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Abstract
In recent years, remarkable advances in computing performance and computer-aided engineering have enabled reliability-
based design optimization (RBDO) to guarantee the target reliability of a product. For successful product development 
through RBDO, it is indispensable to clarify uncertainties of unknown model variables. In most cases, however, due to cost 
and time constraints, there are not enough test data, which can lead to a less reliable optimum. For this reason, the primary 
purpose of this study is to propose a pragmatic approach to perform an inverse uncertainty quantification or a statistical 
model calibration more accurately and efficiently under an insufficient data environment. Based on the Bayesian model 
calibration framework, the proposed method consists of two main steps: (1) prior distribution prediction using output (i.e., 
component) test data and (2) posterior distribution prediction using input (i.e., coupon) test data. In the prior distribution 
prediction step, the maximum likelihood estimate (MLE) is used to obtain the estimated statistical parameters, the distribution 
type of unknown model variables, and the Fisher information matrix (FIM) to calculate variances of the estimated statistical 
parameters. The posterior distribution prediction step utilizes the Bayes’ theorem, which combines the prior distribution 
with the likelihood obtained by reflecting the input test data into the probability density of the estimated unknown model 
variable. During this process, each test data that is insufficient to directly model or indirectly predict the probability density 
of the unknown model variable can be integrated to address the crucial issue of the insufficient data effectively. Mathemati-
cal and engineering examples are utilized to validate the proposed method for quantification of unknown model variables.

Keywords  Statistical model calibration · Maximum likelihood estimate · Fisher information matrix · Area metric · 
Bayesian inference · Epistemic uncertainty

List of symbols
�	� A controllable design variable vector
zs(⋅)	� Response function of a simulation model
�	� A known model variable vector
�(⋅)	� Function as a calibration metric
�	� An unknown model variable vector
L(⋅)	� Likelihood function
�	� A vector of the statistical parameters of the 

unknown model variables
l(⋅)	� Log-likelihood function

�	� Distribution type of the unknown model 
variable

p(⋅)	� Posterior PDF
�(⋅)	� A discrepancy function between the experimen-

tal and the simulation model
�(⋅)	� Prior PDF
�	� A measurement error
F̂xi

(⋅)	� CDF of an unknown model variable at calibra-
tion site xi

�e	� An output test data vector
Um

a,mv
(⋅)	� PDF of area-metric calculated by taking mv 

observations from the estimated probability 
model

�e	� An input test data vector
Tnv(�)	� Threshold of � significance level for nv valida-

tion samples
ye
i
,ye
j
	� Output test data for calibration and validation, 

respectively
nc,nv	� The quantity of output observations for calibra-

tion and validation, respectively
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xe
i
,xe
j
	� Input test data for calibration and validation, 

respectively
mc,mv	� The quantity of input observations for calibra-

tion and validation, respectively
�	� Expected Fisher information matrix in entire 

observations
k	� Number of unknown model variables
�	� Observed Fisher information matrix in entire 

observations
uj	� The u-value; CDF value at validation site xj
�1	� The Fisher information matrix in a single 

observation
u
(j)
a,mv

	� j-th area-metric calculated by taking mv obser-
vations from the estimated probability model

a,b	� The model parameters of the given parametric 
PDF

um
a,mv

	� Area-metric value calculated by taking mv 
observations from the estimation

ze(⋅)	� Response function of experiment
ue
a,mv

	� Area-metric value calculated by taking mv 
observations from experiment

FX ,FY	� Horizontal and vertical loads acting on a canti-
lever beam, respectively

�1,�2,�3	� Principal stretches
w,t	� Width and thickness of the cantilever beam, 

respectively
I1,I2,I3	� Strain invariants
D	� The deflections of the cantilever beam
s	� Strain energy
E	� The elastic modulus of the cantilever beam
W(⋅)	� Function of strain energy potential
L	� The length of the cantilever beam
C10,B1	� The material parameters of the Neo-Hookean 

function

1  Introduction

In recent years, RBDO using a simulation model has played 
an essential role in reducing product development costs and 
time by a breakaway from heuristic rule-of-thumb design 
approaches. In order to elicit accurate RBDO results, the 
process of quantifying the uncertainties inherent in all 
models, called uncertainty quantification (UQ), is essential. 
This process is divided into two main categories depend-
ing on what model you want to quantify: one is estimating 
the probabilistic model of the quantity of interest (QoI) by 
propagating the uncertainty of model variables through the 
model, and the other is estimating the uncertainty of the 
model variables using measured data; the former is called 
forward UQ, and the latter is called inverse UQ or the sta-
tistical model calibration (Lee et al. 2019a; Ralph 2014).

The statistical model calibration aims to minimize the 
differences between the observed data and the prediction 
results through mathematical models that can describe the 
physical phenomena in a statistical sense. Several forms of 
notable statistical model calibration frameworks have been 
proposed to achieve this goal (Arendt et al. 2012a; Campbell 
2006; Xiong et al. 2009). The framework proposed by Ken-
nedy and O'Hagan, called the KOH framework, is widely 
used for various scenarios: bias correction, parameter cali-
bration, or both (Kennedy and O'Hagan 2001; Jung et al. 
2015). However, the statistical model calibration problem 
inherently corresponds to the ill-posed problem, which 
means that optimization solutions for the inverse problem 
are unstable and non-unique: it implies that the optimiza-
tion solutions can be sensitive to the measurement errors 
and have multiple solution sets, respectively. To solve the 
ill-posed problem, a regularization approach to obtain a 
more stable approximate solution and a multiple local search 
approach from different initial points can be used (Lee et al. 
2019b; Sun et al. 2015; Villaverde et al. 2019). However, 
the problems mentioned above are intrinsically arisen due 
to insufficient data. Such a statistical uncertainty, which 
appears using insufficient data, is also called epistemic or 
reducible uncertainty because it can be reduced by adding 
more data, unlike aleatory uncertainty, which is inherent 
variability such as material properties, loads, and boundary 
conditions (Bi 2018; Roy et al. 2011).

Since few specifications indicate precisely how many sam-
ples are large enough, such as MIL-HDBK-5H, which states 
that 100 and 299 samples are required to find a distribution of 
properties (MIL-HDBK-5H 1998), interval approaches (Pas-
hazadeh et al. 2008; Rao et al. 2008), information theory-based 
model selection method (Lim et al. 2016), and the goodness-
of-fit test (Youn et al. 2011) can be applied to quantify the 
uncertainty of the model variables. Unlike the aforementioned 
parametric methods, Kang et al. (2018) proposed KDE-bd and 
KDE-ebd methods, which combine bounds information with 
the kernel density estimation (KDE), which exhibits unusual 
distribution shapes when using extremely small information 
(e.g. less than 10 data). Moon et al. (2019) also used a boot-
strapping method to reduce unnecessary conservativeness 
by selecting a bandwidth satisfying a user-specified quantile 
value in the bootstrap distribution of the bandwidth. However, 
some studies have shown that at least 100 initial samples are 
required to obtain reliable results (Linnet 2000; Picheny et al. 
2009; Wehrens et al. 2000). There are also studies that indi-
rectly considered epistemic uncertainty of a model variable 
in reliability analysis. Jung et al. (2015) proposed a validation 
method to consider the uncertainty of model variables through 
the hypothesis test utilizing the area metric and u-pooling 
methods. Xi et al. (2012) applied the Bayesian approach to 
model random fields in the insufficient data sets and to con-
sider the uncertainty of model variables for reliability analysis, 
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respectively. Li et al. (2018) and Jung et al. (2021) focused 
on reflecting the epistemic uncertainty induced by insufficient 
data in the surrogate model to find the conservative optimum 
that satisfies the target reliability. In the research of Xi (2019), 
various scenarios were established according to the status of 
the model parameter and test data being dealt with, and reli-
ability analysis was carried out considering epistemic uncer-
tainty for both model parameter and model bias at the same 
time. In particular, Moon et al. (2017) proposed a target output 
distribution method, which is a reliability analysis method that 
integrates all uncertainties such as the simulation model bias, 
insufficient input test, and output test data, based on the Bayes-
ian approach. In addition, there are researches to increase the 
efficiency in simultaneously conducting the model calibration 
and validation processes. Jiang et al. (2020) performed model 
calibration and bias correction in a sequential manner, and Hu 
et al. (2021) utilized a stochastic Kriging model by distinguish-
ing aleatory and epistemic uncertainty.

The biggest challenge encountered in most real engineer-
ing cases is that there are insufficient input (i.e., coupon) test 
data or output (i.e., component) test data available, which 
could be used to characterize unknown model variables 
directly or indirectly. For this reason, the purpose of this 
research is to propose a statistical model calibration frame-
work that can reduce epistemic uncertainty by utilizing all 
available test data in constructing the unknown model vari-
ables. To consider epistemic uncertainty caused by the insuf-
ficient data, the model calibration field has been shifted from 
the unknown model variable domain to the statistical param-
eter domain of the unknown model variable, and the Bayes-
ian approach has been employed to aggregate both input 
and output test data available. In addition, by applying the 
output test data to the optimization-based model calibration 
(OBMC), which uses log-likelihood as a calibration metric, 
a reasonable prior distribution of the statistical parameters 
represented by FIM is obtained. Eventually, the likelihood 
reflecting the input test data can be multiplied by the prior 
distribution to obtain the posterior distribution, so that all 
test data can be used to quantify unknown model variable.

A brief review of existing statistical model calibration 
methods and the Fisher Information for the prediction of 
the prior distribution is covered in Sect. 2. In Sect. 3, the 
proposed method is explained in detail. Then, the proposed 
method is validated through mathematical and engineering 
examples in Sect. 4. Lastly, conclusions are discussed in 
Sect. 5.

2 � Review of statistical model calibration

The model calibration attempts to maximize consistency 
of a simulation model and test results by adjusting calibra-
tion parameters or unknown model variables. In particular, 

the statistical model calibration differs from a determinis-
tic model calibration in that calibration parameters can be 
expressed in statistical distributions rather than a determin-
istic perspective (Arendt et al. 2012a; Sargsyan et al. 2015; 
Trucano et al. 2006). To perform the statistical model cali-
bration, a specific formulation of the relationship between 
experiments and simulation models is required, and the most 
widely used KOH framework is defined as (Kennedy and 
O'Hagan 2001)

where � is a controllable design variable vector, � is a 
known model variable vector, � is an unknown model 
variable vector as a calibration parameter vector, and the 
asterisk in �∗ means the true value. ze(⋅) , zs(⋅, ⋅, ⋅) , �(⋅) , and 
� in Eq. (1) indicate the experimental response function, 
response function of a simulation model, discrepancy func-
tion, and the measurement error, respectively. In many appli-
cations, the discrepancy term may be ignored on the assump-
tion that its expected value is zero or that the simulation 
model is accurate (Campbell 2006). Moreover, under the 
assumptions that test data are obtained from well-designed 
experiments and that the unknown model variables are dom-
inant, Eq. (1) is simplified as (Campbell 2006; Jung et al. 
2015; Ralph 2014)

The probabilistic model of the calibration parameter vec-
tor in Eq. (2) can be estimated using the given test data with 
the statistical model calibration method such as optimiza-
tion-based or Bayesian-based approaches to be described in 
Sects. 2.1 and 2.3.

2.1 � Optimization‑based model calibration (OBMC)

OBMC attempts to solve an inverse problem for finding the 
calibration parameters satisfying Eq. (2) using optimization 
algorithms, and thus it can be formulated as an optimization 
problem to maximize agreement with observations as (Lee 
et al. 2019a)

where �(⋅, ⋅) denotes the calibration metric as an objec-
tive function of the optimization problem to quantify cor-
respondence between the observations and the simulation 
responses. For this reason, various calibration metrics such 
as a normalized absolute error, a weighted sum of the square 
error, and the distance measures, have been suggested, and 
among them, the most commonly used calibration metric for 
the statistical model calibration is the likelihood function 
(Oh et al. 2016, 2019; Vakilzadeh et al. 2017). Assuming 

(1)ze(�) = zs(�, �, �∗) + �(�) + �

(2)ze(�) = zs(�, �, �∗)

(3)�̂ = argmax
�

𝜑(ze(�), zs(�, �, �))
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that the probabilistic distribution type is known, as a para-
metric approach, the statistical parameter vector of a cali-
bration parameter or unknown model variable defined as 
� =

[
�� , ��

]T is determined by the maximum likelihood 
defined as

where L(⋅) represents a likelihood function defined by ∏nc
i=1

f
�
ye
i
���

 ; nc is the number of output test data (observa-
tions) for calibration; ye

i
 is an individual output test data; 

f (ye
i
|�) stands for the conditional probability density func-

tion (PDF) given statistical parameter vector � ; and �� , �� 
are mean and standard deviation of an unknown model vari-
able as the calibration parameters, respectively. The method 
is intuitive and can adequately find a probabilistic model 
by estimating statistical parameters, such as the mean and 
variance, but also has some drawbacks such as inaccuracy of 
estimation if underlying candidates are inadequate or there 
are insufficient test data available (Lee et al. 2019a; McFar-
land et al. 2008; Ralph 2014).

2.2 � Asymptotic normality of MLE

The MLE has two significant properties: consistency and 
asymptotic normality (Fahrmeir et al. 1985). These features 
mean that as the number of samples increases based on the 
law of large numbers and the central limit theorem, the esti-
mator approaches a normal distribution containing the true 
value as (Ly et al. 2017)

where �̂ML is an estimated calibration parameter vec-
tor through MLE; the letter d above the arrow indicates a 
convergence in distribution; and �(�) is the expected FIM 
defined as the expectation for the negative second derivative 
of the log-likelihood, expressed as (Cavanaugh et al. 1996)

However, since the expected FIM is not always comput-
able, the observed FIM, which can replace the expected FIM 
in many instances, is defined as the Hessian of the observed 
log-likelihood written as (Cavanaugh et al. 1996; Efron et al. 
1978)

(4)�̂ML = argmax
�

L(�;�e)

(5)
√
nc

�
�̂ML −�

�
d

⟶ N
�
0, �

−1
(�)

�

(6)�(�) = E

[
−
�2 ln L(�|�e)

��2

]

(7)�(�̂ML) =

nc∑
i=1

−
𝜕2 ln L(�|ye

i
)

𝜕�2

|||||�=�̂ML

In Eq. (7), true values for the calibration parameter can be 
replaced by MLE as a consistent estimator (Cavanaugh et al. 
1996; DeGroot et al. 2011). By applying the relationship of 
I(⋅) = ncI1(⋅) and Slutsky’s theorem to Eq. (5), the estimated 
calibration parameter vector converges in distribution to a 
normal distribution or a multivariate normal distribution as 
(Myung et al. 2005; Sourati et al. 2017)

Consequently, Eq. (8) shows that the estimation accuracy 
of MLE can be expressed in the form of Fisher information 
and that as nc increases, the amount of information provided 
for the unknown model variables can also increase, reducing 
the estimation error.

2.3 � Bayesian‑based model calibration

The Bayesian inference, which is more suitable for the statisti-
cal model calibration under insufficient data environment since 
it can incorporate a prior information, constructs a probability 
distribution of a parameter satisfying Eq. (2) through rejection 
sampling based on the Bayes’ theorem and is defined as

where p(�;�e) is a posterior distribution as a PDF of the 
calibration parameter to be estimated based on the observed 
data; L(�e|�) represents the likelihood that varies with the 
given candidate calibration parameter; and �(�) denotes 
a prior distribution for the calibration parameter. Since the 
denominator in Eq. (9), which corresponds to a normaliza-
tion constant, is not easy to compute and does not affect the 
shape of the posterior distribution, Eq. (9) can be expressed as 
(Arendt et al. 2012b; Sun et al. 2015)

The noteworthy features of the method are that it can uti-
lize expert knowledge as a prior distribution to resolve the 
insufficient data problem and update the posterior distribu-
tion by adding new data efficiently, unlike OBMC (Lee et al. 
2019a). However, selection of an improper prior distribution 
has significant effects on the estimation results, and the use of 
time-consuming methods such as the Markov Chain Monte 
Carlo (MCMC) algorithm to sample the estimated calibration 
parameter vectors from the posterior distribution is a major 
impediment (Higdon et al. 2008; Honarmandi et al. 2020).

(8)�̂ML

d
⟶ N

(
�, �−1

1
(�)

/
nc
)

(9)p(�;�e) =
L(�e|�) ⋅ �(�)

∫
�
L(�e|�) ⋅ �(�) d�

(10)p(�;�e) ∝ L(�e|�) ⋅ �(�)
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3 � Statistical model calibration integrating 
obtainable input and output test data

This research aims to figure out how to mitigate epistemic 
uncertainty during the statistical model calibration procedure 
when the data is scarce. To this end, a practical method is 
proposed to integrate all available input and output test data 
which may not be sufficient to quantify unknown model vari-
ables directly or indirectly by adopting the Bayesian infer-
ence. In the absence of expert knowledge, an approach to 
select an appropriate prior distribution using the output test 
data is also suggested to implement the proposed method. In 
order to maintain the conservativeness of the model calibra-
tion due to lack of data, the statistical model calibration is 
performed in a statistical parameter domain of the unknown 
model variable, not in the unknown model variable domain. In 
detail, it means finding a probability distribution of the statisti-
cal parameter by considering the statistical parameter of the 
unknown model variable as a random variable rather than a 
deterministic variable.

3.1 � Prior distribution selection using output test 
data

Most statistical model calibrations, often referred to as inverse 
UQ, commonly use output test data to characterize distribu-
tions of unknown model variables (Arendt et al. 2012b; Oh 
et al. 2016; Xi et al. 2012). Similarly, in this research, the 
OBMC procedure of finding statistical parameters of unknown 
model variables that maximize likelihood by utilizing the out-
put test data can be formulated as

where � refers to a distribution type of the unknown model 
variable that best represents the output test data and is specific 
to five types with two parameters as shown in Table 1; and 
� = [��1

, ��1 , ⋯ ,��k
, ��k ]

T ∈ ℝ
2k is a statistical parameter 

vector for k unknown model variables, and each component is 
still treated as a deterministic variable, which can be expressed 
as a sample statistics, as shown in Table 1.

Due to the use of a limited number of output test data, the 
statistical parameters derived from Eq. (11) may have statisti-
cal uncertainties. These uncertainties can be defined by the 
asymptotic normality of MLE covered in Sect. 2.2, and �(�̂ML) 
for k unknown model variables is defined as

(11)�̂ML, 𝜁ML = argmax
�, 𝜁

L(�, 𝜁 ;�e)

(12)

−∇2

�
l(���e )����=�̂ML

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
𝜕2l(���e)

𝜕Θ2

1

−
𝜕2l(���e)
𝜕Θ

1
𝜕Θ

2

⋯ −
𝜕2l(���e)
𝜕Θ

1
𝜕Θ

2k

−
𝜕2l(���e)
𝜕Θ

2
𝜕Θ

1

−
𝜕2l(���e)

𝜕Θ2

2

⋯ −
𝜕2l(���e)
𝜕Θ

2
𝜕Θ

2k

⋮ ⋮ ⋱ ⋮

−
𝜕2l(���e)
𝜕Θ

2k
𝜕Θ

1

−
𝜕2l(���e)
𝜕Θ

2k
𝜕Θ

2

⋯ −
𝜕2l(���e)
𝜕Θ2

2k

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

����=�̂
ML

Table 1   PDFs with two 
distribution parameters

Distribution type PDF f
X
(x;a, b) Relationship between two parameters 

and sample statistics

Normal 1√
2�b

⋅ exp

�
−

1

2

�
x−a

b

�2
�

� =  a

�2 =  b
2

Lognormal 1√
2�xb

⋅ exp

�
−

1

2

�
ln x−a

b

�2
�

� =  exp
[
a +

(
b
2
/
2
)]

�2 = 
(
exp

[
b
2
]
− 1

)
⋅ exp

[
2a + b

2
]

Gamma
xa−1 ⋅

exp
[
−x

b

]

Γ(a)⋅ba

� =  ab

�2 =  ab
2

Gumbel 1

b
⋅ exp

[
−

(x−a)

b
− exp

[
−

(x−a)

b

]]
� =  a + 0.5772b

�2 =  b
2�2

/
6

Weibull
b

a

(
x

a

)b−1

exp

[
−
(

x

a

)b
]

� =  a ⋅ Γ(1 + 1∕b)

�2 =  a
2
[
Γ(1 + 2∕b) − Γ2(1 + 1∕b)

]
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where l(⋅) is a log-likelihood, and the subscript of the 
denominator refers to the order of statistical parameter com-
ponents. Lastly, the estimated statistical parameters treated as 
random variables can be defined as a prior distribution in the 
form of a multivariate normal distribution represented as

3.2 � Posterior distribution updated by input test 
data

The estimated prior distribution based on the output test 
data discussed in Sect. 3.1 could be used as a reasonable 
alternative rather than non-informative prior such as a uni-
form distribution because it is based on given observations 
in the absence of the related literature information or expert 
knowledge. However, unnecessary conservativeness or inac-
curacy of the prior distribution induced from insufficient 
output test data needs to be improved. To this end, based on 
the results estimated in Sect. 3.1, plausibility for an occur-
rence of input test data expressed in the form of a likelihood 
function is defined as

where �e refers to the input test data vector, which means 
a limited number of realizations taken in the unknown model 
variable domain of zs(⋅, ⋅, ⋅) . Since � represents a random 
variable vector, the likelihood of Eq. (14) is calculated by 
reflecting �e in the probability model of the unknown model 
variable estimated through Eq. (13), where the statistical 
parameter of the unknown model variable is obtained by 
sampling an appropriate amount from the prior distribution. 
In conclusion, the prior distribution is multiplied by the like-
lihood function and updated to the posterior distribution as

(13)𝜋
(
�̂ML, 𝜁ML;�

e
)
∼ N

(
�̂ML, �

−1(�̂ML)
)

(14)L
(
�e|�̂ML, 𝜁ML, �

e
)

The proposed method using the Bayesian framework, as 
shown in Eq. (15), can readily reduce the epistemic uncer-
tainty by integrating both input and output test data reason-
ably for the statistical model calibration. It is also expected 
that the predictive accuracy will be improved as the current 
inverse UQ results are updated in the most plausible direc-
tion by the likelihood of the input test data. The overall pro-
cedure for the proposed method is shown in Fig. 1.

3.3 � Statistical model validation for the calibration 
parameter

The validation metric is a measure of quantifying the simi-
larity between the calibrated prediction and the observations. 
There are various measures such as the root mean square 
error, hypothesis testing, Bayes factor, and Kullback–Leibler 
divergence, which are sometimes also used as the calibration 
metrics (Liu et al. 2011; Oh et al. 2019; Xiong et al. 2009). 
In this study, the validity of the calibrated statistical model is 
verified by employing a hypothesis test using the probability 
distribution of the area-metric calculated by applying the 
u-pooling method (Jung et al. 2015). In addition, by propa-
gating the probability distribution of the unknown model 
variable to the probability model of QoI based on Eq. (2) and 
calculating its likelihood, the degree of improvement in the 
predictive accuracy of the proposed method is quantitatively 
evaluated comparing it with the results obtained from the 
prior distribution.

The u-pooling method was devised by Ferson to calculate 
disparate observations collected under different conditions 
as one index called the area-metric shown in Fig. 2b based 
on the probability integral transform theorem as shown in 
Fig. 2a (Ferson et al. 2008; Ferson et al. 2009).

(15)
p
(
�̂, 𝜁 ;�e, �e

)
= L

(
�e|�̂ML, 𝜁ML, �

e
)
⋅ 𝜋

(
�̂ML, 𝜁ML;�

e
)

Fig. 1   Flowchart of the pro-
posed statistical model calibra-
tion method



A bayesian model calibration under insufficient data environment﻿	

1 3

Page 7 of 20  96

The uj values pooled in Fig. 2a refer to the cumulative dis-
tribution function (CDF) values of the unknown model vari-
able estimated in the calibration site and are calculated as

where F̂xi
(⋅) denotes the estimated CDF of the unknown 

model variable at the calibration site xi , while xj refers to the 
validation site satisfying i ≠ j (Campbell 2006). Since the uj 
values calculated in this way must follow a standard uniform 
distribution assuming that the xj values come from the iden-
tical mother distribution, the degree of inconsistency 
between the estimated probability distribution of the 
unknown model variable and the observations could be 
expressed as an area-metric, as shown in Fig. 2b (Li et al. 
2014). However, since this limited number of observations 
given in the validation site causes epistemic uncertainty on 

(16)uj = F̂xi

(
xj
)

the calculated area-metric, a hypothesis test is performed to 
take this into account. As the first step for hypothesis testing, 
the uj values are calculated by acquiring the same number of 
samples ( mv ) as the observations given in the validation site 
from the estimated probability distribution of unknown 
model variables. This process can be repeated multiple times 
(e.g., 1000) to secure randomness data ( u(1)

a,mv
, ⋯ ,u(1000)

a,mv
 ) on 

the area-metric and expressed as Um
a,mv

 , the probability dis-
tribution of area-metric calculated using the validation sam-
ples on the estimated probability model, using KDE as 
shown in Fig. 3a. After that, a one-tailed test is conducted 
to accept or reject the null hypothesis that the estimated 
probability model is valid at a significance level of 5% using 
the area-metric ( ue

a,mv
 ) calculated by reflecting the given 

observations at the validation site to F̂xi
(⋅) (Nah et al. 2020; 

Son et al. 2020).

Fig. 2   Main concepts of the validation metric: a evaluation of u-value, and b area-metric at 3 validation site

Fig. 3   Multiple strategies for validity check: a hypothesis test to validate the estimated probability model, and b likelihood calculation for output 
response to evaluate the accuracy of the estimation
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However, the adoption of the null hypothesis only means 
that there is not enough evidence to reject it, so an additional 
step is required to quantitatively confirm that the predictive 
accuracy of the proposed method has improved compared 
to the estimation result of the prior distribution. To this end, 
as shown in Fig. 3b, the probability distribution of unknown 
model variables estimated at each phase was propagated into 
the output response distribution to calculate the likelihood 
and compare them.

4 � Numerical examples

In this section, two examples are implemented to vali-
date the proposed method. Two significant features of the 
proposed method that should be carefully contemplated 
through the following examples are (1) accuracy of the 
MLE distribution represented by the Fisher information 
using output test data and (2) reduction of the epistemic 
uncertainty obtained by considering input test data. In 
addition, the adequacy of the statistical model validation 
approaches could be considered for each case where a 
statistical parameter of the unknown model variable is 
given as a single true value or as a limited number of test 
data of the unknown model variable.

4.1 � Mathematical example: cantilever beam

The mathematical example in this section aims to provide 
a good grasp of the overall procedure and major features 
of the proposed method. Therefore, the uniform cantilever 
beam illustrated in Fig. 4 is adopted to find a probability 
model of an unknown model variable using given deflec-
tion data (as the output test data) and modulus of elastic-
ity data (as the input test data), and also the tip deflection 
corresponding to the QoI of this example is formulated 
as (Wu et al. 2001)

(17)D
(
FX ,FY ,w, t,E

)
=

4L3

Ewt

√(
FX

w2

)2

+

(
FY

t2

)2

where � = [FX ,FY ,w, t]
T is defined as a known model 

variable vector, which is listed in Table 2, and E repre-
sents the modulus of elasticity as an unknown model vari-
able. The calibration parameter � = [�E, �E]

T is derived 
in the form of a probability distribution of random vari-
ables by implementing the proposed method. In addition, 
the unknown model variable E is specified to follow a 
normal distribution, and the true values of the statistical 
parameters, which are the target values of the calibra-
tion parameters, are assumed to be �∗

E
= 199, 947MPa and 

�∗
E
= 9, 997MPa (Hess et al. 2002).

4.1.1 � Prior distribution with the output test data (beam 
deflections)

Since the probability model of the unknown model vari-
able is given as mentioned above, the deflection of the 
beam corresponding to the output test data can be obtained 
without limitation. Following the formulation of Eq. (11), 
the OBMC process using output test data vector denoted 
as �e = [D1, D2,⋯ , Dnc

]T can be expressed as

where l(⋅) denotes a log-likelihood function defined by ∑nc
i=1

ln
�
f (ye

i
��, �)

�
 . Although estimated statistical param-

eters 𝜇̂E and 𝜎̂E obtained through the above optimization 
process are deterministic variables, the asymptotic normal-
ity property of the MLE addressed in Sect. 2.2 results in 
each estimation having a 100·(1-� )% confidence interval 
(CI) represented as

(18)�̂ML, 𝜁ML = argmin
�, 𝜁

− l(�, 𝜁 ;�e)

Fig. 4   Uniform cantilever beam 
exposed to horizontal and verti-
cal loads

Table 2   Geometric dimensions and loads for the cantilever beam 
example

Known model variables Symbol Value Unit

Width of the cross-section w 62.19 [mm]
Thickness of the cross-section t 98.76 [mm]
Horizontal load F

X
4,448 [N]

Vertical load F
Y

2,224 [N]
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where the subscript l = 1, 2 refers to the order that 
consists of statistical parameter vector; z�∕2 represents a 
critical point for � significant level in the standard normal 
distribution, and as an example, the critical point z0.025 for 
the 95% CI is 1.96. Based on the given output test data, the 
variance–covariance matrix for the two estimated statisti-
cal parameters is expressed in Eq. (19) as Fisher informa-
tion I(⋅) = ncI1(⋅) and defined as

Finally, according to Eq. (13), the distribution type of the 
unknown model variable and the prior distribution expressed 
as the bivariate normal distribution can be obtained as

As the number of output test data increases, based on 
Eq. (19), the estimation performance of the MLE for each 
statistical parameter and the 95% CI based on the Fisher 
information is plotted as shown in Fig. 5. Fisher information 
refers to a measure of the amount of information observed by 
the random variables about the unknown parameters (Proko-
penko et al. 2011), so more observations improve estimation 
accuracy of the MLE for true probability model and the 95% 
CI becomes narrower. Similarly, identification results for the 

(19)

Θ∗
l
∈

[
Θ̂l − z𝛼∕2

√(
ncI1(Θ̂l)

)−1

, Θ̂l + z𝛼∕2

√(
ncI1(Θ̂l)

)−1
]

(20)

−∇2
�
l(���e)����=�̂ML

=

⎡
⎢⎢⎢⎢⎣

−
𝜕2l(���e)

𝜕𝜇2
E

−
𝜕2l(���e)
𝜕𝜇E𝜕𝜎E

−
𝜕2l(���e)
𝜕𝜎E𝜕𝜇E

−
𝜕2l(���e)

𝜕𝜎2
E

⎤
⎥⎥⎥⎥⎦

����=�̂ML

(21)𝜋
(
�̂ML, 𝜁ML;�

e
)
∼ N

(
�̂ML, −∇

2
�
l(�|�e)|||�=�̂ML

)

distribution type of the unknown model variable represented 
by the filled marker also tend to be more accurate with more 
observations. Figure 5 also shows that the identified distri-
bution types could be different from the true ones (normal 
distributions for both parameters in this example) even when 
300 test data were used as marked as hollow circles in the 
figure. Lognormal distributions are identified in such cases; 
however, when mean values are very large as in this exam-
ple, the shapes of normal and lognormal distributions are 
very similar with each other so that the incorrectly identi-
fied distribution type would not affect calibration results. 
It is also confirmed that the estimated mean and standard 
deviation are 200,018 MPa and 10,220 MPa, respectively, 
which are very close to the true values. In addition, in terms 
of the convergence rate for the true values, the mean value 
converges faster than the variance value.

By Eq. (21), it can also be represented by a contour plot 
representing a bivariate normal distribution over the cali-
bration domain, as shown in Fig. 6. It shows the prior dis-
tribution when 3 and 5 output test data ( nc ) are given. As 
shown in Figs. 5 and 6, as the number of data increases, 
the estimation accuracy improves. In other words, the esti-
mated statistical parameter approaches the true value, and 
the estimated distribution with the 95% confidence level nar-
rows. The above results show that if there is a large amount 
of output test data, OBMC can express the uncertainty of 
the unknown model variables that are sufficiently accurate. 
However, in actual engineering cases, it is difficult to obtain 
more than 5 output test data due to time and cost reasons 
(Jung et al. 2015; Son et al. 2020). So, in this problem, the 
estimation result using 3 output test data will be used to 
perform the next step.

Fig. 5   Estimation performance of the Fisher information according to the quantity of output test data: a estimated mean with 95% CI bounds, 
and b estimated standard deviation with 95% CI bounds



	 J. Choo et al.

1 3

96  Page 10 of 20

4.1.2 � Posterior distribution with the input test data 
(modulus of elasticity obtained by coupon test)

This section assumes a situation in which limited num-
ber of input test data are also available, denoted by 
�e = [E1, E2,⋯ , Emc

]T , which will be considered in the sta-
tistical model calibration to reduce the epistemic uncertainty 
due to lack of data. The statistical parameters that can best 
represent the limited input test data are obtained in the form 
of likelihood shown in Eq. (14). In particular, the statistical 
parameters of the lognormal distribution are sampled by an 
appropriate quantity (e.g., 100,000) from the estimated prior 
distribution as random variables, and the likelihood values at 
each of the sampled statistical parameters are tallied over the 
statistical parameter domain as shown in Fig. 7. In Fig. 7, it 
can be seen that as the number of input test data increases, 
the likelihood is concentrated as a statistical parameter with 
a high plausibility that best represents the given input test 
data. In addition, in Fig. 7a, since the estimated distribution 

type of the input model parameter used in the likelihood 
calculation is different from the true one as a lognormal dis-
tribution, the location of the maximum likelihood obtained 
through input test data (triangle symbol in black) differs 
from that obtained through the output test data (circular 
symbol in blue). However, Figs. 7b and c show that this 
difference can also be narrowed if the number of input test 
data increases.

Finally, the likelihood distribution for 30, 100, and 300 
input test data shown in Fig. 7 is multiplied by the prior 
distribution in Fig. 6a and is updated to the posterior distri-
bution as shown in Figs. 8, 9, and 10, respectively. Through 
Figs. 8 and 10, it can be seen that the likelihood distribution 
of Fig. 7 plays an effective role in getting closer to the true 
statistical parameters by updating the prior distribution to 
the posterior distribution, and at the same time, the estima-
tion accuracy also increases as the amount of the input test 
data increases.  

Fig. 6   Comparison of the prior distribution estimation according to the quantity of output test data (lines in the contour plot represent the same 
probability of 10, 30, 50, 70, 90, and 95% in the outward direction): a considering 3 output test data, and b considering 5 output test data

Fig. 7   Calculated likelihood according to the different number of additional input test data: a considering 30 additional input test data, b consid-
ering 100 additional input test data, and c considering 300 additional input test data
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Subsequently, to characterize the probability distribution 
of the unknown model variable, samples of the statistical 
parameters following the posterior distribution of Figs. 8, 
9, and 10 are extracted using the random walk Metropolis 
(RWM) algorithm, one of the MCMC methods (Vrugt 2016). 
The sampled 100,000 statistical parameters for each case in 
Fig. 11 are reflected in the distribution type of the unknown 
model variable estimated in Sect. 4.1.1, and 1,000 elastic 
moduli are sampled for each statistical parameter sample 
point, resulting in a total elastic modulus of 100 million. 
It can be represented in the form of a probability distribu-
tion as shown in Fig. 12 using KDE. As shown in Fig. 12a, 
considering additional input test data to the statistical 

model calibration allows the final estimated distribution to 
approach the true distribution by adjusting the right-end and 
central density values of the estimated PDF using only the 
output test data. In addition, it can be confirmed that when 
the number of input test data increases, it becomes almost 
the same as the true distribution as shown in Fig. 12c. 

In order to demonstrate the effectiveness of the pro-
posed method, a comparison with the OBMC, an exist-
ing statistical model calibration method, was conducted. 
The estimation results for an unknown model variable by 
each method are shown in Fig. 13. The identical condi-
tion as shown in Fig. 12a was applied to the proposed 
method, while only 3 and 30 output test data were used 

Fig. 8   Comparison of prior and posterior distributions given 30 input test data: a joint PDF of statistical parameters, b marginal PDF of mean, 
and c marginal PDF of standard deviation

Fig. 9   Comparison of prior and posterior distribution given 100 input test data: a joint PDF of statistical parameters, b marginal PDF of mean, 
and c marginal PDF of standard deviation
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in the OBMC method. Comparing the estimated PDF 
results derived from the prior distribution ( Êprior ) and the 
OBMC method ( ÊOBMC ) in Fig. 13a, where 3 output test 
data are equally used, the former is more spread. This is 
because the statistical parameters of an unknown model 
variable are considered to be fixed in the OBMC method, 
whereas the proposed method statistically estimated them 
considering the parameter uncertainty under the initial 
lack of information. Therefore, if the data is insufficient, 
the proposed method that shows conservative estimation 
results would be more reasonable. In addition, in Fig. 13b, 
it can be seen that, despite the increase in the output test 
data, the estimation result by the OBMC method becomes 
more precise, but it is estimated differently from the true 

distribution ( E∗ ). Since the OBMC method, which is 
dependent on the given output test data, causes an overfit-
ting problem as shown in Fig. 13b, it could be confirmed 
that using the input and output test data for the statistical 
model calibration as in the proposed method is effective 
in preventing overfitting (Bishop 2006; Deisenroth et al. 
2020; Jiang et al. 2020).

Interestingly, even if the same 30 test data is used for 
the statistical model calibration, as shown in the con-
tour plots of Fig. 14, the estimation accuracy may differ 
depending on the quantity of each input and output test 
data used. This means that it can be designed effectively 
according to the time, cost, and level of difficulty required 
for each test condition.

Fig. 10   Comparison of prior and posterior distribution given 300 input test data: a joint PDF of statistical parameters, b marginal PDF of mean, 
and c marginal PDF of standard deviation

Fig. 11   Bivariate scatter plots of the samples derived from the posterior distributions using the MCMC method: a considering 30 additional 
input test data, b considering 100 additional input test data, and c considering 300 additional input test data
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Fig. 12   Comparison of estimation accuracy for an unknown model variable according to the number of input test data: a considering 30 addi-
tional input test data, b considering 100 additional input test data, and c considering 300 additional input test data

Fig. 13   Estimation accuracy for an unknown model variable through the comparison with the existing statistical model calibration method 
(OBMC) using a 3 output test data, and b 30 output test data

Fig. 14   Comparison of the estimation results based on a combination of the input and output test data with the same total quantity: a 20 output 
& 10 input, b 15 input & 15 output, and c 10 output & 20 input test data
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4.1.3 � Statistical model validation

The probability model of the unknown model variable 
estimated through the aforementioned series of processes 
is evaluated for predictive accuracy through the statistical 
validation method covered in Sect. 3.3. The hypothesis 
test results to verify the estimated probability model of 
the elastic modulus are shown in Fig. 15a. 10 observa-
tions ( mv ) added from the true distribution of the elastic 
modulus were used, and Um

a,10
 , which means the PDF of 

the area-metric calculated from the estimated distribution, 
was fitted through the results of 1,000 iterations and KDE. 
The null hypothesis that the prediction model is valid can 
be adopted because the area-metric ( ue

a,10
 ) calculated from 

the estimated model and the added 10 observations is 0.15, 
which is less than the threshold T10(0.05) corresponding to 
the significance level of 5%.

In addition, to quantitatively prove the effectiveness of 
the proposed method, the likelihood calculation was per-
formed in the QoI domain as shown in Fig. 15b, and the 
deflections diffused from the 20 observations ( nv ) added 
from the true distribution of the elastic modulus are used. 
The PDF values in the central part where the deflections 
are concentrated are higher in the QoI distribution propa-
gated from the posterior distribution than the prior, and 
the actually calculated likelihood value also increases by 
1.34 times from 1.15E-22 to 1.54E-22. Therefore, it was 
verified that the probability distribution of the calibration 
parameter was statistically valid and improved in terms of 
reducing uncertainty by integrating all available test data 
using the proposed method.

Fig. 15   Statistical model validation for the estimated calibration 
parameter under the conditions of Fig.  12a: a hypothesis test using 
additional 10 input test data, and b likelihood calculation of addi-

tional 20 output test data for the propagated QoI distribution based on 
the prior and posterior distribution

Fig. 16   An electro-hydraulic 
braking system called the IDB 
system: a assembly diagram of 
the system, and b schematic dia-
gram of the pedal feel simulator
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4.2 � Engineering example: Pedal feel simulator, 
a component of an integrated dynamic brake 
(IDB)

The objective of this example is to examine whether the 
proposed method can also be effectively applied in real-
world engineering problems. For this reason, the industrial 
engineering model introduced is the pedal feel simulator, 
which comprises the electro-hydraulic brake system shown 
in Fig. 16a. The model is shown in Fig. 16b is intended 
to reproduce the same pedal sensation to the driver of an 
electric vehicle or hybrid vehicle as the conventional hydrau-
lic brake operated at the negative pressure of the engine 
(Wachter et al. 2019). As a rational material to artificially 
produce the existing sophisticated nonlinear pedal feeling, 
the ethylene propylene-based rubber has been generally 
used, and it is crucial to define the material property model 
accurately for the virtual validation of design specifica-
tions and performance prediction through the finite element 
analysis.

In order to express the large deformation of a material, 
which is called hyperelasticity, a phenomenological consti-
tutive model defined as a function of strain energy potential 
( W ) with respect to the principal stretches ( �1, �2, �3 ) or the 
strain invariants ( I1, I2, I3 ) is commonly used (Hossain et al. 
2013; Steinmann et al. 2012). In this problem, the strain 
energy potential model of a Neo-Hookean form was adopted 
by considering the operating conditions and the Drucker sta-
bility of material for the stable performance of optimization 
in the subsequent prior distribution estimation, and is rep-
resented as (ABAQUS Documentation 2014; Marckmann 
et al. 2006; Romanov 2001)

where C10 and B1 are the material parameters to be deter-
mined; Jel is the elastic volume ratio; and I1 means the first 
deviatoric strain invariant defined as I1 = �

2

1
+ �

2

2
+ �

2

3
 by 

deviatoric stretch �i . Assuming that the material is fully 
incompressible, the second term in Eq. (22) representing the 
volumetric part is negligible, so it is expressed only as the 
first term representing the deviatoric part. As a result, only 
C10 is the material parameter to be determined through the 
curve fitting with the provided coupon test results. In order 
to properly characterize the various behaviors of a material, 
coupon tests for various deformation modes such as uniaxial, 
equibiaxial, planar, and volumetric tests are necessary. In 
this problem, the null hypothesis that the 32 material proper-
ties obtained from the coupon test were extracted from the 
lognormal distribution was accepted at the 5% significance 
level through the Kolmogorov–Smirnov and Anderson–Dar-
ling Goodness-of-Fit test for the 5 candidate distributions 
as shown in Fig. 17a below. In addition, the distribution 
of material properties, C10 , is shown in Fig. 17b, and the 
sample statistics 𝜇̃C10

 and 𝜎̃C10
 are 0.9340 and 0.0735 , respec-

tively. However, because the test conditions to be considered 
for reproducing only a specific deformation mode are quite 
difficult, sometimes the components test can be rather simple 
as in this problem (Kim et al. 2019; Moreira et al. 2013). 
Thus, the unknown model variable, C10 , is characterized by 
the proposed method using a number of output (component) 
test data and a small number of input (coupon) test data. 
Subsequently, the validation phase is carried out also using 
input and output test data.

(22)W = C10

(
I1 − 3

)
+

1

B1

(
Jel − 1

)2

Fig. 17   Model variable (32 material properties obtained through coupon test) characterization: a Goodness-of-Fit test result, and b histogram 
with normalization set to PDF value
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4.2.1 � Prior distribution with the output test data (strain 
energy stored in the feeling damper)

As the given engineering model reproduces the desired 
pedal effort (i.e., applied load) by the compression of the 
feeling damper placed between the counterparts, as shown 
in Fig. 16b, the output performance of the unit is obtained 
in the form of a pedal effort curve according to the com-
pression stroke. Compared to the coupon test, 100 indi-
vidual feeling dampers were tested relatively easily using 
a universal testing machine, and the output test data are 
shown in Fig. 18 below. As shown in Fig. 18a, the load-
stroke curves monotonically increase in direct proportion 
to variation of the C10 value. Based on these observations, 
for the convenience of the statistical model calibration 

procedure, each curve could be defined as one quantita-
tive value, strain energy ( s ), and a histogram for a hun-
dred strain energies is shown in Fig. 18b. As mentioned in 
Sect. 4.1.1, this output test data vector �e = [s1, s2,⋯ , snc ]

T 
allows the prediction of the prior distribution of the statis-
tical parameter vector � = [�C10

, �C10
]T of the calibration 

parameter through the OBMC procedure. The numerical 
analysis model of the pedal feel simulator required dur-
ing this procedure was modeled with 2-D axisymmetric 
elements (e.g., CAX4H, RAX2) using ABAQUS®, the 
commercial finite element code, and the DACEFIT was 
utilized to establish a Kriging surrogate model. The Krig-
ing surrogate model was constructed with 5 samples gen-
erated by the Latin hypercube sampling by the maximin 
criterion with 1,000 iterations (Viana et al. 2013). The 
range of hyperparameter was set to [0.001, 20], and the 
Gaussian correlation function and zeroth-order polynomial 

Fig. 18   Experimental test results for one hundred feeling damper samples: a load – stroke curves with load histograms at checkpoints (A, B, and 
C), and b histogram of the strain energies representing each curve

Fig. 19   Estimation performance of the Fisher information according to the quantity of output test data: a estimated mean with 95% CI bounds, 
and b estimated standard deviation with 95% CI bounds
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regression function were applied. (Kang et al. 2019). The 
normalized leave-one-out cross-validation error was used 
as an index for evaluating the accuracy of the Kriging sur-
rogate model and was 0.0017 for the model used in this 
example which is an acceptable accuracy level according 
to the previous studies (Blatman et al. 2010; Kalinina et al. 
2020; Khalil et al. 2021).

The 95% CI for the estimated statistical parameters of 
a calibration parameter is found to narrow as the number 
of output test data utilized increases, as shown in Fig. 19. 
Furthermore, the probability distribution type of the cali-
bration parameter is also predicted to be a lognormal dis-
tribution (tagged with a symbol of LN in Fig. 19) similar 
to the results in Fig. 17. Then, the estimated prior distribu-
tion is depicted in the form of a bivariate normal distribu-
tion by Eq. (21) as shown in Fig. 20, and estimation preci-
sion increases as more output test data from 10 to 100.

4.2.2 � Posterior distribution with the input test data 
(material parameter obtained by coupon test)

As in the procedure in Sect. 4.1.2, the prior distribution esti-
mated from 10 ( nc ) of the given output test data is updated 
to the posterior distribution using input test data. In order to 
avoid the redundant use of input test data, the data required 
for each calibration and validation phase was divided into 20 
( mc ) and 12 ( mv ), respectively (Campbell 2006). The con-
tour plot of the likelihood calculated by reflecting the 20 
input test data in the lognormal distribution, the estimated 
distribution type of the unknown model variable in the pre-
vious step, is shown in Fig. 21a. Also, the 100,000 statisti-
cal parameter values of the lognormal distribution required 
for each probability calculation are sampled from the dis-
tribution in Fig. 20a. In Fig. 21a, the difference present in 
MLE using the input and output test data can be exhibited. 

Fig. 20   Comparison of the prior distribution estimation according to the quantity of output test data (lines in the contour plot represent the same 
probability of 10, 30, 50, 70, 90, and 95% in the outward direction): a considering 10 output test data, and b considering 100 output test data

Fig. 21   Improvement from the prior distribution to the posterior distribution: a likelihood contour calculated by reflecting input test data from 
the prior distribution, and b contour plots of the prior and posterior distribution
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Figure 21b, which shows the updated posterior distribution, 
confirms that consideration of input test data in the statistical 
model calibration can reduce the epistemic uncertainty about 
the statistical parameters of the unknown model variable C10.

Ultimately, in order to derive the estimated probability 
model of C10 , 100,000 statistical parameter values were sam-
pled with the RWM algorithm as shown in Fig. 22a, and KDE 
was performed for a total of 100 million samples by extracting 
1,000 Ĉ10 at each point, as shown in Fig. 22b. From the results 
of Fig. 22a, it appears that the mode of mean distribution in 
the posterior distribution compared to the prior distribution 
slightly decreases, and that of the standard deviation slightly 
increases. These results are also expressed in the PDF plot 
of Fig. 22b and show that the mode of PDF derived from the 

posterior distribution moves to the left and is somewhat widely 
distributed than that obtained from the prior distribution.

4.2.3 � Statistical model validation

The hypothesis test was performed at a significance level 
of 5% using 12 input test data ( mv ) that were not used dur-
ing the calibration phase in Sect. 4.2.2, and the result is 
shown in Fig. 23a. Since the area-metric value for the 12 
observations is 0.1, which is less than the threshold T12(0.05) 
of the selected significance level, it can be concluded that 
the model is valid under the given conditions. Furthermore, 
the likelihood was calculated using 90 observations ( nv ) at 
the validation site and the QoI distribution propagated from 

Fig. 22   Characterization of the probability model of an unknown model variable through the MCMC: a statistical parameter sampling from the 
posterior distribution, and b calibrated statistical model

Fig. 23   Statistical model validation for the estimated calibration 
parameter under the conditions of Fig.  22b: a hypothesis test using 
additional 12 input test data, and b likelihood calculation of addi-

tional 90 output test data for the propagated QoI distribution based on 
the prior and posterior distribution
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the result of Fig. 23b. The likelihood values derived from 
the prior and posterior distribution increased by 13.7 times 
from 8.83E-275 to 1.21E-273, confirming that the proposed 
method was also valid in this example.

5 � Conclusion

The biggest obstacle in the statistical model calibration that 
we face in reality is the lack of available data, and a practical 
method to solve this problem is presented in this research. 
The notable parts of the proposed method are that calibra-
tion is carried out in the statistical parameter domain of the 
unknown model variable to maintain the conservativeness 
of the estimation results under an insufficient data environ-
ment, and the epistemic uncertainty could be reduced by 
consolidating available input and output test data employing 
the Bayes’ theorem. The output test data is applied to the 
OBMC to derive the prior distribution from the calculated 
MLE and FIM. Then, by multiplying the prior distribution 
and the likelihoods calculated using the input test data, 
the posterior distribution of the statistical parameters of 
the unknown model variable can be derived. Eventually, 
the probability model of the unknown model variable is 
obtained using MCMC and KDE methods from the esti-
mation results of the statistical parameter domain. As the 
results of applying the proposed method to numerical and 
engineering examples handled in the real field, the intended 
effects were verified, so it is expected that the method will 
help solve the problem of insufficient data in the statistical 
model calibration. In addition, it is necessary to expand its 
application not only to univariate distributions but also to 
multivariate distributions, and in the future, as confirmed in 
Sect. 4.1.2 for the quantity of each test data, research will be 
conducted to suggest an optimal combination by consider-
ing the cost and time required to procure the test data.
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