 
An even distribution of stress is observed and the stresses in 
the structure are within the allowable limits.

3.2.3 � Global P‑norm stress constraint

At this point, shape optimization of the gripper with a global 
P-norm stress constraint in the domain is performed. In the 
present example, P = 15 is chosen. Similar to the local 

Fig. 14   Stress distribution in force inverter subjected to global stress constraint

Table 1   Comparison summary of force inverter mechanism

Allowable 
stress �a

Type of stress 
constraint

Max �vm Objective F
cm

% Decrease 
in objective

0.04 Local 0.039 −4.55837 4.01
0.04 Global 0.041 −4.81201 9.75
0.05 Local 0.049 −4.85689 10.82
0.05 Global 0.0508 −5.00293 14.15
0.06 Local 0.058 −5.13533 17.17
0.06 Global 0.07 −5.11002 16.6

Fig. 15   Gripper problem setup

Fig. 16   Topology optimization result for gripper mechanism

Fig. 17   Shape generation of gripper mechanism from the result of 
topology optimization in Fig. 16
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stress constraint case, we prescribe three different allowable 
stresses to evaluate the influence of the stress constraint. The 
optimized structure for different allowable stress is captured 
in Figs. 21 and 22. Further, it is evident from the plot in 
Fig. 12 that as the stress constraint is relaxed, the objective 
is further minimized.

Finally, a comparison of the performance of local stress 
constraints vs a global stress constraint is performed, and 

a summary is presented in Table 2. In this case, it can be 
observed that the mechanisms with global stress constraints 
have violated the allowable stress by a significant margin.

4 � Conclusions and outlook

A sequential topology and shape optimization framework is 
developed to design compliant mechanisms. Topology opti-
mization is robust in generating an optimal configuration 
and, however, does not give an exact geometry of the struc-
ture. Shape optimization proves to be effective at fine tuning 
the design and giving the exact geometry of the structure; 
however, it is not robust enough to generate optimal configu-
rations. In our approach, we incorporate these methods to 
get the best of both worlds. We start with topology optimiza-
tion to generate the configuration and continue with shape 
optimization to generate fine-scale detailing and obtain the 
exact geometry. In the process, we developed a novel opti-
mality criteria-based design update for shape optimization 
with volume constraint. Further, the use of an adaptive shape 
refinement strategy in shape optimization helps us expand 
the design domain and capture the fine-scale detail of the 
geometry.

Finally, we presented two benchmark examples of com-
pliant mechanisms. In these examples, we designed mecha-
nisms to maximize the displacement at the output port with 
a restriction of the material use and stress constraints. The 
stress constraints were imposed using two strategies: (a) 

Fig. 18   Optimized shape of gripper with local stress constraints on the boundary

Fig. 19   Evolution of compliant mechanism objective of gripper when 
subjected to local stress constraint

Fig. 20   Stress distribution in gripper optimized subjected to local stress constraint
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local stress constraints on the vertices of the shape bound-
ary ands (b) a global stress constraint in the domain. These 
examples demonstrated the impact of stress constraints and 
how the hinge formation can be avoided in the design of 
compliant mechanisms. Through these examples, the effec-
tiveness of the proposed framework is shown.

The methodology presented in this work is restricted to 
linear elasticity. Problems like the displacement inverter 
might require consideration of large displacements, i.e., 
geometric nonlinearity. Moreover, the availability of exact 
boundary representation in the shape optimization step 
offers great potential for development of geometric or 
manufacturing constraints, which are otherwise difficult to 
implement in topology optimization, e.g., curvature radius 
constraints for milling.

The presented framework can in principle be extended 
to three dimensions. Topology optimization is well estab-
lished in three dimensions, and its major drawback is its 
computational cost. In our framework, fine geometrical 
details are captured by shape optimization; thus, a coarser 

grid for topology optimization can be employed. Moreover, 
shape generation by the alpha shape generation algorithm 
is in principle available for generating bounding surfaces 
of a three-dimensional given point cloud. Alternatively, 
there are also advanced tools in computer graphics to gen-
erate surfaces given a point cloud from topology optimiza-
tion. However, shape optimization using the embedding 
domain method in three dimensions is most challenging. 
Therein, the major obstacles are the mesh tracking and 
sub-triangulation of faces intersecting with embedding 
cells, which come with a high computational cost. Tak-
ing together, the implementation in three dimensions is in 
principle feasible but requires further investigation.

Appendix

Continuum approach to shape sensitivity

Shape sensitivity analysis using the continuum approach 
is performed based on Choi and Kim (2004). The mate-
rial derivative concept is applied, which is not explained 
her, but interested readers can refer to Arora (1993); Choi 
and Kim (2004). We first get the sensitivity expression for 
a general response functional based on the presentation 

Fig. 21   Optimized shape of gripper with global stress constraints in the domain

Fig. 22   Evolution of compliant mechanism objective of gripper when 
subjected to global stress constraint

Table 2   Comparison summary of gripper mechanism

Allowable 
stress �a

Type of stress 
constraint

Max �vm Objective F
cm

% Decrease 
in objective

0.03 Local 0.0355 −1.31042 8.61
0.03 Global 0.046 −1.37096 13.63
0.04 Local 0.0421 −1.3264 9.9
0.04 Global 0.076 −1.37096 13.63
0.05 Local 0.062 −1.33886 10.97
0.05 Global 0.08 −1.38972 15.15
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in Stankiewicz et al. (2021). Consider a general response 
functional

We apply the adjoint method and augment the above func-
tional by a weak form of equilibrium equation. The variation 
of the state field in the weak form is replaced by the adjoint 
variable:

where

Using variational calculus, it was proven that �Wa = 0 
(Arora and Cardoso 1992). This leads to

We then apply the boundary integral method presented by 
Arora (1993) to represent the material derivative of aug-
mented functional:

The partial derivatives of the integrands Ḡ , ḡ, and h̄ are as 
follows:

Introducing A.15 and A.17 into A.19 and grouping of terms 
gives us:

It is required that the variation of the augmented functional 
should vanish according to variational principle for design 
sensitivity analysis (Arora and Cardoso 1992). This means 

(A.15)F = ∫
�

GdV + ∫
� N

gdA.

(A.16)L = F +W
a = ∫

𝛺

ḠdV + ∫
𝛤 N

ḡdA,

(A.17)
W

a = − ∫
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� ∶ �
adV + ∫

𝛺

b ⋅ u
adV
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.

(A.18)Ḟ = L̇ − Ẇ
a = L̇..
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ḡ ⋅ n + ḡH

]
[𝜃 ⋅ n]dA.

.

(A.20)
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the expressions in the two curly braces should vanish. The 
expression in the first curly braces in Eq. A.21 represents the 
weak form of the equilibrium for the primary structure, with 
the explicit derivative of the adjoint state field [u a]� serving 
as the test function. So this term naturally vanishes. Further, 
the expressions in the second curly braces in Eq. A.21 are 
used to define the adjoint problem such that even this term 
vanishes. In the adjoint problem, we utilize the symmetry 
of the Cauchy stress tensor and the major symmetry of the 
elasticity tensor in which u ′ takes the role of admissible test 
function. Leading to the following definition of the adjoint 
problem,

With this, the final sensitivity expression is

Complaint mechanism with local stress constraint

The augmented functional for compliant mechanism with local 
stress constraint from Eq. 12 is

To obtain the adjoint problem, we substitute Eq. A.24 in 
Eq: A.22, which leads to

The sensitivity expression is obtained by using Eq. A.24 in 
Eq: A.23,

(A.22)
A
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Complaint mechanism with global stress constraint

The augmented functional for compliant mechanism with 
global P-norm stress constraint from Eq. 14 is

To simplify the notation, we define the following 
placeholders:

Now the adjoint problem is obtained by substituting 
Eq. A.27 in Eq: A.22, which leads to

Finally the sensitivity expression is obtained by using 
Eq. A.27 in Eq: A.23,
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Traction method with move limit

We use the traction method presented by Stankiewicz et al. 
(2021), which is adapted for embedding domain discretiza-
tion. Briefly explained, the traction method is based upon 
solving an auxiliary BVP, in which the raw shape sensitivity 
is employed in form of external, nodal traction forces. The 
solution of such BVP yields a smooth, mesh-independent 
design update vector. To the traction method in the afore-
mentioned article, we have added an additional energy term 
to control the move limits. The new energy form with the 
penalty for move limit is given by

where �ext is the energy of the external forces, i.e., the raw 
sensitivities, P is the penalty functional, which is responsi-
ble for the bounding box constraints, Pml is the new penalty 
to control the move limits in each iteration, and � is the 
scaling factor which ensures that the solution of the trac-
tion method BVP yields an exact design update vector. The 
definition of the move limits penalty functional is

where nc is the number of points subjected to move limit 
constraint, p

(
gc
)
 is the penalty function of which values are 

dependent on the constraint violation measure gc which are 
defined in below equations:

where ū is the allowed shape change. To enable a smooth 
design update, a move limit of 0.01 was chosen for all the 
simulation presented in result section.
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