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Abstract
In this paper, SBSC+SRU: an error-guided adaptive Kriging modeling method is proposed for the system reliability analysis 
with multiple failure modes. Therein, the accuracies of Kriging models will be improved by a novel learning function, in 
which the magnitude of Component Limit State Functions (CLSFs), uncertainties of Kriging models, and the coupling rela-
tionships among CLSFs are considered to identify the location and component index of the new sample. Then, the maximum 
estimated relative error of predicted failure probability is derivated by quantifying the probability of wrong sign prediction 
of samples. To be specific, the highly uncertain samples are first defined, after that the probability of wrong sign prediction 
of each highly uncertain sample is deduced combining the predictions of Kriging models and coupling relationship among 
all CLSFs. Therefore, the proposed approach knows the real-time estimated error and could terminate the adaptive updating 
process under the accuracy requirement. Three numerical examples including parallel and series system problems and an 
engineering case concerning the system reliability analysis of a stiffened cylindrical shell are studied to validate the perfor-
mance of the proposed method. Results demonstrate that the proposed method converges to the required estimated accuracy 
while saving considerable computational burdens compared with state-of-the-art approaches.

Keywords System reliability analysis · Adaptive Kriging method · Error-based stopping criterion · Multiple failure modes

1 Introduction

System reliability analysis (SRA) motivates to evaluate 
the failure probability of a system under multiple failure 
modes considering various uncertainties such as structural 
parameters, materials, loadings, and so on. Each failure 
mode is controlled by a so-called Component Limit State 
Function (CLSF), in which the Component Limit State 
(CLS) separates the design space into safety and failure 
regions (Teixeira et al. 2021). All CLSFs are usually highly 
nonlinear, implicit, and expensive because of the high com-
plexity of the engineering system. To obtain the result of 

system failure probability, the approximation paradigms 
were firstly adopted, which substitute the CLSFs with 
low-order Taylor expansions, then employ optimization 
algorithms to search for the most probable point (MPP). 
In this regard, the First-/Second-Order Reliability analysis 
Methods (FORM/SORM) (Du and Hu 2012; Jiang et al. 
2016) are two representative approaches, which may yield 
extremely inaccurate estimations when encountering prob-
lems with high-order or multiple MPPs. If more accurate 
results are expected, the simulation-based approaches such 
as Monte Carlo Simulation (MCS) (Tamimi et al. 1989), 
Subset Simulation (SS) (Au and Beck 2001), Importance 
Sampling (IS) (Yun et al. 2021; Zhang et al. 2020b), etc. 
are better alternatives. However, tremendous samples are 
the prerequisite for those simulation-based approaches to 
obtain credible results, which prevent their further applica-
tion on complex engineering systems due to unaffordable 
computational costs (Zhou et al. 2020a).

Over the past decade, researchers found that surrogate 
models show incredible excellence in imitating the expen-
sive input–output relationships of CLSFs with a few sam-
ples. (Forrester et al. 2008; Li and Xiu 2010; Peherstorfer 
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et al. 2018). Diverse surrogate models including Radial 
Basis Function (RBF) model (Li et al. 2018), Support Vec-
tor Machine (SVM) model (Bourinet et al. 2011), Polyno-
mial Chaos Expansion (PCE) model (Marelli and Sudret 
2018), Kriging model (Hu et al. 2020), and so forth have 
demonstrated their effectiveness and efficiency in tack-
ling reliability analysis issues. Generally, most of the 
reported surrogate-based reliability analysis approaches 
are based on the adaptive updating process because of sig-
nificant computational cost savings compared with static 
methods(Peherstorfer et  al. 2018) Therein, the Kriging 
model (Gaussian process model) gained much attention 
because of extra estimated variance prediction (Kleijnen 
2009; Liu et al. 2020; Yang et al. 2019; Yin et al. 2019). 
Moreover, it was confirmed that an excellent adaptive 
Kriging-based reliability analysis method should integrate 
an efficient learning function and an effective stopping cri-
terion. In this regard, two typical adaptive-Kriging based 
methods, efficient global reliability analysis (EGRA) method 
(Bichon et al. 2008) and Active-learning Kriging combining 
Monte Carlo Simulation (AK-MCS) method (Echard et al. 
2011) showed excellent performance at the very beginning 
via their learning functions, i.e., the efficient feasibility func-
tion (EFF) and learning function U, respectively. Recently, 
dozens of learning functions such as H (Lv et al. 2015), 
LIF (Sun et al. 2017), REIF (Zhang et al. 2019), and so 
on were developed from different aspects of considerations. 
Regarding the stopping criteria, traditional stopping crite-
ria depend on the values of learning functions, for exam-
ple, the stopping criteria employed in EGRA and AK-MCS 
are max {EF(x)} < 0.001 and min {U(x)} > 2 respectively, 
where EF(x) and U(x) are the learning functions for EGRA 
and AK-MSC respectively. It is difficult to determine 
problem-independent thresholds of for traditional stopping 
criteria, which may lead the adaptive updating process to 
pre-mature or late-mature. To address this shortage, several 
error-based stopping criteria (Menz et al. 2020; Wang and 
Shafieezadeh 2019a, b; Yi et al. 2020; Zhang et al. 2020a) 
are proposed by derivating the maximum relative error of 
estimated failure probability which could halt the adaptive 
updating process under a pre-determined error threshold. 
However, the above-mentioned methods are component reli-
ability analysis-oriented approaches that only concern one 
failure mode, whose efficiency and effectiveness will be hurt 
tremendously if they are applied to the SRA directly.

Designing effective adaptive Kriging-based system reli-
ability analysis methods is a non-trivial process because 
several Kriging models should be updated collaboratively 
according to different system types. The EGRA and AK-
MCS methods were extended to the system scenario, those 
were so-called EGRA-SYS (Bichon et al. 2011) and AK-
SYS methods (Fauriat and Gayton 2014). Learning func-
tions for EGRA-SYS and AK-SYS methods have the abilities 

not only to quantify the efficient feasibilities of samples of 
each CLSF but also to identify the contributions of different 
CLSFs to the failure state under different system types. Yun 
et al. (Yun et al. 2018) introduced the AK-SYSi approach 
by revising the learning functions of AK-SYS to guaran-
tee the right component index to be identified. Yang et al. 
(2018, 2019) proposed a method based on truncated can-
didate regions to avoid the influence of magnitudes of dif-
ferent CLSFs. Hu et al. (2017) utilized the Singular Value 
Decomposition (SVD) to consider the coupling relationship 
among CLSFs so that the number of Kriging models could 
be reduced, i.e., the computational burden could be allevi-
ated. The EEK-SYS method proposed by Jiang et al. (2020) 
extended the component maximum relative error to the 
system reliability scenario by derivating the system wrong 
sign predicted probability for each sample. More publica-
tions concerned SRA based on other metamodels refer to 
Li et al. (2020), Wu et al. (2020), Zhou et al. (2020b). To 
summarize, many attempts were made to design effective 
adaptive kriging-based system reliability analysis methods, 
but efforts could be further made to improve the efficiency 
of those methods both on the learning function and the stop-
ping criterion.

To resolve this conflict, a novel error-guided adaptive 
kriging-based system reliability analysis method will be 
introduced in this work, in which a novel learning func-
tion and an error-based stopping criterion are fabricated. 
Regarding the learning function, the Reliability-based Lower 
Confidence Bonding (RLCB) for CRA proposed in our pre-
vious work had confirmed its superiority since it considers 
both Kriging predicted uncertainty and statistical features 
of random design variables (Yi et al. 2020). Therefore, it is 
incorporated as the core part of the new learning function 
for SRA where magnitudes of CLSFs, initial uncertainties of 
Kriging models, and system types will also be considered in 
ascertaining the new sample and corresponding component 
index. The proposed error-based stopping criterion focuses 
on the highly uncertain samples instead of all the MCS pop-
ulation to alleviate the computational burden. Moreover, the 
bootstrap method is employed to obtain a more robust esti-
mation of confidence intervals of safety and failure samples, 
i.e., the maximum relative error of system failure probability. 
To validate the performance of the proposed approach, three 
numerical examples with different system types and an engi-
neering case evaluating the system failure probability of an 
underwater cylindrical shell with variable ribs are investi-
gated. Results indicate the proposed approach has significant 
superiority compared with state-of-the-art approaches.

The remaining parts will be organized as follows: Sect. 2 
introduces two basic system types and classic adaptive 
kriging-based system reliability analysis methods; details of 
the proposed approach will be elaborated in Sect. 3; Sect. 4 
demonstrates the performance of the proposed approach; the 
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conclusions and expected future works will be finally drawn 
in Sect. 5.

2  Classic system analysis methods 
via adaptive Kriging model

2.1  Set up of system reliability analysis problem

According to different coupling relationships of components, 
structural systems can be divided into the series system, the 
parallel system, and the hybrid system. Usually, the hybrid 
system consists of several sub-series and sub-parallel sys-
tems, in this case, the process of obtaining failure probability 
of hybrid system combines the processes of series and paral-
lel systems. To this end, the failure probability evaluation 
processes of series and parallel systems are elaborated as 
follows.

For a series system, if one component fails, the series 
system will collapse. Therefore, the failure probability of 
the series system is defined by:

where k is the number of components, gi(x) is limit state 
function of i-th the CLSF.

It is difficult to obtain the analytical solution of Pseries
f

 via 
Eq. (1) because of the high-order integral. Usually, the MCS 
method (Tamimi et al. 1989) is employed, by which Pseries,mcs

f
 

is given:

where

Regarding the parallel system, the failure event requires 
all components in failure mode. Failure probability is 
described as

Failure probability calculated by the MCS method is 
given by:

where

(1)Pseries
f

= P

{
k

∪
i=1

gi(x) < 0

}
= P

{
k

min
i=1

gi(x) < 0

}

(2)P
series,mcs

f
=

1

Nmcs

Nmcs∑
i=1

Iseries(xi)

(3)Iseries(x) =

{
1 ∃ gi(x) < 0

0 ∀ gi(x) ≥ 0

(4)P
parallel

f
= P

{
k

∩
i=1

gi(x) < 0

}
= P

{
k

max
i=1

gi(x) < 0

}

(5)P
parallel,mcs

f
=

1

Nmcs

Nmcs∑
i=1

Iparallel(xi)

It is worth mentioning that the number of MCS samples 
Nmcs has to satisfy the following condition so that the esti-
mated failure probability is trustworthy.

where Pmcs
f

 represents Pseries,mcs

f
 or Pparallel,mcs

f
 to simplify 

notations. Basically, the range of Pmcs
f

 is 10−2 ∼ 10−4 , in this 
case, approximately 104 ∼ 106 samples should be evaluated 
for a system.

2.2  Short review of several adaptive Kriging 
methods

Generally, adaptive Kriging methods for system reliabil-
ity analysis are based on an iterative process. For different 
methods, the main differences are the learning functions and 
the stopping criteria. In this section, details of those meth-
ods, which will be compared in Sect. 4 including the AK-
SYS method (Fauriat and Gayton 2014), AK-SYSi method 
(Yun et al. 2018), and the EEK-SYS method (Jiang et al. 
2020) are shortly reviewed.

2.2.1  AK‑SYS method

Kriging model is constructed for each CLSF, and the Krig-
ing prediction (Lophaven et al. 2002) for arbitrary CLSF is 
given by

where ĝ(x) and ŝ2(x) are the predicted value and Kriging 
variance respectively.

The learning functions for series and parallel sys-
tems are different. The failure event of a series system is 
min

{
gi(x)

}
< 0 . Thereby, the CLSF with minimum value 

should be identified. For this reason, system learning func-
tion U for the series system reads

On the other hand, the CLSF with maximum value should 
be identified for the parallel system whose failure event is 
max

{
gi(x)

}
< 0 . The learning function U for the parallel 

system is given by

(6)Iparallel(x) =

{
1 ∀ gi(x) < 0

0 ∃ gi(x) ≥ 0

(7)Cov =

√√√√ 1 − Pmcs
f

NmcsPmcs
f

< 0.05

(8)f̂ (x) ∼ N
[
ĝ(x), ŝ2(x)

]

(9)Useries
s

(x) =
|||
ĝm(x)−zm

ŝm(x)

||| m = arg min
i=1…k

{ĝi(x)}

(10)U
parallel
s (x) =

|||
ĝm(x)−zm

ŝm(x)

||| m = arg max
i=1…k

{ĝi(x)}
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During the adaptive updating process, the location and 
component index could be determined by searching for the 
minimum value of Eqs. (9) or (10) among the MCS popula-
tion. Note that, for Eqs. (9) and (10), if k = 1 , the learning 
function will degenerate to the situation, i.e., 
U(x) =

|||ĝ(x) − z
/
ŝ(x)

||| , that could only deal with one com-
ponent. The iterative process of the AK-SYS method stops 
when the condition min

(
Us(x)

)
≥ 2 is satisfied (Fauriat and 

Gayton 2014).
The AK-SYS method opened the gate to solve the system 

reliability analysis problems by adaptive Kriging methods, 
in which the location and component index of updated sam-
ples could be identified by the system-level learning function 
U. However, the learning functions from Eqs. (9) and (10) 
may treat some components as useless to the system when 
their CLSFs are poorly approximated which will deduce a 
huge discrepancy in the failure probability estimation (Li 
et al. 2020). Moreover, the threshold of the stopping criteria 
is hard to determine because the values of the learning func-
tion are problem-dependent.

2.2.2  AK‑SYSi method

The AK-SYSi method aims to refine the learning functions 
presented by Eq. (9) or (10) by classifying the situations of 
different samples in different ways when evaluating their 
improvements to the system limit state. Their expressions 
are more complex compared with Eq. (9) or (10) which are 
given by (Yun et al. 2018)

By the refined learning functions, the adaptive updat-
ing process could select the correct component to update 
automatically for series and parallel systems by minimizing 
Eqs. (11) and (12) respectively, even at the start of the itera-
tive process where the accuracies of Kriging models are at 
low levels. However, for the AK-SYSi method, the stopping 
criterion also adopts the same one as the AK-SYS method, 
which is a critical shortcoming.

2.2.3  EEK‑SYS method

The EEK-SYS method (Jiang et  al. 2020) utilized the 
wrong sign prediction probability function as the infill 

(11)Useries
s,refined

(x) =

{
min
i=1…,k

Ui(x) ĝi(x) > 0,∀i = 1,… , k w = arg min
i=1…,k

Ui(x)

max
i=1…,k�

Ui(x) ĝi(x) < 0,∃i = 1,… , k� w = arg max
i=1…,k�

Ui(x)

(12)U
parallel

s,refined
(x) =

{
min
i=1…,k

Ui(x) ĝi(x) < 0,∀i = 1,… , k w = arg min
i=1…,k

Ui(x)

max
i=1…,k�

Ui(x) ĝi(x) > 0,∃i = 1,… , k� w = arg max
i=1…,k�

Ui(x)

strategy to select the new sample during the active-learn-
ing process. The learning function for the series system 
is given by

where xm
mcs

 donates the mth MCS samples. The value of m is 
determined by maximum the system level probabilities of 
wrong sign prediction among all MCS samples, those are 
pseries
s,wsc

(
x
mcs

)
 and pseries

f ,wsc

(
x
mcs

)
 . Moreover, the index of the 

component should be updated is determined by choosing the 
component with the largest probability of wrong sign 
prediction.

Similarly, the learning function for the parallel system 
is given by

where pparallels,wsc (xmcs) and pparallel
f ,wsc

(
x
mcs

)
 are the system level 

probabilities of wrong sign prediction of the parallel 
system.

It is noted that the essence of calculating those prob-
abilities of wrong sign prediction is multiplication opera-
tions based on probabilities of wrong sign prediction of 
each component. The derivations are complicated to be 
expressed clearly by one or two equations, therefore if 
the reader wants a more detailed explanation, please refer 
to (Jiang et al. 2020). Furthermore, the learning function 
will mislead the adaptive updating process because the 
effectiveness of the wrong sign prediction probability will 
deteriorate when the number of components is large. (Zhan 
and Xing 2020, 2021).

The EEK-SYS method (Jiang et al. 2020) derivated the 
real-time estimated relative error of the failure probability 

(13)

xnew = xm
mcs

,m = argmax
js,jf

(
pseries
s,wsc

(
xjs
mcs

)
, pseries

f ,wsc

(
x
jf
mcs

))

Index =

{
max
i=1…,k

pwsc,i
(
x
new

)
ĝi(x) > 0,∀i = 1,… , k

min
i=1…,k�

pwsc,i(xnew) ĝi(x) < 0,∃i = 1,… , k�

(14)

xnew = xm
mcs

, m = argmax
js,jf

(
pparallel
s,wsc

(
xjs
mcs

)
, p

parallel

f ,wsc

(
x
jf
mcs

))

Index =

{
max
i=1…,k

pwsc,i
(
x
new

)
ĝi(x) > 0,∀i = 1,… , k

min
i=1…,k�

pwsc,i(xnew) ĝi(x) < 0,∃i = 1,… , k�
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which is regarded as the stopping criterion for the adaptive 
updating process. The real-time relative error estimator is 
given by

where N̂f  is the number of samples predicted failure among 
MCS population S, N̂s

f
 is the number of MCS samples pre-

dicted failure while actual safe, N̂f
s  is the number of MCS 

samples predicted safe while actual failure. The values of N̂s

f
 

and N̂f
s  are derivated based on those system and component 

levels probabilities of wrong sign prediction.
The EEK-SYS method could terminate the active-learning 

process under a pre-determined accuracy level �givenr  . It pro-
vides an effective way to balance the accuracy and computa-
tional burden. If a more accurate estimation is required, a strict 
threshold could be used while more computational burden is 
consumed. However, EEK-SYS employs the Normal distribu-
tion and Poisson distribution to calculate the confidence inter-
vals of safety and failure samples respectively. This hypothesis 
is regarded unsound because the number of samples in safety 
and failure regions will fluctuate, moreover, the failure samples 
are rare.

3  The proposed SBSC+SRU method

Strictly speaking, the prototype of the SBSC+SRU method 
is the BSC+RLCB (adaptive Kriging-based reliability analy-
sis method combining Bootstrap-based Stopping Criterion 
‘BSC’ and Reliability-based Lowering Confidence Bounding 
‘RLCB’ function) method whose superiority had demonstrated 
in our previous work for CRA (Yi et al. 2020). However, the 
BSC+RLCB method could not be used to solve the SRA prob-
lem because of several critical drawbacks. To this end, the 
RLCB for CRA is extended to be a system version (abbrevi-
ated as SRU) to choose update samples for SRA firstly. Subse-
quently, the BSC is also revised into a system one (abbreviated 
as SBSC) to terminate the adaptive updating process under 
the desired estimated accuracy. First of all, the flowchart of 
the SBSC+SRA method is shown in Fig. 1 and the contribu-
tions of this work compared with other active-learning meth-
ods are highlighted in orange. Then, the details of the main 
contributions, i.e., the learning function SRU and stopping 

(15)�̂�
r
=

|||||||

N̂f

N̂f − N̂s

f
+ N̂

f
s

− 1

|||||||
≤ 𝜀given

r

criterion SBSC for SRA, will be drawn in Sects. 3.1 and 3.2 
respectively.

3.1  System reliability‑based lowering confidence 
bounding function

3.1.1  Reminder of the learning function RLCB

The learning function RLCB is short reviewed because it is 
the foundation of the new learning function SRU. Learning 
function RLCB can be given by

where z represents the CLS, other terms could be expressed 
as

(16)RLCB(x) = ||ĝ(x) − z|| − 𝜂(x)ŝ(x) + d(x)

Fig. 1  The flowchart of the proposed approach



 J. Yi et al.

1 3

134 Page 6 of 18

According to Eqs. (16) and (17), �(x) is a PDF-based 
weight function that combines the Kriging predictions and 
statistic information of design variables to assign a unique 
weight factor for every sample. In this case, the RLCB has 
excellent performance on the balance of global exploration 
and local exploitation. d(x) is a distance function to prevent 
clustering of samples.

3.1.2  Extention of learning function RLCB to system‑level: 
SRU

Although it was demonstrated that the learning function 
RLCB shows outstanding performance in dealing with com-
ponent reliability analysis problems, it can not be used to 
solve system reliability analysis problems directly. First, 
learning function RLCB will deduce bias on the comparison 
of the efficient feasibilities of two components by replacing |||
(
ĝ(x) − z

)/
ŝ(x)

||| in Eqs. (9) and (10) with RLCB(x) because 
learning function RLCB has a dimensional quantity. For 
example, if a system consists of two CLSFs which are used 
to describe two different quantities of interests such as dis-
placement and stress of a cantilever beam, then the dimen-
sions of displacement and stress are also attached to the cor-
responding learning function. To circumvent this bottleneck, 
RLCB is transformed to a new form called RU to eliminate 
the magnitude effect, which is expressed as:

(17)

𝜂(x) = 𝜙

(
ĝ(x) − z

ŝ(x)

)

d(x) =

{
0 if l(x) > l

Inf else

l(x) = min

(√
(x − xi)

T (x − xi)

)
(i = 1, 2,… ,N)

l =
1

2
min

(√
(xi − x

j
)T (xi − x

j
)
)

(i = 1, 2,… ,N;j = 1, 2,… , i − 1, i + 1,… ,N)

According to Eq. (18), the values RU(x) are nondimen-
sionalized because the dimension quantities in f̂ (x) and ŝ(x) 
will be eliminated by the division operation. To show the 
difference between RLCB(x) and RU(x) , Fig. 2 shows the 
values of these two learning functions based on a simple 
one-dimensional example.

The illustrated example consists of two CLSFs where 
G1(x) = (6x − 1)2 sin(12x − 4) + 2 and G2(x) = 10G1(x) . 
Essentially, those two CLSFs should have the same impor-
tance to the system because G2(x) is a linear transforma-
tion of G1(x) by multiplying 10. However, as shown in  \* 
MERGEFORMAT Fig. 2. (a), their values of RLCB(x) are 
different. On the other side, the learning function RU values 
the same for G1(x) and G2(x) , which indicates that RU could 
eliminate the magnitude effect among the CLSFs.

The second part of the extension is to find a proper way 
so that the new learning function could handle multiple 
CLSFs simultaneously. Theoretically, by replacing |||
(
ĝ(x) − z

)/
ŝ(x)

||| in Eqs. (9) and (10) with RU(x) , two learn-
ing functions for series and parallel systems expected with 
higher effectiveness could be obtained. However, the initial 
uncertainties of Kriging models have critical impacts on the 
effectiveness of learning function, which have not been 

(18)RU(x) =

|||f̂ (x) − z
|||

𝜂(x)ŝ(x)
+ d(x)

Fig. 2  Illustrations of the dif-
ference between RLCB and 
RU based on one-dimensional 
functions
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considered in Eq. (9) or (10). For instance, if the activated 
CLSF has great uncertainty which may be regarded as the 
least important component. Several more iterations will be 
required to correct the bias, which deduces extra computa-
tional burden. The learning function SRU aims to avoid this 
shortage by evaluating the efficient feasibilities of a sample 
in line with their safe and failure statements. Specifically, 
the way of choosing one component among a k-dimensional 
vector 

[
RU1(x),RU2(x),… ,RUk(x)

]
 for updating should be 

different for safe and failure statements under different sys-
tem types (Yun et al. 2018). For the series system, the SRU 
reads:

According to Eq. (19), if it is reported safe, the compo-
nent with the smallest RU(x) will be identified for updat-
ing. From the definition of RU in Eq. (18), a smaller value 
of RU(x) indicates smaller |||f̂ (x) − z

|||
/
𝜂(x)ŝ(x) , which means 

a larger probability of wrong sign prediction. By this oper-
ation, the component with the largest probability of wrong 
sign prediction will be selected because this one has a 
critical impact on the safe and failure statements. In terms 
of the predicted failure sample, SRU selects the compo-
nent with the largest RU(x) among the ĝ(x) < 0 CLSFs for 
updating. Under this case, if the component with the 
smallest probability of wrong sign prediction still fails, 
other components seem unimportant since this design 
scheme definitely fails.

Similarly, regarding the parallel system, the SRU is 
given by

Compared with Eq. (19), Eq. (20) for the parallel sys-
tem selects the component with the smallest RU(x) when 
it is predicted failure to identify the component with the 
largest probability deducing wrong sign prediction. Mean-
while, for the sample predicted safe, the component with 
the largest RU(x) among the ĝ(x) > 0 CLSFs will be identi-
fied for the reason of verifying the safe statement.

During the adaptive updating process, the location and 
component index of the new sample for series and the 
parallel system could be ascertained by minimizing Eqs. 
(19) and (20) respectively.

(19)SRUseries(x) =

{
min
i=1…,k

RUi(x) ĝi(x) > 0,∀i = 1,… , k w = arg min
i=1…,k

RUi(x)

max
i=1…,k�

RUi(x) ĝi(x) < 0,∃i = 1,… , k� w = arg max
i=1…,k�

RUi(x)

(20)SRUparallel(x) =

{
min

i=1…,m
RUi(x) ĝi(x) < 0,∀i = 1,… ,m w = arg min

i=1…,m
RUi(x)

max
i=1…,m�

RUi(x) ĝi(x) > 0,∃i = 1,… ,m� w = arg max
i=1…,m�

RUi(x)

3.2  System bootstrap‑based stopping criterion

3.2.1  Reminder of the BSC stopping criterion

The maximum estimated relative error of failure probabil-
ity for CRA (Yi et al. 2020) was derived according to the 
extra uncertainty prediction of Kriging. Specifically, the 
prediction of a sample located in the design space obeys 
binomial distribution with a probability of wrong sign pre-
diction Pwsp(x) = Φ

(
(ĝ(x) − z)

/
ŝ(x)

)
 and the probability of 

right sign prediction is 1 − Pwsp(x) . Then, the maximum 
estimated relative error of failure probability of component 

is determined based on bootstrap resampling technology 
and the highly uncertain samples.

The highly uncertain samples are defined by

where samples in �f  are predicted failure while maybe actu-
ally safe to a great extent; samples in �s belong to the oppo-
site situation; a is used to control the confidence level.

The maximum estimated relative error of failure prob-
ability is given by

(21)
�f = {x|ĝ(x) < z;ĝ(x) + aŝ(x) > z}

�s = {x|ĝ(x) > z;ĝ(x) − aŝ(x) < z}

(22)𝜀max
r

= max

{||||||
N̂f

N̂f − (N̂s
f
)u

− 1

||||||
,

||||||
N̂f

N̂f + (N̂
f
s )

u
− 1

||||||

}

Table 1  Illustration of bootstrap resampling

Times Resampling vector Estimation of N̂s
f

1 [0.95, 0.182, 0.12, 0.102, 0.182] T 1.536
2 [0.211, 0.182, 0.12, 0.95, 0.102] T 1.565
… … …
1000 [0.182, 0.102, 0.182, 0.102, 0.102] T 0.772

where

(23)
N̂s
f
=
∑N

�f

i=1
Pwsp

(
xi
)

N̂f
s
=
∑N

�s

i=1
Pwsp

(
xi
)
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(N̂s
f
)u and (N̂f

s )
u are the corresponding upper bound of the 

confidence interval of N̂s
f
 and N̂f

s  respectively, which can be 
obtained by bootstrap confidence estimation (Yi et al. 2020). 
To give a better intuition of the bootstrap confidence estima-
tion, suppose that we have 5 MCS samples located in �f  and 
corresponding probabilities of wrong sign prediction are 
[0.182, 0.95,0.12,0.211, 0.102]T. To this end, one could 
obtain the value of N̂s

f
 by

The essence of bootstrap resampling is to regenerate a 
vector of probabilities of wrong sign prediction based on 
the original vector by resampling. To this end, B times (sup-
posed that B = 1000) resampling could be executed, whose 
information is listed in Table 1.

According to Table  1, 1000 estimations of N̂s
f
 are 

obtained, and the confidence interval of N̂s
f
 can be obtained 

by sorting those values of N̂s
f
 by ascending order. The orders 

of lower and higher bound are

where � is the significant level (note the confidence level is 
1 − � ). For this illustration case, the 95% confidence interval 
of N̂s

f
 is [0.644, 3.181] (the value of (N̂s

f
)u is 3.181).

From this illustration example, it is observed that the 
bootstrap confidence interval estimation does not rely on any 
assumption, and it is suitable for a vector with any length. The 
only factor that would influence its accuracy is the resampling 
times B, with larger B, the estimated results will get closer to 
the ground truth. In this paper, the value of B is set to be 1000 
to guarantee the credibility of bootstrap confidence estimation.

3.2.2  Determination of highly uncertain samples 
and probability of wrong sign prediction

The conception of the maximum estimated relative error in 
Eq. (22) is also powerful for SRA. Whereas, how to ascertain 
the highly uncertain samples and their probabilities of wrong 
sign prediction are two vital problems for SRA due to its fail-
ure modes controlled by multiple CLSFs. To begin with, the 
highly uncertain sample sets take the union of all �i

f
 and �i

s
 , 

which are expressed by

(24)N̂s
f
= 0.182 + 0.95 + 0.12 + 0.211 + 0.102 = 1.5665

(25)k1 =
[
B ×

�

2

]
, k2 =

[
B × (1 −

�

2
)
]

(26)

�
system

f
=

k⋃
i=1

�
i
f
, for i = 1,… , k

�
system
s

=

k⋃
i=1

�
i
s
, for i = 1,… , k

It is worth mentioning that a = 1.96 in Eq. (21) guarantees 
the 95% confidence level for CRA. In terms of SRA, the value 
of a has to be adjusted according to different system types. In 
detail, the value of a is determined by combining the number 
of CLSFs of the series system and the PDF of Normal dis-
tribution. Because if a = 1.96 is adopted for each CLSF, the 
confidence level for series system becomes (95%)k which is 
significantly smaller than 95% with the number of components 
increasing. For the parallel system, a = 1.96 is still utilized for 
the confidence level equals 

(
1 − (5%)k

)
≥ 95% . In this situa-

tion, the parallel system is more stable with more components.
Because there are k CLSFs among a system, a vec-

tor of component probabilities of wrong sign prediction 
Pwsp =

[
P
wsp

1
(x),P

wsp

2
(x),… ,P

wsp
m (x)

]
 exists for a system 

design scheme. Similar to the learning function, the system 
probabilities of wrong sign prediction are organized in dif-
ferent manners for different systems. If a sample of a series 
system is predicted safe, wrong sign prediction occurred in 
one CLSF will lead the whole system to be misjudged. It is 
cumbersome to calculate the system probability of wrong sign 
prediction for tremendous combinations of wrong sign predic-
tion situations while calculating the probability of right sign 
prediction is more convenient.

Because the statement prediction of a system obeys Pois-
son distribution, the probability of wrong sign prediction 
could be obtained by

If a sample of a series system is predicted failure, the 
wrong sign prediction of this sample needs all CLSFs pre-
dicted failure being misjudged, and the predictions of all 
CLSFs predicted safe are correct. Suppose there are k1 and 
k2 CLSFs predicted failure and safety respectively, where 
k1 + k2 = k . The probability of wrong sign prediction can 
be analytically given by

Similarly, if a sample of a parallel system is predicted 
safe, the wrong sign prediction of this sample needs all 
CLSFs predicted safe being misjudged, and predictions of 
all CLSFs predicted failure are correct. Suppose k1 and k2 
are the number of components predicted safe and failure 
respectively, where k1 + k2 = k . The probability of wrong 
sign prediction is given by

(27)P
rsp

series
(x) =

k∏
i=1

(
1 − P

wsp

i
(x)

)

(28)P
wsp

Xs
(x) = 1 − P

rsp

series
(x) = 1 −

m∏
i=1

(
1 − P

wsp

i
(x)

)

(29)P
wsp

Xf
(x) =

k1∏
i1=1

(
P
wsp

i1
(x)

) k2∏
i2=1

(
1 − P

wsp

i2
(x)

)
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If a sample of a parallel system is predicted failure, the 
sign will be wrong predicted even if only one CLSF is mis-
judged. The probability of right sign prediction is calculated 
by

Because the state of failure statement obeys Poisson dis-
tribution, the probability of wrong sign prediction could be 
obtained by

3.2.3  Stopping condition for the adaptive updating 
process

The maximum estimated relative error of series system 
failure probability �max

r,series
 could be obtained based on Eqs. 

(22), (23), (26), (28), and (29). The stopping criterion for the 
series system is expressed as

where �given
r,series

 is the pre-determined error threshold.
The same as the series system, the stopping criterion 

for the parallel system is defined by

(30)P
wsp

Xs
(x) =

k1∏
i1=1

(
1 − P

wsp

i1
(x)

) k2∏
i2=1

(
P
wsp

i2
(x)

)

(31)P
rsp

parallel
(x) =

k∏
i=1

(
1 − P

wsp

i
(x)

)

(32)P
wsp

Xf
(x) = 1 − P

rsp

parallel
(x) = 1 −

k∏
i=1

(
1 − P

wsp

i
(x)

)

(33)

𝜀max
r,series

= max

{||||||
N̂f

N̂f − (N̂s
f
)u

− 1

||||||
,

||||||
N̂f

N̂f + (N̂
f
s )

u
− 1

||||||

}
≤ 𝜀

given

r,series

For reasons of concise notation, �max
r,system

 and �givenr,system are 
used to express the maximum estimated relative error and 
pre-determined threshold of both series and parallel sys-
tems. Generally, the value of �givenr,system could be set to 0.03 
or 0.02 that are basic enough for most system reliability 
analysis problems.

4  Cases studies and results discussions

To validate the performance of the proposed SBSC+SRU 
method, four cases with different complexities are inves-
tigated compared with the methods reviewed in Sect. 2.2. 
As for the comparison with the AK-SYS method and 
AK-SYSi method, the case of the SBSC+SRU method 
with similar accuracy is adopted where their compu-
tational cost difference will be detailed analyzed to 
show the efficiency of the proposed method. Moreover, 
�
given

r,system = [0.05, 0.04, 0.03, 0.02, 0.01] are adopted to further 
compare the effectiveness and efficiency of the EEK-SYS 
method and the SBSC+SRU method under different stop-
ping conditions. Taking into account the randomness of 
the initial samples, each method repeats independently 
30 times where the initial samples of different methods 
with same run order are the same, and then the statistical 
results are recorded and analyzed.

4.1  Four branches function

The four branches function is a series system composed of 
three CLSFs, which was modified by Hu et al. (Hu et al. 

(34)

𝜀max
r,parallel

= max

{||||||
N̂f

N̂f − (N̂s
f
)u

− 1

||||||
,

||||||
N̂f

N̂f + (N̂
f
s )

u
− 1

||||||

}
≤ 𝜀

given

r,parallel

Fig. 3  Visualization of the 
fitting situation of SBSC+SRU 
method on Four branches func-
tion
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2017) from the classic component four branches function. 
It reads:

where the two independent design variables obey standard 
normal distribution.

4.1.1  Visualization of the fitting situation of SBSC+SRU 
method

In this subsection, to intuitively show the fitting performance 
of SBSC+SRU method, the contour plots of the real system 
limit state and the approximated one by the final Kriging 
models under �givenr,system = 0.02 are depicted in Fig. 3.

It can be observed from Fig. 3a, four branches function 
has four failure regions shaded by orange. Most of the sys-
tem limit state is governed by g1 , while g2 and g3 increase 
the degree of non-linearity on the system limit state that 
brings difficulty on the fitting of SBSC+SRU method. In 
Fig. 3b, the black line represents real system limit state, 
while the pink, blue, and sky blue lines indicate predicted 
CLS of g1, g2, g3 respectively. SBSC+SRU method achieves 
the convergence with 29, 24, and 25 samples respectively in 
g1, g2, g3 . The new samples are distributed normally around 
the corresponding CLS, which confirms the excellent per-
formance of the SRU learning function. In terms of the 
approximated accuracy, the predicted CLSs of g2, g3 almost 

(35)

g1(x) =

⎧⎪⎨⎪⎩

3 +
(x1−x2)

2

10
±

(x1+x2)√
2

6√
2

±
�
x1 − x2

�

g2(x) = 7
�
x
2
+3

�2
− 5x

2

1
+
�
x
2

1
+
�
x
2
+ 3

�2�2

+ 1

g3(x) = 2
�
x
1
+2

�2
− 4

�
x
2
− 1

�
+
��

x
1
+ 2

�2
+
�
x
2
− 1

�2�2

+ 1

coincide with the real ones. g1 takes majority parts of the 
CLS, while it has little discrepancies on the corners of the 
CLS. However, the �

r,system
 equals 0.0156 (that is smaller 

than the given stopping threshold) on this trial, which shows 
the effectiveness of SBSC+SRU method.

4.1.2  Comparison between different advanced approaches

In comparison with other approaches, 10 initial samples are 
sampled through OLHS (Garud et al. 2017) for each CLSF. 
Table 2 provides the statistical results of the four branches 
function under �givenr,system = [0.05, 0.04, 0.03, 0.02, 0.01].

As shown in Table 2, Ncall(gi), i = 1, 2, 3 are the numbers 
of calls of each CLSF and Ncall(G) the summation of 
Ncall(gi), i = 1, 2, 3 . The reference Pmcs

f
= 1.398 × 10−3 is 

obtained through 3 × 106 MCS samples. The AK-SYS and 
AK-SYSi methods spend 135.29 and 129.00 samples 
respectively to obtain the convergence, where the �

r,system
 

of those two methods are 0.0193 and 0.0011 respectively. 
To achieve the same accuracy level, the EEK-SYS method 
and SBSC+SRU method could save tremendous compu-
tational burden. Taking �givenr,system = 0.01 for example, the 
accuracies of EEK-SYS and SBSC+SRU methods are 
comparable with that of the AK-SYSi method, while their 
computational burden, especially their Ncall(g1) are signifi-
cantly smaller than that of the AK-SYSi method. One 
could find that both EEK-SYS method and SBSC+SRU 
methods converge to the pre-determined �givenr,system , which 
confirms the superiority of error-guided approaches com-
pared with the traditional approaches that terminate the 
adaptive updating process through values of learning func-
tions. The computational burden will increase while the 
accuracies of EEK-SYS method and SBSC+SRU method 

Table 2  Results of the four 
branches function with different 
methods and �givenr,system

Values of �
r,system

 are obtained by same MCS population at each run, that population is not the same as the 
one used to evaluate the reference Pmcs

f

Methods �
given

r,system
Ncall(g1) Ncall(g2) Ncall(g3) Ncall(G) P̂mcs

f

(
10−3

)
�
r,system

MCS – 106 106 106 3 ×  106 1.398 /
AK-SYS – 73.25 31.54 30.50 135.29 1.397 0.0193
AK-SYSi – 67.23 31.10 30.67 129.00 1.398 0.0011
EEK-SYS 0.05 32.03 23.37 23.43 78.83 1.373 0.0211
SBSC+SRU 26.30 21.47 21.97 69.73 1.352 0.0391
EEK-SYS 0.04 33.03 24.40 24.40 81.83 1.365 0.0259
SBSC+SRU 27.27 21.80 22.67 71.73 1.342 0.0400
EEK-SYS 0.03 34.13 26.30 24.80 85.23 1.367 0.0224
SBSC+SRU 30.43 22.37 22.60 75.40 1.373 0.0275
EEK-SYS 0.02 37.17 26.67 25.57 89.40 1.386 0.0101
SBSC+SRU 33.93 23.77 23.90 81.60 1.377 0.0160
EEK-SYS 0.01 45.20 27.80 27.17 100.17 1.394 0.0051
SBSC+SRU 42.93 25.63 25.17 93.73 1.390 0.0060
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with the values of �givenr,system decrease. It is also observed from 
Table 2 that the value of �

r,system
 SBSC+SRU method is 

closer to the pre-determined �givenr,system in comparison with 
EEK-SYS method. It demonstrates the effectiveness of the 
proposed SBSC stopping criterion. In terms of Ncall(G) 
between EEK-SYS and SBSC+SRU methods, the 
SBSC+SRU method reduces about 10 samples compared 
with EEK-SYS method under the same �givenr,system . Specifi-
cally, about 3 ~ 4 samples could be saved in g1 , and about 
2 ~ 3 samples could be reduced in g2 and g3.

To illustrate the performance difference between EEK-
SYS and SBSC+SRU methods more specifically, Fig. 4 
gives the boxplots of two concerning metrics Ncall(G) and 
�max
r,system

− �
r,system

.
One could found from Fig. 4a that the superiority of the 

SBSC+SRU method compared with the EEK-SYS method 
is significant since there is a prominent negative slope 
between the means of the two methods under same �givenr,system . 
Furthermore, the variation of the SBSC+SRU method 
on Ncall(G) is also better than that of EEK-SYS method 
because the length of the box of SBSC+SRU method is 
shorter, which shows the robustness of Ncall(G) to different 
initial DoEs. Regarding �max

r,system
− �

r,system
 , the mean that is 

closer to zero and shorter length of the box indicates better 

convergence to �givenr,system and robustness to different DoEs. 
According to Fig. 4b, the robustnesses of both approaches 
decrease with the larger value of �givenr,system . Although the 
performance of SBSC+SRU method on �max

r,system
− �

r,system
 

is slightly worse than that of the EEK-SYS method, the 
SBSC+SRU method still converges to the pre-set �givenr,system.

4.2  Two‑dimensional parallel function 
with disconnected failure regions

The two-dimension parallel function is utilized by Yun 
et al. (2018) to verify the performance of the AK-SYSi 
method, which is analytically defined by

The statistical information of the random design vari-
ables is listed in Table 3.

4.2.1  Visualization of the fitting situation of SBSC+SRU 
method

The setting of the SBSC+SRU method is the same as the 
former example to show the effectiveness of the adaptive 
updating process for the parallel system. Similarly, Fig. 5 
illustrates the contour plots of real system limit state and 
predicted one by SBSC+SRU method.

(36)
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Fig. 4  Boxplots of Ncall(G) and �max
r,system

− �
r,system

 of four branches function under different �givenr,system

Table 3  Statistical information of design variables of the parallel 
function

Design Vari-
ables

Mean Standard Devia-
tion

Distribution

x
1

0 0.3 Normal Distribution
x
2

0 0.3 Normal Distribution



 J. Yi et al.

1 3

134 Page 12 of 18

It can be observed from Fig. 5. (a) that the parallel func-
tion has two sub-regions of failure that are the intersection 
of all component failure regions. Moreover, the system fail-
ure mode is mainly controlled by g1 , which means small 
predicted errors on g1 will lead to wrong sign prediction. 
According to Fig. 5. (b), 35, 16, and 12 samples are con-
sumed for the three CLSFs respectively to obtain conver-
gence. Herein, majority of new samples are utilized to refine 
component g1 , therefore the estimation contour of g1 almost 
coincides with the real one. On the contrary, only 6 and 2 
new samples are supplemented for g2, g3 respectively. In this 
case, the prediction contour of g2 has some discrepancies 
compared with the real one, while that of g3 predicts the two 
separate sub failure regions in a series one. However, it has 
little influence on the judgment of the safe/failure state of 
each design scheme according to Fig. 5. (b). In summary, the 
SBSC+SRU method could recognize the CLSFs that are 
more important to the Pmcs

f
 , then it utilizes the majority com-

putational burden to refine those CLSFs. For those CLSFs 

that are less important, the proposed approach will spend 
less computational burden to achieve the accuracy level that 
will not influence the safe/failure state prediction. In this 
way, the SBSC+SRU method could maximize the efficiency 
of each sample and reduce the consumption of computa-
tional burden.

4.2.2  Comparison between different advanced approaches

The same as the four branches function, the statisti-
cal results compared with state-of-the-art methods are 
recorded in Table 4. Meanwhile, the boxplots of Ncall(G) 
and �max

r,system
− �

r,system
 are shown in Fig. 6 to compare the 

EEK-SYS and SBSC+SRU methods intuitively.
Combining Table 4 and Fig. 6, as the �givenr,system decreases, 

the �
r,system

 of both EEK-SYS and SBSC+SRU methods 
will decrease and their computational burden will increase. 
Besides, the Ncall(G) of SBSC+SRU method is less than 
that of EEK-SYS method under same �givenr,system , which 
confirms the superiority of the proposed SBSC+SRU 

Fig. 5  Visualization of 
the fitting situation of the 
SBSC+SRU method on parallel 
function

Table 4  Results of the parallel 
function with different methods 
and �givenr,system

Methods �
given

r,system
Ncall(g1) Ncall(g2) Ncall(g3) Ncall(G) P̂mcs

f

(
10−2

)
�
r,system

MCS – 106 106 106 3 ×  106 3.393 –
AK-SYS – 39.10 33.87 28.80 100.77 3.394 0.0001
AK-SYSi – 43.90 19.87 14.33 78.10 3.394 0.0001
EEK-SYS 0.05 31.30 17.13 12.70 61.13 3.395 0.0086
SBSC+SRU 26.67 14.96 12.50 54.14 3.377 0.0129
EEK-SYS 0.04 32.10 16.37 12.63 61.10 3.400 0.0086
SBSC+SRU 29.71 15.93 12.79 58.43 3.379 0.0082
EEK-SYS 0.03 33.14 17.00 12.71 62.85 3.387 0.0018
SBSC+SRU 30.80 14.93 12.60 58.33 3.394 0.0097
EEK-SYS 0.02 35.07 17.27 12.86 65.21 3.330 0.0017
SBSC+SRU 33.41 16.28 12.93 62.62 3.413 0.0070
EEK-SYS 0.01 37.20 18.40 12.13 68.73 3.387 0.0018
SBSC+SRU 36.33 16.70 12.97 66.00 3.391 0.0010
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method on the parallel system. The robustness of the 
SBSC+SRU method on Ncall(G) is better than that of EEK-
SYS method for the shorter length of boxes. Concerning 
�max
r,system

− �
r,system

 illustrated in Fig. 6. (b), their robustnesses 
of both approaches increase with smaller �givenr,system , which 
reveals more sound results could be obtained through 
stricter stopping conditions. The ability to eliminate the 
influence of initial samples of the SBSC+SRU method is 
slightly worse than that of the EEK-SYS method because 
the variation of �max

r,system
− �

r,system
 of SBSC+SRU method is 

larger. However, the SBSC+SRU method converges to the 
�
given

r,system with less computational burden, in this case, slight 
robustness loss on �max

r,system
− �

r,system
 is reasonable.

4.3  Roof truss system

The roof truss system is a series system consisting of three 
CLSFs(Jiang et al. 2020; Yun et al. 2018), which reads

According to Eq. (37), the roof truss system has 8 random 
design variables whose statistical information is recorded 
in Table 5.

Figure 7 gives the schematic diagram plot of the roof 
truss structure, in which two materials are utilized to fab-
ricate the roof truss. In detail, the bottom chords and the 
tension bars are made up of steel. The material of the top 
chords and the compression bars is reinforced concrete. The 
normally distributed load q on the top of the roof truss could 
be transformed into the nodal forces applied to D,C,F where 
P = ql∕4.

Combining Eq. (37), Table 5, and Fig. 7, the first CLSF 
monitors the reliability performance of the displacement of 
node C . To be specific, it is regarded as failure when the 
displacement of node C exceeds 0.03. As for g2 and g3 , they 

(37)
g
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(x) = 0.030 −

ql2

2

(
3.81

AcEc

+
1.13
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g
2
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g
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Fig. 6  Boxplots of Ncall(G) and �max
r,system

− �
r,system

 of parallel function under different �givenr,system

Table 5  The parameters of 
random design variables of the 
roof truss structure

Design variables Physical meaning Mean Coefficient of 
variation

Distribution

q(N/m) Load 20,000 0.07 Log-Normal
l(m) Length 12 0.01 Log-Normal
As(m2) Cross-sectional area 9.82 × 10−4 0.06 Log-Normal
Ac(m2) Cross-sectional area 0.04 0.12 Log-Normal
Es(N/m2) Elastic modulus 2 × 1011 0.06 Log-Normal
Ec(N/m2) Elastic modulus 3 × 1010 0.06 Log-Normal
fs(N/m2) Tensile strength 3.35 × 108 0.12 Log-Normal
fc(N/m2) Compressive strength 1.34 × 107 0.18 Log-Normal
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consider the strength performance of the roof truss. Specifi-
cally, the g2 concerns the internal force of the AD bar, where 
its value 1.185ql could not exceed its ultimate stress fcAc . If 
the internal force of EC bar 0.75ql is larger than the ultimate 
stress fsAs , it triggers the failure mode of g3 . The comparison 
results with state-of-the-art methods under different �givenr,system 
are provided in Table 5.

As listed in Table 5, the EEK-SYS and SBSC+SRU meth-
ods could reach the same accuracy level as the AK-SYS and 
AK-SYSi methods, whereas the Ncall(G) of EEK-SYS and 
SBSC+SRU methods reduce more 43.40 samples such as in 
the case of �givenr,system = 0.01 . It indicates the performance advan-
tages of the error-guided approaches are more significant in 
the case with higher complexity. The AK-SYS method spends 
38.98 samples to refine g1 , while for other approaches almost 
no new samples are consumed. Moreover, the Ncall(g2) and 
Ncall(g3) also significantly more than other listed approaches, 
which shows the effectiveness of the traditional learning func-
tion encountered problems with complex issues. The AK-SYSi 
method could save Ncall(g1) and Ncall(g3) , but its Ncall(g2) 

is comparable with that of the AK-SYS method. The EEK-
SYS and SBSC+SRU method could overcome this shortage 
because about half of Ncall(g2) is eliminated. In comparison 
with EEK-SYS and SBSC+SRU methods, the observations 
are the same as other tested cases, those are the �givenr,system could 
strictly control the adaptive updating process to halt under the 
designer’s willingness. Meanwhile, better accuracy means 
more computational burden. The SBSC+SRU method reduces 
about 7 sample consumption compared with the EEK-SYS 
method under the same �givenr,system , which confirms the superiority 
of the proposed method.

4.4  Engineering application: system reliability 
analysis of cylindrical shell with variable ribs

In this section, the SRA of an underwater cylindrical shell 
with variable ribs whose structural profile is shown in 

Table 6  Results of the roof truss 
system with different methods 
and �givenr,system

Methods �
given

r,system
Ncall(g1) Ncall(g2) Ncall(g3) Ncall(G) P̂mcs

f

(
10−3

)
�
r,system

MCS – 106 106 106 3 ×  106 3.391 –
AK-SYS – 38.98 99.88 45.20 184.06 3.399 0.0020
AK-SYSi – 12.00 91.20 23.20 126.40 3.383 0.0024
EEK-SYS 0.05 12.03 42.03 15.43 69.50 3.401 0.0065
SBSC+SRU 12.00 35.73 14.17 61.90 3.393 0.0127
EEK-SYS 0.04 12.07 41.30 15.77 69.13 3.422 0.0073
SBSC+SRU 12.00 35.30 14.53 61.83 3.434 0.0131
EEK-SYS 0.03 12.10 45.30 16.13 73.53 3.400 0.0050
SBSC+SRU 12.00 38.77 15.43 66.20 3.414 0.0102
EEK-SYS 0.02 12.00 50.57 16.37 78.93 3.399 0.0044
SBSC+SRU 12.03 44.80 16.00 72.83 3.402 0.0056
EEK-SYS 0.01 12.20 52.10 18.70 83.00 3.387 0.0022
SBSC+SRU 12.03 51.07 17.70 80.80 3.385 0.0030

Fig. 7  The schematic diagram plot of the roof truss structure

Fig. 8  The structural diagram plot of the stiffened cylindrical shell 
with variable ribs
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Fig. 8 is investigated to demonstrate the applicability of the 
SBSC+SRU method in realistic cases.

The reliability performance of the stiffened cylindrical shell 
with variable ribs is controlled by five CLSFs considering 
strength and stability requirements. All CLSFs are expressed 
as

where g1 , g2 , and g3 are the CLSFs to control the failure 
modes of strength, in which �1 ∼ �3 are the mid-span mid-
plane stress of the shell, longitudinal stress on the inner sur-
face at the rib, and rib stress respectively; Pcr1 and Pcr2 in g4 
and g5 are the local and global buckling pressures respec-
tively to evaluate the stability performance of the cylindrical 
shell. Besides, �s = 650MPa and Pc = 3.6MPa are the yield 
limit of material and computational pressure respectively. 
k1 ∼ k5 are factors to control allowable stress and critical 
pressure whose values are 0.85, 1.10, 0.60, 1.00, and 1.20 
according to the engineering experience Jiang et al. (2016) 
(Table 6). The information of design variables is listed in 
Table 7 and the fixed parameters are recorded in Table 8.

The values of �1, �2, �f ,Pcr2 (Note that Pcr1 could be 
determined by the classic formula, which is effortless (Zhou 

(38)
g
1
(x) = 1 −

�
1

k
1
�s
, g

2
(x) = 1 −

�
2

k
2
�s
, g

3
(x) = 1 −

�
3

k
3
�s

g
4
(x) =

Pcr1

k
4
Pc

− 1, g
5
(x) =

Pcr2

k
5
Pc

− 1

Table 7  Design parameters of 
cylindrical shell with variable 
ribs

Design variables Means Standard variance Distribution

Thickness of the outer shell t (mm) 20 0.6 Normal
Radius of the shell R (mm) 4500 15 Normal
Rib space l (mm) 450 5 Normal
Elastic modulus E (MPa) 1.96 × 105 2, 000 Normal

Table 8  Fixed parameter values of cylindrical shell with variable ribs

Parameters Values

Density � 7850 kg/m3

Poisson’s ratio � 0.3
Big ribs Thickness of the web t2 18 mm

Height of the web h1 360 mm
Thickness of the face panel t1 22 mm
Width of the face panel b1 160 mm

Small Ribs Thickness of the web t4 14 mm
Height of the web h2 180 mm
Thickness of the face panel t3 18 mm
Width of the face panel b2 80 mm

Table 9  Results of the cylindrical shell with variable ribs with different methods and �givenr,system

The process of obtaining the response of g
4
 is effortless, therefore the Ncall(g4) is not included in Ncall(G)

Methods �
given

r,system
Ncall(g1) Ncall(g2) Ncall(g3) Ncall(g4) Ncall(g5) Ncall(G) Pmcs

f

(
10−1

)
Cov(%) �

r,system

MCS – 20,000 20,000 20,000 20,000* 20,000 80,000 1.140 1.97 –
AK-SYS – 64 10 12 20,000* 59 145 1.139 1.97 0.0006
AK-SYSi – 87 10 13 20,000* 93 203 1.141 1.97 0.0006
EEK-SYS 0.05 18 10 13 20,000* 12 53 1.163 1.95 0.0204
SBSC+SRU 14 10 11 20,000* 11 46 1.162 1.95 0.0180
EEK-SYS 0.04 20 10 13 20,000* 14 57 1.117 1.99 0.0204
SBSC+SRU 15 10 10 20,000* 11 46 1.122 1.99 0.0162
EEK-SYS 0.03 40 10 11 20,000* 29 90 1.136 1.97 0.0042
SBSC+SRU 16 10 11 20,000* 11 48 1.152 1.96 0.0108
EEK-SYS 0.02 58 10 13 20,000* 24 105 1.140 1.97 0.0001
SBSC+SRU 15 10 12 20,000* 12 49 1.158 1.95 0.0150
EEK-SYS 0.01 62 10 12 20,000* 50 134 1.141 1.97 0.0006
SBSC+SRU 22 10 12 20,000* 15 59 1.139 1.97 0.0006
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et al. 2019)) are determined by the time-consuming simula-
tion processes via ANSYS 18.2. in which the mesh grids 
for strength and stability analyses are more than 200,000 
and 30,000 respectively. 4 × 10 initial samples are used to 
construct the initial Kriging models for the time-consum-
ing CLSFs, then they will be refined via different strategies. 
Results of the cylindrical shell with variable ribs compared 
with different approaches are provided in Table 8.

As summarized in Table 9, 145 and 203 samples are 
costed for the AK-SYS and AK-SYSi methods to get accu-
rate estimations with �

r,system
= 0.006 . Most of the new sam-

ples are supplemented to g1 and g5 , and no new samples are 
allocated to g2 . To figure out the reason, the failure probabil-
ity of failure mode governed by g2 is calculated via MCS, 
results show that no failure will be caused by g2 . The Krig-
ing model of g2 of SBSC+SRU method is not updated under 
all �givenr,system , which shows the effectiveness of the learning 
function SRU when dealing with real problems. In terms of 
the estimated accuracies of the two error-guided approaches, 
they both get good estimations whose �

r,system
≤ �

given

r,system . 
However, the advantages on the computational burden 
of the SBSC+SRU method compared with the EEK-SYS 
method is more remarkable with stricter stopping condi-
tion. For instance, 7, 11, 42, 55, and 75 samples could be 
reduced in the cases of �givenr,system = [0.05, 0.04, 0.03, 0.02, 0.01] 
compared with EEK-SYS method. More specifically, in 
the case of �givenr,system = 0.05 , the samples of the EEK-SYS 
and SBSC+SRU methods are 53 and 46 respectively, the 
computational reduction is about 13.2%. In the case of 
�
given

r,system = 0.01 , the samples of EEK-SYS method is 134 that 
is double more than that of SBSC+SRU method. Results 
confirm that the proposed method has incredible potential 
to solve complicated engineering SRA problems.

The proposed SBSC+SRU method shows excellent per-
formance among the listed cases, while it still has some 
limitations. Many reported publications had indicated that 
the Kriging model will lose its merits when handling high-
dimensional problems(Bhosekar and Ierapetritou 2018; 
Fuhg et al. 2020; Teixeira et al. 2021; Zhan and Xing 2020) 
because of the “curse of dimensionality”. The SBSC+SRU 
method has to construct multiple Kriging models simulta-
neously, in this case, the computational cost for construct-
ing Kriging models and predicting responses could not be 
neglected, and even becomes costly. Besides, the effective-
ness of the SBSC+SRU method will decrease when the 
number of components is large. Because the derivation of 
the maximum estimated relative error is based on the prod-
uct of probabilities of wrong sign prediction whose values 
are range from zero to one. In this case, the values of system 
probability of wrong sign prediction of all samples will be 
extremely small, and even difficult to distinguish contribu-
tions of two samples.

5  Conclusions

This paper discusses how to solve system reliability analy-
sis problems efficiently through the adaptive kriging-based 
system reliability analysis approach, in which multiple 
kriging models have to be updated collaboratively. To fur-
ther improve the efficiency of state-of-the-art methods, the 
presented SBSC+SRU method introduces novel strategies 
to overcome the bottleneck of choosing new samples and 
termination of the adaptive updating process. Specifically, 
the new learning function SRU is based on learning func-
tion RLCB for component reliability analysis, then many 
factors that may hurt the effectiveness of SRA including 
magnitudes of CLSFs, initial uncertainties of Kriging mod-
els, and system types are integrated properly in the proposed 
method. As a result, the proposed SRU could locate the new 
sample and corresponding component index for updating 
automatically and objectively. The stopping criterion focuses 
on highly uncertain samples in the MCS population firstly, 
then derivates a sound estimated maximum relative error by 
quantifying the probability of wrong sign prediction gov-
erned by multiple CLSFs and the bootstrap estimation.

Results of three numerical examples with different system 
types and one engineering case demonstrate the effective-
ness and efficiency of the proposed approach compared with 
recently reported methods. Firstly, the SBSC+SRU method 
could converge to the preset stopping threshold with regard 
to both series and parallel systems. Moreover, with stricter 
stopping thresholds, the estimated accuracy improves, but 
more computational burdens are required. Secondly, dur-
ing the adaptive updating process, the proposed approach 
could refine the Kriging model on purpose, that is to say, 
the SBSC+SRU method could allocate computational bur-
den for different CLSFs via evaluating their contributions 
to the system automatically. Finally, the superiority of the 
SBSC+SRU method is more significant when dealing with 
complex problems.

The presented SBSC+SRU method is promising in low-
dimensional structural systems, however, with the complex-
ity of structural systems rising, the dimension of system 
reliability analysis problems also increases. As for the high-
dimensional component/system reliability analysis prob-
lems, it remains a challenge for this research domain, more 
attention could be focused on high-dimension problems.
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