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Abstract

Layout optimization provides a powerful means of identifying materially efficient structures. It has the potential to be 
particularly valuable when long-span structures are involved, since self-weight represents a significant proportion of the 
overall loading. However, previously proposed numerical layout optimization methods neglect or make non-conservative 
approximations in their modelling of self-weight and/or multiple load-cases. Combining these effects presents challenges 
that are not encountered when they are considered separately. In this paper, three formulations are presented to address 
this. One formulation makes use of equal stress catenary elements, whilst the other two make use of elements with bending 
resistance. Strengths and weaknesses of each formulation are discussed. Finally, an approach that combines formulations is 
proposed to more closely model real-world behaviour and to reduce computational expense. The efficacy of this approach 
is demonstrated through application to a number of 2D- and 3D-structural design problems.

Keywords  Layout optimization · Truss topology optimization · Self-weight · Long spans · Equal stress catenary

1  Introduction

In very long-span structures the weight of the structure itself 
is often the dominant source of loading (Brancaleoni et al. 
2011), making it imperative that these structures are as light-
weight as possible. Structural optimization therefore has the 
potential to provide substantial benefits. However, in this 
case it is important that the self-weight loading is modelled 
accurately, to prevent misleading indications of optimality.

Widely used continuum topology optimization meth-
ods (e.g. Bendsoe and Sigmund 2003; Wang et al. 2003; 
Sigmund and Maute 2013) are not well suited to long-span 
structures. This is because a typical long-span bridge prob-
lem may include a design domain that is several kilometres 

in length, but structural elements that are of the order of 
centimetres in cross-section. Tackling such problems would 
require the use of very high resolutions when using con-
tinuum methods. For example, significant computational 
resources (up to 85 h of runtime on 16,000 CPU cores) were 
required by Baandrup et al. (2020) to solve a problem repre-
senting a small portion ( 1

62
 of the bridge length) of the deck 

of a long-span bridge. This generated a form that was pri-
marily skeletal in nature, with regions of shell-like structure, 
further suggesting that a frame based optimization approach 
is likely to be more appropriate for such an application.

Discrete layout optimization methods can be used to 
obtain optimal structures consisting of individual elements 
(e.g. truss bars). This not only avoids difficulties in mod-
elling relatively small elements, but is also well suited to 
structures whose scale requires that they be assembled from 
many smaller components. The most common optimization 
approach for trusses is the ground structure-based layout 
optimization method (also sometimes referred to as the 
‘truss topology optimization’ method), originally proposed 
by Dorn et al. (1964). The efficiency of this method was 
improved by Gilbert and Tyas (2003), who implemented 
an adaptive ‘member adding’ method, taking advantage of 
the column generation mathematical programming proce-
dure (Gilmore and Gomory 1961; Lübbecke and Desrosiers 
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2005). This allows problems with very high resolution to be 
solved, whilst keeping run times and memory usage accept-
able. The visual clarity of the solutions obtained can be 
improved by adjusting the nodal positions using a geometry 
optimization rationalization step (He and Gilbert 2015).

Bridge-like structures have been previously studied using 
truss optimization approaches, as well as using analytical 
methods to directly address the Michell-Hemp optimality 
criteria (Michell 1904; Hemp 1978). However, in previous 
studies the self-weight of the structure is not generally con-
sidered, and so the results are applicable only to shorter spans.

Hemp (1974) proposed a solution to a single-span prob-
lem involving transmission of a distributed load to a pair 
of pinned supports, sometimes referred to as the ‘Hemp 
arch’ problem. This solution was shown to be optimal for 
non-uniform loading (Chan 1975), or unequal tension and 
compression strengths (Pichugin et al. 2012), although it is 
slightly sub-optimal for the problem originally posed. Sokół 
and Rozvany (2013) considered an extension of this to a 
multiple load-case problem.

Problems with infinitely many spans have been considered 
by Pichugin et al. (2015), Beghini and Baker (2015) and Fair-
clough et al. (2018). To date there appear to have been only 
a few cases of established structural optimization concepts 
being used by practising engineers to inspire real-world bridge 
designs (Graczykowski and Lewinski 2020), with issues such 
as lack of consideration of self-weight meaning that these 
have not been directly applicable to long-span structures.

Where self-weight has been considered within a numeri-
cal, ground structure-based, layout optimization process, it 
has almost universally been assumed that the weight of a 
member may be taken to act directly upon its end points 
(Bendsøe et al. 1994; Pritchard et al. 2005; Kanno 2012). 
This approach is appealing as it is conceptually simple and 
can be implemented without difficulty (no new variables or 
constraints are required in the layout optimization problem). 
However, as will become clear, this approach can give rise to 
unrealistic and non-conservative solutions, especially when 
the self-weight loading is significant. For example, Kanno 
and Yamada (2017) noted that this approach has a tendency 
to produce optimal structures with overlapping structural 
elements. They proposed an approach using mixed integer 
programming to directly prevent this. Whilst this was effec-
tive at addressing the overlapping members, the existence 
of these members is merely a symptom of a larger underly-
ing problem; the lumped mass approach introduces intrinsic 
non-conservative errors and the presence of excessively long 
elements is simply a manifestation of this.

Allowance for self-weight in analytical solutions was 
considered by Rozvany and Wang (1984), who proposed a 
modified form of the Prager-Shield optimality criteria. It can 
be shown that the lumped mass formulation tends towards 
an identical constraint only as the length of members tends 

to zero. Perhaps a more intuitive explanation of this effect 
is to consider the bending stresses that would be generated 
by self-weight when it is applied as a distributed load along 
the element. These bending stresses are neglected by the 
lumped mass approach.

Fairclough et al. (2018, 2022) developed an alternative 
approach involving the use of ‘catenary’ elements, which 
addresses the underlying issue by using elements which have 
the shape of a catenary of equal stress. This shape is defined 
by the presence of only axial stresses under the combined 
action of self-weight and axial load, and therefore avoids 
the issue of bending stresses mentioned previously. How-
ever, this approach is only applicable to problems involving 
a single load-case, whereas in the present contribution the 
goal is to extend this approach to scenarios involving mul-
tiple load-cases.

An alternative means of resisting the bending action gen-
erated by self-weight is to use members explicitly possess-
ing the required bending resistance. Pure bending structures 
have been widely studied in the context of beam grillage 
layout optimization (Rozvany 1972; Hill and Rozvany 1985; 
Bolbotowski et al. 2018). In this application the bending 
resistance of an element is linked by a linear relationship to 
the cross-sectional area; this can be achieved in practice by 
seeking the width of a cross-section of given (fixed) depth. 
Numerically, this leads to a linear optimization problem 
(Bolbotowski et al. 2018), which is quick to solve and for 
which globally optimal solutions can be obtained, whereas 
altering both width and depth leads to a more complex non-
convex problem. It is usual to neglect the influence of shear 
stresses generated by the bending, although Rozvany (1979) 
does consider a case where the area of an element is given 
by a linear expression involving the magnitudes of both the 
applied moment and shear force.

The nature of the Michell-Hemp criteria is such that 
when both axial and bending actions are permitted, solu-
tions involving the use of just axial elements will generally 
be favoured. Nonetheless, some practical applications have 
prompted activity in this area.

It has been found that the resulting non-convex problems 
can be solved effectively using gradient methods, such as the 
method of moving asymptotes (Pedersen 2003), and sequen-
tial conic programming (Lu et al. 2022). Alternatively meta-
heuristic methods that are unaffected by the convexity or 
otherwise of the problem have been widely applied to such 
problems (Liu et al. 2012; An and Huang 2017), though 
the optimality of the solutions obtained is uncertain. Addi-
tionally, formulations that involve picking catalogue cross-
sections have been used by Kureta and Kanno (2014), Van 
Mellaert et al. (2018), and Brütting et al. (2020). In this case 
integer programming methods must be employed (Gross-
mann et al. 1992), allowing optimal solutions to be obtained, 
albeit usually at high computational cost. Pre-existing frame 
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elements have also been considered in truss optimization 
formulations (Liang et al. 2000; Lu et al. 2018); however, in 
these problems the element dimensions are fixed and only 
the internal forces are subject to optimization, thus avoiding 
the need for non-convex constraints.

In this paper the focus is on developing computationally 
efficient means of solving layout optimization problems 
involving multiple load cases in the presence of self-weight, 
overcoming limitations associated with previously proposed 
methods. The paper focuses on the case where the goal is 
to minimize the volume of a structure comprising a rigid-
plastic material of given strength. Also, the aim is to develop 
a computationally efficient formulation that is potentially 
suitable for use in practice. As such, various approximations 
are required, though these are chosen so as to be conserva-
tive (i.e. to lead to overestimations in the volume of mate-
rial required), to ensure the results obtained are practically 
useful.

The paper is structured as follows: in Sect. 2 formulations 
that can be used to model self-weight within a layout opti-
mization model are described, including both existing and 
novel approaches. In Sect. 3 these approaches are compared 
for problems involving individual elements and small-scale 
structures. In Sect. 4 a means of combining formulations 
from Sect. 2 to enable practical problems to be solved in a 
computationally efficient manner is discussed. The resulting 
combined approach is then applied to a range of problems 
of practical interest in Sect. 5. Finally concluding remarks 
are presented in Sect. 6.

2 � Problem formulations

In this section, a number of layout optimization formula-
tions are presented. Section 2.1 describes the standard for-
mulation in which self-weight is neglected. Various methods 
of handling self-weight are then presented. Specifically, in 
Sect. 2.2, the lumped mass approach is recalled; in Sect. 2.3 
the catenary element approach is described and then 
extended to now enable multiple load-cases to be handled; in 
Sects. 2.4 and 2.5 the self-weight of an element is assumed 
to be carried via bending action, assuming respectively rigid 
(moment-resisting) and pinned end connections.

Each of the aforementioned formulations can be han-
dled using the standard ground structure layout optimiza-
tion method, as shown in Fig. 1. Thus the problem is defined 
in terms of a design domain, supports, and applied loads 
(Fig. 1a), where the latter can be applied simultaneously (sin-
gle load-case) or separately (multiple load-cases). The domain 
is discretized with nodes (Fig. 1b), which are connected with 
potential members (Fig. 1c). Here, the adaptive member add-
ing approach proposed by Gilbert and Tyas (2003) is used, 

with adjacent connectivity employed for the initial ground 
structure. Finally, the optimization problem is formulated and 
solved to obtain the optimized minimum volume structure; 
when only a single load case is involved this may be in unsta-
ble equilibrium with the applied loads, as in Fig. 1d.

Static (equilibrium) formulations are presented here, 
but solutions for the kinematic (dual) problem are avail-
able through the use in this case of the MOSEK Aps (2020) 
primal-dual interior point solver.

2.1 � Weightless formulation

The plastic truss layout optimization formulation for a truss 
comprising n nodes and m weightless members may be 
stated as follows: 

where the objective V is the total volume of the structure, 
calculated using � = [l1, l2,… , lm] , a vector containing the 

(1a)min
�,�k

V = �T�

(1b)subject to (��k = �k)∀k

(1c)(�k ≤ �T)∀k

(1d)(−�k ≤ �C)∀k

(1e)� ≥ �

(a) (b)

(c) (d)

Fig. 1   Layout optimization procedure: a definition of domain, loads 
and supports; b discretization of domain using nodes; c ground struc-
ture containing all potential members; d minimum volume solution 
(single load-case)
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length of each member, and � = [a1, a2,… , am] , a vector 
containing optimization variables which represent the cross-
sectional areas of each member.

Constraint (1b) enforces equilibrium in each Cartesian 
direction at each node; this constraint is applied separately 
in each load-case, k. Also �k = [q1,k, q2,k,… , qm,k] contains 
optimization variables representing the axial force in each 
member in load-case k. For a two dimensional problem, 
�k = [f x

1,k
, f

y

1,k
, f x
2,k
,… , f

y

n,k
] is a vector containing the exter-

nally applied forces at each node in load-case k (for a three-
dimensional problem, f z components must also be included). 
Where there are supported degrees of freedom, either the 
reaction force may be explicitly treated as an optimization 
variable or, as is the case herein, the relevant constraint may 
be removed. Finally, � is a 2n × m (or, in three dimensions, 
3n × m ) matrix of direction cosines, such that the contribu-
tion of a single element i connecting nodes A and B may be 
written as:

where � is the angle between the element centreline and the 
positive x direction.

Finally, Eqs. (1c) and (1d) are strength or ‘yield’ con-
straints, with �T and �C being the limiting stresses in tension 
and compression, respectively.

2.2 � Lumped formulation

In the standard lumped mass formulation the weight of an 
element is assumed to act directly on its end points. Con-
sidering the weightless formulation, only the equilibrium 
constraint Eq. (1b) needs to be changed to now include an 
additional term relating to the area of each member. Thus 
the contribution of a single element i to the equilibrium con-
straints changes from Eq. (2) to become:

where � is the density of the material, g is the acceleration 
due to gravity (which is assumed to act in the negative y 
direction) and li is the length of the member.

2.3 � Catenary formulation

The formulation outlined here employs the equal stress 
catenary elements described by Fairclough et al. (2018) 

(2)

⎡⎢⎢⎢⎣

− cos �

− sin �

cos �

sin �

⎤⎥⎥⎥⎦

�
qi,k

�
=

⎡
⎢⎢⎢⎢⎣

f x
A,k

f
y

A,k

f x
B,k

f
y

B,k
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(3)

⎡⎢⎢⎢⎣

− cos �

− sin �
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+
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⎢⎢⎢⎢⎣
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−
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2
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−
�gli

2

⎤
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ai
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=

⎡
⎢⎢⎢⎢⎣

f x
A,k

f
y

A,k

f x
B,k

f
y

B,k

⎤⎥⎥⎥⎥⎦

for single load-case layout optimization problems; in this 
section the approach is extended to consider multiple load-
cases. These elements have a curved centreline, arching 
upwards when under compression, and sagging downwards 
when under tension; in the optimization it is convenient to 
treat tensile and compressive elements as separate elements 
interlinking a given pair of nodes. However, in the inter-
ests of clarity an element carrying a tensile force (only) is 
considered in the following, as shown in Fig. 2a, and the 
subscript i (as used in Eqs. (2) and (3)) is also omitted.

2.3.1 � Equilibrium

Before considering multiple load-case scenarios, an alter-
native— but equivalent—perspective on the single load-
case formulation will be discussed. This model is shown in 
Fig. 2b, where the notional axial force q is separated from 
the self-weight forces W.

From Fairclough et al. (2018, Eq. (2.8)):

where WPQ and VPQ are the weight and volume of the section 
of catenary between P and Q, and qx is the horizontal com-
ponent of the force in the element. Note that qx is constant at 

(4)WPQ = �gVPQ = −qx(tan �Q − tan �P)

(a)

(b)

Fig. 2   Equal stress catenary element (single load-case): a form of 
element, showing end forces aligned to centre-line of element; b 
straight-line force transmission with lumped masses. The light and 
dark grey shaded areas in a correspond to the light and dark grey 
lumped masses in b 
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all points along the catenary, and is equal to q cos � , where 
� is as defined in Fig 2b. Also, � is the angle between the 
catenary centreline and the positive x axis at the subscripted 
point; see Fairclough et al. (2018) for details of how this is 
calculated.

The point M (shown in Fig. 2) is defined as the point at 
which the tangent to the element’s centreline is parallel to 
the straight line AB, i.e. �M = � . Point M is the dividing 
point when considering the catenary as a lumped mass, i.e. 
the weight of the section AM is applied at point A, and the 
weight of section MB is applied at point B. The weight of 
section AM can be calculated from Eq. (4) as follows:

The external force q is directed along the straight line AB, as 
shown in Fig. 2b. It is evident that the horizontal component 
is identical to that shown in Fig. 2a. It can also be seen that 
the total vertical load at A is −WAM − q sin � , which may be 
simplified using Eq. (5) to compute WAM . Thus:

Similar logic may be used to confirm the forces at point B. 
Thus, the representation shown in Fig. 2b is fully equivalent 
to the one in Fig. 2a for single load-case problems. Signifi-
cantly, from the representation presented in Fig. 2b, it is easy 
to see how equilibrium equations for other load-cases can 
be established when the weights WAM and WMB are constant 
and only the axial force q varies.

For the multiple load case formulation, r can be defined 
as the maximum value of q, from which the required cross-
sectional area of the element can be calculated. Thus:

In each load-case k, the element force is given by qk , so that 
the required equilibrium constraint becomes:

However to provide easier comparison with the single load-
case formulation, and in the interests of numerical stability, 
it is convenient to use the value of r − qk as the optimiza-
tion variable, denoted as pk . Thus the equilibrium constraint 
becomes:

(5)
WAM = −q cos �(tan � − tan �A)

= −q(sin � − cos � tan �A)

(6)
qy,A = q(sin � − cos � tan �A) − q sin �

= −q cos � tan �A

(7)WAM = −r(sin � − cos � tan �A)

(8)

⎡⎢⎢⎢⎣

0

cos � tan �A − sin �

0

sin � − cos � tan �B
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f
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f x
B,k

f
y

B,k

⎤⎥⎥⎥⎥⎦

This also means that the coefficients of r are the same 
as in the single load-case formulation, so that the limits for 
vertical elements given by Fairclough et al. (2022) may also 
be used. (Note also that there are no difficulties in directly 
calculating the coefficients of pk for the case � = 90◦.)

2.3.2 � Yield conditions

Here, a simplified yield constraint based on the lumped mass 
approach will be used. The yield conditions in this case may 
be imposed by first conceptualizing a given element as in 
Fig. 3, where a core in the centre of the element is con-
sidered as a fully stressed catenary, and additional material 
located at the edges of the section is assumed to be lumped 
at element end-points.

For this simplified yield condition, the required optimiza-
tion constraint is simply that the stressed core of the catenary 
takes between 0% and 100% of the total cross-section, i.e. 
that 0 ≤ qk ≤ r . To re-write this using the preferred optimi-
zation variable gives:

Note that when pk = 0 (i.e. the element is fully utilized), 
this simplified yield condition precisely reproduces that pre-
sent in the single load-case formulation. As the utilization 
is reduced, some error is introduced by the assumption that 
unused material can be transmitted to the nodes at no addi-
tional cost, similar to the formulation in Sect. 2.2. In reality, 
as soon as the axial load, qk on an element is reduced from 

(9)

⎡⎢⎢⎢⎣

cos �

cos � tan �A
− cos �

− cos � tan �B

⎤⎥⎥⎥⎦
r +

⎡⎢⎢⎢⎣

− cos �

− sin �

cos �

sin �

⎤⎥⎥⎥⎦
pk =

⎡
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f x
A,k

f
y

A,k

f x
B,k

f
y

B,k

⎤⎥⎥⎥⎥⎦

(10)r ≥ pk ≥ 0

A M

B

Fig. 3   Conceptual model of catenary element loaded at approxi-
mately half capacity ( qk = 0.5r ). The black region is considered to 
be fully stressed (and is equal to a catenary element where the maxi-
mum design load is equal to qk ), whilst the dark and light grey shaded 
regions are considered unstressed and are applied as lumped masses 
at points A and B, respectively
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its maximum value r, the internal equilibrium state involving 
purely axial stresses no longer holds, and bending moments 
are generated within the element.

It will be shown in Sect. 4 that this simplified approach is 
well suited to modelling the situation in the cables found in 
real-world cable-supported bridge structures. Also, even for 
other cases, this formulation provides an improvement over 
the lumped mass approach; the catenary element is capable 
of withstanding the internal effects of self-weight in, at least, 
the fully loaded case.

2.3.3 � Volume

For this approach, the volume of the element is no longer 
simply defined as liai as in Eq. (1a). Instead the volumes 
are calculated as in Eq. (3.4) of Fairclough et al. (2018), 
although now using the defining force r to give:

2.4 � Beam formulation 1: rigid joints

The next two formulations are based on the use of beam ele-
ments, i.e. elements where the self-weight is applied contin-
uously along a straight, prismatic element, which is capable 
of carrying the induced bending stresses. As the elements 
are assumed to be prismatic, the volume can be calculated 
in the same way as in Eq. (1a).

In this section, it will be assumed that the connections 
between adjacent members are capable of transmitting 
moments; Sect. 2.5 will consider the case where these con-
nections are pinned. Again, subscript i is omitted for sake 
of clarity.

2.4.1 � Equilibrium

The optimization variables here are the area, a, and, for each 
load-case k, the end moments mA,k,mB,k and the notional 
axial force qk (defined as the axial force at the mid-point). 
The self-weight produces a uniformly distributed load with 
total magnitude W = �gal , where l is the member length as 
shown in Fig. 4. End forces, vA, vB and qA, qB (Fig. 4), are 
found using equilibrium of the element, giving the values 
shown in Fig. 7. Thus the equilibrium equations in global 
coordinates are:

(11)Vi = r
cos �i

�g
(tan �A − tan �B)

where e.g. f x
A
, f

y

A
 are the forces in the x and y directions at A, 

and MA is the total moment transmitted at A.

2.4.2 � Yield constraints

For the purposes of calculating the yield constraints, the 
cross-section of the member will be split into two regions, 
with areas aN and aM , following the approach proposed by 
Lu et al. (2022). A region of area aN carries the axial and 
shear forces acting on the element, with regions of total 
area aM carrying the axial stresses generated by the applied 
moments, as shown in Fig. 5.

(12)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− cos � −
sin �

l
−

sin �

l

− sin �
cos �

l

cos �

l

0 1 0

cos �
sin �

l

sin �

l

sin � −
cos �

l
−

cos �

l

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎣

qk
mA,k

mB,k

⎤⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

−
�gl

2

0

0

−
�gl

2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

a =

⎡
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f x
A,k

f
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A,k
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B,k
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⎤⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 4   Nodal forces and moments acting on a beam element AB, 
where the element weight acts as a uniformly distributed downwards 
vertical load. Key geometric parameters are also indicated

(a) (b)

Fig. 5   Cross-sections with fixed bending depth d: a scenario with low 
value of axial loading and highest value of bending moment; b sce-
nario with high axial loading and lower applied moment
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This split may be different in each load-case, but in all 
cases the sum of the two areas must not be greater than the 
total area a, giving the following constraint:

The yield constraints for the two regions will be considered 
separately.

Moment yield The region with area aM is divided into two 
equal areas, which occupy the top and bottom of the cross-
section, as shown in Fig. 5a. The plastic moment capacity of 
this region is given by the expression �d

2
aM , where � is the 

limiting stress of the material, and d is the distance between 
the centroids of the two halves of the aM region.

The moment yield constraints at the end-points A and B 
are given by:

(13)aN,k + aM,k ≤ a

This constraint is linear and convex only if d is constant; 
therefore the value of d must be pre-defined. Note that this 
may give a slight, conservative, error in the bending resist-
ance for cases when an element carries less moment loading, 
as shown in Fig. 5b.

When self-weight is considered, an additional parabolic 
distribution is added to the bending moment diagram; this is 
shown in the filled diagram on Fig. 6. The maximum abso-
lute value of bending moment may now occur at any point 
along the beam, which is problematic in a layout optimiza-
tion context. Thus a conservative piecewise linear approxi-
mation of the curve can be used, constructed from tangents 
to the curve located at mid- and end-points of the beam. 
With this representation the peak bending moment can occur 
only at the end-points, or at the transition points between 
piecewise linear elements, i.e. at beam quarter points.

The maximum bending moment contribution from self-
weight, Msw , occurs at the midpoint of the parabolic distribu-
tion, and also at the quarter points of the approximated dis-
tribution. It is calculated based on the total element weight, 
distributed over a horizontal span x̄ = xB − xA , thus:

Therefore expressions can be formulated with sagging 
moments as positive. When point A is to the left of point B 
(i.e. x̄ is positive) the relevant expression is:

and when point B is to the left of point A (i.e. x̄ is negative):

Both (16) and (17) may be applied to all elements; if the sign 
of x̄ is opposite from that mentioned, then those constraints 
will become less critical than (14), and so do not affect the 
solution. This becomes essential when movement of nodes 
may cause an element to change direction, for example if the 
method is extended to permit geometry optimization (He 
and Gilbert 2015).

Axial yield The region of the beam with area aN is 
assumed to carry both axial and shear loading. When self-
weight is neglected, both axial and shear forces are con-
stant, having values of q and mA+mB

l
 respectively, as shown 

by dashed lines in Fig. 7.

(14)

⎡⎢⎢⎢⎣

1 0
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⎡⎢⎢⎢⎣
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(15)Msw =
1

8
�gl|x|a
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𝜌gx̄l
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2
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Fig. 6   Bending moment diagrams for a beam element with and with-
out self-weight effects

(a)

(b)

Fig. 7   Force distributions along a beam element: a normal force; b 
shear force. Dashed lines show distribution in the case where self-
weight is neglected, solid lines show case where self-weight is con-
sidered
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However, when self-weight is considered, the distribu-
tions of normal and shear force are linear, as shown in Fig. 7. 
It will be (conservatively) assumed that the worst case for 
shear and normal forces are co-incident. For convenience 
here variables qN , to be the largest absolute value of the 
normal force, and qV , to be the largest absolute value of the 
shear force, are defined using the following constraints:

Noting that both of these forces are carried over the area 
aN,k , they can be transformed into stresses. To combine the 
shear and normal stresses the Von Mises’ yield criterion can 
be employed, which can be rearranged to give the following 
conic constraint:

Alternatively, to maintain a linear formulation, this can be 
approximated using linear constraints. The simplest con-
servative way to do this is to use a plane which intersects 
the cone of Eq. (20) when qN,k = 0 and when qV ,k = 0 ; this 
(along with the non-negativity of qN,k and qV ,k , implied by 
Eqs. (21) and (22) respectively) defines a subset of the cone 
of Eq. (20). The required linear constraint is therefore:

Note that the use of the Von Mises yield constraint 
restricts elements to have equal stress limits in tension and 
compression.

2.5 � Beam formulation 2: pinned joints

The beam formulation in the previous section provides a 
conservative method of modelling frames when both self 
weight and multiple load-cases must be considered. How-
ever, the optimization problem produced using this formu-
lation contains many more variables and constraints than 
an equivalent problem using the catenary or lumped mass 
formulations (see Appendix A for details).

In this section, a further formulation will be derived; this 
will use elements that are very similar to those described in 
the previous section, except that they will now be assumed 
to be pin-ended. It will be shown that this can produce a 

(18)
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√
3qV ,k ≤ �aN,k

formulation of comparable computational complexity to the 
catenary and lumped mass formulations.

2.5.1 � Equilibrium

Firstly, the end moments of all elements are fixed to be zero, 
and the corresponding optimization variables are therefore 
not required. The moment equilibrium constraints at each 
node are also removed. The equilibrium constraint, Eq. (12), 
then becomes:

Note that this is now identical to the equilibrium condition 
used in the lumped mass formulation. However, in this case 
the yield conditions outlined in the section below will give 
rise to a significantly larger value of a for any given value 
of q.

2.5.2 � Yield

The yield constraints will now be derived, starting from the 
constraints developed in the previous section.

Moment yield As the end moments of the member are 
now zero, the maximum moment will equal Msw , as defined 
in Fig. 6 and Eq. (15). This will be the maximum value 
of both the exact and approximate distributions shown in 
Fig. 6, so it is immaterial which of these is assumed.

As the bending moment in the member now depends 
only on self-weight, it will not change between load-cases. 
In other words, the load-case specific variables aM,k can be 
replaced with a single value aM , which can be defined from 
Eqs. (16) and (17) to be:

Axial and shear yield The shear force in the member is 
caused by the self-weight alone once the end moments have 
been removed. Therefore the maximum absolute value of 
the shear force ( qV ,k ) will be invariant between load-cases, 
and can be replaced with a single value qV , which is defined 
as | �gla

2
cos �| . Note also that this implies that the worst case 

points for shear and normal will always coincide in the pin 
jointed case, rather than this simply being assumed, as in the 
rigid jointed derivation.

The maximum axial force, qN,k may still vary between 
load-cases, and is still defined by the expression 
| �gla

2
sin �| + |qk| . Combining these expressions using the 

linearised Von Mises constraint, Eq. (21), gives:
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Equality may be assumed as this is the only constraint on 
aN,k , and thus the constraint can be simplified to give:

where ȳ = yB − yA.
Combined yield constraint The moment and axial/shear 

yield constraints are combined using the constraint that 
aM + aN,k ≤ a . From Eqs. (23) and (24) the following can 
be obtained:

This may be rearranged to give a form which is compara-
ble with the yield condition for the classical lumped mass 
formulation:

Comparing this with Eqs. (1c) and (1d), the additional terms 
concerning |ȳ| and |x̄| in Eq. (27) can be interpreted to repre-
sent reductions in the effective limiting stress of the member, 
caused by the need to carry its own self-weight. If the values 
of |ȳ| and |x̄| are sufficiently large, the term in the bracket 
will become zero or even negative, which implies that such 
elements are not feasible, and should therefore be excluded 
from the ground structure. This is discussed in more detail 
in Sect. 3.1.2.

3 � Comparison of formulations

Next, the performance of the formulations described in 
Sect.  2 are compared. In Sect.  3.1 individual elements 
are considered, using examples with real-world values 
(Sect. 3.1.1), and also observing differences in predicted 
limiting span (Sect. 3.1.2). In Sect. 3.2, the different formu-
lations are used to solve a simple textbook-style problem, 
with results compared in terms of optimal form, volume, 
and numerical convergence characteristics.

3.1 � Comparison of individual elements

3.1.1 � Single element problem

Consider the problem setup shown in Fig. 8, with mate-
rial assumed to have a stress limit, � , of 500 MPa and unit 
weight, �g , of 80 kN m −3 . The volumes of material required 

(24)�qk� + ��gla
2
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2
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�ȳ�a +

√
3
𝜌g

2
�x̄�a + �qk� ≤ 𝜎a

(27)�qk� ≤
�
𝜎 −

𝜌g

2
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√
3
𝜌g

2
�x̄� − 𝜌g�x̄�l

4d

�
a

to support the applied load using the different formulations 
are shown in Fig. 9.

Firstly, the classical lumped formulation requires an ele-
ment with cross-sectional area a = 0.012 m2 , equivalent to 
a solid circular cross-section of radius 62 mm. Note that 
this result does not depend on the value of the material unit 
weight, and indeed the same result would be obtained if self-
weight was neglected entirely.

A catenary element for this example would have a maxi-
mum dip (or rise, if the force was reversed so as to be com-
pressive) of 1.80 m. At midspan, where the element is hori-
zontal, the cross-sectional area will be precisely equal to 
that of the lumped formulation, i.e. 0.012 m 2 ; this increases 
slightly to a maximum of 0.120034 m 2 at the end points. The 
total volume of the element is 3.600691 m 3 , a mere 0.02% 
increase in overall volume compared to the lumped case; 

Fig. 8   Single element example: problem setup

Fig. 9   Single element example: total structural volumes using the 
different formulations, with the influence of the approximations 
described in Sect. 2 indicated



	 H. E. Fairclough, M. Gilbert 

1 3

197  Page 10 of 24

however the material is now optimally distributed over a 
much larger structural depth.

Considering the pinned beam formulation, from Eq. (23) 
it can be found that 0.012 l

d
a = aM , showing that the propor-

tion of the cross section used to carry the bending stresses 
induced by the self-weight is dependent on the bending 
depth d, or, more conventionally, on the beam span:depth 
ratio l

d
 . For example, a value of 20 for the beam span:depth 

ratio (as in Fig. 9) would result in 24% of the cross-section 
being used to carry bending.

From Eq. (27) the required overall area (in m 2 ) of the 
beam element can be found to be a =

6

479.22−6
l

d

 , which again 

will depend on the span:depth ratio. Even when the beam is 
very deep ( l

d
→ 0 ) the required area will be 0.01252 m2, a 

4.4% increase over that required by the lumped formulation; 
this increase accounts for the need to carry the shear forces 
imposed by the self-weight loading. For a span:depth ratio 
of 20 the required area a will be 0.0167 m2. The use of the 
linear approximation to the Von Mises’ criterion can be cal-
culated to cause an increase in volume of 4.2% when the 
beam is very deep, or 5.7% when l

d
= 20.

As shown in Fig. 9, the required material in the aN sec-
tion (i.e. the ‘web’, carrying axial and shear forces) does 
not depend on the situation at the ends of the member, and 
is therefore the same for both pin-ended and rigid jointed 
beams. The assumption that maximum shear and normal 
stresses are co-incident is found to be true in both these 
cases, as the element is horizontal and thus has a constant 
normal force (similarly, this assumption is also true for all 
vertical elements, and the aforementioned case of elements 
with end moments of zero).

For the rigid-jointed beam formulation, the optimal 
moment distribution (using the approximated distribution 
in Fig. 6) occurs when the moment at the fixed support, m2 , 
is equal in magnitude to the moment at the quarter point. 
Therefore, the moment to be resisted will be 0.75Msw . This 
results in an element with total area a = 0.01583 m2 if the 
span:dip ratio is 20, giving a total volume of 4.7486 m3.

If the exact, parabolic, distribution of the bending 
moment is instead assumed, then the minimum moment to 
be resisted will be obtained when m2 is equal to 0.684Msw , 
leading to a total member area a = 0.01525 m2 for a beam 
with span:dip of 20. This implies an error of 3.8% caused 
by the approximated moment distribution employed in this 
paper. Note that this example demonstrates a case that is 
particularly challenging for this approximation; the self-
weight moment is large, and the end moments are highly 
asymmetrical. Of course, if a more precise approximation 
is required then the moment distribution may be discretized 
using a larger number of line segments.

The most significant assumption (in terms of impact 
on the volume) within the beam formulations is that the 

elements should be prismatic, i.e. that a, aM,k and aN,k are 
constant along the bar. This may be quantified by comparing 
the single element solution above with the result obtained 
when many rigid-jointed beam elements are used, arranged 
along the centre-line of the beam. For this case, the single 
element (i.e. prismatic) solution has a volume 16.7% greater 
than the result using 100,000 elements. Reasonable approxi-
mations are possible, however, with more modest resolu-
tions; using 10 elements increases the volume by just 3.2%.

3.1.2 � Element volumes and limiting spans

It was noted in Fairclough et al. (2018) that catenary ele-
ments have a maximum horizontal span of ��

�g
 , although they 

have no limit in the vertical direction; this limit is unchanged 
by the multiple load-case extension described here. Con-
versely, both the weightless and lumped mass approaches 
may permit elements of unrestricted length—assuming 
appropriate boundary conditions. The electronic supplemen-
tary material (ESM) contains plots of the limiting spans for 
all the formulations considered here, alongside the relative 
volumes of shorter elements.

This indicates that the beam formulations are much more 
heavily influenced by self-weight. The maximum horizontal 
span for a beam element, even when the structural depth is 
large, is 2√

3

�

�g
 , which is just 37% of the span possible using 

the same material in catenary form. The beam elements are 
also restricted in their vertical height. Even at much shorter 
spans, the use of beam elements implies greater impact from 
self-weight, with effects noticeable at a span roughly a fifth 
of the equivalent with catenary elements.

Note that in the layout optimization formulation, indi-
vidual potential elements that lie outside their respective 
limits should be eliminated from the ground structure. For 
these ‘impossible elements’, the functions outlined in Sect. 2 
may be undefined or complex-valued, or may give coefficient 
values that would lead to infeasible problems.

3.2 � Comparison of resulting structures

In this section, each of the formulations developed in Sect. 2 
is in turn used to solve the same problem, allowing differ-
ences in the resulting structures to be identified.

3.2.1 � Problem description

The problem considered involves a uniformly distributed 
load of magnitude � applied between a pair of pinned sup-
ports, as shown in Fig. 10. The material to be used has the 
same limiting stress, � , in both tension and compression 
(limiting Von Mises stress in the beam-based formula-
tions), with unit weight �g . Initially, only a single load-case 
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is considered. To discretize the load, the Type-III loading 
defined by Darwich et al. (2010) is used.

Similar problems have been considered analytically, 
albeit without consideration of self-weight (Hemp 1974) 
and also with different loading distributions (Chan 1975), 
variations in permitted limiting tensile and compressive 
stresses (Pichugin et  al. 2012) or with variable height 
loading (Darwich et al. 2010; Tyas et al. 2011). A version 
involving multiple load-cases was considered by Sokół and 
Rozvany (2013), where each of nine equally spaced point 
loads was applied separately. In all of these cases, the design 
domain has generally been taken to be the half plane above 
the supports, though to keep the problem size manageable 
in the numerical studies the domain height has been limited 
to half the span, and the horizontal extent of the problem to 
between the two supports. Symmetry boundary conditions of 
the type used by Fairclough and Gilbert (2020) are employed 
so that only half of the domain needs to be explicitly mod-
elled, when loading is symmetric; these behave identically 

to standard symmetry boundary conditions (i.e. roller/pin 
supports).

3.2.2 � Influence of nodal discretization

In the first case considered the span, L, between supports is 
taken as 0.4 �

�g
 ; for a steel material with limiting stress 200 

MPa and unit weight 80 kN/m3 , this equates to a span of 1 
km. Figure 11 shows the normalized volumes for the solu-
tions obtained using each formulation, at various nodal reso-
lutions; Fig.  12 shows the resulting structures for the 
nx = 100 case. Here nx is defined as the number of nodal 
divisions across the full span. The spacing of nodes is the 
same in the horizontal and vertical direction, and thus the 
m o d e l l e d  h a l f - s p a n  c o n t a i n s  a  g r i d  o f 
(0.5nx + 1) × (0.5nx + 1) nodes. All pairs of nodes have the 
potential to be connected using the adaptive member adding 
method, and thus the largest nx = 160 problems permit over 
330 million potential members. For the beam formulations, 
the element depth, d, was chosen to be L

1000
.

To extrapolate a volume for infinitely many divisions, 
the approach of Darwich et al. (2010) was employed. The 
extrapolated volumes, V∞ , are given in Table 1 and shown as 
dashed lines in Fig. 11. The value of V∞ obtained here with 
the weightless formulation is just 0.01% away from the value 
obtained by Pichugin et al. (2012) (who used higher nodal 
resolutions in the y direction and also higher values of nx).

The forms in Fig.  12a–c all resemble the numerical 
result of Pichugin et al. (2012, Fig. 2)—a modified version 
of Hemp’s arch (Hemp 1974) with a horizontal tie bar in 
the centre. However, the lumped and catenary approaches 

Fig. 10   Single span example: problem definition

Fig. 11   Single span example: convergence of different self-weight models. Solid lines show fit line, dashed lines show values of V∞ . Left: com-
parison of results for all models. Right: detail of region containing lumped and catenary model results
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(Fig. 12b, c), substantially increase the heights of the struc-
tures (see L

H
 values in Table 1).

With the beam formulations (Fig. 12d, e), the centre of 
the arch does not directly support any hangers. At this point 
the thickest elements form a straight load path, whilst sur-
rounding thinner members form a framework to more effi-
ciently carry the self-weight. The beam formulations also 
display significantly increased resolution-dependence, which 
is unsurprising since the bending induced by self-weight is 
proportional to element length squared.

3.2.3 � Influence of span

The effect of varying the span length L is now investigated. 
Figure 13 shows the corresponding volumes with nx = 100 
over a range of spans up to L = 1.6

�

�g
 (around 4 km with 200 

MPa steel). The volumes in Fig. 13 have been scaled to 

highlight the changes in volume caused by scale effects, such 
that the weightless solutions form a straight horizontal line. 
The time required to solve these problems is discussed in 
Appendix B; notably, the pinned beams require only around 
a quarter of the time to solve compared to the equivalent 
problem with rigid joints.

In general, the increase in span leads to a taller structure. 
For example Fig. 14b shows the resulting structure using the 
catenary formulation at L = 1.6

�

�g
 (c.f. Fig. 12c). A similar 

pattern was observed using the beam formulation, although 
the height of those structures became restricted by the per-
mitted domain height. In the beam solutions, there is also a 
preference towards moving material towards the supports, 
extending the triangular regions evident in Fig. 12d–e. There 

Table 1   Single span example: extrapolated volumes and span:dip 
ratios, L

H
 , for the solutions obtained

Formulation V∞
L

H
 , n

x
= 160

Weightless 3.1516�L2

�

160

54
≈ 2.9630

Lumped mass 4.0641�L2

�

160

59
≈ 2.7119

Catenary 4.0640�L2

�

160

58
≈ 2.7586

Rigid jointed beam 4.0698�L2

�

160

64
= 2.5000

Pinned beam 4.1889�L2

�

160

67
≈ 2.3881

Fig. 12   Single span example ( L = 0.4
�

�g
 ): resulting optimized layouts 

using each model of self-weight, a weightless; b lumped mass; c cate-
nary; d rigid jointed beam; e pinned beam

Fig. 13   Single span example: effect of varying span on optimized 
volume
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is a suggestion that a similar effect may be occurring in the 
catenary solution (Fig. 14b), although due to the increased 
efficiency of the catenary approach (see Sect. 3.1.2) the 
effect is less pronounced.

The difference between modelling the problem by exploit-
ing the symmetry plane and by modelling the whole domain 
was also tested. For the weightless formulation and the three 
new approaches proposed here, no significant difference in 
terms of the form or volume of the structure was observed, 
although problems utilizing the symmetry plane required 
only around one third of the CPU time to solve.

However, when using the lumped mass method, the 
results obtained when modelling the whole plane dem-
onstrated a key weakness of the method—its propensity 
to generate unrealistic solutions involving very long ele-
ments. This is evident in the solution shown in Fig. 14a, 
which contains very long unsupported elements along 
the top of the structure. Using these elements allows the 
optimized form to transmit the force along the top of the 
structure without incurring any additional self-weight load 
in the critical mid-span regions. Figure 13 shows that the 
volumes of the catenary and lumped mass approaches are 
very similar until the point at which these unrealistic ele-
ments emerge. In other cases, the lumped mass formula-
tion may over-estimate the volume of material required. 
In the present example this is particularly notable in the 
near-vertical hangers; these should vary in area along their 
length due to the changing load from self-weight, yet the 
lumped mass formulation can only model them with con-
stant cross-section. This actually causes the lumped mass 
solution to have a slightly ( ≤ 0.3% ) higher volume than the 
catenary solution at shorter spans.

4 � Combined approaches

The self-weight modelling approaches described in Sect. 2 
are compatible with each other, making it possible to 
construct problems that simultaneously involve multiple 
approaches. The corresponding general formulation is given 
in Appendix A. This section considers the case where each 
pair of nodes is connected by multiple potential members 
of different types.

The major motivation behind adopting a combined 
approach stems from the behaviour of the catenary ele-
ments as their axial force is altered. The catenary approach 
described in Sect. 2.3 relies on assumptions that may not be 
conservative when multiple load-cases are present. Namely, 
the ‘lumping’ of the unused portions of the cross section to 
the end points. The practical result of this is to ignore the 
bending stresses that would be generated by this material. 
The implications of this assumption vary in severity depend-
ing on the application involved. In this section, this will be 
explored with reference to a number of variations on the 
single element problem shown in Fig. 8.

As the problematic catenary elements are by definition 
not fully stressed, they will be analysed as an elastic mate-
rial. Initially, the problem is set up exactly as shown in 
Fig. 8, and the resulting catenary element is approximated 
using 100 straight beam elements in the GSA structural 
analysis package (Oasys 2021) using a solid circular cross 
section of the required area. The horizontal force, marked 
as f in Fig. 8, is then reduced and the structure is again ana-
lysed. The structure itself, and therefore the loading from 
gravity, remains unchanged throughout.

Initially a linear-elastic model is used to analyse the struc-
ture; this results in very large bending stresses, even for very 
small variations in the applied load. For the realistic values 
considered in Fig. 8, reducing the applied force to just 90% 
of the design value increases the stress to 6270 MPa, more 
than 12 times the prescribed design strength of in this case 
500 MPa. This value is particularly large due to the slender-
ness of the element, which does not provide a large structural 
depth (recall that the radius of the element is approximately 
62 mm) to generate the required bending resistance.

To further investigate this, the same problem has been 
investigated with values of the horizontal force f multi-
plied by 100 and 10,000, leading to catenaries with radii 
of approximately 620 mm and 6200 mm, respectively. 
These thicker catenaries do reduce the problem, yet they 
still require stresses above the design level; at 90% loading 
these problems have peak stress of 1030 MPa and 508 MPa, 
respectively.

However, this issue can be better understood with the help 
of a large deformation analysis. The GSrelax solver in GSA 
(Oasys 2021) is here used for this purpose, with the problem 

Fig. 14   Single span example ( L = 1.6
�

�g
 ): resulting layouts using dif-

ferent models of self-weight, a lumped mass; b catenary
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otherwise set up as previously described. The resulting peak 
stresses in each case are shown in Fig. 15. It can be seen 
that for all the magnitudes of design load, the stress in the 
element reduces as the axial force is initially reduced from 
its design value.

For the original case, which was chosen to be representa-
tive of the values for a stay in a cable stayed bridge, the 
stress very closely matches the values expected for a weight-
less member until very low values of utilization are involved. 
Even once they diverge, the catenary still has stresses well 
below the design stress limit. The larger catenaries do show 
larger than prescribed stresses when the applied load is very 
low, principally caused by bending action.

The case r = 6e5 implies a catenary with radius approxi-
mately 620 mm, similar to the radius of the main cables 
proposed for the Strait of Messina suspension bridge, which 
have a radius of 637 mm (Walker et al. 2011). Structural 
members of this size and larger would very rarely be realized 
as a solid cross-section. For example, the proposed Messina 
cables are constructed from 354 smaller strands resulting in 
19% void within the circular section. Assuming the whole 
section still acts compositely, this would lead to an increased 
bending resistance for the given cross-sectional area, relative 
to that assumed here.

However, if this analysis is repeated but now with a 
compressive force, a very different picture emerges. The 
stress values obtained using the linear elastic model are 
unchanged, but the large deformation analysis does not suc-
cessfully converge. Physically, this is the result of the shal-
low arches involved being very susceptible to snap-through 
effects, leading to a large change in the shape of the element, 
eliminating its resistance.

This study serves to show that the catenary elements are 
most suitable for modelling cable type elements with small 
cross sections and tensile forces. Thus in the examples pre-
sented in Sect. 5 catenary elements are generally permitted 

to carry tensile forces only. Beam elements are instead used 
to carry the compressive forces. This is simply achieved by 
removing the variables corresponding to the compressive 
catenary form from the problem. Thus the ground structures 
used resemble that shown in Fig. 16. Note that the beam 
elements are still permitted to carry tensile forces, but as 
the catenary elements are more efficient they will usually 
be preferred.

To make use of the adaptive ‘member adding’ solu-
tion method in this combined approach, the initial ground 
structure consists of adjacent connectivity members in both 
the beam and catenary models. During the member add-
ing phase, each material model is checked separately, and 
members of the appropriate type are added where required.

5 � Examples

This section presents results for a number of simplified 
real-world problems. Firstly in Sect. 5.1, the single-span 
example originally considered in Sect. 3.2 is revisited, now 
using the combined approach described in Sect. 4 and also 
considering multiple load-cases. Various bridge type design 
problems comprising multiple spans are then considered in 
Sects. 5.2 and 5.3. Finally, in Sect. 5.4, the simple modifica-
tions required to use the formulations from Sects. 2.3 and 
2.5 in three dimensions are described, then demonstrated via 
application to a stadium roof-like example problem.

5.1 � Single span example revisited

The scenario from Sect. 3.2 is considered for spans L = 0.4
�

�g
 

and L = 1.6
�

�g
 , using both pinned beam and rigid jointed 

beam models—combined with catenary elements in both 
cases. The limiting tensile stress of the catenary elements 
and the maximum von Mises stress for the beam elements 

Fig. 15   Single element example: elastic analysis results for catenary 
elements when the applied load f is reduced below the design load r 

Fig. 16   Example ground structure with tensile catenary (blue) and 
straight beam elements (red) present (c.f. Fig. 1c)
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both have the same value � , though the catenary elements 
are not permitted to carry compressive forces.

In addition to the single load-case problem described 
above, a multiple load-case problem is also considered. 
Specifically, an additional load-case in which only one half 
of the domain is loaded (to the same magnitude, � , as the 
uniform case) is considered; the mirror image of this load-
case is considered implicitly.

The volumes for each case are shown in Fig. 17, which 
also shows what proportion of the resulting structure is com-
posed of beam elements and catenary elements. It can be 
seen that the multiple load-case solutions employ a larger 
proportion of the more versatile beam elements than the cor-
responding single load-case solutions. For longer spans, a 
greater proportion of the volume is consumed by beam ele-
ments; this is likely due to the high sensitivity to self-weight 
of the beam formulation (as discussed in Sect. 3.1.2).

In general, the increase in volume between the single 
and multiple load-case problems is relatively small; how-
ever the optimal forms differ noticeably, as shown in Fig. 18. 
The overall form of all of the single load-case solutions is 
similar to the results shown in Fig. 12, comprising a thick 
arch region with hangers spaced to avoid a triangular region 
around midspan.

The multiple load-case results in Fig. 18 show a more 
complex form, although an outer arch of beam elements is 
still evident. Secondary structure results in a steeper arch 
at the supports than for the corresponding single load-
case problems. Beam elements are also used below the 
arch region when multiple load-cases are present, trian-
gulating much of the structure. This is reminiscent of the 
multi-layered laminates that have been observed in mul-
tiple load-case problems without self-weight (Sokół and 
Rozvany 2013).

Fig. 17   Single span example: volumes of optimized structures when 
both tensile catenaries and beam elements are allowed throughout 
the domain, with relative contributions from the beam members and 
catenary elements shown. Volumes obtained when using only a single 
element type are also indicated for comparative purposes
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Fig. 18   Single span example ( L = 0.4
�

�g
 ): results obtained when both catenary and beam elements are permitted throughout the domain for the 

scenarios indicated. Red/brown lines indicate beam elements and blue lines indicate catenary elements
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5.2 � Three span example

A three span bridge problem is shown in Fig. 19. If the 
supports at the outer anchorages are assumed to provide 
restraint only in the horizontal direction, and the pylon sup-
ports provide restraint only in the vertical direction, then 
this problem becomes essentially identical to a section of a 
bridge with an infinite number of spans, as considered e.g. 
by Pichugin et al. (2015), Beghini and Baker (2015), Fair-
clough et al. (2018). In particular, Fairclough et al. (2018, 
Fig. 9) obtained solutions for this problem using catenary 
elements, though only for single-load case problems. In 
addition to the optimized form and a simplified version 
thereof, results for size and geometry optimized suspension 
and cable-stayed layouts were also given.

Here, a three span version of this problem is considered. 
To aid comparison, initially the catenary formulation is 
used in isolation; Fig. 20 shows the designs generated. The 
domain has been discretised using 60 nodes horizontally 
across the whole domain, matching the resolution used by 
Fairclough et al. (2018), and the material properties were 
also chosen to provide results for the case when �T = 3�C , 
as considered previously. This case better represents the real-
world situation, where the limiting stress in tensile cable 
members (made of drawn steel wire) is usually much higher 
than for compressive members (made of hot rolled steel).

The result for a case involving a single load case and 
boundary conditions corresponding to the infinite span 
bridge is first used to establish a benchmark value, V0 . The 
support at the anchorage is now altered to also provide verti-
cal restraint; this reduces the optimal volume to 0.997V0 , i.e. 
just a 0.3% reduction. If horizontal support is also added at 
the base of the pylon, the volume reduces to 0.993V0 . From 
this it is evident that, when a single uniform load-case is pre-
sent, the difference in support conditions between an infinite 
bridge and this three span bridge is very small.

These small reductions in volume are generated through 
variations in the forms of the optimized structures, where 
the cables in the side span are at a slightly shallower angle 

Fig. 19   Three span problem ( L = 0.8
�T

�g
 ): a problem definition, high-

lighting load-cases; b boundary conditions chosen to match the infi-
nite bridge case (horizontal only supports at anchorage, vertical only 
at pylon)—load-case 1 only; c fixed pin supports at both pylon and 
anchorage—load-case 1 only; d as c but all load-cases considered

Fig. 20   Three span example: results using the catenary formulation, 
compared with selected combined beam and catenary solutions and 
infinite span bridge solutions from Fairclough et al. (2018)
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than the main span; see Fig. 19b and c. Such an alteration 
would not be possible with the more restricted cable-stayed 
and suspension forms presented in Fairclough et al. (2018, 
Fig. 9), so these results would not be altered by the change 
in boundary conditions. Figure 20 shows computed optimal 
volumes for rationalized structures from Fairclough et al. 
(2018) alongside results for the three span case modelled 
using catenary elements.

Figure 20 also shows the optimal volumes obtained for 
the same problem when multiple load-cases are involved; the 
cases are as shown in Fig. 19. Such pattern load cases could 
not be supported by the typical forms of suspension and cable 
stayed forms without requiring either bending resistance at 
the joints, or consideration of large-deformation effects.

From Fig. 20, it can be seen that the volume of material 
required to construct the optimal structure for the multiple 
load-case problem is still lower than the volume of mate-
rial required to construct a suspension or cable stayed form 
when just a single uniform load-case is involved. As the 
single load-case problem provides a lower bound on the pos-
sible volume when multiple load-cases are involved, it can 
be concluded that cable stayed and suspension bridge forms 
use respectively at least 13% and 34% more material than 
is necessary.

This problem has also been solved using the combined 
catenary and pinned beam approach described in Sect. 4. 
Stresses in the beam elements are limited to �C whilst the 
catenary elements can now carry only tensile stresses, up to 
�T where �T = 3�C . The beam element depth is set to L

1000
.

As in the example presented in Sect. 3.2.2, the beam ele-
ment models are very sensitive to the chosen nodal resolu-
tion. Halving the nodal spacing (from 60 to 120 nodes across 
the domain), reduces the volume by 17%, whilst the same 
change in the catenary only models causes a reduction of just 
2%. The volumes of the solutions with 120 nodes across the 
domain are included in Fig. 20.

The form of the optimal structure to carry the multiple 
load-case problem uses arch type forms close to the anchor-
age, which may be impractical from a constructibility per-
spective. However, as there is only a single pin support avail-
able, there is only a limited range of possible forms in that 
area. To address this, the next example will make use of a 
back-span, i.e. a line along which support is available at any 
point.

5.3 � Two span example

The example shown in Fig. 21a shows a problem consisting 
of a bridge with two spans of equal length L. In addition to a 
central pylon support, pinned supports may be located any-
where within a backspan of length L

2
 beyond each end of the 

deck. The first load-case is a uniformly distributed load of 
magnitude � across both spans, whilst the multiple load-case 

problem also has a case where the load (still of magnitude 
� ) is applied to only one span (the mirror case is applied 
implicitly). The layout optimization problem is solved using 
a Cartesian grid comprising 102 divisions along the base of 
the domain.

The problem is solved using the combined catenary and 
beam formulations, with the performance of both pinned 
and rigid beam approaches evaluated. The limiting tensile 
stress of the catenary elements, �T , has again been set to 
three times the limiting stress of the beam elements, to 

Fig. 21   Two span example (pinned beam and catenary elements): a 
problem definition; b solution for L =

0.1

15

�T

�g
≈ 50 m; c solution for 

L =
4

15

�T

�g
≈ 2 km; d solution for L =

8

15

�T

�g
≈ 4 km

Fig. 22   Two span example: optimized volumes, with the (geometry 
optimized) solutions shown in Fig. 21 indicated by crosses
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approximately reflect real-world conditions, and the beam 
element depth is set to L

1000
 . Figure 22 shows the optimal 

volumes for each approach for a range of spans and for both 
the rigid and pinned joint formulations. It can be seen that 
the rigid and pinned joint models show close agreement in 
terms of optimal volume, with the pinned beam result lying 
within 3% of the rigid jointed beam result. As the pinned 
beam formulation required approximately half the computa-
tional time to solve, this is likely to be appealing in practice.

Figure 21 shows the structures obtained when using the 
pinned beam model. These have been rationalized using the 
geometry optimization procedure of He and Gilbert (2015), 
which increased clarity somewhat and had a small ( ≤ 0.7% ) 
effect on the volumes, as shown in Fig. 22. The results 
obtained using the rigid jointed approach were qualitatively 
similar to the pin jointed results, although the transition 
between different forms occurred at slightly higher spans.

At the shortest spans, the unequal loading is supported by 
a double arch form comprising primarily of beam elements, 
with the presence of upper and lower arches giving addi-
tional bending strength (Fig. 21b). As the spans lengthen, 
the arch form becomes inefficient, as is evident from Fig. 22, 
which shows an initially relatively steep increase in volume 
with span when multiple load-cases are involved. This is 
likely because a large proportion of the material forming the 
structure is initially located around midspan, and this must 
be carried an increasingly long distance to the supports.

The arch form is then replaced by the form shown in 
Fig. 21c; this structure is similar to the single load-case 
solution to the infinite span problem, consisting of regions 
of compressive members radiating out from the supports, 
and tensile members connecting these to the loaded deck. 
To deal with the multiple load cases, additional tie cables 
connect the tops of each of the pylon regions. As the span 
increases further (Fig. 21d), it becomes preferable to connect 
directly to the base of the outer pylons.

Based on the results shown in Fig. 21, a simplified design 
for a multiple span bridge has been proposed, as shown in 
Fig. 23. This is similar to the simplified split-pylon designs 
proposed by Fairclough et al. (2018), though now with the 
addition of a tie cable between the tops of adjacent pylons to 
carry the bending induced when adjacent spans are loaded 
unequally. Geometry optimization has been used to refine 
the nodal positions of the simplified form, and the prob-
lem has been extended to the third dimension by assuming 
two parallel structures with bracing between the pylon ele-
ments, following typical real-world practice for suspension 
and cable-stayed bridges.

Figure 21 shows only a portion from the centre of the 
bridge; as demonstrated in this section and in Sect. 5.2, the 
boundary conditions at the anchorages can significantly 
influence the optimal form, making it difficult to propose a 
general form for these regions.

Fig. 23   Concept bridge for crossing requiring multiple very long spans, based on the results described in Sect. 5.3
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5.4 � Three‑dimensional example

The catenary and pinned beam examples can be extended to 
three dimensions by simply performing all element calcula-
tions in a local element-specific co-ordinate system in the 
plane containing the vector along the element and the grav-
ity vector. The coefficients for the equilibrium constraints 
should then be projected back to the global co-ordinate sys-
tem.1 It will be necessary to have three force equilibrium 

constraints per node, rather than the two required for planar 
problems.

Fig. 24   Three-dimensional stadium roof example: plan view of prob-
lem, with darker grey shaded region denoting the independent (mod-
elled) design domain

Fig. 25   Three-dimensional stadium roof example: optimized volumes 
for domains of different radius, with the (geometry optimized) solu-
tions shown in Fig. 26 denoted by crosses

Fig. 26   Three-dimensional stadium roof example: optimal forms for 
a R = 0.001

�T

�g
 ; b R = 0.08

�T

�g
 ; c R = 0.16

�T

�g

1  Note that for vertical elements, there is not a unique plane contain-
ing the element and the gravity vector. However in this case, for both 
pinned beam and catenary elements, the horizontal components in the equilibrium constraints are zero, and only the (well-defined) vertical 

direction is important.

Footnote 1 (continued)
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Note that the rigid jointed beam problem presents a 
greater challenge in its extension to three-dimensional prob-
lems; torsional loading must be considered, as must minor 
axes of bending; furthermore the orientation of the element 
about its axis must be decided upon. Further consideration 
of these elements is therefore beyond the scope of this paper.

A three-dimensional problem involving an annular design 
domain, such as may be present for the design of a stadium 
roof, will now be considered. The specification is shown on 
plan in Fig. 24, and the domain extends vertically 0.3R. The 
independent domain region is discretized using a grid of 140 
nodes, placed at grid points located at 0.1R spacings on the 
symmetry planes, and at the mid- and quarter-points of a 
line connecting corresponding points. The limiting stress in 
the catenaries �T is taken as twice the permitted von Mises 
stress of the beams, and the depth of the beam elements is 
set as 0.02R.

It is of interest to study the influence of the span (varied 
by changing the radius R) on the optimal designs generated 
and the corresponding structural volume. The optimized vol-
umes are shown in Fig. 25 and the corresponding forms are 
shown in Fig. 26. It is evident that the form obtained changes 
markedly as the span is increased. At the shortest spans, the 
solution includes a compression ring towards the centre of 
the design domain, with half-arches carrying load back to 
the supports. As the span increases, the compression ring 
moves towards the outside of the domain. This increases 
the length of the ring, and hence its volume, but reduces the 
distance that the weight of the ring must be transmitted to 
the supports. At the longest spans, the compression ring lies 
at the outer edge of the domain, with a cable net structure of 
catenary elements supporting the loads.

6 � Concluding remarks

Layout optimization provides a powerful means of identify-
ing materially efficient structural forms. To model problems 
involving self-weight and multiple load-cases using mate-
rials capable of deforming plastically, three new formula-
tions have been presented herein; two formulations make 
use of beam elements and a third uses catenary elements, 
extending a previously proposed formulation to enable mul-
tiple load-cases to be handled. These formulations improve 
the accuracy of the solutions by removing the significant 

non-conservative errors introduced when using the tradi-
tional lumped mass modelling approach.

The primary drawback of the catenary formulation is the 
potential for second-order issues to arise, particularly when 
elements are loaded in compression. Conversely, the behav-
iour of long flexible tensile members, such as cables, has 
been shown to be adequately modelled using this approach.

The beam formulations provide greater versatility, 
although, due to the use of some conservative approxima-
tions, they also require the use of higher resolutions to obtain 
acceptable results. A combined approach has therefore been 
proposed that involves the use of catenary elements to model 
tensile members and beam elements to model compressive 
members. The efficacy of this approach has been demon-
strated via application to a number of test problems. It is 
shown that the optimal form for a given problem can vary 
dramatically as the scale of the problem is varied, due to the 
differing influence of self-weight effects.

For the cases considered, the rigid and pinned beam 
formulations were found to give similar results, with the 
rigid jointed formulation providing only slight reductions 
in structural volume. Thus, due to the lower computational 
requirements associated with the pinned beam formulation, 
this is likely to be preferable in many situations.

In conclusion, a combined approach has been shown to be 
effective at identifying materially efficient structural forms 
for long-span structural design problems, when self-weight 
effects are significant. For bridge type problems, split-pylon 
forms were found to be efficient, with multiple load-cases 
carried through the use of additional tie cables. Although 
direct comparisons can be challenging, the indications are 
that significant material savings can be achieved compared 
to traditional cable-stayed and suspension bridge forms 
incorporating vertical pylons.

Appendix 1: full combined formulation

The list of optimization variables associated with the formu-
lations described in the paper are outlined in Table 2. The 
full formulation for a problem that takes advantage of all 
three self-weight modelling approaches described is shown 
in Table 3, though generally not all of these would be used 
simultaneously.



Layout optimization of long‑span structures subject to self‑weight and multiple load‑cases﻿	

1 3

Page 21 of 24  197

Table 2   Optimization variables for a problem containing c catenary elements, d pinned beam elements and e rigid-jointed beam elements

Note that the indexing for each element type is independent (i.e. catenary 1 is not necessarily related to pinned beam 1 or to rigid-jointed beam 
1)

Variable Description

Per catenary

� =

⎡
⎢⎢⎢⎢⎣

r+
1

r−
1

r+
2

⋮

r−
c

⎤
⎥⎥⎥⎥⎦

Notional (at point M) design load for catenary elements in tension ( + ) or compression ( − ). If ten-
sion/compression is not permitted for an element then relevant variable can be removed or set to 0. 
Implicitly non-negative from Eq. (10).

�k =

⎡⎢⎢⎢⎢⎢⎣

p+
1,k

p−
1,k

p+
2,k

⋮

p−
c,k

⎤⎥⎥⎥⎥⎥⎦

p±
i,k

= r±
i
− q±

i,k
 , i.e. the optimization variables represent the variation in force between the current load-

case, k, compared to the maximum load for the element i. Non-negative, see Eq. (10).

Per rigid-jointed beam

�r =

⎡⎢⎢⎢⎣

a1
a2
⋮

ad

⎤⎥⎥⎥⎦

Total cross-section area for each rigid-jointed beam element. Implicitly non-negative due to Eq. (13).

�N,k =

⎡⎢⎢⎢⎣

aN,k,1
aN,k,2
⋮

aN,k,d

⎤⎥⎥⎥⎦

Area of rigid-jointed beam cross-sections carrying axial and shear loading (i.e. the web). Implicitly 
non-negative due to Eq. (21).

�M,k =

⎡⎢⎢⎢⎣

aM,k,1

aM,k,2

⋮

aM,k,d

⎤⎥⎥⎥⎦

Area of rigid-jointed beam cross-sections carrying moment loading (i.e. flanges). Implicitly non-
negative due to Eq. (14).

�r,k =

⎡
⎢⎢⎢⎢⎢⎣

qk,1
mA,k,1

mB,k,1

qk,2
⋮

mB,k,d

⎤⎥⎥⎥⎥⎥⎦

Axial force (at mid-point) and end moments for rigid beam elements in load-case k. �r,k ∈ ℝ , the sign 
gives the direction of the action (tension/compression or clockwise/anti-clockwise).

�N,k =

⎡⎢⎢⎢⎣

qN,k,1
qN,k,2
⋮

qN,k,d

⎤⎥⎥⎥⎦

Maximum absolute value of normal force in each rigid-jointed beam element. Implicitly non-negative 
from Eq. (18).

�V ,k =

⎡⎢⎢⎢⎣

qV ,k,1
qV ,k,2
⋮

qV ,k,d

⎤⎥⎥⎥⎦

Maximum absolute value of shear force in each rigid-jointed beam element. Implicitly non-negative 
from Eq. (19).

Per pinned beam

�p =

⎡⎢⎢⎢⎣

a1
a2
⋮

ae

⎤⎥⎥⎥⎦

Total cross-section area for each pin-jointed beam element. Implicitly non-negative due to (27).

�p,k =

⎡⎢⎢⎢⎣

qk,1
qk,2
⋮

qk,e

⎤⎥⎥⎥⎦

Axial load at midpoint for each pin-jointed beam element. Positive/negative values represent tension/
compression forces respectively.
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Appendix 2: implementation

Table 4 shows the total (wall clock) times required to solve 
the single span problem considered in Sect. 3.2.3 and the 
single load-case problems considered in Sect. 5.1. These 
times were obtained using a laptop with an Intel i7-6700HQ 
CPU and the linear programming problems were solved 
using MOSEK 9.1 (ApS 2020).

Note that quoted run times are given as ranges, obtained by 
solving each problem for a number of different spans. This is 
because the time required to obtain the solution to any given 
problem is somewhat variable, and hence presenting a range 
is more representative. Also, when implementing the formula-
tions memory usage has been prioritized over computational 

time. For this reason details of potential elements were not 
stored between iterations when using the adaptive member 
adding procedure. However, this has a disproportionate effect 
on the catenary approach, as the calculations required to obtain 
the coefficients are more complex in this case. Furthermore, 
the adaptive member adding solution process was performed 
in a single thread, whereas benefits could be gained using mul-
tiple cores. As an example, the checks required at each itera-
tion in the member adding procedure could be performed in 
parallel, which would likely significantly speed up the solution 
process when catenaries are involved.

Table 3   Full formulation for problem containing all three element types

Note that any particular element type may be empty. Where constraints are given ∀k , they are imposed separately in each load-case k. Where 
constraints are expressed ∀i , they are imposed separately for each rigid-jointed beam element i. The optimization variables are detailed in 
Table 2

Formulation Description Further details

min
V = �⊤

c
� + �⊤

r
�r + �⊤

p
�p

Total volume �c such that �⊤
c
� sums Eq. (11) over catenaries.

�p , �r contain element lengths for pinned and rigid 
beams respectively, as for Eq. (1a)

subject to

⎛⎜⎜⎝
�
�c �r �p

� ⎡⎢⎢⎣

�k
�r,k
�p,k

⎤⎥⎥⎦
+
�
�c �r �p

� ⎡⎢⎢⎣

�

�r
�p

⎤⎥⎥⎦
= �k

⎞⎟⎟⎠∀k

Equilibrium �c�k + �c� assembled using Eq. (9).
�r�r,k + �r�r assembled using Eq. (12).
�p�p,k + �p�p assembled using Eq. (22).
�k contains external forces/moments. Constraints 

for supported d.o.f. removed.
See Eq. (10).(

�k ≥ �
)
∀k

Catenary yield(
�k ≤ �

)
∀k

Force bound Catenary forces cannot reverse, see Eq. (10).(
�N,k + �M,k ≤ �r

)
∀k

Area sum See Eq. (13).

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

1 0

−1 0

0 − 1

0 1

⎤⎥⎥⎥⎦

�
mA,k,i

mB,k,i

�
≤

�d

2

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
aM,k,i

⎞⎟⎟⎟⎠
∀i,k

Moment yield (ends) See Eq. (14).

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

−0.25 0.75

−0.75 0.25

0.25 − 0.75

0.75 − 0.25

⎤⎥⎥⎥⎦

�
mA,k,i

mB,k,i

�
+

𝜌gx̄i li

8

⎡⎢⎢⎢⎣

1

1

−1

−1

⎤⎥⎥⎥⎦
a ≤

𝜎d

2

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
aM,k,i

⎞⎟⎟⎟⎠
∀i,k

Moment yield (quarters) See Eqs. (16) and (17).

⎛⎜⎜⎜⎝

⎡⎢⎢⎢⎣

1

1

−1

−1

⎤⎥⎥⎥⎦
qk,i +

�gli

2
sin �i

⎡⎢⎢⎢⎣

1

−1

1

−1

⎤⎥⎥⎥⎦
a ≤

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
qN,k,i

⎞⎟⎟⎟⎠
∀i,k

Max axial See Eq. (18).

⎛⎜⎜⎜⎝
1

li

⎡⎢⎢⎢⎣

1 1

1 1

−1 − 1

−1 − 1

⎤⎥⎥⎥⎦

�
mA,k,i

mA,k,i

�
+

�gli

2
cos �i

⎡⎢⎢⎢⎣

1

−1

1

−1

⎤⎥⎥⎥⎦
≤

⎡⎢⎢⎢⎣

1

1

1

1

⎤⎥⎥⎥⎦
qV ,k,i

⎞⎟⎟⎟⎠
∀i,k

Max shear See Eq. (19).

�
�N,k +

√
3�V ,k ≤ ��N,k

�
∀k

Von Mises' yield See Eq. (21).

(
�p,k ≤ ��p

)
∀k(

−�p,k ≤ ��p
)
∀k

Pinned yield � is a diagonal matrix such that these imply Eq. 
(27).
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