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Abstract
Compared with the frequency-domain sound radiation analysis, the time-domain analysis is more suitable for complicated 
engineering problems. However, the research on design optimization of time-domain sound radiation was rarely reported. 
To reduce the undesired time-domain noise radiated from laminated curved shells, the sensitivity formulation of transient 
sound pressure is obtained by directly differentiating response equations and the corresponding optimization procedure is 
presented. The Newmark integral method is applied to calculate the vibration response, and the results of which are input into 
the sound radiation analysis as boundary conditions. Combined with the time-domain boundary element method (BEM), the 
time-domain boundary integral equation is numerically discretized in both the spatial and time domains, and the transient 
sound pressure is obtained by solving an algebraic equation. To reduce the time-domain noise, ply thicknesses are taken 
as the design variables to minimize the square of sound pressure on a prescribed reference surface in the sound medium 
or the structural surface over a certain period of time. In addition, the constraint on the structural mass is considered. The 
calculation of time-domain sound radiation sensitivity is transformed into the following two processes: (a) the derivation 
of transient vibration response based on finite element method (FEM); (b) the derivation of transient sound pressure based 
on time-domain BEM. The optimal solution is obtained by using the method of moving asymptotes (MMA). Numerical 
examples verify the accuracy of the sensitivity formulae, and show that the time-domain sound radiation is significantly 
reduced within allowable constraints.

Keywords Laminated curved shells · Time-domain sound radiation · Sensitivity analysis · Design optimization · Ply 
thickness

1 Introduction

Laminated curved shells are widely used in aerospace engi-
neering, transportation engineering and other fields due to 
their excellent performance. However, in some complex 
and dynamic environments, shell structures are often sub-
ject to transient loads, making such shell structures prone 

to generate undesired time-domain sound radiation, which 
further endangers the health of residents or damages deli-
cate instruments. The sound radiation noise has gradually 
become a kind of environmental pollution which cannot be 
ignored. Therefore, it is of great significance for producers 
to reduce the time-domain noise radiated from laminated 
curved shell structures.

At present, many theoretical studies about the sound 
radiation of plates and shells have been made. However, 
when dealing with complex boundary conditions or geo-
metrical shapes in practical engineering, sound radiation 
can only be calculated by using numerical methods such as 
FEM (Assaad et al. 1993; Chai et al. 2018), infinite element 
method (IFEM) (Zienkiewicz et al. 1985; Burnett 1994), 
BEM, etc. The BEM automatically satisfies the Sommerfeld 
radiation condition, wherein only the finite boundaries of 
vibrational structures need to be meshed. Thus, BEM is very 
suitable for external sound problems. Kim and Ih (2002) 
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adopted a simplified BEM to solve high-frequency sound 
radiation problems. Considering the reflection and absorp-
tion of seabed, Zhang et al. (2020) calculated the sound pres-
sure level of shells in shallow sea. The sound transmission 
problems of a fluid–structure coupled system were studied 
by Tong et al. (2007) using a direct-BEM/FEM. In addi-
tion, the effects of various parameters such as the support 
condition and lamination scheme, on sound radiation were 
studied by Sharma et al. (2018); the authors (Sharma et al. 
2019) also investigated the acoustic responses of compos-
ite plates in an elevated thermal environment. Moreover, to 
reduce the computational effort, some improved methods 
based on BEM have been proposed (Chen et al. 2008; Li 
and Lian 2020).

However, most of research focuses on the frequency-
domain analysis of steady-state sound problems based on 
the Helmholtz equation. In reality, lots of transient loads are 
often encountered in the fields of aerospace and transporta-
tion engineering, such as the braking of brake pads and the 
process of starting engines. Therefore, the frequency-domain 
analysis under harmonic excitations cannot meet the engi-
neering requirements. Compared with the frequency-domain 
analysis, there have been few studies about the time-domain 
analysis of transient sound problems due to its complex-
ity. The solution of time-domain boundary integral equa-
tion based on the wave equation is an effective approach to 
predict the time-domain sound radiation, and the quantities 
in sound field are calculated directly in the time domain. 
At present, the commonly used forms of the time-domain 
boundary integral equation mainly include the Kirchhoff 
integral equation and the formula derived by Mansur (1983). 
The two integral forms are completely equivalent. The 
Kirchhoff integral equation was discretized in both the time 
and spatial domains to calculate the transient sound radiation 
(Ebenezer and Stepanishen 1991). Qu et al. (2019a) calcu-
lated the time-domain sound pressure of composite plates 
affected by moving loads; the authors (Qu et al. 2019b) 
further investigated nonlinear time-domain vibro-acoustic 
behaviors of structures. The effects of boundary conditions 
(Ou and Mak 2011) and locations of stiffeners (Ou and Mak 
2012) on the time-domain sound radiation have been stud-
ied. In addition, Tian et al. (2019) proposed a sound radia-
tion calculation method based on modal expansion and spa-
tial delay, which greatly improved the calculation efficiency 
compared with the traditional BEM.

The analysis of sound radiation characteristics is the 
basis of structural noise reduction. Researchers are more 
concerned about reducing noise by optimizing structural 
parameters. At present, intelligent optimization algorithms 
and mathematical programming algorithms based on gra-
dient information are mainly used in the research. Some 
researchers used a simulated annealing algorithm (SA) to 
minimize sound radiation (Zhai et al. 2017, 2020). Jeon and 

Okuma (2008) adopted a particle swarm optimization algo-
rithm (PSOA) to optimize the embossed panel to reduce 
sound power. To obtain the global optimal value, Joshi et al. 
(2010) combined a PSOA and a modified method of feasible 
directions to minimize sound radiation. In addition, a multi-
islands genetic algorithm was employed to reduce sound 
power (Yang et al. 2016). However, exorbitant computation 
cost is the biggest disadvantage of intelligent algorithms 
in dealing with optimization problems, especially for the 
sound field problems with large computational efforts. The 
sensitivity information reflects the sensitivity degrees of the 
optimization indexes with respect to structural parameters 
and provides the best search direction for design optimiza-
tion. For this reason, mathematical programming algorithms 
are widely used in the design optimization of sound radiation 
problems due to their high computing efficiency. Lamancusa 
and Eschenauer (1994) reduced sound power by optimizing 
the thickness and mass distributions of plates, but finite dif-
ference method (FDM) was used to derive the sensitivity 
information, resulting in a large amount of calculation. The 
noise radiation of a sandwich structure with cellular cores 
was reduced by optimizing the core shape (Denli and Sun 
2007). The sound radiation of a composite board was mini-
mized by Niu et al. (2010) using the Discrete Material Opti-
mization (DMO) method. Yang and Li (2015) minimized the 
sound power at resonant frequencies of a bi-material plate 
in the thermal environment. Zhang et al. (2018) used evolu-
tionary structural optimization (ESO) to obtain the optimal 
damping material layouts of a cavity structure. In addition, 
sound power and sound pressure radiated from vibrating 
structures were minimized by Du and Olhoff (2007, 2010) 
using topology optimization, respectively. Zheng et  al. 
(2016) minimized the sound radiation at low frequency res-
onance of a plate by optimizing passive constrained layer 
damping. Zhao et al. (2018) reduced the sound power level 
of a shell by optimizing bi-material distribution. Ma and 
Cheng (2019) optimized damping layouts to minimize the 
sound radiation of an acoustic black hole plate. Besides, 
some researchers reduced sound radiation of a vibrating 
structure using microstructural topology optimization (Du 
and Yang 2015) or multi-scale topology optimization (Liang 
and Du 2019). In addition, Zhao et al. (2017) proposed a 
topology optimization approach based on the BEM and the 
optimality criteria (OC) method to reduce sound pressure. 
Many scholars have studied the sound field of flat shells. 
In reality, however, curved shells are often encountered in 
practical situations. Therefore, to meet practical needs, the 
sound radiation and structural optimization of curved shells 
has begun to emerge (Zhai et al. 2017; Sharma et al. 2019).

In addition, it is well known that sensitivity is a neces-
sary condition to obtain optimal designs by using gradient 
algorithms. The FDM is described as the simplest method 
(Martins and Hwang 2013) to implement for calculating 
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sensitivity, such as a forward FDM (De Leon et al. 2012; 
Pereyra et al. 2014). In FDM, sensitivity is determined by 
taking the difference between the perturbed and original 
values and then dividing by the perturbation step size. The 
detailed formulae can be found in (Lee and Park 1997; Li 
and Zheng 2017; Wang et al. 2018). Some scholars have 
also carried out further studies on FDM. For example, Gill 
et al. (1983) presented an algorithm to compute a set of 
intervals to be used in a forward difference approximation 
of the gradient. Nonetheless, the exorbitant calculation cost 
and uncertainty in the choice of a perturbation step size 
sometimes make this approach inapplicable. Therefore, 
FDM is commonly used for sensitivity verification at pre-
sent, such as (Zhang and Kang 2014). In addition, Wang and 
Apte (2006) proposed a complex variable method without 
difference for eliminating condition error. Compared with 
FDM, this method is much less sensitive to step size. Fur-
thermore, analytical approaches of sensitivity include the 
direct method and the adjoint variable method (Adelman 
and Haftka 1986). When the direct method is applied, both 
sides of the discrete equation are directly differentiated, and 
then the same numerical methods used to solve for responses 
are employed to calculate response sensitivities. Finally, the 
sensitivity information of objective functions can be fur-
ther obtained by using the chain rule (Keulen et al. 2005). 
The adjoint variable method (Lee 1999) defines an adjoint 
problem which is independent of design variables, and then 
sensitivities of objective functions can be solved by using the 
structural and adjoint responses. Both the direct and adjoint 
variable methods contain fewer computational burdens than 
FDM, which needs to decompose the stiffness matrix per 
perturbation calculation, whereas the direct and adjoint 
variable methods merely require once factorization. When 
the number of design variables is more than the number of 
performance measures, the adjoint variable method is more 
efficient; on the contrary, the direct method is more efficient. 
Besides, the sensitivity analysis approach that combines the 
analytical methods and finite difference approximations is 
denoted as semi-analytical method. As mentioned in (Fer-
nandez and Tortorelli 2018), the semi-analytical method 
shares the simplicity of the FDM and the efficiency of the 
analytical methods. Thus, this method still reduces the 
computational burden well. In addition, the computational 
or automatic differentiation is also studied by researchers 
(Keulen et al. 2005). So far, the research on sensitivity anal-
ysis in the structural-acoustics field has mainly addressed 
frequency-domain problems (Denli and Sun 2007; Niu et al. 
2010; Liang and Du 2019), while the sensitivity analysis 
of time-domain sound radiation has not been investigated.

Notably, all of the above articles focus on the frequency 
domain. Due to the complexity and large amounts of calcu-
lation, there is no report on structural design optimization 
of time-domain sound radiation from vibrating laminated 

curved shells. Nonetheless, laminated curved shells and 
transient vibrations are among the most common structural 
forms and mechanical behaviors which are encountered in 
practical applications, respectively. In addition, for laminated 
structures affected by transient loads, the ply thicknesses 
have a great influence on the sound radiation. Hence, it is 
highly valuable to study the parameter optimization of lami-
nated curved shells to reduce time-domain sound radiation.

To sum up, based on the sensitivity information, the 
time-domain sound radiation of laminated curved shells 
is reduced by optimizing structural ply thicknesses in this 
paper. The material of the paper is organized as follows. 
In Sect. 2, the Newmark integral method used to solve for 
transient vibration response is presented. In Sect. 3, the 
analysis and solution for the time-domain sound radiation 
are presented. Thus, in Sect. 3.1, the time-domain bound-
ary integral equation is given, and this integral equation is 
numerically discretized in both the spatial and time domains 
in Sect. 3.2. In Sect. 4, the ply thickness optimization sub-
ject to a given mass constraint is formulated for problems of 
minimizing the square of sound pressure on a prescribed ref-
erence surface in the sound medium or the structural surface 
over a certain time period of interest. In Sect. 5, the sensitiv-
ity formulation of transient sound pressure with respect to 
ply thickness is obtained by directly differentiating response 
equations. Section 6.1 then verifies the accuracy of the sensi-
tivity formulae, and Sect. 6.2 shows the effectiveness of the 
design optimization model by two examples, and Sect. 6.3 
gives the computational performance of optimization exam-
ples. Section 7 concludes the paper.

2  Analysis for transient vibration response

In this paper, an eight-node laminated curved shell element 
is employed, and its finite element formulation is derived 
in Appendix 1. In addition, the dynamic equation of a shell 
structure affected by a transient load �(�) can be written as: 

where � , � and � are the mass matrix, stiffness matrix 
and damping matrix, respectively; �̈� , �̇ and � are the accel-
eration, velocity and displacement vectors, respectively. 
Here, the Newmark integral method is applied to derive the 
discrete time-domain expressions for the dynamic equation. 
The equation of motion at time tn+1 is further depicted as

In the Newmark integral method, the nodal velocities, 
accelerations and displacements at times tn and tn+1 satisfy 
the following equations:

(1)𝐌�̈� + 𝐂�̇� +𝐊𝐮 = 𝐅(𝐭)

(2)𝐌�̈�
(n+1) + 𝐂�̇�

(n+1) +𝐊𝐮(n+1) = 𝐅(𝐭)(n+1)
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where Δt represents the time interval between two 
adjacent time points. When � ≥ 0.5 and � ≥ 0.25(0.5+�)2 , 
the Newmark integral method is unconditionally stable. 
Therefore, all unknowns of the next time step can be itera-
tively calculated by using the values from the previous 
time step. Besides, the displacement �(n+1) at time tn+1 can 
be solved by

with

where �̃ and �̃(n+1) are the equivalent stiffness matrix 
and equivalent mechanical load vector at time tn+1 , respec-
tively; �0 ∼ �5 are constants, and their expressions can be 
found in (Taherifar et al. 2021).

3  Analysis and solution for time‑domain 
sound radiation

Figure 1 shows a vibrational structure with a finite bound-
ary and its exterior sound field with an infinite boundary. 
Here, � is a source point; � is a field point; and � repre-
sents the outer normal direction of the structural boundary.

(3)
�̇�(n+1) = �̇�(n) +

[
(1 − 𝛿)�̈�(n) + 𝛿�̈�(n+1)

]
Δt

𝐮(n+1) = 𝐮(n) + �̇�(n)Δt +
[
(0.5 − 𝛾)�̈�(n) + 𝛾�̈�(n+1)

]
(Δt)2

(4)�̃�
(n+1)

= �̃(n+1)

(5)

�̃� = 𝐊 + 𝜓0𝐌 + 𝜓1𝐂

�̃�(n+1) = 𝐅(n+1) + 𝐅𝐌 + 𝐅𝐂

𝐅𝐌 = 𝐌
(
𝜓0𝐮

(n) + 𝜓2�̇�
(n) + 𝜓3�̈�

(n)
)

𝐅𝐂 = 𝐂
(
𝜓1𝐮

(n) + 𝜓4�̇�
(n) + 𝜓5�̈�

(n)
)

3.1  Time‑domain boundary integral equation

The propagation of small amplitude sound waves through 
a homogeneous medium can be formulated as (Wu 2000):

where ∇2 is the Laplace operator; p(�, t) is the transient 
sound pressure of the field point � at time t  ; p̈ is the sec-
ond order derivative of the sound pressure with respect to 
time; c is the speed of sound propagation; and �(�, t) is a 
sound source. Under homogeneous initial conditions, i.e., 
p(�, 0) = �p(�, 0)∕�t = 0 , the general solution for this wave 
equation is given by:

where r = |� − �| . By substituting the sound source 
�(�, t) = �(t − �)�(� − �) into the general solution, the 
following fundamental solution is obtained:

where r = |� − �| ; � is the Dirac delta function; and 
p∗(�, t;�, �) represents the response of the field point � at 
time t due to an impulse at time � located at the source point 
� . By taking the derivative of this fundamental solution with 
respect to � as shown in Fig. 1, we further obtain the funda-
mental flux as follows.

In addition, the Laplace transform and inverse trans-
form can be employed to derive the following time-domain 
boundary integral equation without external sound sources 
under homogeneous initial conditions (Wu 2000):

where Θ(�) is a constant that depends on the location of 
the field point � ; p(�, �) and q(�, �) are the sound pressure 
and sound flux of the source point � at time � , respectively; 
and the sound flux is associated with the vibration response 
through the following equation:

(6)∇2p(�, t) −
1

c2
p̈(�, t) = −𝜒(�, t)

(7)p(�, t) =
1

4� ∫Ω

1

r
�

(
�, t −

r

c

)
dΩ(�)

(8)p∗(�, t;�, �) =
1

4�r
�

(
t −

r

c
− �

)

(9)
q∗(�, t;�, 𝜏) =

𝜕p∗(�, t;�, 𝜏)

𝜕�

= −
1

4𝜋r2

[
𝛿

(
t −

r

c
− 𝜏

)
+

r

c
�̇�

(
t −

r

c
− 𝜏

)]
𝜕r

𝜕�

(10)
Θ(�)p(�, t) + ∫Γ ∫

t

0

q∗(�, t;�, �)p(�, �)d�dΓ

= ∫Γ ∫
t

0

p∗(�, t;�, �)q(�, �)d�dΓ

(11)𝐪 = −�a�̈�N

Fig. 1  Vibrational structure and exterior sound field
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where � is the matrix containing the sound flux values of 
all boundary points at all time points; �a is the density of air; 
and �̈�N is the structural normal acceleration matrix.

3.2  Solution for time‑domain sound pressure

In this section, the transient sound pressure is obtained by 
solving an algebraic equation which is derived by numeri-
cally discretizing Eq. (10) in both the spatial and time 
domains. To solve for the sound pressure at time tn , we 
assume that the time domain is uniformly divided into n 
time steps, and both the sound pressure and sound flux 
are linearly distributed at the mth time step. Hence, the 
values at time � within the mth time step can be calculated 
through the following interpolation relationships:

with

where pb(m) and qb(m) are the sound pressure and sound 
flux at the bth time interpolation point belonging to the 
mth time step, respectively; L is the interpolation func-
tion; and Δt is the time interval between two time points. 
Substituting Eq. (12) into Eq. (10) yields:

Here, we set:

According to the time translation property of the fun-
damental solution (Wu 2000):

we can further derive the following equations:

(12)

p(�, �) =

2∑
b=1

Lbpb(m)(�)

q(�, �) =

2∑
b=1

Lbqb(m)(�)

(13)L1 =
(
1 −

�

Δt

)
, L2 =

(
�

Δt

)

(14)

Θ(�)p
(
�, tn

)
+ ∫Γ

n∑
m=1

∫
tm

tm−1

q∗
(
�, tn;�, �

) 2∑
b=1

Lbpb(m)(�)d�dΓ

= ∫Γ

n∑
m=1

∫
tm

tm−1

p∗
(
�, tn;�, �

) 2∑
b=1

Lbqb(m)(�)d�dΓ

(15)

(b)P(n)(m)(�;�) = ∫
tm

tm−1

p∗
(
�, tn;�, �

)
Lbd�

(b)Q(n)(m)(�;�) = ∫
tm

tm−1

q∗
(
�, tn;�, �

)
Lbd�

(16)p∗(�, t;�, �) = p∗(�, t + Δt;�, � + Δt)

Here, (b)P(n−m+1)(1) and (b)Q(n−m+1)(1) mean that the cal-
culations for (b)P(n)(m) and (b)Q(n)(m) only need to be imple-
mented in the first time step (m = 1). Substituting Eqs. (8) 
and (9) into Eq. (15) yields:

For the discretization in the spatial domain, the eight-node 
shell element proposed in Appendix 1 is still adopted here. 
Besides, the mesh of the structural boundary is consistent with 
that used in the analysis of dynamic response. Consequently, 
the discrete expression can be further rewritten as follows:

where the subscripts e and i denote the eth boundary ele-
ment and the ith element node, respectively; and e is the num-
ber of elements. We can further transform Eq. (19) into the 
following algebraic equation:

where �(bg) and �(bg) are the vectors containing the sound 
pressure and sound flux values of all boundary points at the 
bgth global time point, respectively; � and � are both the coef-
ficient matrices; and � represents the matrix containing the 
values of Θ at all boundary points. Here, the two time interpo-
lation points taken at each time step are the initial and end time 
points. Thus, pb(m) with b = 1 in Eq. (19) corresponds to the 
sound pressure at the global time point tm−1 . In addition, p2(m) 
corresponds to the sound pressure at the global time point tm . 
These rules are also suitable for the sound flux. For this reason, 
the following new discrete form can be obtained:

(17)

(b)P(n)(m)(�;�) = (b)P(n−1)(m−1)(�;�) = ⋯ = (b)P(n−m+1)(1)(�;�)

(b)Q(n)(m)(�;�) = (b)Q(n−1)(m−1)(�;�) = ⋯ = (b)Q(n−m+1)(1)(�;�)

(18)

(1)P(n)(1)(�;�) =
1

4�r

(
1 − n +

r

cΔt

)

(2)P(n)(1)(�;�) =
1

4�r

(
n −

r

cΔt

)

(1)Q(n)(1)(�;�) =
(n − 1)

4�r2
�r

��

(2)Q(n)(1)(�;�) = −
n

4�r2
�r

��

(19)

Θ(�)p
(
�, tn

)
+

n∑
m=1

2∑
b=1

e∑
e=1

∫Γe

(b)Q(n−m+1)(1)(�;�)

8∑
i=1

Nip
b(m)

ei
(�)dΓe

=

n∑
m=1

2∑
b=1

e∑
e=1

∫Γe

(b)P(n−m+1)(1)(�;�)

8∑
i=1

Niq
b(m)

ei
(�)dΓe

(20)

��
(n)

+

n∑
m=1

2∑
b=1

(b)�(n−m+1)�(bg) =

n∑
m=1

2∑
b=1

(b)�(n−m+1)�(bg)
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Similarly:

Substituting Eqs. (21) and (22) into Eq. (20) yields:

Therefore, the transient sound pressure can be iteratively 
solved by using Eqs. (11) and (23).

4  Description of the time‑domain sound 
radiation design optimization

The purpose of the design optimization in this paper is to 
seek the optimal ply thicknesses under certain constraints to 
reduce the time-domain sound radiation. For a given spatial 
domain Ω0 that can be either a prescribed reference surface in 
the sound medium or a vibrating structure surface, the square 
of sound pressure p2 over a time period of interest 

[
t0, t1

]
 as 

formulated in Eq. (24) is taken as the objective function.

To facilitate the calculation, this time period is uniformly 
divided into Nt time interpolation points, and the spatial 
domain is also discretized into Ns spatial nodes. Thus, the dis-
crete form of the above equation can be stated as:

where pij is the sound pressure of the ith spatial node at the 
jth time point; Δt is the time interval between two time points; 
and ΔΩ is a discrete space domain.

Note that the vibration response and sound radiation of a 
laminated structure are closely related to the structural ply 
thickness. For this reason, designating ply thicknesses as 
design variables can effectively reduce time-domain noise. In 
general, light weight is highly desirable in engineering applica-
tions, thus structural mass should be strictly limited. Besides, 

(21)

n∑
m=1

2∑
b=1

(b)�(n−m+1)�(bg)

=
(
(1)�(n)�(0) + (2)�(n)�(1)

)
+⋯ +

(
(1)�(1)�(n−1) + (2)�(1)�(n)

)

= (1)�(n)�(0) +
(
(2)�(n) + (1)�(n−1)

)
�(1) +⋯ + (2)�(1)�(n)

(22)

n∑
m=1

2∑
b=1

(b)�(n−m+1)�(bg) = (1)�(n)�(0)

+
(
(2)�(n) + (1)�(n−1)

)
�(1) +⋯ + (2)�(1)�(n)

(23)

(
(2)�(1) +�

)
�(n)

= (1)�(n)�(0) +
(
(2)�(n) + (1)�(n−1)

)
�(1) +⋯ + (2)�(1)�(n)

−(1)�(n)�(0) −
(
(2)�(n) + (1)�(n−1)

)
�(1) −⋯ −

(
(2)�(2) + (1)�(1)

)
�(n−1)

(24)f = ∫Ω0
∫

t1

t0

p2(Ω, t) dtdΩ

(25)fdis =

Ns∑
i=1

Nt∑
j=1

p2
ij
ΔtΔΩ

the upper and lower limits of a single ply thickness should also 
be constrained to satisfy actual requirements. In summary, this 
design optimization model can be expressed as follows:

where � is the thickness variable vector; Tg is the gth ply 
thickness variable; g is the number of variables; M is the 
mass of structure, and M is the maximum allowable value 
of this mass; T  and T  are the maximum and minimum thick-
nesses, respectively, of a single ply.

In this paper, the MMA algorithm based on the sensitivity 
information is applied to solve for the optimization problem. 
In the model (26), the sensitivity formula of the discrete 
objective function with respect to the design variable Tg can 
be written as:

It is worth mentioning that the core of Eq. (27) is the 
term �pij

/
�Tg . Indeed, the transient sound pressure is the 

most common and classic measurement index used in time-
domain sound radiation analysis, which is the reason why 
transient sound pressure is selected as the optimization goal 
in this paper. For other cost functions such as the sound 
power, sound intensity, etc., we need to merely express their 
derivatives as a form including the term �pij

/
�Tg , and no 

further changes in other sensitivity equations are required. 
The detailed sensitivity derivation of sound pressure will 
be given in the next section. In addition, the sensitivity of 
the structural mass with respect to ply thickness variable is 
equal to the area of this ply multiplied by the mass density.

5  Sensitivity analysis for transient sound 
radiation

The sensitivity analysis is a necessary condition to obtain 
optimal designs by using gradient optimization algorithms. 
In this section, the sensitivity formulae for transient sound 
pressure with respect to ply thickness are derived by using 
a direct method. In Eq. (20), the matrix � is merely related 

(26)

Find: � =
(
T1, ..., Tg, ..., Tg

)

Min: f (�) = �Ω0
�

t1

t0

p2(Ω, t) dtdΩ

or

fdis(�) =

Ns∑
i=1

Nt∑
j=1

p2
ij
ΔtΔΩ

s.t: M ≤ M

T ≤ Tg ≤ T g = 1, 2, ..., g

(27)
�fdis

�Tg
=

Ns∑
i=1

Nt∑
j=1

2pij

�pij

�Tg
ΔtΔΩ
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to the structural surface shape, and both the matrices � 
and � only depend on the initial state of sound field, 
which means that their derivative values with respect to 
the ply thickness are all equal to zero. Hence, the follow-
ing expression can be obtained by taking the derivatives 
on both sides of Eq. (20) with respect to the ply thickness 
variable Tg:

Note that the above equation has the same structural form 
as Eq. (20), thus the same solution approach can still be 
employed here. Therefore, taking the derivative of Eq. (23) 
yields:

To calculate ��(n)
/
�Tg , the derivative of Eq. (11) is car-

ried out; this yields to

Accordingly, the problem of solving for the transient 
sound pressure sensitivity is transformed into the problem 
of solving for the transient dynamic response sensitivity.

Furthermore, the following equations can be derived by 
taking the derivatives of both Eqs. (4) and (5):

with

In this paper, the external force is independent of ply 
thickness, thus ��

/
�Tg is equal to zero here. Based on 

(28)

�
��(n)

�Tg
+

n∑
m=1

2∑
b=1

b(m)�(n−m+1) ��
(bg)

�Tg
=

n∑
m=1

2∑
b=1

b(m)�(n−m+1) ��
(bg)

�Tg

(29)

(
(2)�(1) +�

) ��(n)

�Tg

= (1)�(n) ��
(0)

�Tg
+
(
(2)�(n) + (1)�(n−1)

) ��(1)
�Tg

+⋯ + (2)�(1) ��
(n)

�Tg

−(1)�(n) ��
(0)

�Tg
−
(
(2)�(n) + (1)�(n−1)

) ��(1)
�Tg

−⋯ −
(
(2)�(2) + (1)�(1)

) ��(n−1)
�Tg

(30)
�𝐪(n)

�Tg
= −�a

��̈�
(n)

N

�Tg

(31)�̃
𝜕�(n+1)

𝜕Tg
=

𝜕�̃(n+1)

𝜕Tg
−

𝜕�̃

𝜕Tg
�(n+1)

(32)

𝜕�̃�

𝜕Tg
=

𝜕𝐊

𝜕Tg
+ 𝜓0

𝜕𝐌

𝜕Tg
+ 𝜓1

𝜕𝐂

𝜕Tg

𝜕�̃�(n+1)

𝜕Tg
=

𝜕𝐅(n+1)

𝜕Tg
+
𝜕𝐌

𝜕Tg

(
𝜓0𝐮

(n) + 𝜓2�̇�
(n) + 𝜓3�̈�

(n)
)

+
𝜕𝐂

𝜕Tg

(
𝜓1𝐮

(n) + 𝜓4�̇�
(n) + 𝜓5�̈�

(n)
)

+ 𝐂

(
𝜓1

𝜕𝐮(n)

𝜕Tg
+ 𝜓4

𝜕�̇�(n)

𝜕Tg
+ 𝜓5

𝜕�̈�(n)

𝜕Tg

)

+𝐌

(
𝜓0

𝜕𝐮(n)

𝜕Tg
+ 𝜓2

𝜕�̇�(n)

𝜕Tg
+ 𝜓3

𝜕�̈�(n)

𝜕Tg

)

Equation (A6), the derivative of element stiffness matrix 
is depicted as

where �e
k
 is the stiffness matrix of the kth ply belonging 

to the eth element. For curved shell elements, �k , |�|k , and 
|�∗|k in Equation (A6) are all the functions of ply thickness. 
Thus, the detailed expression of Eq. (33) is given by

Here, ��k∕�Tg and �|�∗|k∕�Tg can be obtained by tak-
ing derivatives of Equations (A12) and (A10), respectively. 
In addition, �|�|k∕�Tg can be calculated by using Equation 
(A11) and the derivative rules of determinant. By differenti-
ating Eq. (3), the derivatives of transient dynamic responses 
are written as:

Therefore, the acceleration sensitivity ��̈�
/
�Tg at each 

time point can be iteratively solved by using the above equa-
tions. In addition, ��̈�

N

/
�Tg which is needed in Eq. (30) is 

obtained by multiplying ��̈�
/
�Tg by normal cosine vector. 

Finally, we substitute the results ��∕�Tg obtained from 
Eq. (30) into Eq. (29) to calculate ��∕�Tg . Accordingly, the 
whole process of the optimization strategy can be repre-
sented by the flowchart as shown in Fig. 2. Moreover, the 
optimization iteration loop is stopped when variables show 
no further obvious change.

In fact, the FEM and time-domain BEM codes can be 
used as a black box, which means that we only need to 
access them without modification throughout the whole opti-
mization process. In this way, the sensitivity of the transient 
dynamic response is calculated by first assembling the right 
term of Eq. (31) outside the black box of the FEM and then 
inputting it into the black box of the FEM. Similarly, the 
sensitivity calculation of transient sound pressure is more 
convenient. It requires no additional external operations and 
only recalls the black box of the time-domain BEM. Thus, 
the evaluation of sensitivity can be regarded as the post pro-
cessing implemented on the response calculation.

Note that this paper deals with a sizing optimization prob-
lem, which indicates that the number of design variables in 
this study is basically of the same order of magnitude as the 

(33)��e

�Tg
=

k∑
k=1

��e
k

�Tg

(34)

��e
k

�Tg
= ∫

1

−1 ∫
1

−1 ∫
1

−1

⎛⎜⎜⎜⎜⎝

��T

k

�Tg
�k�k���k��∗�k + �T

k
�k

��k

�Tg
���k��∗�k

+�T

k
�k�k

����k
�Tg

��∗�k + �T

k
�k�k���k

���∗�k
�Tg

⎞⎟⎟⎟⎟⎠
d�d�d�∗

(35)

𝜕�̇�(n+1)

𝜕Tg
=

𝜕�̇�(n)

𝜕Tg
+

[
(1 − 𝛿)

𝜕�̈�(n)

𝜕Tg
+ 𝛿

𝜕�̈�(n+1)

𝜕Tg

]
Δt

𝜕𝐮(n+1)

𝜕Tg
=

𝜕𝐮(n)

𝜕Tg
+

𝜕�̇�(n)

𝜕Tg
Δt +

[
(0.5 − 𝛾)

𝜕�̈�(n)

𝜕Tg
+ 𝛾

𝜕�̈�(n+1)

𝜕Tg

]
(Δt)2
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number of performance measures. Hence, even if the direct 
method is employed, high computational efficiency can be 
guaranteed here. Of course, from the perspective of topol-
ogy optimization with hundreds or even thousands of design 
variables, using the adjoint variable method is undoubtedly 
a better choice.

6  Numerical examples

6.1  Verification of the transient sensitivity formulae

In this section, the accuracy of the transient sensitivity for-
mulae is demonstrated by a laminated cylindrical shell struc-
ture subjected to a transient load.

As shown in Fig. 3a, we consider a laminated cylindrical 
shell structure with a height of 0.6 m, a radius of 0.3 m. It 
has five plies, each with a thickness of 0.002 m, and the ply 
angles are [60◦, 90◦, 0◦, 90◦, 60◦] . The plies of the structure 
are orthotropic, and the material properties of this structure 
and air are shown in Table 1. In addition, the boundary of 
the bottom surface is completely fixed, and the center node 
of the top surface is applied with a transient load as shown 
in Fig. 3b. Note that 101 time points are uniformly distrib-
uted in the time domain, and the time interval between two 
time points is 5 ×  10–4 s. Here, the proportional damping 
� = �1� + �2� with �1 = 0.2 and �2 = 0.003 is adopted.

In this example, the 1st/5th, 2nd/4th, and 3rd ply thick-
nesses of this laminated structure are all used as the design 
variables, and the square of sound pressure of all boundary 
nodes over the whole loading time period is designated as 
the objective function. By using the sensitivity formulae 
derived in this paper, the sensitivity values of the objec-
tive function with respect to these three design variables 
are − 40.79929, − 46.17585, and − 24.13194, respectively. 
It is worth mentioning that the 3rd ply thickness variable is 

Fig. 2  Flowchart of the design optimization

Fig. 3  Sensitivity verification 
model: a laminated cylindrical 
shell structure, b transient force

Table 1  Properties of structural material and air

Elastic modulus (GPa) E1 = 95.8, E2 = E3 = 6.7

Shear modulus (GPa) G12 = G23 = G13 = 7.1

Poisson’s ratio �12 = �13 = �23 = 0.3

Structural density (kg/m3) �s = 1800

Air density (kg/m3) �a = 1.29

Speed of sound (m/s) vs = 343
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a single ply variable, and thus its sensitivity value is about 
half of that of the remaining variables.

To verify the accuracy of the sensitivity formulae 
derived in this paper, the FDM and semi-analytical method 
are also employed for comparison. The finite difference 
approximation in FDM can be formulated as (Li and 
Zheng 2017; Wang et al. 2018):

where ΔTg is the perturbation step size of the gth design 
variable. For this study, the essence of the semi-analytical 
method is to convert the analytical expression (33) into a 
difference quotient (Lee and Park 1997; Fernandez and 
Tortorelli 2018):

Note that two sources of error (truncation and condition 
errors) should be considered here. The former is usually 
produced by a larger perturbation step size. Contrarily, the 
latter is generally caused by a very small step size. Taking 
the FDM as analysis instance, the effects of perturbation 
step size on sensitivity error are shown in Fig. 4. The rela-
tive error is determined by taking the difference between 

(36)
�f

�Tg
=

f
(
Tg+ΔTg

)
− f

(
Tg
)

ΔTg

(37)
��e

�Tg
=

�e
(
Tg+ΔTg

)
−�e

(
Tg
)

ΔTg

the two sensitivity results and dividing by the result cal-
culated by the method proposed in this paper.

The truncation and condition errors caused by differ-
ent perturbation step sizes can be clearly seen from Fig. 4. 
Hence, an adequate perturbation step size is worthy of con-
sideration. By referring to the literature (Iott et al. 1985), we 
can determine the near-optimum perturbation step sizes of 
2.82 ×  10–10 m, 2.48 ×  10–10 m, and 4.61 ×  10–10 m for these 
three design variables. After calculation, the sensitivity val-
ues and relative errors are listed in Table 2 and the transient 
sensitivities at each time point are shown in Fig. 5.

It can be apparently seen that the sensitivity results cal-
culated by the method proposed in this paper are basically 
consistent with those calculated by the FDM and semi-ana-
lytical method with a near-optimum perturbation step size. 
Note that the sensitivity formulae in this paper are derived by 
directly differentiating the response equations, see sensitivity 
Eqs. (28) and (31). For this reason, the same numerical method 
can be conveniently used to solve for the sensitivity values, 
the perturbed and unperturbed responses. Thus, the difference 
between the sensitivity results calculated by using the method 
proposed in this paper and FDM or semi-analytical method is 
merely caused by the choice of perturbation step size. None-
theless, even if a near-optimum perturbation step size is used, 
we still cannot completely eliminate the truncation and condi-
tion errors, which can be seen from those extremely small rela-
tive errors in Table 2. In addition, the direct method employed 
in this paper is a kind of analytical method. As described in 

Fig. 4  Effects of perturbation step size in FDM on sensitivity error: a the 1st/5th ply thickness variable, b the 2nd/4th ply thickness variable, c 
the 3rd ply thickness variable

Table 2  Sensitivity comparison

Design variables This paper FDM Relative errors Semi-analytical method Relative errors

The 1st/5th ply thicknesses  − 40.79929  − 40.79899 7.35 ×  10–6  − 40.79928 2.45 ×  10–7

The 2nd/4th ply thicknesses  − 46.17585  − 46.17574 2.38 ×  10–6  − 46.17585 8.01 ×  10–8

The 3rd ply thickness  − 24.13194  − 24.13181 5.39 ×  10–6  − 24.13193 4.14 ×  10–7
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the literature (Martins and Hwang 2013), “the numerical preci-
sion of analytical methods is the same as that of the original 
algorithm”. Compared with frequency-domain analysis, the 
responses at each time point need to be iteratively calculated in 
time-domain analysis, which could produce numerical instabil-
ity and accumulated error. To avoid these potential problems 
of original algorithm, we adopt the Newmark integral method 
which is an implicit algorithm to solve for transient dynamic 
responses and determine the adequate time step size used in 
time-domain sound radiation analysis by referring to the lit-
erature (Wu 2000).

6.2  Time‑domain sound radiation design 
optimization of laminated curved shell 
structures

6.2.1  Design optimization of a truncated cone structure

6.2.1.1 Discussion for  different transient loads As shown 
in Fig. 6, a laminated truncated cone shell structure with a 
height of 0.6 m in the Cartesian coordinate system is consid-
ered. The top surface diameter and bottom surface diameter 
of the structure are 0.4 m and 0.8 m, respectively, and the 

Fig. 5  Transient sensitivities: a 
the 1st/5th ply thickness vari-
able, b the 2nd/4th ply thickness 
variable, c the 3rd ply thickness 
variable



Design optimization and sensitivity analysis on time‑domain sound radiation of laminated…

1 3

Page 11 of 24 110

center node of the bottom surface is the coordinate origin. 
The structure is divided into 128 eight-node shell elements 
with 386 nodes. The inclined surface is divided into three 
design domains: the surface A with an area of 0.31  m2, the 
surface B with an area of 0.40  m2, and the surface C with 
an area of 0.49  m2. The remaining top and bottom surfaces 
are non-design domains. Furthermore, this structure has 
five plies, each with a thickness of 0.002  m, and the ply 
angles are [60◦, 90◦, 0◦, 90◦, 60◦] . The structural plies are 
orthotropic, and the corresponding material properties and 

air properties are shown in Table 1. In addition, the bound-
ary of the bottom surface is completely fixed. To analyze 
the optimal results of ply thickness for different transient 
forces and loading positions, the following four cases are 
considered:

Case 1: only the transient force  F1 is applied.
Case 2: only the transient force  F2 is applied.
Case 3: only the transient force  F3 is applied.
Case 4: the transient forces  F1,  F2, and  F3 are applied 

simultaneously.

Fig. 6  Laminated truncated cone shell structure

Fig. 7  Different transient forces: a transient force  F1, b transient force  F2, c transient force  F3



 H. Zheng et al.

1 3

110 Page 12 of 24

Figure 7 shows these three transient forces. In addition, 
there are 101 time interpolation points uniformly distributed 

in the time domain, and the time interval between two time 
points is 1 ×  10–4 s. Here, the same damping form as in 
Sect. 6.1 is adopted.

In this example, the square of sound pressure on surfaces 
A, B, and C over the whole loading time period is taken as 
the objective function. Due to the symmetry of the struc-
tural plies, the thicknesses of the two plies symmetrical to 
each other are taken as one design variable. Therefore, for 
each structural surface among design domains, the 1st/5th 
ply thicknesses, the 2nd/4th ply thicknesses, and the 3rd 
ply thickness are all designated as the design variables. All 
nine design variables are shown in Fig. 8. In addition, the 
initial structural mass of surfaces A, B, and C is specified 
as the upper limit of the mass constraint, and the lower and 
upper limits for each design variable are set to 0.001 m and 
0.003 m, respectively. In this example, the optimization iter-
ation is stopped when the maximum absolute value of the 
changes of design variables between two adjacent iteration 
steps is less than 0.000001 m.

Figure 9 shows the iteration histories of the objective 
values for all cases. It can be apparently seen that the objec-
tive values are all gradually reduced with the increase of 
optimization iteration steps and converge finally. Table 3 
lists the initial and optimal objective values, design vari-
ables and constraint values for all cases. Within the lim-
its of constraints, the objective values for Cases 1 to 4 are 
decreased by 46.67%, 30.20%, 71.56%, and 12.43%, respec-
tively. Moreover, the structural masses for these four cases 
all reach the upper limits. Hence, the time-domain noise is 
still successfully reduced after optimization, although the 
structural mass is not changed. However, the distributions 
of variables are different between these four cases. In Case 
1, the transient force  F1 is applied on surface A, and the 
ply thicknesses belonging to this surface all increase to the 
upper limit. Similarly, in Case 3, all plies of surface C are 
thickened to the maximum thickness. Besides, the 1st/5th 

Fig. 8  Nine design variables

Fig. 9  Iteration histories for four cases

Table 3  Summary of parameters for the initial and optimal designs

Design parameters Initial values Lower
limit

Upper
limit

Optimal values

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4

Objective value (×  10–5  Pa2) 2.85 3.94 4.22 8.61 – – 1.52 2.75 1.20 7.54
Variable 1 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 3.00 1.04 2.06 2.48
Variable 2 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 3.00 1.20 1.63 1.33
Variable 3 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 3.00 1.00 1.01 3.00
Variable 4 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 2.39 3.00 1.00 1.85
Variable 5 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 1.42 2.31 1.07 1.00
Variable 6 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 1.22 3.00 1.00 3.00
Variable 7 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 2.19 3.00 3.00 2.83
Variable 8 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 1.19 1.46 3.00 1.00
Variable 9 (mm) 2.00 2.00 2.00 2.00 1.00 3.00 1.00 1.00 3.00 3.00
Mass (kg) 21.46 21.46 21.46 21.46 10.73 21.46 21.46 21.46 21.46 21.46
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and 3rd ply thicknesses reach the maximum values in Case 
2, and the 2nd/4th ply thicknesses are also thickened. There-
fore, increasing the ply thicknesses of the nodes near the 
loading positions can effectively reduce sound radiation. In 
Case 4, these three transient forces are applied simultane-
ously, thus each design surface has a ply with maximum 
thickness finally. The optimization results show that the ply 
thickness distributions are adjusted reasonably within the 
allowable constraints. In the practical engineering, designers 
and engineers should pay more attention to adding materials 
in the areas near the loading positions.

Figure 10 shows the comparisons between the initial and 
optimal objective curves in the time domain for all cases. 
The time-domain integrals of these curves are the objec-
tive values as shown in Table 3. As shown in Fig. 10a, the 
longitudinal coordinate values suddenly increase at the time 
points about 0.005 s and 0.0075 s. The reason is that the 

transient force  F1 changes significantly at these correspond-
ing time points. Similarly, the longitudinal coordinate val-
ues also suddenly increase at the time point about 0.005 s 
in Case 3. Because the values of the transient force  F2 are 
the power function of time, the two curves in Case 2 are 
smooth and do not change suddenly. As shown in Fig. 10d, 
the longitudinal coordinate values at the time points about 
0.005 s and 0.0075 s suddenly increase due to the simultane-
ous loading of these three transient forces. Moreover, we can 
see that the optimal curve has a similar shape to the initial 
curve in each case, but the values of the former are signifi-
cantly smaller than those of the latter. In addition, in Cases 
1 to 4, compared with the initial maximum peak values, 
the optimal maximum peak values are reduced by 47.42%, 
30.44%, 72.56% and 3.94%, respectively. The reduction of 
peak values means that the noise is more uniform and sta-
ble in the time domain. Therefore, the results mean that the 

Fig. 10  Comparisons between 
the initial and optimal objective 
curves in the time domain: a 
Case 1, b Case 2, c Case 3, d 
Case 4
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time-domain sound radiation is effectively reduced by opti-
mizing the structural ply thicknesses.

Figure 11 shows the initial and optimal nephograms in all 
cases. For the diagrams of each case, the sum of all nodal 
values are the objective values as shown in Table 3. After 
optimization, the average nodal values for Cases 1 to 4 are 
decreased by 46.67%, 30.20%, 71.56%, and 12.43%, respec-
tively. In addition, the reductions of maximum nodal values 
are even greater, and they are 62.88%, 45.61%, 77.23%, and 
15.53% for Cases 1 to 4, respectively. These results reveal 
that the distribution of the optimal sound radiation in the 
spatial domain is more uniform than that of the initial sound 
radiation. Moreover, we can also see that the larger sound 
pressure values appear in the areas near the loading nodes, 
so the optimization of the areas near the loading positions 
plays an important role in reducing sound radiation.

6.2.1.2 Discussion for different initial values of design vari‑
ables In this subsection, we take the predefined Case 2 as 
the instance to analyze the influence of the initial values 
of design variables on optimal results. First of all, the six 
groups of different initial values of design variables are 
listed in Table 4.

Note that the prescribed values of the 2nd group are 
opposed to the optimal values of the 1st group shown in 
Table 3, and the values of the 5th and the 6th groups are also 
opposite in the design domain. By the way, the selection of 

the initial values does not consider whether the constraint 
is satisfied. In other words, some values are not located in 
the feasible design domain. To sum up, the selected starting 
points are not concentrated in the same domain.

After calculation, the iteration histories of objective func-
tions for these groups are plotted in Fig. 12. Since the ini-
tial objective value of the 5th group is relatively large, the 
curves of the first three iteration steps of this group are not 
given here, which does not affect the analysis. Furthermore, 
the optimal results for these six groups are also shown in 
Table 5.

Fig. 11  Nephograms of the initial and optimal sound radiation in all cases (top view): a Case 1, b Case 2, c Case 3, d Case 4

Table 4  Initial values for the six groups

Groups Initial values of design variables (mm)

1st [2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 
2.000]

2nd [3.000, 3.000, 3.000, 1.000, 2.000, 1.000, 1.000, 3.000, 
3.000]

3rd [1.000, 2.000, 3.000, 1.000, 2.000, 3.000, 1.000, 2.000, 
3.000]

4th [3.000, 2.000, 1.000, 3.000, 2.000, 1.000, 3.000, 2.000, 
1.000]

5th [1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 
1.000]

6th [3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 3.000, 
3.000]
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As seen from Fig. 12, no matter whether the starting point 
satisfies the constraint, all curves approximately converge 
to the same value. Besides, it can be seen from Table 5 that 
the final objective and design variable values of all groups 
are basically the same. Even for the 4th group, its results are 
highly close to those of other groups. The results indicate 
that the selection of the initial values of design variables in 
this example has little effect on the optimal results.

6.2.1.3 Comparison with the results of SA We know that the 
result cannot be guaranteed to come from a global minimum 
under the premise of using the classical MMA based on gra-
dient information, especially for the complex non-convex 
optimization problem investigated in this paper. Next, we 
try to use SA to minimize the objective function for com-
parison. SA is an iterative adaptive heuristic probabilistic 
search algorithm that can obtain the globally optimal solu-
tion with a large probability. The predefined Case 2 is still 
used here for analysis. Moreover, the detailed parameters in 
SA can be found in (Zheng et al. 2021). After optimization, 
the optimal results for the gradient-based method used in 
this paper and SA are shown in Table 6.

It can be seen that the optimal design variables obtained 
by using the two schemes are somewhat different, but their 

optimal values are extremely close. The reason is that the 
sensitivities of the objective function with respect to the 1st, 
2nd, 3rd, 8th, and 9th design variables are very small com-
pared with other design variables. Thus, we can conclude 
that the result in this example comes from the near-global 
optimum. However, from the perspective of practical engi-
neering, the primary requirement is reducing noise as much 
as possible. Although the results in this paper cannot be 
guaranteed to come from standard globally optimal solu-
tions, the difference between them is still very small, which 
is sufficient for practical engineering. Moreover, Table 6 
shows that the gradient-based method proposed in this paper 
greatly reduces the computational cost compared with SA, 
which is also very desirable in practical projects. Thus, the 
optimization strategy proposed in this paper is effective and 
reliable.

6.2.2  Optimization design of a car model

Figure 13 shows a simplified car model and the coordinates 
of some selected nodes in the Cartesian coordinate system. 
The car model is divided into 152 eight-node curved shell 
elements with 458 nodes. The top surface of the car model 
with an area of 3.63  m2 is labeled surface A, and the two 
side surfaces with a total area of 6.51  m2 are labeled surface 
B, and the front and back surfaces with a total area of 5.60 
 m2 are labeled surface C. The remaining surfaces of the car 
model are the non-design domains. The car model has five 
plies, each with a thickness of 0.0025 m, and the ply angles 
are [30◦, 0◦, 90◦, 0◦, 30◦] . The structural plies are orthotropic, 
and the structural material and air properties are shown in 

Fig. 12  Iteration histories of objective functions

Table 5  Optimal results for the 
six groups

Groups Optimal design variables (mm) Optimal objec-
tive values 
 (Pa2)

1st [1.035, 1.198, 1.000, 3.000, 2.308, 3.000, 3.000, 1.463, 1.000] 2.749426 ×  10–5

2nd [1.036, 1.198, 1.000, 3.000, 2.309, 3.000, 3.000, 1.462, 1.000] 2.749426 ×  10–5

3rd [1.035, 1.198, 1.000, 3.000, 2.309, 3.000, 3.000, 1.463, 1.000] 2.749425 ×  10–5

4th [1.090, 1.183, 1.003, 2.997, 2.308, 2.997, 2.962, 1.473, 1.011] 2.752132 ×  10–5

5th [1.036, 1.198, 1.000, 3.000, 2.308, 3.000, 3.000, 1.463, 1.000] 2.749426 ×  10–5

6th [1.036, 1.198, 1.000, 3.000, 2.308, 3.000, 3.000, 1.463, 1.000] 2.749426 ×  10–5

Table 6  Optimal designs of the two schemes

Optimal design variables Optimal values Time

This paper [1.035, 1.198, 1.000, 
3.000, 2.308, 3.000, 
3.000, 1.463, 1.000]

2.74943 ×  10–5  Pa2 2.46 h

SA [1.149, 1.230, 1.012, 
2.997, 2.305, 2.998, 
2.998, 1.363, 1.041]

2.74888 ×  10–5  Pa2 20.03 h
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Table 7. In addition, the four corner nodes of the car model 
are completely fixed, and two identical transient forces as 

shown in Fig. 14 are simultaneously applied to the nodes 
 A16 and  A17 on the bottom surface. Moreover, there are 101 
time interpolation points uniformly distributed in the time 
domain, and the time interval between two time points is 
5 ×  10–4 s. Here, the same damping form as in Sect. 6.1 is 
adopted.

To analyze the noise radiated by the vibrating car model 
to the surrounding environment in the practical engineer-
ing, a reference hemispherical surface with a radius of 
5 m as shown in Fig. 15a is considered. The center of this 
hemisphere surface coincides with the center of the bottom 
surface of the car model. Here, the hemisphere surface is 
divided by 48 eight-node elements with 161 nodes as shown 
in Fig. 15b. In this example, the square of sound pressure of 
all 161 nodes on the hemispherical surface over the whole 
loading time period is taken as the objective function. For 
each surface among design domains, the 1st/5th ply thick-
nesses, the 2nd/4th ply thicknesses, and the 3rd ply thick-
ness are all specified as the design variables. Moreover, the 
initial structural mass of surfaces A, B and C is designated 
as the upper limit of the mass constraint, and the lower and 
upper limits for a single ply thickness are set to 0.001 m and 
0.004 m, respectively. For this example, the optimization 
iteration is still stopped when the maximum absolute value 
of the changes of design variables between two adjacent 
iteration steps is less than 0.000001 m.

Table 8 lists the initial and optimal objective values, 
design variables and constraint values. After optimization, 
the objective value is reduced by 28%, and the structural 

Fig. 13  Laminated car shell model

Table 7  Properties of structural material and air

Elastic modulus (GPa) E1 = 100, E2 = E3 = 9

Shear modulus (GPa) G12 = G23 = G13 = 4.4

Poisson’s ratio �12 = �13 = �23 = 0.27

Structural density (kg/m3) �s = 1600

Air density (kg/m3) �a = 1.29

Speed of sound (m/s) vs = 343

Fig. 14  Transient force
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mass reaches the upper limit. These results show that the 
time-domain noise is successfully reduced after optimiza-
tion, although the structural mass is not changed. Differ-
ent from the selection of design domains in example 6.2.1, 
the surface applied by the transient forces directly in this 
example is not used as the design domain. As can be seen 
from Table 8, the ply thicknesses of surface B all increase to 
their upper limits. Besides, increasing the ply thicknesses of 
surface A is also conducive to reducing the sound radiation.

Figure 16a shows the iteration curves about the objec-
tive value and structural mass. We can see that the objective 
value is gradually reduced with the increase of optimization 

iteration step and converges finally. In addition, the struc-
tural mass is always within the constraint and reaches the 
upper limit value finally. Figure 16b shows the nephograms 
at different iteration steps. The nodes  B1,  B2, and  B3 mark 
the direction of the reference hemispherical surface, and they 
can be found in Fig. 15. It can be seen that the noise from the 
front direction of the car model is larger than that from both 
the sides and back directions. Moreover, the position with 
the minimum value remains unchanged and is located at the 
node No.16, while the position with the maximum value 
changes slightly. In the initial iteration step, the node with 
the maximum sound radiation is No. 21, whereas it moves 

Fig. 15  Reference hemispherical surface: a perspective view, b mesh division (bottom view)

Table 8  Summary of 
parameters for the initial and 
optimal designs

Design parameters Initial values Lower
limit

Upper
limit

Optimal values

Objective value  (Pa2) 3.75 ×  10–2 – – 2.70 ×  10–2

1st/5th ply thicknesses of surface A (mm) 2.50 1.00 4.00 1.59
2nd/4th ply thicknesses of surface A (mm) 2.50 1.00 4.00 1.72
3rd ply thickness of surface A (mm) 2.50 1.00 4.00 4.00
1st/5th ply thicknesses of surface B (mm) 2.50 1.00 4.00 4.00
2nd/4th ply thicknesses of surface B (mm) 2.50 1.00 4.00 4.00
3rd ply thickness of surface B (mm) 2.50 1.00 4.00 4.00
1st/5th ply thicknesses of surface C (mm) 2.50 1.00 4.00 1.00
2nd/4th ply thicknesses of surface C (mm) 2.50 1.00 4.00 1.00
3rd ply thickness of surface C (mm) 2.50 1.00 4.00 1.00
Mass (kg) 314.72 125.89 314.72 314.72
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to No. 22 in the 2nd iteration step and No. 138 in the 5th and 
the final iteration steps. In addition, the differences between 
the maximum and minimum values gradually decrease with 
the increase of the iteration number, which shows that the 
sound pressure distribution in the spatial domain is more 
uniform after optimization.

Figure 17a shows the comparisons between the initial and 
optimal objective curves in the time domain. Here, the longi-
tudinal coordinate value is equal to the sum of the square of 
sound pressure on the hemisphere surface. In this example, 
the time when the sound pressure is received by the hemi-
sphere surface for the first time is 0.008 s, and the longitudi-
nal coordinate values are equal to zero before this time point. 
In addition, the longitudinal coordinate values suddenly 
increase at the time points about 0.013 s, 0.023 s, 0.034 s, 
and 0.044 s. The reason is that the transient force as shown 
in Fig. 14 changes significantly at these corresponding time 

points, and the sound spread time needs to be considered 
here. Moreover, we can also see that the optimal curve has 
a similar shape to the initial curve, but the values of for-
mer are smaller than those of latter. In addition, compared 
with the four initial peak values, the optimal peak values are 
decreased by 26.60%, 29.33%, 28.76%, and 29.81%, respec-
tively, which means that the noise is more uniform and stable 
in the time domain.

Figure 17b shows the initial and optimal nephograms 
at different time points. At each time point, the optimal 
values are significantly smaller than the initial values. 
Moreover, compared with the maximum values of the four 
initial nephograms, the maximum values of the optimal 
nephograms are reduced by 12.02%, 24.82%, 22.50%, and 
20.35%, respectively. Therefore, the above results show that 

Fig. 16  Iteration history: a objective values and constraints, b nephograms at different iteration steps (bottom view)
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the time-domain sound radiation is successfully reduced by 
optimizing structural ply thicknesses, and the distributions 
of sound pressure are more uniform in both the spatial and 
time domains after optimization.

6.3  Computational performance for numerical 
examples

In this paper, both of the optimization examples are com-
puted on a desktop PC with an Intel Core i7-6700 CPU and 

Fig. 17  Comparisons between the initial and optimal sound radiation: a objective value curves in the time domain, b nephograms at different 
time points
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32 GB memory. Similar to (Fallahi 2021), a hybrid pro-
gramming approach is utilized in this paper. Specifically, 
the code of dynamic response calculation, sensitivity analy-
sis and optimization algorithm is implemented in the self-
programming MATLAB software, and the code of sound 
radiation analysis is written by FORTRAN.

In the example of the truncated cone structure, the 
number of degrees of freedom is 2316, and the numbers 
of iteration steps for Cases 1 to 4 are 35, 26, 33, and 40, 
respectively. In the example of the car model, the number 
of degrees of freedom is 2748, and the number of itera-
tion steps is 40. Besides, for each example, the number of 
discrete time points in the time domain and the number of 
design variables are 101 and 9, respectively. The detailed 
computational time is given in Table 9.

7  Conclusions

In this paper, the undesired time-domain noise radiated from 
laminated curved shells under transient loads is successfully 
reduced by optimizing structural ply thicknesses. The opti-
mization model is designed: the square of sound pressure 
on a prescribed reference surface in the sound medium or 
the structural surface over a period of time is chosen as the 
objective function; the structural ply thicknesses are taken as 
the design variables; and the structural mass is constrained. 
The FEM and Newmark integral method are employed to 
calculate the transient dynamic response, and a time-domain 
BEM is adopted to solve for the transient sound pressure. 
Moreover, the sensitivity formulation of transient sound 
pressure is obtained by directly differentiating response 
equations. Three numerical examples are presented to verify 
the accuracy of the sensitivity formulae and the effectiveness 
of the optimization model. The optimization results show 
that increasing the ply thicknesses near the loading posi-
tions can effectively reduce the time-domain sound radia-
tion. Furthermore, the maximum nodal sound radiation in 
the spatial domain and the peak values in the time domain 
are all reduced after optimization, which indicates that the 

optimal sound radiation is more uniform and stable than the 
initial stage.

Appendix 1. Finite element equations 
for laminated curved shell elements

Figure 18 shows an eight-node curved shell element. In this 
figure, (x−y−z) is the global coordinate system; (x�−y�−z�) is 
the local coordinate system; and (�−�−�) is the natural coor-
dinate system with −1 ≤ �, � , � ≤ 1 . Here, we assume that 
�3i is the nodal normal unit vector perpendicular to the mid-
dle surface of the element and that �1i and �2i are nodal unit 
vectors that are perpendicular to �3i and orthogonal to each 
other. The displacement vector of any point within the ele-
ment can be expressed in the following interpolation form:

where the subscript i denotes the ith node; 
(
ui vi wi �i �i

)T 
is the generalized nodal displacement vector; �i and �i are 
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Table 9  Computational time for two numerical examples

Time for transient dynamic 
response analysis (FEM) (s)

Time for transient sound 
radiation analysis (BEM) (s)

Time for sensitivity analysis 
per design variable (s)

Total time for the 
optimization process 
(h)

Truncated cone structure
 Case 1 25.65 38.41 30.39 3.30
 Case 2 26.09 38.61 30.27 2.46
 Case 3 25.67 37.79 30.00 3.09
 Case 4 25.90 38.62 29.99 3.73
 Car model 33.04 80.13 47.71 6.20

Fig. 18  Curved shell element
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the rotation angles of �3i around �2i and �1i , respectively; 
Ni (Zhai et al. 2017) and Ti are the two-dimensional inter-
polation function and nodal thickness, respectively; and 
(lji mji nji)

T , with j = 1, 2, 3 , are the direction cosines of �1i , 
�2i and �3i , respectively. The stiffness matrix of the element 
can be written as:

where � (Zhai et al. 2017) and � are the strain matrix and 
elastic matrix, respectively; and � is the Jacobian matrix:

where the subscript i denotes the ith node; (xi yi zi) is the 
global nodal coordinate; and Ni,j , with j = �, �, � , represent 
the derivatives of Ni with respect to the natural coordinates.

For an orthotropic shell, the material coordinate system is 
different from the global coordinate system due to the influ-
ence of the ply angle. Therefore, the elastic matrix � in the 
material coordinate system needs to be transformed into � 
in the global coordinate system:

with:

in which � is the ply angle.
As shown in Fig. 19, a laminated curved shell element 

consists of a stack of curved shell elements with different 
material properties and ply parameters. For such a lami-
nated curved shell element, the elastic matrix is not a con-
tinuous function of the thickness coordinate � . Therefore, 
integration in the thickness direction is achieved by split-
ting the limits through each ply. In the calculation of the 
stiffness matrix of the kth ply, a new natural coordinate �∗ 
with a value range of [−1, 1] is introduced to replace the 
coordinate � . Thus, the stiffness matrix of the laminated 
element can be expressed by using the following superpo-
sition formula:
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where the subscript k denotes the kth ply; and k is the 
number of plies.

Figure 20 shows the relationships between different 
coordinates of the kth ply. For a laminated curved shell 
element with a total thickness of T0 , we can obtain the 
following relationships:

where hk−1 and hk are the bottom surface height and top 
surface height of the kth ply, respectively; �k−1 and �k represent 
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�k =
hk
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× 2 − 1

Fig. 19  Laminated curved shell element

Fig. 20  Schematic diagram of coordinate transformation
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the values of the two surfaces in the � coordinate. Therefore, 
the following relationship can be obtained:

Combining Equations (A7) and (A8) yields:

where Tk = hk − hk−1 represents the thickness of the kth ply.
Here, we let �k = Tk∕T0 and �k =

(
2hk−1 + Tk

)
∕T0 − 1 . 

Thus, the expressions for |�∗|k , �k and �k in Equation (A6) 
are shown in Equations (A10) to (A13):

with
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