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Abstract
Foldable shape-changing structures such as origami, deployable, and 4D printed structures have potentials for enhanced 
packaging, adaptability, and motion capabilities. Distinct geometric features often found in such foldable shape-changing 
structures include developability and small wall thickness. In this paper, two geometric constraints are introduced to enable 
the use of density-based topology optimization in designing piecewise developable thin-walled structures. The proposed 
developability constraint enforces the normal directions of the surfaces of the structures to lie on a prescribed (small) num-
ber of input reference planes, which realizes an optimized structure made of piecewise developable surfaces. The proposed 
thin-wall constraint simultaneously bounds the minimum and the maximum feature sizes in the structures through two 
PDE-based filtering operations and an aggregation constraint. Several numerical examples demonstrate the effectiveness of 
the proposed constraints. While the additional constraints inevitably compromise the structural performance, the ability to 
control the desired geometric features in topology optimization would benefit the rapidly growing field of foldable shape-
changing structures.
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1  Introduction

Foldable shape-changing structures such as origami (Coz-
mei 2020), deployable (Deleo et al. 2020), and 4D printed 
structures (Tahouni et al. 2020) have potentials for enhanced 
packaging, adaptability, and motion capabilities. Distinct 
geometric features often found in such foldable shape-chang-
ing structures include developability and small wall thick-
ness. A developable surface is a surface that can be flattened 
onto a plane without distortion. Piecewise (near) develop-
ability of the surfaces is also necessary for the structures 
manufactured by flank milling (Stein et al. 2018) and for the 

structures manufactured as assemblies of planar materials 
such as sheet metals, woven composite sheets, and fabrics. 
The latter also requires structures to be made of geometric 
features with small, often uniform, wall thickness. Figure 1 
shows several examples of foldable shape-changing struc-
tures. It is noted that this paper focuses on the geometric 
design of foldable shape-changing structures as a static prob-
lem. The dynamic shape-changing mechanism is out of the 
scope of this paper.

The current state-of-the-art in computational approaches 
for designing developable surfaces focus mainly on auto-
matic surface conversion and user-guided interactive 
design. The automatic surface conversion approach poses 
the problem as error minimization between the input free-
form surface and the converted developable surface. Earlier 
work has focused on parametric input surfaces, including 
Bézier (Lang and Röschel 1992; Aumann 2004), B-spline 
(Elber 1995; Hoschek 1998; Chu and Séquin 2002; Pérez 
and Suárez 2007; Pottmann 2008) and others (Pottmann 
and Farin 1995). Recent work focuses on non-parametric 
input surfaces, including quadrilateral meshes (Julius et al. 
2005; Liu et al. 2006; Rabinovich et al. 2018; Jiang et al. 
2020), triangle meshes (Mitani and Suzuki 2004; Stein et al. 
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2018) and others (Shatz et al. 2006; Massarwi et al. 2007; 
Ion et al. 2020). Since the input surfaces must be given a 
priori for these work, such automatic conversion tools have 
been used primarily for post-processing of a given design 
instead of design exploration. The user-guided interactive 
design approach, on the other hand, employs interactive 
sketching or CAD tools to realize the real-time interactive 
editing and conversion of input surfaces to piecewise devel-
opable surfaces (Rose et al. 2007; Tang et al. 2016) and to 
developable surfaces with straight and curved creases (Kil-
ian 2008; Solomon et al. 2012). These tools, however, rely 
on a human designer to create the input surfaces, and cannot 
automatically explore alternative surface designs that meet 
target specifications.

The control of minimum feature sizes is a long-studied 
topic in density-based topology optimization, originally 
motivated by the concerns associated with mesh depend-
ency and manufacturability. The spatial average-based low-
pass filtering methods have been developed to regularize 
the sensitivity (Sigmund 1997) and density (Bruns and 
Tortorelli 2001) fields. Such filters smooth out the den-
sity field by limiting the frequency of its spatial variation 
up to a certain value, indirectly controlling the minimum 
feature size. Since then, a number of variant methods for 
the same goal have been developed (Poulsen 2003; Guest 
et al. 2004; Sigmund 2007; Zhou et al. 2015). The control 
of maximum feature size, on the other hand, has not been 
investigated until recently when the needs arose for the con-
trol of channel sizes in fluid filters, robustness against local-
ized damage, and thermal gradients and residual stresses. 
In Guest (2009), local constraints have been used to impose 
a minimum volume of void in each localized region, indi-
rectly controlling the maximum feature size in the region. 
This approach was later generalized in a projection-based 
framework (Carstensen and Guest 2018). An explicit local 
control of both the maximum and minimum feature sizes 

has been proposed using a skeleton-based morphological 
method (Zhang et al. 2014) and a morphological method 
with band-pass filtering (Lazarov and Wang 2017). To 
avoid introducing constraints at each local region within the 
design domain, an aggregation strategy has been proposed 
to achieve the goal using only a single constraint (Fernán-
dez et al. 2019). Most existing methods, however, require 
the search of neighbor cells at each design point in each 
optimization iteration. This is a very computationally expen-
sive operation, especially, for 3D problems (Lazarov and 
Wang 2017). Alternatively, the neighborhood search could 
be performed as a preprocessing step, so that the neighbor 
cell information can be stored and reused. This approach, 
however, requires significantly more memory utilization and 
also is impractical for topology optimization using adaptive 
meshing.

To design 3D thin-walled structures with a uniform wall 
thickness, several approaches have been independently pro-
posed for different applications. For structures manufactured 
by deep drawing, a mid surface and sensitivity penaliza-
tion approach has been proposed (Dienemann et al. 2017). 
Deep drawing is a process that forms a planar sheet metal 
blank to the shape of a mold by a mechanical press. While 
the optimized results are very suitable for the deep drawing 
applications, the extension to generic thin-walled structures 
is not straightforward, since the approach requires a pre-
scribed press direction as an input. For structures made of 
solid thin coating enclosing infill materials, the spatial gra-
dient of the density field processed with a series of filtering 
and projection has been used to achieve a uniform coating 
thickness (Clausen et al. 2015, 2015). This approach, how-
ever, is also not deemed applicable to generic thin-walled 
structures because infill materials are required to extract the 
coating. It is also not possible to have branches and holes in 
the coating. For structures assembled of plates with uniform 
thickness, a geometric projection method has been proposed 
(Zhang et al. 2016, 2017, 2018), where each plate is explic-
itly represented by its shape and location design variables. 
While curved plates and holes can be attained by introducing 
additional design variables, the geometry attainable by this 
method is rather limited since they are limited by the number 
and type of plates considered.

This paper proposes two geometric constraints to design 
piecewise developable thin-walled structures for use with 
density-based topology optimization. The proposed con-
straint on surface developability enforces the directions of 
the surface normal, namely the spatial gradient of the den-
sity field near the transition to void, to lie on a (small) num-
ber of input reference planes. While this conservative con-
straint only imposes the sufficient condition for piecewise 
developability, it is far more computationally efficient than 
a necessary and sufficient developability constraint based 
on the Gaussian curvature, which makes it highly suitable 

Fig. 1   Examples of foldable shape-changing structures. a arbitrarily 
curved bending-active architectural structure (Laccone et  al. 2021); 
b pop-up kirigami structure (Redoutey et  al. 2021); and c origami-
based deployable structure (Deleo et al. 2020)
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for use with density-based topology optimization. To design 
generic thin-walled structures containing branches and holes 
without assuming any specific manufacturing processes, 
the proposed constraint on (small) uniform wall thickness 
enforces the bounds on the minimum and maximum feature 
sizes, while iteratively narrowing the gap between them dur-
ing optimization. This constraint on uniform wall thickness 
is implemented with a Helmholtz PDE filter (Lazarov and 
Sigmund 2011; Kawamoto 2011) for the minimum feature 
size control, and another Helmholtz PDE filter and an aggre-
gation constraint for the maximum feature size control. The 
PDE-based filters are chosen since they do not require infor-
mation about neighbor cells, which is especially convenient 
for problems with unstructured mesh and adaptive meshing. 
It is noted that while adaptive 3D tetrahedral elements are 
used in all numerical examples presented in this paper, the 
proposed two constraints are mesh independent, which can 
be applied to any 2D or 3D, fixed or adaptive mesh types.

The rest of the paper is organized as follows. Section 2 
introduces the mathematical formulation of the piecewise 
developability constraint and the thin-wall constraint. Sec-
tion 3 formulates the topology optimization problem with 
these constraints. Section 4 presents several numerical 
examples demonstrating the topology optimization with 
the proposed constraints. Section 5 summarizes the current 
study and opportunities for future research.

2 � Piecewise developability and thin‑wall 
constraints

2.1 � Design field regularization

Our proposed constraints on piecewise surface develop-
ability and wall thickness are defined as functions of the 
regularized design field in the density-based topology 
optimization. In a design domain Ω, a scalar design field 
� ∶ � ↦ [−1, 1] is defined to represent the material domain 
�d to be optimized:

where � stands for a design point in Ω and H ∶ ℝ ↦ {0, 1} 
is the Heaviside function. A Helmholtz PDE filter (Lazarov 
and Sigmund 2011; Kawamoto 2011) is used to regularize 
the design field �:

where r is the minimum feature radius. Then fictitious mate-
rial density filed � can be defined by a smoothed Heaviside 
function H̃ ∶ ℝ ↦ [0, 1]:

(1)H(�(�)) =

{

0 for ∀� ∈ � ⧵�
d

1 for ∀� ∈ �
d

,

(2)−r2∇2𝜙̃ + 𝜙̃ = 𝜙,

where

It is noted that all smoothed Heaviside functions used in 
the rest of this paper including H̄ and Ĥ follow the same 
formulation with different h parameter settings.

2.2 � Piecewise developability constraint

Mathematically, a developable surface is a smooth surface 
with zero Gaussian curvature (Kühnel 2015). If a surface is 
made only of multiple patches of developable surfaces, it is 
said to be piecewise developable. A piecewise developable 
surface can consist of patches of planar surfaces, cylinders, 
cones, and tangent surfaces.

Gaussian curvature Kg for an implicit surface S is given as 
(Goldman 2005):

where ∇S is the gradient and �∗(S) is the adjoint of the Hes-
sian. The numerical computation of the second derivatives 
in �∗ poses significant challenge in terms of time, accuracy, 
and stability of computation. As a result, the Gaussian cur-
vature in Eq. 5 poses an extreme challenge for use within 
the gradient-based topology optimization. To alleviate the 
challenge associated with direct Gaussian curvature compu-
tation, this paper proposes a much simpler sufficient condi-
tion for surface developability, which depends only on the 
surface normal (i.e., ∇S ) and hence far more computation-
ally viable than a generic constraint based on the Gaussian 
curvature.

Namely, the proposed piecewise developability constraint 
uses the criterion that the normal directions of a surface lie 
on a (small) number of input reference planes. Such a surface 
is indeed a developable surface, since a surface patch with its 
normal directions lie on the same plane is developable. There 
are, however, developable surfaces that do not meet the crite-
rion, e.g., cones and tangent surfaces. This criterion therefore 
is a sufficient but not necessary condition for piecewise devel-
opability. The constraint is mathematically stated as:

(3)𝜌
�

𝜙̃
�

=

⎧

⎪

⎨

⎪

⎩

0 for 𝜙̃ < −h̃,

H̃
�

𝜙̃
�

for − h̃ ≤ 𝜙̃ ≤ h̃,

1 for 𝜙̃ > h̃,

(4)H̃
(

𝜙̃
)

=
1

2
+

15

16

(

𝜙̃

h̃

)

−
5

8

(

𝜙̃

h̃

)3

+
3

16

(

𝜙̃

h̃

)5

.

(5)Kg =
∇S�∗(S)∇S⊺

|∇S|4
,

(6)∫
𝛺

K
∏

k=1

(

�
(k)

⋅ ∇𝜙̃
)2
d𝛺 − 𝜖 ⩽ 0,
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where �(k), k = 1, ...,K is the normal vector of K the input 
reference planes, 𝜖 is a positive infinitesimal number, and 
∇𝜙̃ is the spatial gradient of the regularized design field:

It is noted that the spatial gradient is evaluated on 𝜙̃ , not on 
� , for numerical stability. Eq. 6 is satisfied only if ∇𝜙̃ ≉ 0 
and is approximately perpendicular to one of the normal 
vectors of the input reference planes. Since ∇𝜙̃ ≈ 0 within 
the material and void regions during topology optimization, 
Eq. 6 effectively works to constrain the transition regions 
between the material and void, which can be seen as a relax-
ation of structural surfaces.

While Eq. 6 is only a sufficient condition of piecewise 
developability, it does constrain the surfaces of the struc-
ture to be curvilinear patches of planes and cylindrical sur-
faces with the curvatures lie on one of the K input reference 
planes. Since planes and cylindrical surfaces constitute a 
majority of developable surfaces (Kilian 2008), it is hypoth-
esized that the surface topography achievable by Eq. 6 would 
be reasonably rich, with added benefit of tunable computa-
tional complexity by means of the input reference planes.

2.3 � Thin‑wall constraint

The uniform small thickness in the optimized structure is 
achieved by simultaneously constraining the minimum and 
maximum feature sizes while iteratively narrowing the gap 
between them during optimization. This will overcome 
the limitations in the previous approaches for thin-walled 
structure design by allowing the exploration of generic wall 
topology containing branches and holes without assuming 
any specific manufacturing processes. It is noted that a simi-
lar concept has been applied to the topology optimization 
of 2D truss-like structures with uniform member widths 
(Niu and Wadbro 2019). The constraint is implemented 
with a Helmholtz PDE filter (Lazarov and Sigmund 2011; 
Kawamoto 2011), originally applied for the minimum fea-
ture size control, and another Helmholtz PDE filter and an 
aggregation constraint for the maximum feature size con-
trol. Conceptually, the proposed PDE-based method shares 
a similar trait to previously reported works on the maximum 
feature size control method (Guest 2009) and the lattice infill 
method (Wu et al. 2017, 2018). The primary advantage of 
the proposed PDE-based method is that the information 
about neighbor cells is not required, which makes it espe-
cially advantageous to problems with unstructured mesh and 
adaptive meshing as addressed in this paper.

The minimum feature radius r in Eq. 2 controls the 
minimum feature size in the regularized design field 𝜙̃ , 
where the relation between r and the filter radius R in 

(7)∇𝜙̃ =
(𝜕𝜙̃

𝜕x
,
𝜕𝜙̃

𝜕y
,
𝜕𝜙̃

𝜕z

)

.

the standard spatial average-based filtering methods is 
(Clausen et al. 2015):

Therefore, the material design field � , obtained from 𝜙̃ using 
Eq. 3, has no features smaller than R.

The maximum feature size is indirectly controlled by 
exploiting a general mathematical property of Helmholtz 
PDE filters, where for the input field bounded in [0, 1], 
the regularized field exceeds 1 only when the input field 
has features larger than the multiplier to Laplacian. This 
means, the maximum feature size can be imposed on the 
material density field (which is bounded in [0, 1]) by 1) 
filtering it with another Helmholtz PDE filter and 2) con-
straining the regularized field to be less than 1 in the entire 
design domain. Instead of filtering � , however, a separate 
density field 𝜌̃ is created from the regularized design field 
𝜙̃:

where a Heaviside function H̄ is different from H̃ . This sepa-
ration of the density field for geometric analysis ( ̃𝜌 ) from 
the one for structural analysis ( � ) helps maintain numerical 
stability. During the course of optimization, a continuation 
scheme on h̃ can be applied to Eq. 3 to avoid premature 
convergence to a local minimum while a narrow Heaviside 
bandwidth h̄ can be applied to Eq. 9 to ensure the satisfaction 
of geometric constraints at all iterations.

The density filed ( ̃𝜌 ) is then regularized by a Helmholtz 
PDE with filter radius r̄ > r to produce the regularized den-
sity 𝜌̄:

Similar to Eq. 8, r̄ can be linked with the actual geometric 
feature size R̄ . Rather than introducing many local constrains 
(Guest 2009) or a P-norm aggregation constraint (Wu et al. 
2017, 2018) to bound the maximum feature size, this paper 
follows a numerically robust aggregation method based on 
smoothed Heaviside projection, which has been success-
fully applied to the stress-constrained topology optimization 
(Wang and Qian 2018):

where � is the prescribed upper bound of 𝜌̄ , ĥ is the smoothed 
Heaviside bandwidth parameter, � is the penalty factor, ̄̄𝜖 is a 
positive infinitesimal number.

(8)r =
R

2
√

3
.

(9)𝜌̃
�

𝜙̃
�

=

⎧

⎪

⎨

⎪

⎩

0 for 𝜙̃ < −h̄,

H̄
�

𝜙̃
�

for − h̄ ≤ 𝜙̃ ≤ h̄,

1 for 𝜙̃ > h̄,

(10)−r̄2∇2𝜌̄ + 𝜌̄ = 𝜌̃.

(11)∫
𝛺

Ĥ
(

𝜌̄ − 𝛽, ĥ
)

(

𝜌̄

𝛽

)𝜂

d𝛺 − ̄̄𝜖 ⩽ 0,
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In order to precisely bound the maximum feature size to 
be R̄ , upper bound � should be set to a value smaller than 
yet very close to 1, and ĥ should be set to an infinitesimal 
value. However, this setting is not practical for the sensitiv-
ity-driven numerical optimization due to the lack of smooth-
ness in the Heaviside function Ĥ . To resolve this numerical 
challenge, a filter radius larger than the desired maximum 
feature size should be used in Eq. 10 so that moderate val-
ues for � and ĥ can be used. With the appropriate settings 
of r and r̄ (or equivalently R and R̄ ), both the minimum and 
maximum feature sizes can be indirectly controlled. In order 
to achieve the uniform feature size control, both feature size 
radius parameters can be set as identical. However, this will 
lead to the numerical challenge for the maximum feature 
size constraint Eq. 11. For this reason, the values of r and r̄ 
are set as apart initially (with r < r̄ , of course) and updated 
during optimization, so the gap between them is iteratively 
reduced to a sufficiently small value at convergence.

Figure 2 illustrates simple numerical tests to gain insights 
towards the appropriate settings for r , r̄ , � , and ĥ . Figure 2a 
shows a sample input 𝜌̃ field, where the four strips have thick-
nesses (from top to bottom) 4R , 2R , R , and 0.5R , respectively. 
It is generally recommended that tight bandwidth is set in 
Eq. 9 so that 𝜌̃ is almost 0 or 1 everywhere. It should be noted 
that the bottom strip has the thickness smaller than R , which 
should not be present in the actual optimization runs due to 
Eqs. 2 and 3. Figure 2b–d show, from left to right, the 𝜌̄ fields 
with R̄ of 4R , 2R , and 1.5R , respectively. With the decrease 
of R̄ (or equivalently r̄ ), the values of the strips thicker than R̄ 
increase, indicating the detection of these strips by means of 

higher values of 𝜌̄ . Figure 2e–g show, from left to right, the 
Ĥ(𝜌̄ − 𝛽, h) fields with (�, h) of (0.75, 0.2), (0.90, 0.05), and 
(0.97, 0.015), respectively. With the larger R̄ − R (or equiva-
lently r̄ − r ), smaller values of � and larger values of ĥ , which 
corresponds to smoother Heaviside functions, can be used to 
effectively filter out the strips thinner than R̄ in order for Eq. 11 
to penalize only the strips thicker than R̄ . The profiles of the 
smoothed Heaviside functions to generate Fig. 2e–g are plot-
ted in Fig. 3. The function smoothness indeed improves with 
smaller � and larger ĥ settings. It is noted while these tests can 
provide some insights towards the relationship between the 
filter radii and the bandwidth of smoothed Heaviside function 
to achieve a uniform feature size, the actual settings may vary 
in different topology optimization problems.

3 � Optimization formulation

The structural topology optimization problem with the piece-
wise developability constraint and the thin-wall constraint is 
summarized as follows:

where the transformations from � to � and to 𝜌̄ are detailed 
in Eqs. 2-3 and Eqs. 9-10, respectively, and summarized in 
Fig. 4. Function F is the structural performance objective. 
Function g1 is the volume fraction constraint where V0 is the 
total volume of the design domain, and V̄  is the prescribed 
maximum allowable volume fraction. Functions g2 and g3 
are the developability constraint (Eq. 6) and the thin-wall 
constraint (Eq. 11), respectively.

For a structural compliance minimization problem, objec-
tive function F is defined as:

(12)

minimize:
𝜙

F

subject to: g1 ∶= ∫
𝛺

𝜌

V0

d𝛺 − V̄ ⩽ 0

g2 ∶= ∫
𝛺

∏K

k=1

�

�(k) ⋅ ∇𝜙̃
�2
d𝛺 − 𝜖 ⩽ 0

g3 ∶= ∫
𝛺
Ĥ(𝜌̄ − 𝛽, h)

�

𝜌̄

𝛽

�𝜂

d𝛺 − ̄̄𝜖 ⩽ 0

equilibrium equations

material interpolation equation

𝜙 ∈ [−1, 1]𝛺

,

Fig. 2   Test of filter setting for the maximum feature size control. a 
sample input 𝜌̃ field with strips with (from top to bottom) 4R , 2R , 
R , and 0.5R thick, b–d 𝜌̄ fields with R̄ of 4R , 2R , and 1.5R , e–g 
Ĥ
(

𝜌̄ − 𝛽, ĥ
)

0 1

0

1

(a)
(b)

(c)

ρ̄

Ĥ
(
ρ̄ − β, ĥ

)

Fig. 3   Smoothed Heaviside functions with different bandwidth 
parameters (�, h) : a (0.75, 0.2), b (0.90, 0.05) c (0.97, 0.015)
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and equilibrium equations can be given, for example, as:

where � = � ⋅ �(�) is the stress field, �(�) is the strain field. 
� is the elasticity tensor, Γ

d
 is the Dirichlet boundary, and 

Γ
n
 is the Neumann boundary.
The elasticity tensor � is obtained in material interpolation 

equation, which for example, can be the SIMP power law:

where �s and �v are the full solid elasticity tensor and void 
tensor, respectively, � is the regularized material density, and 
P is the penalization parameter.

The sensitivity calculation of objective function F follows 
the chain rule as follows:

where a standard adjoint method (Bendsoe and Sigmund 
2003) is used to compute �F

��
 . For the linear elastic system 

written as K� = �  , the Lagrangian can be defined as 
follows,

where � is the Lagrange multipliers. As (K� = � ) repre-
sents the physics equilibrium, any � can be chosen to satisfy 
L = F . Its gradient can be computed as follows:

(13)F = ∫
�

1

2
�
⊺
�d�,

(14)
∇ ⋅ � = � in �

� = � on Γ
d

� ⋅ � = � on Γ
n

,

(15)� = �v + �P
(

�s − �v

)

,

(16)
𝜕F

𝜕𝜙
=

𝜕

𝜕𝜙

(

F ◦ 𝜌 ◦ 𝜙̃
)

(𝜙) =
𝜕F

𝜕𝜌

𝜕𝜌

𝜕𝜙̃

𝜕𝜙̃

𝜕𝜙
,

(17)L(�, �, �) = F(�, �) + �T (K� − �),

(18)

�F

��
=

�L

��

=
�F

��
+

�F

��

��

��
+ �T (

�K

��
� +K

��

��
)

=
�F

��
+ �T

�K

��
� + (

�F

��
+ �TK)

��

��
.

To avoid calculating ��
��

 , � is chosen as �F
��

+ �TK = 0 , which 
is also known as the adjoint equation.

Sensitivity calculation of all constraints g1 , g2 and g3 also 
follows the chain rule as follows: 

4 � Numerical examples

This section presents three design examples: a center loaded 
cuboid, a sheared cantilever beam, and a multiply loaded 
cube. Their design domains and boundary conditions are 
presented in Fig. 5. The optimization problem in Eq. 12 
is solved by the method of moving asymptotes (Svanberg 
1987). The equilibrium equations are solved by a finite ele-
ment method, and the sensitivity is computed following 
the chain rule and a standard adjoint method, both using 
COMSOL Multiphysics. In each example, the design field 
is uniformly initialized so that the volume fraction constraint 

(19a)
𝜕g1

𝜕𝜙
=

𝜕

𝜕𝜙

(

g1 ◦ 𝜌 ◦ 𝜙̃
)

(𝜙) =
𝜕g1

𝜕𝜌

𝜕𝜌

𝜕𝜙̃

𝜕𝜙̃

𝜕𝜙
,

(19b)
𝜕g2

𝜕𝜙
=

𝜕

𝜕𝜙

(

g2 ◦ 𝜙̃
)

(𝜙) =
𝜕g2

𝜕𝜙̃

𝜕𝜙̃

𝜕𝜙
,

(19c)
𝜕g3

𝜕𝜙
=

𝜕

𝜕𝜙

(

g3 ◦ 𝜌̄ ◦ 𝜌̃ ◦ 𝜙̃
)

(𝜙) =
𝜕g3

𝜕𝜌̄

𝜕𝜌̄

𝜕𝜌̃

𝜕𝜌̃

𝜕𝜙̃

𝜕𝜙̃

𝜕𝜙
.

φ φ̃
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ρ̄
Eq.(2)

Eq.(3)
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PDE filter r
¯

Eq.(15)

Fig. 4   Transformations of field variables

xy
z

(a)

(c)

1

1
1

F

F

F

1.6
0.6

1

(b)

1
1

0.5

F

0.2

0.2

0.4

0.2

0.1

0.10.2

0.2

Fig. 5   Design domains and boundary conditions for the examples of 
a center loaded cuboid, b sheared cantilever beam, and c multiply 
loaded cube



Topology optimization with wall thickness and piecewise developability constraints for…

1 3

Page 7 of 13  118

g1 is active at the beginning of optimization. The optimiza-
tion terminates when the change in the objective function 
becomes sufficiently small or the prescribed number of itera-
tions is reached, whichever comes first.

4.1 � Volumetric structure with piecewise 
developable surfaces

The first example, a center loaded cuboid, demonstrates the 
proposed piecewise developability constraint. As seen in 
Fig. 5a, the design domain is subject to a unit downward 
force applied at the center of the bottom face, whose four 
corners are fixed in all degrees of freedom. The maximum 
allowable volume fraction is set as 35% . As a baseline for 
comparison, the optimized design using the conventional 
SIMP topology optimization (without geometric constraints) 
is presented in Fig. 6. It is observed that the optimized 
design has a star-like overall geometry with a curved surface 
with no visible edge. The resulting structural compliance is 
normalized as 1.00 for comparison.

Figure 7 presents the optimized design using the proposed 
piecewise developability constraint with two normal vectors 
of input reference planes, �(1) = (1, 0, 0) and �(2) = (0, 1, 0) . 
Its normalized structural compliance is 1.04, namely 4% per-
formance degradation compared with the baseline design 
without the developability constraint. While it shares the 
overall star-like shape with the baseline, the optimized struc-
ture appears to be made of singly curved surfaces connected 
by visible edges. Figure 8 verifies that the surface normal 
directions are indeed perpendicular to at least one of the 
input normal vectors of the two reference planes.

The optimized design in Fig. 7 is fabricated with 3D 
printing. Its surface is flattened into a 2D pattern, which is 
printed on a paper and cut. As demonstrated in Fig. 9, the 

2D pattern can be taped to the surface of the printed solid 
volumetric part without stretching, wrinkling and tearing.

Another optimized structure is presented in Fig. 10 with 
a different set of the input vectors �(1) = (

√

2∕2,
√

2∕2, 0) 
and �(2) = (

√

2∕2,−
√

2∕2, 0) . Its resulting structural 
compliance is 1.06 (normalized). The optimized struc-
ture again has an overall star-like shape, but with vastly 
different surface construction from that of the prior two 
designs. Figure 11 verifies that the surface normal direc-
tions are perpendicular to at least one of the prescribed 
input vectors.

While this example demonstrated the case with only 
two input vectors, the proposed piecewise developability 

Fig. 6   Baseline structure using the conventional SIMP topology opti-
mization. Structural compliance = 1.00 (normalized)

Fig. 7   Optimized structure with the piecewise developability con-
straint with �(1) = (1, 0, 0) and �(2) = (0, 1, 0) . Structural compliance 
= 1.04 (normalized)

Fig. 8   Verification of the piecewise developability constraint for 
Fig. 7 design: a 

(

∇𝜙̃ ⋅ �(1)
)2 and b 

(

∇𝜙̃ ⋅ �(2)
)2
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constraint should be readily applicable to designing struc-
tures with more input vectors. It is noted that the input vec-
tors can also be simultaneously optimized with the design of 
structures by appropriately parameterizing their orientations 
to avoid the 2� periodicity (Nomura 2019; Zhou et al. 2021).

4.2 � Thin‑walled structure

The second example, a sheared cantilever beam, demon-
strates the proposed thin-wall constraint. As seen in Fig. 5b, 
the design domain is subject to a shear load on an edge at 
the free end of the beam. The left surface is fixed in all 
three degrees of freedom. The maximum allowable volume 
fraction is set as 25% . As a baseline of comparison, the opti-
mized design using the conventional SIMP topology opti-
mization (without the geometric constraint) is presented in 
Fig. 12, which exhibits U-shaped geometry with varying 
cross sections. From the cross-sectional view in Fig. 12b, it 
can be seen that the optimized beam has no enclosed cavity 
with non-uniform wall thickness. The resulting structural 
compliance is normalized as 1.00 for comparison.

Figure 13 presents optimized designs using the pro-
posed thin-wall constraint with three different prescribed 
thicknesses 0.07, 0.055, and 0.045. It is observed that the 
thicknesses and optimized topologies are sensitive to the 
selection of filter radii r̄ and r , which control the minimum 
and maximum feature sizes, respectively. Their normalized 
structural compliance objective values are 1.03 (thickness 
= 0.07), 1.04 (thickness = 0.055) and 1.08 (thickness = 
0.045), respectively. More degradation of structural perfor-
mance is observed in the thinner designs, since the base-
line design has relatively large (non-uniform) wall thick-
ness. While they share the overall U-shaped geometry with 
the baseline, the topologies of the optimized designs are 
quite different from that of the baseline design, with mul-
tiply connected geometry consisting of several enclosed 
cavities and branched walls with near-uniform thickness. 
It is observed that the uniform thickness is not perfectly 
preserved in certain sharp corners and intersections. This 

Fig. 9   The prototype demonstration of taping a 2D pattern to the sur-
face of an optimized and printed solid volumetric part

Fig. 10   Optimized structure with the piecewise developability con-
straint with �(1) = (

√

2∕2,
√

2∕2, 0) and �(2) = (
√

2∕2,−
√

2∕2, 0) . 
Structural compliance objective = 1.06 (normalized)

Fig. 11   Verification of the developability constraint for Fig.  10 
design: a 

(

∇𝜙̃ ⋅ �(1)
)2 and b 

(

∇𝜙̃ ⋅ �(2)
)2
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is due to the soft constraint formulation in Eq. 11 and the 
selection of tuning parameters. As for intersections, the 
use of a ring shape test region (Fernández et al. 2019) 
instead of the conventional full sphere can potentially 
eliminate the thickness variation.

4.3 � Developable thin‑walled structure

The third example, a multiply loaded cube, demonstrates the 
integration of both the piecewise developability constraint 
and the thin-wall constraints. As seen in Fig. 5c, the design 
domain is subject to a vertical load and a shear load, which 
are simultaneously applied on the top face of to a cubic 
design domain. One of four corners of the bottom face is 
fixed in all three degrees of freedom while the rest are fixed 
only in the z direction. The upper bound on allowable vol-
ume fraction is set as 6%.

Figure 14a presents the baseline design using the con-
ventional SIMP topology optimization (without geometric 
constraints), which exhibits complex free-form 3D volumet-
ric geometry with highly variable cross sections. From the 
cross-sectional view, it is observed that the optimized struc-
ture consists of various geometric features typical for topol-
ogy optimization with small volume fraction, e.g., beams, 
walls and holes. As in the earlier examples, the resulting 
structural compliance is normalized as 1.00 for comparison. 
Fig. 14b presents the optimized design using the thin-wall 
constraint with the prescribed thickness of 0.03. Due to the 
additional constraint, its normalized structural compliance 
increases to 1.20. As in the earlier examples, the overall 
geometry is similar to the baseline, with notable differences 
in details. The cross-sectional view reveals that certain 
solid beams in the baseline have become hollow and several 
cut-outs in the outer walls in the baseline have filled with 
material. Fig. 14c presents the optimized design using both 
the piecewise developability constraint with �(1) = (1, 0, 0) 
and �(2) = (0, 1, 0) and the thin-wall constraint with the 

Fig. 12   Baseline structure using the conventional SIMP topology 
optimization. Structural compliance is 1.00 (normalized). a external 
shape with two different view angles and b cross-sectional view

Fig. 13   Optimized structures with the thin-wall constraint with differ-
ent wall thicknesses. External (top row) and cross-sectional (bottom 
row) views. a thickness = 0.07, structural compliance = 1.03 (nor-

malized); b thickness = 0.055, structural compliance = 1.04 (normal-
ized); c thickness = 0.045, structural compliance = 1.08 (normalized)
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prescribed thickness of 0.03. Figure 15 verifies that the 
surface normal directions are perpendicular to at least one 
of the prescribed input vectors. Due to the two additional 
constraints, its normalized structural compliance further 
increases to 1.43. While the overall geometry is similar to 
the thin-walled design including hollow beams, the opti-
mized design is made of singly curved surfaces connected 
by visible edges.

Parameters used to generate Fig. 14c design are summa-
rized in Table 1. For other examples, a similar parameter 
setting can be used. The optimization convergence history 
for Fig. 14c design is presented in Fig. 16. The compliance 
objective almost monotonously decreases throughout the 
100 optimization iterations. The volume fraction constraint 
stays active from the beginning of optimization. While oscil-
lations are observed for the two geometric constraints, both 
are satisfied at the end of optimization with a clear down-
ward trend.

As relatively small volume fraction ( 6% ) is used in this 
example, the design domain is adaptively re-meshed after 
every five optimization iterations based on the density field. 

Fig. 14   Optimized designs for the multiply loaded cube example. 
External (top row) and cross-sectional (bottom row) views. a baseline 
design using the conventional SIMP topology optimization, struc-

tural compliance = 1.00(normalized); b thin-walled design, structural 
compliance = 1.20 (normalized); c developable thin-walled design, 
structural compliance = 1.43 (normalized)

Fig. 15   Verification of the developability constraint for Fig.  14c 
design: a 

(

∇𝜙̃ ⋅ �(1)
)2 and b 

(

∇𝜙̃ ⋅ �(2)
)2

Table 1   Parameters used to generate Fig. 14c design

Parameter Value Description

P 3 SIMP power law
V̄ 0.06 Volume fraction constraint limit
𝜖 0.1 Developability constraint limit
̄̄𝜖 0.01 Thin-wall constraint limit
R 0.015 Minimum filter radius
R̄ 0.035 Maximum filter radius
h̃ 0.6 → 0.2 Heaviside bandwidth for H̃ 

(continuation after 30 itera-
tions)

h̄ 0.2 Heaviside bandwidth for H̄
ĥ 0.1 Heaviside bandwidth for Ĥ
� 0.9 Threshold for the 𝜌̄
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As seen in Fig. 17 at the end of optimization, regions with 
higher densities (i.e., structural members) have finer mesh 
than regions with lower densities (i.e., voids).

5 � Conclusions

Foldable shape-changing structures such as origami, 
deployable, and 4D printed structures have potentials for 
enhanced packaging, adaptability, and motion capabili-
ties. Distinct geometric features often found in such fold-
able shape-changing structures include developability and 
small wall thickness. In this paper, two geometric con-
straints were introduced to enable the use of density-based 

topology optimization in designing piecewise developable 
thin-walled structures. The proposed developability con-
straint enforces the normal directions of the surfaces of the 
structures to lie on a prescribed (small) number of input 
reference planes, which realizes an optimized structure 
made of piecewise developable surfaces. While this con-
servative constraint only imposes the sufficient condition 
for piecewise developability, it is far more computationally 
efficient than a necessary and sufficient constraint based 
on the Gaussian curvature, which makes it highly suit-
able for use with density-based topology optimization. 
The proposed thin-wall constraint simultaneously bounds 
the minimum and the maximum feature sizes in the struc-
tures through two PDE-based filtering operations and an 
aggregation constraint. While these additional constraints 
inevitably compromise the structural performance, the 
ability to control the desired geometric features in topol-
ogy optimization would benefit the rapidly growing field 
of foldable shape-changing structures.

Due to the intrinsic characteristics of the density-based 
representation and the associated computational cost, how-
ever, the “thin”-walled designs presented in this paper still 
all have relatively thick walls. To further reduce the thick-
ness in thin-walled designs, adaptive switching from solid 
to shell elements (Träff et al. 2021) during optimization 
might be beneficial. In addition, designing foldable shape-
changing structures imposes the requirements beyond 
the piecewise developability and small wall thickness 
addressed in this paper. Such requirements include design-
ing for the folding sequence and avoiding self-overlaps in 
the developed (flattened) sheet as well as the potential use 
of multiple sheets. Addressing these issues are left for the 
future work.
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Fig. 16   Optimization convergence history for Fig. 14c design

Fig. 17   Mesh of the mid-plane ( z = 0.5 ) at the end of optimization for a baseline, b thin-walled, and c developable thin-walled designs in Fig. 14
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