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Abstract
To efficiently analyze the time-dependent reliability is still a challenge today for many applications. This paper aims at 
modifying the original single-loop Kriging surrogate method to make it more efficient especially for assessing the small 
time-dependent failure probability. The first contribution of the proposed method is that the radial-based importance sam-
pling scheme is nested in the single-loop Kriging surrogate model-based time-dependent reliability analysis method. By 
the radial-based importance sampling scheme, the optimal hypersphere can be searched and the samples inside the optimal 
hypersphere can be removed from the candidate sampling pool. Besides, the samples outside the optimal hypersphere are 
divided into several sub-candidate sampling pools by the in-process hyperspheres. By decreasing the size of candidate sam-
pling pool in each updating process of Kriging model, the training time of updating Kriging model can be reduced so that 
the efficiency of time-dependent reliability analysis is enhanced. The second contribution of the proposed method is that the 
Kriging model-based dichotomy is embedded skillfully to efficiently find the hyperspheres layer after layer until the optimal 
hypersphere is found. The third contribution of the proposed method is that a modified learning function is constructed from 
selecting the most easily identifiable failure time during the time period of interest to efficiently update the Kriging model in 
each sub-candidate sampling pool. Finally, the accuracy and efficiency of the proposed method are verified by three examples.

Keywords Time-dependent reliability analysis · Reduction of candidate sampling pool · Single-loop Kriging surrogate 
method · Adaptive radial-based importance sampling

1 Introduction

The failure probability is a critical index to assess the safety 
of a complex engineering structure. In the past decades, the 
static reliability analysis models (also named as time-inde-
pendent reliability analysis models) and the corresponding 
efficient algorithms have been well researched. The reliabil-
ity analysis models mainly include the probabilistic model, 
the non-probabilistic model (Wang and Matthies 2019) and 
the hybrid model (Xiao et al. 2019; Wang et al. 2017a; Wang 

and Matthies 2020). This paper concerns the probabilistic 
model. The algorithms for estimating the failure probability 
have been developed maturely including the analytical meth-
ods (Keshtegar and Chakraborty 2018; Huang et al. 2018), 
the sampling-based methods (Yun et al. 2018; Geyer et al. 
2019; Grooteman 2008), the moment-based methods (Zhao 
and Ono 2001; Liu et al. 2020; Zhang and Pandey 2013), the 
information criterion-based methods (Lim et al. 2016; Zhong 
and You 2015; Amalnerkar et al. 2020), and the surrogate 
model-based methods (Zhang et al. 2019; Echard et al. 2011; 
Hong et al. 2021; Xiao et al. 2020; Yun et al. 2019). The 
classical analytical methods include the first order reliability 
method (FORM) (Keshtegar and Chakraborty 2018) and the 
second order reliability method (Huang et al. 2018). The 
sampling-based methods contain the Monte Carlo simu-
lation (MCS) method, importance sampling method (Yun 
et al. 2018; Geyer et al. 2019), adaptive radial-based impor-
tance sampling (ARBIS) method (Grooteman 2008), etc. 
The moment-based methods are mainly divided into two 
categories, i.e., the integral moment-based methods (Zhao 
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and Ono 2001; Liu et al. 2020) and the fractional moment-
based methods (Zhang and Pandey 2013). The information 
criterion-based methods contain the Akaike information 
criterion-based method (Lim et al. 2016), the Bayesian infor-
mation criterion-based method (Zhong and You 2015) and 
the Bootstrap information criterion-based method (Amal-
nerkar et al. 2020). The research orientations of the sur-
rogate model-based methods include the efficient learning 
functions (Zhang et al. 2019), the kind of surrogate models 
(Echard et al. 2011), the schemes of sampling (Hong et al. 
2021) and the application for multiple failure modes (Xiao 
et al. 2020; Yun et al. 2019). The traditional static reliability 
analysis methods do not consider the time-dependent uncer-
tainties such as the stochastic process loads and material 
deterioration. Therefore, actual results from the perspective 
of the full life cycle may not the same as that analyzed by the 
static reliability analysis method. To cover the shortage of 
the conventional static reliability analysis, time-dependent 
reliability analysis model obtains wide researches in recent 
years. Time-dependent reliability is able to measure the abil-
ity of structure fulfilling its function over a period of time 
(Wang et al. 2017b; Li et al. 2020). The mathematical mod-
els of analyzing the time-dependent reliability and the time-
dependent failure probability are shown in Eqs. (1) and (2).

where Pr{⋅} i s  the  operat ion of  probabi l i ty, 
X= [X1,X2,… ,Xn] denotes the n-dimensional input vari-
ables, Y(t)= [Y1(t), Y2(t),… , Ym(t)] denotes the m-dimen-
sional input stochastic process variables, t denotes the time 
parameter, G(t) = g(X,Y(t), t) denotes the time-dependent 
limit state function, [t0, te] is the predefined time interval of 
interest, “ ∀ ” means “for all” and “ ∃ ” means “there exists”.

The uncertain inputs of structures may implicitly or 
explicitly include the time parameter. As a result, the out-
put of the structure will be a more complicated stochastic 
process by propagation of uncertainties. How to efficiently 
estimate the time-dependent failure probability is a pivotal 
problem in engineering applications. To handle this prob-
lem, researchers have been studying two kinds of methods, 
i.e., the first-passage-based methods (Andrieu-Renaud et al. 
2004; Sudret 2008; Singh et al. 2010; Hu and Du 2012, 
2013a; Jiang et al. 2019; Li et al. 2007) and the extreme 
value-based methods (Zhou et al. 2017; Hu and Du 2013b, 
2015; Du 2014; Zhang et al. 2014; Li et al. 2019; Wang and 
Wang 2015; Lu et al. 2020; Hu and Mahadevan 2016; Wang 
and Chen 2016; Feng et al. 2019). The first-passage-based 
methods regard the probability of the out-crossing event 
occurring for the first time over a period of time as the cor-
responding time-dependent failure probability. To estimate 

(1)Pr(t0, te) = Pr
{
g(X,Y(t), t) > 0,∀t ∈ [t0, te]

}

(2)Pf(t0, te) = Pr
{
g(X,Y(t), t) ≤ 0,∃t ∈ [t0, te]

}

the out-crossing rate, Andrieu-Renaud et al. (2004) proposed 
the PHI2 method by combining the FORM and a parallel 
static reliability model. Based on the classical PHI2 method, 
Sudret (2008) developed a more stable enhanced method. 
Singh et al. (2010) integrated the importance sampling into 
the first-passage-based method. Due to the assumptions of 
independence and Poisson distribution, the first-passage-
based method may result in a low fidelity. Then, the joint 
out-crossing rate-based methods (Hu and Du 2012, 2013a) 
have been developed to face the strong dependence of the 
out-crossing events. While the first-passage-based method 
also may result in an inaccurate result for the problems with 
nonlinear responses and multimodal properties (Jiang et al. 
2019).

The extreme value-based methods avoid using the 
assumptions of the first-passage-based methods. The 
extreme value-based method equivalently defines the time-
dependent failure probability by evaluating the probability 
that the minimum value of the concerned model output 
exceeds its predefined threshold within the time interval of 
interest. The extreme value-based method builds a bridge 
between the time-dependent reliability analysis and the 
time-independent reliability analysis. Thus, the methods 
researched in the time-independent reliability analysis can 
be inducted into the time-dependent reliability analysis 
skillfully. Li et al. (2007) developed the probability den-
sity evolution method to approximate the extreme value 
distribution. Zhou et al. (2017) used the probability density 
evolution method to assess the time-dependent system reli-
ability. Hu and Du (2013b) proposed a sampling approach 
to approximate the extreme value distribution. Du (2014) 
proposed the envelope functions-based method. Zhang 
et al. (2014) introduced the maximum entropy approach to 
approximate the distribution of the extreme value. Li et al. 
(2019) extended the subset simulation into the estimation 
of high-dimensional time-dependent failure probability. 
Besides, surrogate-based methods gain much attention 
since the response function is approximated by a surro-
gate model with a few number of calls to the real limit state 
function. Wang and Wang (2015) proposed the double-loop 
nested surrogate method. Subsequently, Lu et al. (2020) 
proposed a moving extremum surrogate method. The outer 
loop constructs a Kriging model of the extreme value func-
tion among the predefined time interval with respect to 
the stochastic inputs. The inner loop builds a series of 
one-dimensional Kriging models with respect to the time 
parameter to identify the extreme time for each outer train-
ing sample of stochastic inputs. Hu and Du (2015) devel-
oped the mixed efficient global optimization and adaptive 
sampling strategies to improve the efficiency of identify-
ing the extreme values and reduce the number of training 
samples in the outer Kriging model. As Hu and Mahadevan 
(2016) remarked, the double-loop nested surrogate method 



A coupled adaptive radial‑based importance sampling and single‑loop Kriging surrogate model…

1 3

Page 3 of 19 139

exists two main drawbacks. On the one hand, the accuracy 
of finding the extreme time will influence the accuracy of 
the outer surrogate model of the extreme value function. 
On the other hand, finding the extreme time in the inner 
loop requires a large number of calls to the real limit state 
function, especially for the problems with stochastic pro-
cesses over a long time period. Then, Hu and Mahadevan 
(2016) proposed a single-loop Kriging (SILK) surrogate 
method for analyzing the time-dependent failure probabil-
ity where the global optimization used to find the extreme 
value is avoided. Based on the thought of SILK surrogate 
method, Wang and Chen (2016) combined the equivalent 
stochastic process transformation and the Kriging model 
to efficiently analyze the time-dependent failure probabil-
ity with stochastic process variables. Besides, Feng et al. 
(2019) used the extended support vector regression to 
estimate the time-dependent failure probability. The SILK 
surrogate method constructs a single surrogate model with 
respect to the random inputs and time parameter. The can-
didate sampling pool (CSP) of SILK surrogate method is 
the MCS samples, each random sample of input variables 
requires to be combined with all discrete points of time, 
which leads to a tremendous size of CSP especially for the 
small time-dependent failure probability (generally smaller 
than 10−3 ). In each adaptive iteration of updating Kriging 
model, all MCS samples of inputs combined with all dis-
crete points of time in the CSP requires to be calculated 
by the current Kriging model to find the next best training 
sample which will be added into the current training sam-
ple set. It takes much time and memory to find each next 
best training sample and judge whether the Kriging model 
satisfies the convergent condition. Therefore, the aim of 
this paper is to reduce the training burden of the original 
SILK surrogate method from the view point of reduction 
and stratification of the MCS-CSP. To achieve this aim, 
the ARBIS method (Grooteman 2008; Yun et al. 2020) 
is employed, where the optimal hypersphere is searched 
step by step. Then, samples inside the optimal hypersphere 
are directly recognized as safe samples and removed from 
the CSP. Besides, the used MCS-CSP constructed by the 
samples outside the optimal hypersphere is divided into 
several sub-CSPs by the in-process hyperspheres. In this 
paper, embedding ARBIS into the SILK surrogate method 
achieves two superiorities. The first one is that the whole 
size of CSP is reduced and the second one is that the SILK 
surrogate method is sequentially constructed in each small 
sub-CSP.

Thus, the main contributions of this paper are summa-
rized as follows: (1) an enhanced SILK surrogate method is 
proposed, which can save much more learning time of Krig-
ing model for assessing the time-dependent failure prob-
ability. (2) a modified strategy to determine the U learning 
function value of each candidate sample is proposed from 

the most easily identifiable failure time during the predefined 
time period to accelerate the convergence of updating the 
Kriging model.

The rest of this paper is organized as follows. Section 2 
briefly reviews the original SILK surrogate method for 
analyzing the time-dependent failure probability. Section 3 
elaborately introduces the proposed ARBIS enhanced SILK 
surrogate method. Section 4 analyzes a mathematical prob-
lem, a hydrokinetic turbine blade structure, and a turbine 
blade structure to demonstrate the efficiency and accuracy of 
the enhanced SILK surrogate method. Section 5 summarizes 
the conclusions of this paper.

2  The original SILK surrogate method 
for analyzing the time‑dependent failure 
probability

2.1  Karhunen–Loeve expansion of stochastic 
processes

By using the Karhunen–Loeve (K–L) expansion (Huang 
et al. 2007), the stochastic process can be approximately 
expressed by combination of the independent variables � and 
time parameter t . For a stochastic process Yj(t) , the expres-
sion of K–L expansion is shown as follows,

where �Yj
(t) and �Yj(t) are the mean and standard deviation 

of the stochastic process, �i(i = 1, 2,… , nej) are the mutually 
independent standard normal variables, �i(i = 1, 2,… , nej) 
and fi(t)(i = 1, 2,… , nej) are the eigenvalues and eigenvec-
tors of the covariance function of the stochastic process Yj(t) , 
and nej is the number of eigenvectors utilized to represent the 
stochastic process.

After the K–L expansion, the time-dependent limit state 
function g(X,Y(t), t) is approximated by g(X, �, t) where 
both X and � are random variables. In the SILK surrogate 
method, Kriging model is directly built for g(X,Y(t), t) by 
K-L expansion-based stochastic process sampling instead 
of building the Kriging model of g(X, �, t) because g(X, �, t) 
involves high-dimensional random inputs.

2.2  The single‑loop Kriging surrogate method

The basic principle of SILK surrogate method (Hu 
and Mahadevan 2016) is to establish a Kriging model 
gK(X,Y(t), t) , and carry out the time-dependent failure prob-
ability analysis by gK(X,Y(t), t) . The concrete steps are sum-
marized as follows.

(3)Yj(t) = �Yj
(t) + �Yj(t)

nej�
i=1

√
�i�ifi(t)
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Step 1: Generate initial training sample set about X , Y(t) 
and t , i.e.,

where N0 is the number of initial training samples, 
x(i) =

{
x
(i)

1
, x

(i)

2
,… , x(i)

n

}
 ,  �

(i) =
{
�
(i)

1
, �

(i)

2
,… , �(i)

m

}
 , 

�
(j)

i
=
[
�
(j)

i,1
, �

(j)

i,2
,… , �

(j)

i,nei

]
 represents the jth sample of the 

standard normal variable vector in the ith stochastic process 
variable, �(j)

i,k
(i = 1, 2,… ,m;k = 1, 2,… , nei;j = 1,… ,N0) is 

the standard normal variable and nei is the number of eigen-
vectors employed to represent the ith stochastic process vari-
able, y(i) =

{
y
(i)

1
, y

(i)

2
,… , y(i)

m

}
 obtained by taking �(i) and t(i) 

into Eq. (3), i.e., y(i) = y(�(i), t(i)).
The limit state function values of all sam-

ples in matrix S0 are evaluated by the time-depend-
ent l imit state function g(X,Y(t), t) .  Then, the 
initial training sample set T  is constructed as 
T =

{
[(x(1), y(1), t(1)), g(x(1), y(1), t(1))],… , [(x(N0 ), y(N0 ), t(N0 )), g(x(N0 ), y(N0 ), t(N0 ))]

}.
Step 2: Generate the MCS-CSP of random inputs and 

time parameter, i.e.,

(4)

S0 =

⎡
⎢⎢⎣

x(1) �
(1) t(1)

⋮ ⋮ ⋮

x(N0) �
(N0) t(N0)

⎤
⎥⎥⎦
→ Eq. (3) →

⎡
⎢⎢⎣

x(1) y(1) t(1)

⋮ ⋮ ⋮

x(N0) y(N0) t(N0)

⎤
⎥⎥⎦

(5)SX� =

⎡⎢⎢⎣

x(1) �
(1)

⋮ ⋮

x(N) �(N)

⎤⎥⎥⎦

(6)St =
[
t(1), t(2),… , t(Nt)

]T

where SX� is the sample matrix of random variables X and � , 
N is the number of MCS samples and St is the sample set of 
time parameter by discretizing the predefined time interval 
[t0, te] into Nt time instants.

Step 3: Construct the Kriging model gK(X,Y(t), t) by 
taking the training sample set T into the DACE toolbox 
(Nielsen and DACE 2007). Then, the Kriging prediction 
mode is obtained by Eq. (7). The theory of Kriging model 
can refer to the Refs. (Nielsen and DACE 2007; Kersaudy 
et al. 2015).

where N(⋅, ⋅) represents the normal distribution with mean 
�gK

(X,Y(t), t) and standard deviation �
gK
(X,Y(t), t).

Step 4: Find the best next constructive training sample. 
According to the property of Kriging model, the probability 
of accurately judging the sign of g(x(i), y(�(i), t(j)), t(j)) by the 
current Kriging model is reflected by the following U learn-
ing function (Echard et al. 2011),

where Φ(U(x(i), y(�(i), t(j)), t(j))) is the probability of cor-
rect sign prediction of the limit state function at sample 
(x(i), y(�(i), t(j)), t(j)).

E ch a r d  e t   a l .  ( 2 0 1 1 )  s u g g e s t  t h a t  i f 
U(x(i), y(�(i), t(j)), t(j)) ≥ 2 the limit state function sign of the 
sample (x(i), y(�(i), t(j)), t(j)) can be regarded as an accurate 
identification. Then, the indicator function of failure domain 
is determined by the following equation, i.e.,

Hu and Mahadevan (2016) defined the following U learn-
ing function of random inputs, i.e.,

(7)gK(X,Y(t), t) ∼ N
(
�gK

(X,Y(t), t), �2
gK
(X,Y(t), t)

)

(8)U(x(i), y(�(i), t(j)), t(j)) =
|�gK

(x(i), y(�(i), t(j)), t(j))|
�
gK
(x(i), y(�(i), t(j)), t(j))

(9)IFK(x
(i), �(i)) =

{
1, if 𝜇gK

(x(i), y(�(i), t(j)), t(j)) < 0 andU(x(i), y(�(i), t(j)), t(j)) ≥ 2,∃j = 1, 2,… ,Nt

0, if 𝜇gK
(x(i), y(�(i), t(j)), t(j)) > 0 andU(x(i), y(�(i), t(j)), t(j)) ≥ 2,∀j = 1, 2,… ,Nt

(10)UX�(x
(i), �(i)) =

{
ue, if 𝜇gK

(x(i), y(�(i), t(j)), t(j)) < 0 and U(x(i), y(�(i), t(j)), t(j)) ≥ 2, ∃j = 1, 2,… ,Nt

min
j=1,2,…,Nt

{
U(x(i), y(�(i), t(j)), t(j))

}
, otherwise
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where ue is any number so that ue > 2.
If UX�(x

(i), �(i)) ≥ 2 , it can be assumed that the states (fail-
ure or safety) of sample (x(i), �(i)) is correctly identified by 
the Kriging model gK(X,Y(t), t) . Therefore, if the minimum 
of UX�(x, �) among the N MCS-CSP is less than 2, it means 
that the corresponding states of these samples with UX� < 2 
cannot be identified by the current Kriging model. Then, a 
new training sample point should be added into the training 
sample set to update the current Kriging model and make it 
more accurate. The new training sample point is identified 
by Eqs. (11) to (13),

Then, the limit state function value of (x(new), y(new), t(new)) 
is estimated by g(x(new), y(new), t(new)) and the training sample 
set is updated by the following formula, i .e., 
T = T ∪

{
[(x(new), y(new), t(new)), g(x(new), y(new), t(new))]

}
 . The 

traditional and classical stopping cr iter ion is 
min

i=1,2,…,N
UX�(x

(i), �(i)) ≥ 2 (Echard et  al. 2011) while the 
maximum relative error-based stopping criterion (Hu and 
Mahadevan 2016) also can be employed. If the stopping cri-
terion satisfies, go to Step 5. Otherwise, turn to Step 3.

Step 5: Estimate the time-dependent failure probability 
and its coefficient of variation (COV) using the current Krig-
ing model gK(X,Y(t), t) , i.e.,

If the condition of COVP̂f (t0,te)
≤ 5% is satisfied, output the 

time-dependent failure probability P̂f (t0, te) and its COV. 
Otherwise, enlarge the sample matrix SX� and turn to Step 
4.

It can be seen that to find a next best new training sam-
ple point in the original SILK surrogate method, limit state 
function values of the N × Nt samples should be predicted 
by Kriging model in each updating step, which will take up 
much time and memory especially for assessing small time-
dependent failure probabilities. In this regard, Sect. 3 will 
elaborately introduce the proposed ARBIS enhanced SILK 
surrogate method.

(11)(x(new), �(new)) = arg min
i=1.,2,…,N

{
UX�(x

(i), �(i))
}

(12)t(new) = argmin
t∈St

{
U(x(new), y(�(new), t), t)

}

(13)y(new) = y(�(new), t(new))

(14)P̂f (t0, te) =

∑N

i−1
IFK(x

(i), (�(i))

N

(15)COVP̂f (t0,te)
=

√√√√ 1 − P̂f (t0, te)

(N − 1)P̂f (t0, te)

3  The ARBIS enhanced SILK 
surrogate method for estimating 
the time‑dependent failure probability

The main thought of the ARBIS is to search the optimal 
hypersphere sequentially (Grooteman 2008). All samples 
inside the optimal hypersphere dropped into the safe domain, 
and hence the limit state function values of these samples do 
not need to be evaluated if the optimal hypersphere is found 
in advance. Therefore, embedding ARBIS into SILK surro-
gate method, the whole MCS-CSP can be reduced and par-
titioned simultaneously. The Kriging model is sequentially 
updated from one sub-CSP to another sub-CSP. On the one 
hand, the total size of CSP is reduced in each updating pro-
cess of Kriging model. On the other hand, the participating 
CSP is reduced because samples inside the optimal hyper-
sphere do not require to participate in the learning process of 
Kriging model. ARBIS method is first proposed for estimat-
ing the time-independent failure probability. This paper will 
explore how to extend the ARBIS strategy into the existing 
SILK surrogate method. The basic steps of ARBIS-based 
time-independent failure probability analysis are briefly 
summarized in the appendix.

3.1  The basic theory of the ARBIS enhanced SILK 
surrogate method

According to Eq. (A7), the ARBIS-based computational for-
mula for estimating the time-dependent failure probability is 
expressed by Eq. (16).

where all MCS samples of X are transformed into the stand-
ard normal variables space denoted as u , the symbol N 
denotes the number of MCS samples, N(j) denotes the num-
ber of samples in the jth subdomain, m denotes the number 
of subdomains, N(j)

F
 denotes the failure samples in the jth 

subdomain D�j
 in which if j = 1 , D�j

=
{
u|||u|| ≥ �j

}
 . Oth-

erwise, D𝛽j
=
{
u|𝛽j−1 > ||u|| ≥ 𝛽j

}
.

Let PD�j
 denote the probability of u over D�j

 , i.e., 
PD�j

= N(j)∕N and Pf |D�j
 denote the conditional time-depend-

ent failure probability when u belongs to the subdomain 
DD�j

 , i.e., Pf |D�j
= N

(j)

F
∕N(j) . Then, Eq. (16) can be equiva-

lently expressed as follows,

(16)
P̂f (t0, te) =

∑m

j=0
N

(j)

F

N

=
�m

j=0

N(j)

N
⋅
N

(j)

F

N(j)

(17)P̂f (t0, te) =
∑m

j=0
PD𝛽j

⋅ Pf |D𝛽j
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From Eq. (17), it can be seen that the SILK surrogate 
method is carried out m times to estimate the time-depend-
ent failure probability. In each subdomain D�j

 , the number 
of samples used as the candidate samples to find the 
sequentially contributive training samples and to carry out 
the failure probability analysis is N(j) . N(j) is smaller than 
N . The smaller number of candidate samples in each itera-
tion can save much more training time of updating Kriging 
model correspondingly. Furthermore, samples inside the 
hypersphere �m ( �m is the radius of the optimal hyper-
sphere) is safe and do not require to identify their states 
(failure or safety) using the Kriging model. Therefore, ∑m

j=0
N(j) ≤ N  and the relationship of 

∑m

j=0
N(j) = N  is 

almost impossible because the radius of the optimal hyper-
sphere is almost impossible to be zero for engineering 
applications with small failure probability. That is to say, 
the proposed enhanced SILK surrogate model can reduce 
not only the size of CSP in each updating process of Krig-
ing model but also the size of the whole MCS-CSP used 
to analyze the time-dependent failure probability. The 
smaller size of CSP in each iteration can save much more 
learning time of updating Kriging model especially for 
estimating the small time-dependent failure probability. 
The subdomains divided by the hyperspheres of the 
ARBIS method are shown in Fig. 1 for the sake of intuitive 
illustration.

3.2  The implementation of ARBIS enhanced 
SILK surrogate method for estimating 
the time‑dependent failure probability

The concrete steps of estimating the time-dependent fail-
ure probability by the proposed enhanced SILK surrogate 
method are summarized as follows. The corresponding flow-
chart is shown in Fig. 2.

Step 1: Generate MCS samples of input variables and 
time parameter. First, use the equivalent probability trans-
formation to convert the random samples of input variables 
into the standard normal space, i.e.,

where Sx is the sample matrix of model inputs X , Su is the 
corresponding sample matrix of the standard normal vari-
ables, FXi

(⋅) is the cumulative distribution function (CDF) 
of Xi , and Φ−1(⋅) is the inverse CDF of the standard normal 
variable.

Secondly, generate MCS samples of the stochastic pro-
cess variables Y(t) if the problem involves the stochastic 
process variables, i.e.,

(18)

Sx =

⎡
⎢⎢⎢⎢⎣

x
(1)

1
x
(1)

2
⋯ x(1)

n

x
(2)

1
x
(2)

2
⋯ x(2)

n

⋮ ⋮ ⋱ ⋮

x
(N)

1
x
(N)

2
⋯ x(N)

n

⎤
⎥⎥⎥⎥⎦

ui=Φ
−1(FXi

(xi))

−−−−−−−−−−→Su =

⎡
⎢⎢⎢⎢⎣

u
(1)

1
u
(1)

2
⋯ u(1)

n

u
(2)

1
u
(2)

2
⋯ u(2)

n

⋮ ⋮ ⋱ ⋮

u
(N)

1
u
(N)

2
⋯ u(N)

n

⎤
⎥⎥⎥⎥⎦

Fig. 1  The stratified domains of candidate samples in the enhanced SILK surrogate method
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Thirdly, discrete the concerned time interval into Nt time 
instants, i.e.,

(19)S
�
=

⎡
⎢⎢⎢⎢⎣

�
(1)

1
�
(1)

2
⋯ �

(1)
m

�
(2)

1
�
(2)

2
⋯ �

(2)
m

⋮ ⋮ ⋱ ⋮

�
(N)

1
�
(N)

2
⋯ �

(N)
m

⎤
⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

�
(1)

�
(2)

⋮

�
(N)

⎤⎥⎥⎥⎦
Fourthly, by combining Su and S

�
 , the matrix Su� is 

obtained, i.e.,

(20)St =
[
t(1), t(2),… , t(Nt)

]T

Fig. 2  Flowchart of the proposed enhanced SILK surrogate method for time-dependent reliability analysis
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Step 2: Construct the initial training samples set. Ran-
domly select N0 ≪ N samples from Su� and St respectively 
to construct the initial training sample set T , i.e.,

where y(�(i), t(i)) is determined by taking (�(i), t(i)) into 
Eq. (3).

The initial training sample set T is constructed as follows,

(21)Su� =

⎡
⎢⎢⎢⎢⎣

u
(1)

1
u
(1)

2
⋯ u(1)

n

u
(2)

1
u
(2)

2
⋯ u(2)

n

⋮ ⋮ ⋱ ⋮

u
(N)

1
u
(N)

2
⋯ u(N)

n

�
(1)

1
�
(1)

2
⋯ �

(1)
m

�
(2)

1
�
(2)

2
⋯ �

(2)
m

⋮ ⋮ ⋱ ⋮

�
(N)

1
�
(N)

2
⋯ �

(N)
m

⎤
⎥⎥⎥⎥⎦

(22)

⎡
⎢⎢⎣

u(1) �
(1) t(1)

⋮ ⋮ ⋮

u(N0) �
(N0) t(N0)

⎤
⎥⎥⎦
→ Eq.(6) →

⎡
⎢⎢⎣

u(1) y(�(1), t(1)) t(1)

⋮ ⋮ ⋮

u(N0) y(�(N0), t(N0)) t(N0)

⎤
⎥⎥⎦

(23)
T =

⋃N0

i=1

{
[(u(i), y(�(i), t(i)), t(i)), g(u(i), y(�(i), t(i)), t(i))]

}

If S(k)
Aouter

 is empty, turn to Step 10. Otherwise, execute the 
next step continuously.

Step 5: Construct the Kriging model of g(u,Y(t), t) . 
K r i g i n g  m o d e l 
gK(u,Y(t), t) ∼ N(�gK

(u,Y(t), t), �2
gK
(u,Y(t), t)) is obtained 

by taking the current training sample set T into the DACE 
toolbox (Nielsen and DACE 2007).

Step 6: Update the training sample set T.
Step 6.1: Calculate the modified learning function 

values of candidate samples by the proposed learning 
function. For the time-dependent structure, if the limit state 
function value at a time instant is less than zero during the 
time interval of interest, the structure is regarded as failure. 
Otherwise, if the limit state function value is always larger 
than zero during the time interval of interest, the structure is 
regarded as safety. Therefore, for the safe structure, the safe 
states of all time instants need to be accurately identified. 
For the failed structure, just one failed time instant should be 
accurately identified. Therefore, the modified learning func-
tion to determine the U value of sample (u(i), �(i)) is shown 
as follows,

where (1̃, 2̃,… , p̃) denotes the number vector of time instants 
with 𝜇gK

(u(i), y(�(i), t(j)), t(j)) < 0 , and U(u(i), �(i), t(j)) is calcu-
lated by Eq. (26),

Step 6.2: Identification of a new training sample. First, 
find the sample point of u and � with minimum value of 
UR

u�
 , i.e.,

where the corresponding time instant is determined by

(25)UR
u�
(u(i), �(i)) =

⎧⎪⎨⎪⎩

max
j=�1,�2,…,�P

�
U(u(i), �(i), t(j))

�
, if 𝜇gK

(u(i), y(�(i), t(j)), t(j)) < 0∃j = 1, 2,… ,Nt

min
j=1,2,…,Nt

�
U(u(i), �(i), t(j))

�
, otherwise

(26)U(u(i), �(i), t(j)) =
|�gK

(u(i), y(�(i), t(j)), t(j))|
�gK (u

(i), y(�(i), t(j)), t(j))

(27)(u(I), �(I)) = arg min
(u,�)∈S

(k)

Aouter

UR
u�
(u, �)

(28)t(I) =

⎧⎪⎨⎪⎩

arg max
j=�1,�2,…,�p

�
U(u(I), �(I), t(j))

�
, if 𝜇gK

(u(i), y(�(i), t(j)), t(j)) < 0∃j = 1, 2,… ,Nt

arg min
j=1,2,…,Nt

�
U(u(I), �(I), t(j))

�
, otherwise

Step 3: Initialize the parameters of ARBIS. Set k = 1 , 
S
(k)

A
= Su� and � = �k where � is the radius of the current 

hypersphere. �1 can be determined by Eq. (A3), and also 
can be adjusted to guarantee that there are samples outside 
the �1-hypersphere.

Step 4: Determine the kth sub-CSP S(k)
Aouter

 . Select the 
samples outside the �-hypersphere from matrix S(k)

A
 and put 

these samples into matrix S(k)
Aouter

 , i.e.,

(24)S
(k)

Aouter

= arg
u∈S

(k)

A

(||u|| > 𝛽k)
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Then, the new training point is determined as 
(u(I), y(�(I), t(I)), t(I)).

Step 6.3: Judge whether the training sample set T 
requires to be updated. If UR

u�
(u(I), �(I)) ≥ 2 , execute the 

next step continuously. Otherwise, update the training sam-
ple set T by Eq. (29),

where y(I) = y(u(I), t(I)) . Then, turn to Step 5.
Step 7: Predict the states (failure or safety) of all sam-

ples in matrix S(k)
Aouter

 . By using the current Kriging model 
gK(u,Y(t), t) , the states of all samples in matrix S(k)

Aouter

 are 
predicted by Eq. (30),

where N
S
(k)

Aouter

 denotes the number of samples in S(k)
Aouter

.
Count the number of samples in matrix S(k)

Aouter

 satisfying 
the condition of IFK(u(w), �(w)) = 1 and put the satisfactory 
samples into S(k)

F
 . Let N(k)

F
 denote the number of failure sam-

ples in matrix S(k)
Aouter

 . If N(k)

F
 equals to zero, turn to Step 10. 

Otherwise, execute the next step continuously.
Step 8: Find the next hypersphere �k+1.
Step 8.1: First, the failure sample (u(F), �(F)) with the 

maximum value of joint PDF in the matrix S(k)
F

 is select by 
Eq. (31),

where �(u, �) is the joint PDF of u and �.

(29)T = T ∪
{
[(u(I), y(I), t(I)), g(u(I), y(I), t(I))]

}

(30)IFK(u
(w), �(w)) =

{
1, if 𝜇gK

(u(w), y(�(w), t(j)), t(j)) < 0∃j = 1, 2,… ,Nt

0, otherwise
(w = 1, 2,… ,N

S
(k)

Aouter

)

(31)(u(F), �(F)) = arg max
(u,�)∈S

(k)

F

�(u, �)

The radius of the next hypersphere is determined by solv-
ing Eq. (32), i.e.,

Step 8.2: Solve Eq. (32) by dichotomy and Kriging 
model. The solution to Eq. (32) is the boundary between 
min

t∈[t0,te]
g(u, y(t), t), t) > 0 and min

t∈[t0,te]
g(u, y(t), t), t) < 0 along 

the direction of vector (u(F), �(F)) . Therefore, the dichotomy 
combined with adaptive Kriging model method can be con-
structed to efficiently find the �k+1-hypersphere. The elabo-
rate steps are summarized as follows.

(32)

min
t∈[t0,te]

g(�k+1
u(F)

||(u(F), �(F))|| , y(�k+1
�
(F)

||(u(F), �(F))|| , t), t) = 0

Step 8.2.1: Initialize the parameters of the dichotomy. 
Set a = 0 , b = ||(u(F), �(F))|| and l = 0 . If the accuracy of 
dichotomy is Err , the least number l′ of bipartition is deter-
mined as

Step 8.2.2: Estimate the sign of min
t∈[t0,te]

g
{(

a+b

2

)
u(F)

||(u(F) ,�(F))|| ,

y(
(

a+b

2

)
�
(F)

||(u(F),�(F))|| , t), t
}

 . Use the current Kriging model 
gK(u,Y(t), t) ∼ N(�gK

(u,Y(t), t), �2
gK
(u,Y(t), t)) to estimate the 

value of UR
u�
(u, �) where u =

(
a+b

2

)
u(F)

||(u(F),�(F))||  and 

� =
(

a+b

2

)
�
(F)

||(u(F),�(F))|| , i.e.,

If UR
u�
(u, �) < 2 , find the time instant t(I) by Eq. (35),

(33)l
�

≥
lg(b − a) − lgErr

lg 2

(34)UR
u�
(u, �) =

⎧
⎪⎨⎪⎩

max
j=�1,�2,…,�P

�
U(u, �, t(j))

�
, if 𝜇gK

(u, y(�, t(j)), t(j)) < 0∃j = 1, 2,… ,Nt

min
j=1,2,…,Nt

�
U(u, �, t(j))

�
, otherwise

(35)t(I) =

⎧⎪⎨⎪⎩

arg max
j=�1,�2,…,�p

�
U(u, �, t(j))

�
, if 𝜇gK

(u, y(�, t(j)), t(j)) < 0∃j = 1, 2,… ,Nt

arg min
j=1,2,…,Nt

�
U(u, �, t(j))

�
, otherwise
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and then the training sample set T is updated, i.e.,

Reconstruct the Kriging model gK(u,Y(t), t) using the 
current training sample set T and turn to the beginning of 
Step 8.2.2.

If UR
u�
(u, �) ≥ 2 , the sign of min

t∈[t0,te]
g
{
u, �, t

}
 is estimated 

by (37), i.e.,

and execute the next step continuously.
Step 8.2.3: Update the parameters of the dichotomy. 

If IFK(u, �) = 1 , b =
(

a+b

2

)
 . Otherwise, a =

(
a+b

2

)
 . If 

l ≥ ceil
[
lg(||(u(F),�(F))||)−lgErr

lg 2

]
 (where ceil ( X ) rounds X to the 

nearest integer greater than or equal to X ), turn to the next 
step continuously. Otherwise, set l = l + 1 and turn to Step 
8.2.2.

Step 8.2.4: Obtain the radius of the next hyper-
sphere. The radius of the next hypersphere is determined 
by �k+1 = (a + b)∕2.

Step 9: Update the parameters of ARBIS. Set � = �k+1 , 
S
(k+1)

A
= S

(k)

A
− S

(k)

Aouter

 and k = k + 1 . Then, turn to Step 4.
Step 10: Estimate the time-dependent failure prob-

ability. The time-dependent failure probability and its COV 
are estimated by Eqs. (38) and (39) respectively, i.e.,

If COVP̂f (t0,te)
≤ 5% , output P̂f (t0, te) and COVP̂f (t0,te)

 . Oth-
erwise, increase N and enlarge the corresponding sample 
matrix Su� , and then turn to Step 3.

From the above procedure, it can be seen that the main 
contribution of the proposed method is that the MCS-CSP is 
divided into several sub-CSPs by the hyperspheres involved 
in the ARBIS method. Then, the MCS samples inside the 
optimal hypersphere will be removed from the participat-
ing CSP and Kriging model is updated sequentially in each 
sub-CSP, which can save much training time for finding each 
next best training sample to update Kriging model so that 
enhance the efficiency of time-dependent reliability analy-
sis. Besides, the proposed enhanced SILK surrogate method 
unifies the computation of time-dependent failure probabil-
ity and the radiuses of hyperspheres. Thus, the proposed 

(36)T = T ∪
{
[(u, y(�, t(I)), t(I)), g(u, y(�, t(I)), t(I))]

}

(37)

IFK(u, �) =

{
1, if 𝜇gK

(u, y(�, t(j)), t(j)) < 0∃j = 1, 2,… ,Nt

0, otherwise

(38)P̂f (t0, te) =

∑k−1

i=1
N

(i)

F

N
=
�k−1

i=1

�
N

(i)

F

N
S
(i)

Aouter

⋅

N
S
(i)

Aouter

N

�

(39)COVP̂f (t0,te)
=

√√√√1 − P̂f (t0, te)

NP̂f (t0, te)

enhanced SILK surrogate method can use the adaptive SILK 
model to find the optimal and in-process hyperspheres as 
byproducts.

4  Case studies

In this section, the efficiency and accuracy of the proposed 
enhanced SILK surrogate method for analyzing the time-
dependent failure probability are demonstrated by three case 
studies. Sobol’s sequence (Sobol 1976, 1998) is chosen in 
this paper to generate MCS samples of random inputs for its 
high convergence rate. Sobol’s sequence is the best choice 
and performs optimal when the sample size N equals to a 
power of 2, i.e., N = 2h where h is a non-negative integer.

Except for the number of calls to the real limit state func-
tion, the size of participating candidate samples and the used 
CPU time also demonstrate the efficiency of the proposed 
method. We define the ratio between the samples inside the 
optimal hypersphere and the MCS samples (named as can-
didate sample reduction ratio), and the CPU time reduction 
ratio in Eqs. (40) and (41), respectively.

(40)

Candidate sample reduction ratio =
|Ncsp(SILK) - Ncsp(proposed)|

Ncsp(SILK)

Table 1  Results of some compared methods for case study I with 
C = 20

PH12 is proposed in Wang and Wang (2015) . CLS represents the 
composite limit state method proposed in Wang and Wang (2015). 
DLAS represents the double-loop adaptive sampling method pro-
posed in Wang and Wang (2015). Ncall represents the number of calls 
to the real limit state function
a Results reproduced from Ref.(Wang and Wang 2015)

Method Pf (t0, te) Ncall

PH12a 0.17 438.00
CLSa 0.17  > 1000.00
DLASa 0.18 40.00
MCSa 0.18 100,000,000.00

Table 2  Results of case study I with C = 20

Method Original SILK surrogate 
method

Proposed enhanced 
SILK surrogate 
method

P
f
(t0, te) 0.18 0.18

COV
P
f
(t0,te)

0.02 0.02
Ncall 21.00 21.00
CPU time 1.22 min 0.35 min
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where Ncsp(SILK) represents the size of MCS samples, 
Ncsp(proposed) represents size of samples outside the opti-
mal hypersphere, Time(SILK) represents the CPU time for 
estimating the time-dependent failure probability by the 
original SILK surrogate method and Time(proposed) repre-
sents the CPU time for estimating the time-dependent fail-
ure probability by the proposed enhanced SILK surrogate 
method.

The candidate sample reduction ratio defined in this paper 
only reflects the proportion of samples inside the optimal 
hypersphere in the total MCS samples, so that only demon-
strates the superiority of the proposed method from the per-
spective of avoiding the samples inside the optimal hyper-
sphere participating in updating Kriging model. The CPU 
time reduction ratio reflects the superiority of the proposed 
method from the following three aspects. The first aspect of 
reducing the computational time is to avoid a large number 
of samples inside the optimal hypersphere participating the 
updating process of Kriging model. The second aspect of 

(41)

CPU time reduction ratio =
|Time (SILK) − Time (proposed)|

Time (proposed)

reducing the computational time is to further reduce the size 
of candidate sampling pool in each learning step of Kriging 
model by dividing the samples outside the optimal hyper-
sphere into several subdomains and updating the Kriging 
model sequentially in each subdomain. The third aspect of 
reducing the computational time is the reduced number of 
calls to the real limit state function. Therefore, the CPU time 
reduction ratio is a comprehensive index, and the candidate 
sample reduction ratio is a component.

4.1  Case study I: a mathematical problem

A numerical time-dependent limit state function g(X, t) 
is used to test the efficiency of the proposed method, and 
the expression of g(X, t) is described as follows (Wang and 
Wang 2015),

where X1 and X2 are two random normal variables with mean 
3 and standard derivation 0.3, t is the time variable within 
[0, 5] and C is a constant. Then, the time-dependent failure 
probability is defined as

In this example, two cases are considered. The first one 
sets C as 20 and the second one sets C as 10. The two cases 
have different magnitudes of time-dependent failure prob-
abilities. The first one is also analyzed in Wang and Wang 
(2015) and the corresponding results are shown in Table 1.

Table 2 shows the results estimated by the original SILK 
surrogate method and the proposed enhanced SILK sur-
rogate method with C = 20 . The stratified boundaries and 

(42)g(X, t) = X2
1
X2 − 5X1t + (X2 + 1)t2 − C

(43)
Pf (t0, te) = Pr

{
X2
1
X2 − 5X1t + (X2 + 1)t2 − C ≤ 0,∃t ∈ [0, 5]

}

Table 3  The details of the 
proposed enhanced SILK 
surrogate method in case study I 
with parameter C = 20

Intermediate radiuses 
of hyperspheres

The number of input sam-
ples in each sub-CSP

The range of each sub-CSP Pf |D�j
PD�j

�1 = 3.5000 21.0000 ||u|| ≥ �1 0.4762 0.0026
�2 = 1.1867 4027.0000 𝛽1 > ||u|| ≥ 𝛽2 0.3305 0.4916
�3 = 0.9897 975.0000 𝛽2 > ||u|| ≥ 𝛽3 0.1662 0.1190
�4 = 0.9792 41.0000 𝛽3 > ||u|| ≥ 𝛽4 0.0737 0.0050
�5 = 0.9575 106.0000 𝛽4 > ||u|| ≥ 𝛽5 0.0660 0.0129

Table 4  Results of case study I with C = 10

Method Original SILK surrogate 
method

Proposed enhanced 
SILK surrogate 
method

P
f
(t0, te) 0.0022 0.0022

COV
P
f
(t0,te)

0.0420 0.0420
Ncall 25.0000 24.0000
CPU time 55.0000 min 0.2500 min

Table 5  The details of the 
proposed enhanced SILK 
surrogate method in case study I 
with parameter C = 10

Intermediate radiuses 
of hyperspheres

The number of input sam-
ples in each sub-CSP

The range of each sub-CSP Pf |D�j
PD�j

�1 = 3.5000 587.0000 ||u|| ≥ �1 0.2777 0.0022
�2 = 3.0187 2146.0000 𝛽1 > ||u|| ≥ 𝛽2 0.1556 0.0082
�3 = 2.9355 793.0000 𝛽2 > ||u|| ≥ 𝛽3 0.0807 0.0030
�4 = 2.9217 177.0000 𝛽3 > ||u|| ≥ 𝛽4 0.0226 0.0007
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the size of each sub-CSP of input variables in the proposed 
enhanced SILK surrogate method are shown in Table 3 
where 8192 samples of random inputs are generated. Table 3 
shows the details of the proposed method and the radius 
of the optimal hypersphere. The size of MCS samples of 
input variables used in the original SILK surrogate method 
is 8192 and the corresponding 3022 samples are dropped 
into the optimal hypersphere. Therefore, in the proposed 
enhanced SILK surrogate method, the corresponding 3022 
samples will be removed from the learning process of Krig-
ing model. Besides, the samples outside the optimal hyper-
sphere are divided into five sub-CSPs. Thus, the size of CSP 
in each iteration of updating Kriging model in the proposed 
enhanced SILK surrogate method is quite small than that 
in the whole MCS candidate samples-based original SILK 
surrogate method. The candidate sample reduction ratio and 
the CPU time reduction ratio are estimated by Eqs. (40) and 
(41). The results show that compared with the original SILK 
surrogate method, the proposed enhanced SILK surrogate 
method can avoid 36.89% candidate samples participating 
in learning Kriging model and reduce 71.23% computational 
time.

In the second case, 262,144 samples of random inputs are 
generated to estimate the time-dependent failure probabil-
ity and the MCS solution is 0.0022. Based on the 262,144 
input samples, the original SILK surrogate method and the 
proposed enhanced SILK surrogate method are carried out. 
Results in Table 4 not only show the accuracy of the pro-
posed enhanced SILK surrogate method but also show that 
the proposed method can save 99.55% computational time 
compared with the original SILK surrogate method. Table 5 
shows the details of the proposed method with C = 10 . From 
Table 5, it can be concluded that 258,441 MCS samples 
are dropped inside the optimal hypersphere. Therefore, 
compared with the original SILK surrogate method 98.59% 
MCS candidate samples of random inputs can be removed 
from the participating CSP in the enhanced SILK surrogate 
method.

By analyzing the two cases, the efficiency and accuracy 
of the proposed enhanced SILK surrogate method are veri-
fied. In addition, results also indicate that by the proposed 
method the smaller the time-dependent failure probability is, 
the higher candidate sample reduction ratio and higher CPU 
time reduction ratio are with the same response function but 
different failure thresholds.

4.2  Case study II: a hydrokinetic turbine blade

As a renewable energy device, hydrokinetic turbine converts 
the kinetic energy of flowing water electrical energy (Hu 
et al. 2020). The river flow load is a time-dependent based 
stochastic process variable. In this case study, the proposed 
enhanced SILK surrogate method is utilized to assess the 
time-dependent failure probability with a stochastic process 
variable.

Figure 3 shows the simplified hydrokinetic turbine blade 
and its environmental loads. The river velocity V(t) is con-
sidered as a stochastic process variable. The mean function 
�v(t) , the standard deviation function �v(t) and the auto-cor-
relation coefficient function �v are given as follows,

(44)�v(t) =

4∑
i=1

am
i
sin(bm

i
t + cm

i
)

Fig. 3  Hydrokinetic turbine 
blade

(a) Turbine blade cross section at its root area. (b) Flow loading on turbine blade.

Table 6  The detailed distribution information of input variables in 
case study II

Random vari-
ables

Distribution type Parameter 1 Parameter 2

l1(m) Uniform a
l1
 = 0.2140 b

l1
 = 0.2260

h1(m) Normal �
h1

 = 0.0250 �
h1

 = 0.0025
h2(m) Normal �

h2
 = 0.0190 �

h2
 = 0.0019

�
a

Extreme-I ��
a
 = 0.0250 ��

a
 = 0.0025
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where the constants a , b and c are

The flap wise bending moment created at the blade root 
is estimated by Eq. (49), i.e.,

where � = 1000 kg∕m3 is the river water density and 
Cm = 0.3422 is the coefficient of moment obtained from the 
blade element momentum theory.

(45)�v(t) =

4∑
i=1

as
i
exp

{
−

(
t − bs

i

c

)2
}

(46)�v = cos
[
2�(t2 − t1)

]

(47)

am
1
= 3.8150, am

2
= 2.5280, am

3
= 1.1760, am

4
= −0.0786

bm
1
= 0.2895, bm

2
= 0.5887, bm

3
= 0.7619, bm

4
= 2.1830

cm
1
= −0.2668, cm

2
= 0.9651, cm

3
= 3.1160, cm

4
= −3.1610

(48)

as
1
= 0.7382, as

2
= 1.0130, as

3
= 1.8750, as

4
= 1.2830

bs
1
= 6.4560, bs

2
= 4.0750, bs

3
= 0.7619, bs

4
= 1.0350

cs
1
= 0.9193, cs

2
= 1.5610, cs

3
= 6.9590, cs

4
= 2.2370

(49)Mflap =
1

2
�Cmv(t)

2

Thus, the time-dependent limit state function and the 
corresponding time-dependent failure probability of this 
hydrokinetic turbine blade are defined by Eqs. (50) and (51) 
respectively.

(50)g(X,Y(t), t) = Mresist −Mflap =
�aEI

h1
−

1

2
�Cmv(t)

2

Table 7  Results of case study II

Method Original SILK surrogate 
method

Proposed enhanced 
SILK surrogate 
method

P
f
(t0, te) 7.44 × 10−4 7.44 × 10−4

COV
P
f
(t0,te)

5.00 × 10−2 5.00 × 10−2

Ncall 69.00 65.00
CPU time 536.00 min 16.00 min

Table 8  The details of the 
proposed enhanced SILK 
surrogate method in case study 
II

Intermediate radiuses 
of hypersphere

The number of input sam-
ples in each sub-CSP

The range of each sub-CSP Pf |D�j
PD�j

�1 = 6.00000 21.00000 ||u|| ≥ �1 0.14286 0.00004
�2 = 4.36642 13,110.00000 𝛽1 > ||u|| ≥ 𝛽2 0.01716 0.02500
�3 = 4.06168 17,237.00000 𝛽2 > ||u|| ≥ 𝛽3 0.00522 0.03288
�4 = 4.03526 2001.00000 𝛽3 > ||u|| ≥ 𝛽4 0.00400 0.00382
�5 = 3.81946 21,736.00000 𝛽4 > ||u|| ≥ 𝛽5 0.00179 0.04146
�6 = 3.73136 11,442.00000 𝛽5 > ||u|| ≥ 𝛽6 0.00052 0.02182
�7 = 3.65499 11,443.00000 𝛽6 > ||u|| ≥ 𝛽7 0.00052 0.02183
�8 = 3.46486 34,460.00000 𝛽7 > ||u|| ≥ 𝛽8 0.00035 0.06573
�9 = 3.39815 14,060.00000 𝛽8 > ||u|| ≥ 𝛽9 0.00007 0.02682
�10 = 3.25084 34,747.00000 𝛽9 > ||u|| ≥ 𝛽10 0.00000 0.06627

Table 9  The candidate sample reduction ratio and CPU time reduc-
tion ratio of the proposed enhanced SILK method in case study II

Pf (t0, te) The candidate sample 
reduction ratio (%)

The CPU time reduction 
ratio (%)

7.44 × 10−4 71.62 96.25

Fig. 4  The geometry of the turbine blade
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where the Young modulus E is 14GPa , the moment of iner-
tia I at root of the blade is (2∕3)l1(h31 − h3

2
) and the allow-

able strain is denoted by �a . l1 , h1 , h2 and �a are mutually 

(51)

Pf (t0, te) = Pr

{
�aEI

h1
−

1

2
�Cmv(t)

2
≤ 0,∃t ∈ [0, 10]yr

}
independent random variables and their distribution param-
eters are shown in Table 6.

The MCS solution of the time-dependent failure prob-
ability of this hydrokinetic turbine blade is 7.4387 × 10−4 
using 524,288 samples of random inputs. Based on the 
same 524,288 samples of random inputs, the original SILK 
surrogate method needs 69 real limit state function evalua-
tions. The proposed enhanced SILK surrogate method only 

Table 10  The distribution of Young’s modulus of the DD6 single-crystal superalloy with crystallographic orientation [001] at different tempera-
tures

Temperature ( ◦C) 20.00 760.00 850.00 900.00 980.000 1070.00 1100.00

Mean (GPa) 136.20 105.60 101.00 91.80 80.50 69.30 67.50
COV 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 11  The Poisson’s ratio of DD6 single-crystal superalloy with crystallographic orientation [001] at different temperatures

Temperature ( ◦C) 20.00 760.00 850.00 900.00 980.00 1070.00 1100.00

Mean 0.34 0.37 0.38 0.39 0.40 0.41 0.42
COV 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 12  The shear modulus of DD6 single-crystal superalloy with crystallographic orientation [001] at different temperatures

Temperature ( ◦C) 20.00 760.00 850.00 900.00 980.00 1070.00 1100.00

Mean (GPa) 155.10 115.40 105.90 97.20 85.60 90.00 80.00
COV 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Table 13  The linear expansion coefficient of DD6 single-crystal superalloy with crystallographic orientation [001] at different temperatures

Temperature ( ◦C) 500.00 600.00 700.00 800.00 900.00 1000.00 1100.00

Mean (10−6∕◦C−1) 12.93 13.15 13.53 14.19 14.39 15.00 15.76
COV 0.01 0.01 0.01 0.01 0.01 0.01 0.01

Fig. 5  (a) The temperature of 
the turbine blade, (b) The stress 
of the turbine blade
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needs 65 real limit state function evaluations. The results 
are shown in Table 7. Table 8 shows the details of the pro-
posed enhanced SILK surrogate method, which reflects 
that 364,031 samples of random inputs are located inside 
the optimal hypersphere and the size of each sub-CSP is 
quite smaller than that of the whole MCS-CSP. Therefore, 
from the perspective of computational time, the proposed 
enhanced SILK surrogate method uses less time than the 
original SILK surrogate method. Results in Table 9 reflect 
that 71.62% samples are located in the optimal hypersphere 
and the corresponding CPU time reduction ratio is 96.25%, 
which demonstrates the efficiency of the proposed method 
for this hydrokinetic turbine blade with stochastic process 
input and non-normal random input random variables.

4.3  Case study III: a turbine blade structure

The turbine blade of the aero-engine shown in Fig.  4 
bears alternating load during the working time, and the 
material performance will be decaying in time. The 
angular velocity in cruise-maximum-cruise state is 
�(t) = �0 + 104 × |sin (�t∕2)| where �0 is a stochastic vari-
able and t  is the time parameter. The material used is the 
DD6 single-crystal superalloy and its properties are related 
to the temperature. The distribution types and distribution 
parameters of the material properties including the Young’s 
modulus, Poisson’s ratio, shear modulus and the linear 
expansion coefficient are shown in Tables 10, 11, 12 and 
13, respectively. The limit state function of the turbine blade 
structure is defined as the maximum stress of the turbine 
blade body not exceeding the threshold value Sthr , i.e.,

where the Sthr = 900e−0.015t , T  represents the temperature 
parameter and the maximum stress Smax is analyzed by the 
finite element model (FEM) in ABAQUS software. The 
FEM model of the turbine blade structure is shown in Fig. 5. 
The input variables are listed in Table 14. The relationships 
of E(T) , �(T) , G(T) , �(T) and X1 , X2 , X3 , X4 are shown 
respectively as follows:

where �E(T) , ��(T) , �G(T) and ��(T) respectively represent 
mean values of Young’s modulus, Poisson’s ratio, shear 
modulus and linear expansion coefficient at the tempera-
ture T  . �E(T) , ��(T) , �G(T) and ��(T) respectively represent 
standard derivation of Young’s modulus, Poisson’s ratio, 

(52)g(X, t) = Sthr − Smax(�,E(T), �(T),G(T), �(T),�(t))

(53)

E(T) = X1�E(T) + �E(T)

�(T) = X2��(T) + ��(T)

G(T) = X3�G(T) + �G(T)

�(T) = X4��(T) + ��(T)

Table 14  The distribution 
information of model input 
variables

Input Description Distribution type Mean Standard 
derivation

X1 Characterize the randomness of Young’s modulus Normal 0 1
X2 Characterize the randomness of Poisson’s ratio Normal 0 1
X3 Characterize the randomness of shear modulus Normal 0 1
X4 Characterize the randomness of linear expansion 

coefficient
Normal 0 1

X5 Density � Normal 8790 kg/m3 87.9 kg/m3

X6 angular velocity �0 Normal 1780 rad/s 17.8 rad/s

Table 15  The details of the 
proposed enhanced SILK 
surrogate method in case study 
IV

Intermediate radiuses 
of hypersphere

The number of input sam-
ples in each sub-CSP

The range of each sub-CSP Pf |D�j
PD�j

�1 = 4.50000 2562.00000 ||u|| ≥ �1 0.04528 0.00244
�2 = 4.11572 7674.00000 𝛽1 > ||u|| ≥ 𝛽2 0.01955 0.00732
�3 = 3.95644 6584.00000 𝛽2 > ||u|| ≥ 𝛽3 0.01261 0.00638
�4 = 3.49441 43,359.00000 𝛽4 > ||u|| ≥ 𝛽5 0.00362 0.04135
�5 = 3.30472 35,064.00000 𝛽5 > ||u|| ≥ 𝛽6 0.00034 0.03344

Table 16  Results of case study IV

Method Original SILK surrogate 
method

Proposed enhanced 
SILK surrogate 
method

P
f
(t0, te) 4.95 × 10−4 4.95 × 10−4

COV
P
f
(t0,te)

4.39 × 10−2 4.39 × 10−2

Ncall 312.00 279.00
CPU time 14,218.00 min 2901.00 min
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shear modulus and linear expansion coefficient at the tem-
perature T .

The definition of time-dependent failure probability for 
this turbine blade is shown as follows,

To estimate Eq. (54) by the original SILK surrogate 
method and the proposed enhanced SILK surrogate method 
1,048,576 MCS samples of model inputs X are generated. 
Table 15 shows the radial of the optimal hypersphere, the 
size of each sub-CSP, the time-dependent failure probability 
in each subdomain and the probability of each subdomain 
involved in the proposed enhanced SILK surrogate method. 
From Table 15, it can be seen that the number of input sam-
ples in each sub-CSP is quite smaller than the whole size 
of MCS samples (1,048,576 input samples). In this regard, 
much computational time can be saved by the proposed 
enhanced SILK surrogate method. In addition, samples 
inside the optimal hypersphere can be directly regarded as 
safe samples, and thus these samples can be removed from 
the adaptive process of updating the Kriging model. Remov-
ing a large number of samples from the MCS-CSP can not 
only save a great deal of learning time but also reduce the 
number of iterations used to update Kriging model because 
the states (failure or safety) of these samples do not need to 

(54)
P
f
(t0, te) =Pr

{
900e−0.015t − Smax(�,E(T), �(T),

G(T), �(T),�(t)) ≤ 0,∃t ∈ [0, 2h]}

be identified by Kriging model. Table 16 shows the results 
obtained by the original SILK surrogate method and the pro-
posed enhanced SILK surrogate method. For analyzing this 
small time-dependent failure probability, the original SILK 
surrogate method needs 14,218 min where the computational 
time consists of two parts. The first part is the computational 
time of FEM analyses and the second part is the computa-
tional time of finding all sequentially added training samples 
to adaptively update the Kriging model. The computational 
time of FEM analyses in the original SILK surrogate method 
is 3120 min while the computational time of finding all train-
ing samples is 11,098 min. The computational time of finding 
all training samples in the original SILK method is about 3.6 
times of that in analyzing the FEMs. It shows the importance 
of reducing the number of candidate samples in each itera-
tion on improving the computational efficiency. Under the 
condition that the computational accuracy of the proposed 
enhanced SILK surrogate method is consistent with that of 
the original SILK surrogate method, the proposed enhanced 
SILK surrogate method needs 279 FEM analyses which 
are smaller than those used in the original SILK surrogate 
method. The computational time of the proposed enhanced 
SILK surrogate method is 2901 min where the time used in 
FEM analyses is 2790 min and the computational time of 
finding all sequentially added training samples is 111 min. It 
can be seen that the computational time of finding all sequen-
tially added training samples in the original SILK surrogate 
method is about 100 times of that in the proposed enhanced 
SILK surrogate method, which illustrates the high efficiency 
of the proposed enhanced SILK surrogate method. Figure 6 
visually shows the used time of finding each training sam-
ple along with the adaptive learning process of the original 
SILK surrogate method and the proposed enhanced SILK 
surrogate method, respectively. Table 17 summarizes the 
candidate samples reduction ratio and CPU time reduction 
ratio of the proposed enhanced SILK surrogate method over 
the original SILK method, which shows the high efficiency of 
the proposed enhanced SILK surrogate method for analyzing 
the time-dependent failure probability with this FEM-based 
analysis structure model.

5  Conclusions

The single-loop Kriging (SILK) surrogate method directly 
constructing the time-dependent limit state function is more 
efficient than the nested double-loop surrogate method. But 
for small time-dependent failure probability, much more can-
didate samples are involved in the current SILK surrogate 
method due to the large combinations of stochastic sam-
ples and time samples, which increases the learning time 
of adaptively updating Kriging model. In this regard, this 
paper presents an adaptive radial-based importance sampling 
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Fig. 6  The learning time of each iteration

Table 17  The candidate sample reduction ratio and CPU time reduc-
tion ratio of the proposed method for case study IV

Pf (t0, te) The candidate sample 
reduction ratio (%)

The CPU time reduction 
ratio (%)

4.95 × 10−4 90.92 79.60
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(ARBIS) scheme enhanced SILK surrogate method. By find-
ing the optimal hypersphere adaptively, MCS samples of 
the stochastic inputs are partitioned into several subsets. 
Then, the time-dependent failure probability is estimated 
by combination of several time-dependent failure prob-
abilities in the subdomains. The size of candidate sampling 
pool (CSP) in analyzing each time-dependent failure prob-
ability is reduced compared with the size of the CSP used 
in the original SILK surrogate method. Because samples 
inside the optimal hypersphere can be directly regarded as 
the safe samples without any limit state function evalua-
tions, the samples inside the optimal hypersphere can be 
removed from the learning process of Kriging model. For 
small time-dependent failure probability, the radius of the 
optimal hypersphere is generally large and thus much sam-
ples can be removed from the CSP. Therefore, embedding 
ARBIS into the SILK surrogate model can reduce the total 
size of CSP and stratify the samples outside the optimal 
hypersphere into several sub-CSPs. The substantial reduc-
tion of candidate samples can extremely reduce the learn-
ing time of Kriging model and enhance the efficiency of 
SILK surrogate method especially for estimating the small 
time-dependent failure probability. In addition, solving the 
radius of hypersphere is transformed into the classification 
of model output (failure or safety) by dichotomy, which is 
unified with the time-dependent reliability analysis. Thus, 
the Kriging model constructed for analyzing the time-
dependent failure probability also can be adaptively used 
to determine the radius of all hyperspheres. To accelerate 
the convergence rate of updating Kriging model, a modified 
version of learning function is constructed by selecting the 
most easily identifiable failure time during the predefined 
time period. Results of three case studies demonstrate the 
merits of the proposed enhanced SILK surrogate method.

The aim of this paper is to embed the ARBIS into the 
SILK surrogate and sequentially establish the Kriging model 
in each subdomain. The boundaries of each subdomain are 
determined by line-search scheme (Grooteman 2008). For 
problems with discounted and asymmetric failure domains, 
the global optimization algorithm can be used to search the 
hyperspheres. It should be emphasized that the proposed 
method is not limited to the Kriging model, other mainstream 
surrogate models for sample classification also can be intro-
duced in the proposed enhanced SILK surrogate method.

Appendix: The basic steps of ARBIS‑based 
time‑independent failure probability 
analysis

Step 1: Transform the arbitrary distributions into the stand-
ard normal distribution by equivalent probability transfor-
mation, i.e.,

where FXi
(⋅) is the cumulative distribution function (CDF) 

of Xi , F−1
Xi
(⋅) is the inverse CDF of Xi , ui is the standard nor-

mal variable and Φ(⋅) is the CDF of ui . Thus, the limit state 
function is equivalently expressed as g(u) where g(⋅) includes 
the equivalent probability transformation if non-standard 
normal variables exist.

Step 2: Generate random samples of variables u which 
are independent and identically distributed, i.e.,

(A1)FXi
(xi) = Φ(ui) ⇒ xi = F−1

Xi
(Φ(ui))

(A2)Su =

⎡⎢⎢⎢⎣

u(1)

u(2)

⋮

u(N)

⎤⎥⎥⎥⎦

limit state

Failure domain

1

optimal

...

1U

2U

Fig. 7  The adaptive strategy of finding the optimal circle in a two-
dimensional standard normal space
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where u(i) = [u
(i)

1
, u

(i)

2
,… , u(i)

n
] and n is the dimension of 

inputs.
Step 3: Set k = 1 , S(k)

A
= Su and �1 can be determined by 

Eq. (A3) referring to Grooteman (2008) where �1 also can 
be adjusted to guarantee that there are samples outside the 
�1-hypersphere.

where �−2 is the inverse CDF of the Chi-square CDF �2 with 
n freedom degree.

Step 4: Put the samples outside the �k-hypersphere from 
S
(k)

A
 into S(k)

Aouter

 , i.e.,

Use N(k) to represent the corresponding number of failure 
samples and umax to denote the failure sample which has 
the maximum value of probability density function (PDF) 
among the N(k) failure samples, i.e.,

where �(u) is the PDF of u and IF(u) is the indicator function 

of failure domain defined as I
F
(u) =

{
0 g(u) > 0

1 g(u) ≤ 0
.

If S(k)
Aouter

 is empty or N(k) is zero, the optimal hypersphere is 
found and the turn to Step 6. The visualization of searching 
the optimal circle in a two-dimensional problem is displayed 
in Fig. 7 for convenient understanding. If S(k)

Aouter

 is not empty, 
calculate the new radius of �k+1-hypersphere by Eq. (A6),

Step 5: Update the parameters. Set S(k+1)
A

= S
(k)

A
− S

(k)

Aouter

 
and k = k + 1 . Then, turn to Step 4.

Step 6: Estimate the failure probability and its coefficient 
of variation (COV) by Eqs. (A7) and (A8),
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√

�−2(1 − Pf0)

(A4)S
(k)
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= arg
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N
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