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Abstract
Scissor structures can meet different performance goals by actively changing their geometric configurations. This paper 
focuses on the inverse design problem of planar scissor structures with end constraints to obtain various forms without 
changing the span. Two strategies are proposed, one based on adding hinges and the other based on telescopic rods. The 
corresponding geometrical principles and constraint conditions are formulated. An inverse design framework from two pre-
defined target shapes to design parameters is established, which consist of geometry optimization and mobility assessment. 
Seven case studies are used to illustrate the design method based on the two strategies. Results show potential for application 
of morphing planar scissor structure in practice.
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List of symbols
�	� Relative angle between straight beams in the 

rigid arm
A	� Rigid arm
bl, br	� Lengths of left and right straight beams in the 

rigid arm
DOF	� Degree of freedom
e, d	� Constraint coordinates of the right-most node
F	� Optimization result, also called configuration 

error
fP1, fP2	� Two target shape functions
jk	� Node number of k-th hinge nodes
l	� Length of straight beam for isometric arms

m	� Number of hinge nodes
n	� Number of scissor units
o	� Internal connection node between the straight 

beams in the scissor unit
pl, pr	� Left and right end nodes of rigid arms
P1,P2	� Two target shapes in the optimization
Q
(

Xj

)

	� Geometry parameter set of the j-th scissor unit
t	� Configuration parameter, 1 ≤ t ≤ 2

X	� Scissor unit
x
Pt

o1
j

, y
Pt

o1
j

	� Coordinates of the node o1
j
 at the target configura-

tion Pt

1  Introduction

Morphing structures can achieve a wide range of perfor-
mance goals by changing their geometric configuration (Li 
and Pellegrino 2020; Sachse and Bischoff 2021; Fenci and 
Currie 2017; Weaver-Rosen et al. 2020; Meloni et al. 2021). 
Geometry changes enable structures to perform optimally 
in multiple configurations, improving efficiency throughout 
their operating envelope. Compared to conventional mecha-
nisms, morphing structures can offer many attractive proper-
ties. Morphing aircraft design can lead to a multi-purpose 
aerial vehicle by shape changes (Rhodes 2013; Sleesong-
som et al. 2013). The shape adaptation can be employed 
as a design and control strategy to reduce material input 
and embodies energy for load-bearing structures (Wang and 
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Senatore 2020, 2021; Senatore and Reksowardojo 2020). 
The transformable scissor structure is an effective way to 
design morphing structures (Arnouts et al. 2020; Yang et al. 
2019; Kim et al. 2021; Zhang et al. 2021). A transformable 
Cable Scissors Arch (CSA) has been proposed to achieve 
a continuous geometry change of the roof structure from a 
plane to a cylinder, where the flexible zigzag cables were 
used between the scissors units (Kokawa and Hokkaido 
1997). Extendable members were introduced to design a 
flexible truss called Variable Geometry Truss (VGT) (Inoue 
et al. 2006). Variable truss shapes were obtained by con-
trolling the lengths of extendable members, and the method 
was used to design a movable sculpture for EXPO 2005 in 
Japan. Moreover, shape morphing can be employed to effec-
tively counteract the effect of loading, resulting in signifi-
cant material and energy input savings. Reksowardojo et al. 
(2019, 2020). The adaptive design was also investigated for 
the slender high-rise structures, arch bridges (Senatore and 
Reksowardojo 2020) and tested experimentally on a nearly 
full scale prototype structure (Senatore et al. 2017).

Morphing scissor structures can be classified as foldable 
and incompatible structures based on the folding behavior 
(Arnouts et al. 2019). Foldable scissor structures behave like 
mechanisms during the transformation process. No stress 
is caused during shape adaptation. However, shape control 
relies on external actuation. On the contrary, incompatible 
scissor structures are geometrically incompatible through-
out the transformation process (Arnouts et al. 2020; Kawa-
guchi et al. 2019), and thus stress is induced during shape 
adaptation. This paper focuses on the morphological trans-
formation requirements of foldable scissor structures. For 
temporary structures that require fast construction, foldable 
scissors could have many applications. Emergency bridges 
based on the scissor structures have been proposed to recover 
after the occurrence of natural disasters (Ario et al. 2013; 
Chikahiro et al. 2016). To provide different traffic modes for 
ships or pedestrians, the scissor mechanism was introduced 
in the design of a footbridge in Geneva. Different shape 
configurations have been achieved through active control of 
hydraulic cylinders installed at the supports (Bouleau and 
Guscetti 2016). Scissor-type evacuation shelters have been 
investigated for greater mobility and reusability (Alegria 
Mira et al. 2014; Lee et al. 2013). A deployable and recon-
figurable planar structure, consisting of serially connected 
rigid members and actuators, was proposed by Phocas et al. 
(2015, 2020). Scissor-like structures have also been used to 
design a novel vibration isolation platform (Sun and Jing 
2016), lift mechanisms (Zhao et al. 2016) and space anten-
nas (Han et al. 2019).

There are three distinct basic unit types that are often 
used to design morphing scissor structures: translational, 
polar and angulated units. Structures made from these com-
ponents have only one degree of freedom, and therefore 

shape control is limited (Gantes 1991). Modified scissor 
components have been proposed to increase shape morphing 
capability. Hinges are added in the linear array of polar 
scissor units to form the supporting structure of an origami 
membrane surface (Van Mele 2008). Modified scissor units 
were designed by releasing the relative rotation angle con-
straints between the straight beams in one rigid arm (Akgün 
et al. 2010, 2011). Then, novel transformation models for 
deployable planar and spatial scissor structures were devel-
oped, which allowed the structure to switch between recti-
linear geometries and double-curved forms. Telescopic rods 
were introduced to deal with the incompatibility of bistable 
scissor structures and increase design flexibility (Lim et al. 
2014).

For the design of morphing scissor structures, the deduc-
tive approach has been investigated by choosing basic typol-
ogy types of scissor units and by deriving geometric princi-
ples and design rules. However, this method is only suitable 
for simple design and requirements. Zhao et al. (2009) pro-
posed a formulation to investigate the application of different 
scissor units for flat, cylindrical and spherical deployable 
structures. The formulation has also been applied to analyze 
the kinematic behavior of Hoberman’s linkages (Cai et al. 
2013). Maden et al. (2011) developed methods for different 
types of scissor structural mechanisms. General principles 
that govern the motion and shape of scissor grids consisting 
of translational units have been given by Roovers and De 
Temmerman (2017). A geometric design method for axisym-
metric grid structures made of three-dimensional angulated 
scissor units on a regular polygonal base was presented by 
Krishnan and Liao (2020). A new geometric method was 
also proposed to design bistable and non-bistable deploy-
able structures using straight scissors (García-Mora and 
Sánchez-Sánchez 2020), which has been further devel-
oped into the convergence surface method (García-Mora 
and Sánchez-Sánchez 2021). A deductive approach is not 
suitable for analyzing complex morphing structures, hence 
inductive approaches have also been investigated. Alegria 
Mira et al. (2015) established a two-steps evaluation frame-
work that includes parametric analysis to study the influ-
ence of height, span, number of units and scissor type on 
the structural behavior (e.g., stress, deflection and required 
material mass). This design method requires a large number 
of example analysis, and the relationship between design 
parameters and configuration parameters should be obtained 
by comparison and induction.

Optimization methods have also been investigated to 
design scissor structures. Two different multi-objective 
algorithms NSGAII and MOCBO were utilized effectively 
by Kaveh and Abedi (2019) for the optimum design of fold-
able structures that results in minimum weight and volume. 
The reinforcement layout for bridges, consisting of scissor 
structures, was evaluated by Chikahiro et al. (2019) using a 
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combination of finite element analysis and an optimization 
algorithm to reduce the weight and increase the stiffness. An 
inverse design method was also proposed to design planar 
deployable structures made of scissor structure components 
(Zhang et al. 2015). A feasible motion solution was obtained 
to move from the initial shape to the target shape. How-
ever, deflections and stresses are not constrained during the 
development. Moreover, the method has not been extended 
to morphing scissor structures with end constraints, which 
can be applied in several scenarios, such as arch bridges with 
variable heights.

This paper focuses on the inverse design problem of pla-
nar scissor structures with end constraints. To overcome 
the incompatibility during the transformation between two 
predefined target configurations, we propose two strategies 
to increase the design flexibility by adding hinges and tel-
escopic rods in the scissor unit. After topology determina-
tion, an inverse design framework is established, consisting 
of geometry optimization and mobility assessment, which 
is illustrated through seven case studies.

2 � Planar scissor structures with additional 
hinges

2.1 � Problem description

The proposed planar scissor structures are composed of 
coplanar scissor units. The basic geometrical description of 
a unit is given in Fig. 1a. It consists of two rigid arms A = 
{p l ,o,pr  }, that can rotate around a hinge connection. Two 
straight beams compose one rigid arm, with lengths bl  (left 
straight beam), br (right straight beam) and a constant rela-
tive angle � between the two straight beams. The scissor 
unit is denoted as X = {A1 , A2 } = {p1,l,o1,p1,r;p2,l,o2,p2,r }, 

and we call o1 = o2 the revolute joint, {p1,l,p1,r,p2,l,p2,r } the 
pin nodes. Noticeably, there is only one motion degree of 
freedom (DOF) for the scissor unit due to the revolute joint.

For example, a planar arch scissor structure is designed 
with end constraints, as shown in Fig. 1b. The scissor arch 
structure has no motion DOF because of the end constraints. 
It cannot move to the target configurations P1 and P2 freely 
because there is no feasible movement path. To achieve the 
design of morphing planar scissor structures, additional 
hinges are introduced to replace the revolute joint to increase 
the number of DOFs. In the hinge joint, the constraints on 
the relative angle between the straight beams are removed 
compared to the revolute joint. This way, an inverse design 
problem emerges to obtain geometry parameters of an arch 
scissor structure that can be controlled into the required 
target configurations. Before the inverse design, we should 
determine the topology first. The topology consists of the 
number of scissor units n, number of hinged nodes m, and 
the initial arrangement of nodes. The geometry parameters 
are the lengths of straight beams and the coordinates of 
hinge nodes.

In this article, the requirement of only two target con-
figurations is discussed. Such a design task is challenging. 
No established and general design methodology exists to 
solve such a problem. Trial and intuitive solutions are not 
applicable when dealing with complex scissor systems. In 
addition, the definition of mechanical and motion constraints 
is required and must be validated.

2.2 � Design method of planar scissor structures

Based on the given two-dimensional target curves, the topol-
ogy design is carried out to obtain the basic configuration of 
the plane scissor mechanism before optimization. The number 

Fig. 1   Design schematic of a 
planar arch with scissor compo-
nents and hinges bl

o1=o2

φ

opl

p1,l

p2,l

p2,r

p1,r

prbr

Notation of a scissor unit

P1 Target shape 1

P2 Target shape 2

Modified configuration

Modified configuration design(a) (b)
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of scissor units n, the number of hinge nodes m, and the assem-
blage of the scissor system are given. The number of degrees 
of freedom (DOFs) of the mechanism is then determined. The 
boundary constraint conditions of the morphing scissor struc-
tures are determined. Then, the design of morphing scissor 
structures can be decomposed into two main steps: geometry 
optimization and motion assessment. The detailed inverse 
design and analysis procedure can be described as follow. 

Step(a)	 Geometry optimization (1) The values of the geo-
metric parameters of the scissor structures are initially 
given before the start of the optimization. (2) The geo-
metrical parameters of the system are optimized to con-
trol the structure into the target configurations P1 and P2 
with a given error. (3) The geometric parameters include 
the length of straight beams and the coordinate values 
of each hinged node so that the structures can further 
approach the targeted curves. (4) If the error is large, a 
new topology must be defined.

Step(b)	 Motion assessment After obtaining a planar scis-
sor structure that can morph into the two target shape 
configurations, intermediate stages are obtained to opti-
mize the coordinates of the hinge nodes. This process is 
employed to verify the motion feasibility across the con-
trolled configurations, which includes assessing whether 
the motion path can be realized stress-free under the 
preassigned end constraints.

Step(a). The design of a scissor structure with two target 
shapes is defined as a constrained optimization problem. Geo-
metrical definitions of the curves ( P1 , P2 ) and the topological 
parameters (n, m) are given. The geometric parameters, 
Q
(

Xj

)n

j=1
 of the scissor and the coordinates of the hinge nodes 

are the optimization variables. All relative angles of the 
straight beams in the scissor units are assumed to be the same.

where {(xP1

ojk
,yP1

ojk
),(xP2

ojk
,yP2

ojk
 )} are the coordinates of the k-th 

hinge node in the target shapes P1 and P2 , respectively. For 
clarity, the coordinates of the hinge nodes are different for 
the two target shapes, while the topology remain unchanged. 
The objective function is defined as the minimization of the 
position deviations of hinge nodes and revolute joint with 
respect to the target curves.

(1)
Q(Xj)

n
j=1

=
{

b
1,l

j
,�1

j
, b

1,r

j
, b
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j
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j
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ojk
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, 1 ≤ jk ≤ n
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(2)

F = min

n−1
∑

j=2

{

[

fP1

(

xP1

oj

)

− yP1

oj

]2

+
[

fP2

(

xP2

oj

)

− yP2

oj

]2
}

.

where F is the optimization results, also called configura-
tion error, fP1

 and fP2
 are the functions for two target curves. 

In the absence of a common reference shape, the similarity 
between controlled and target shapes should not be evaluated 
based on Euclidean distance because it cannot be normal-
ized. Shape similarity could be assessed rigorously using a 
metric that accounts of the similarity of node coordinates 
as well as shape features and that can be normalized across 
multiple target shapes as formulated in ref Reksowardojo 
et al. (2020). However, for simplicity and because a maxi-
mum of two target shapes is considered, the configuration 
error is computed based on the Euclidean distance between 
the node coordinates of controlled and target shapes. At dif-
ferent configuration parameter t, the constraint conditions 
are length constraints for the straight beams, relative posi-
tion constraints for all nodes, relative rotation constraints 
between the straight beams and boundary constraints.

Length constraints for the straight beams at t = 1, 2:

Relative position constraints for all nodes at t = 1, 2:

Relative rotation constraints between the straight beams in 
the rigid arms at t = 1, 2:

Boundary constraints for the two end nodes:

The designed scissor system must satisfy the transforma-
tion requirement from the first target shape P1 to the sec-
ond target shape P2 . The problem has been formulated as a 
non-linear programming problem that has been solved using 
interior-point algorithm built-in Matlab. There are continu-
ous optimization variables in a closed convex set. The con-
vexity of optimization problem will depend on the convexity 
of objective functions, which are related to the target curves. 
If there is a non-convex objective function, the optimization 
problem must be non-convex. Optimization will complete 
when the objective function is non-decreasing in feasible 
directions or within the optimal tolerance value.

Step(b). The feasible movement paths are investigated 
between the two controlled shapes, that might be different 
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from the prescribed target shapes depending on the error. 
There may be an infinite number of movement paths to move 
across the two target shapes. In this work, it is assumed a 
sequential linear interpolation between the target shapes 
through intermediate stages. For an assumed motion time t, 
the target coordinates of the hinge nodes and revolute joints 
can be expressed through interpolation for 1 ≤ t ≤ 2 , and 
1 ≤ jk ≤ m.

In step (b) (motion assessment), only the coordinates of the 
additional hinge nodes are regarded as the optimization vari-
ables. There is no change in the geometry parameters and 
other constraint conditions. Then, the motion condition can 
be described as the existence of feasible solutions for coor-
dinates of the additional hinge nodes. An arbitrary inter-
mediate state can be expressed through interpolation. If the 
intermediate states can not be achieved, a lock occurs during 
the movement path. In this manuscript, five intermediate 
states are considered.

The actuation design depends on the analysis of degrees 
of freedom. The relative rotations of rigid arms can be cho-
sen as the actuation control parameters. Besides, the relative 
distances between the pin end nodes on each of the sides of 
the scissor units can be chosen to control the motion, such 
as the distance between p1,l and p2,l.

(7)
xPt

ojk
= xP1

ojk
+ (t − 1)

(

xP2

ojk
− xP1

ojk

)

;

yPt

ojk
= yP1

ojk
+ (t − 1)

(

yP2

ojk
− yP1

ojk

)

.

2.3 � Case studies for scissor components 
with additional hinges

2.3.1 � Case 1

In this case, two symmetrical sine curves are taken as 
the target shapes, given by fP1

= 500 sin(�x∕3000) and 
fP2

= −500 sin(�x∕3000) , respectively. In the step of topol-
ogy determination, the morphing planar scissor structure is 
predesigned with five scissor units and one additional hinge 
node, as shown in Fig. 2a. Note that four straight beams 
can rotate by each other about the additional hinge node o3 . 
The other nodes are revolute joints that allow the rigid arms 
can rotate by each other. The lengths of the straight beams 
and the relative angles for all scissor elements are the same, 
represented by l and � , respectively. The initial values are 
given in Table 1.

Figure 2b illustrates the two optimized configurations. 
The final geometric parameters and the coordinate values of 
the additional hinge node o3 are given in Table 1. Note that 
the relative angles between the straight beams in the rigid 
arms would need to be 180◦ , in this configuration which 
means that the scissor units degenerate into parallel units. 
There is a deviation between the target and controlled shapes. 

Fig. 2   Case 1, one additional 
hinge and isometric arms

o1

o2

o3

P1

P2

o4

o5
l

Topology design

Geometry optimization

t=1
t=7/6
t=8/6
t=9/6
t=10/6
t=11/6
t=2

Motion process(c)

(a)

(b)

Table 1   Geometry optimization results for Case 1

States l (mm) �(◦) x
o3

y
o3

Configura-
tion error 
(mm2)

Initial 619.86 161.32 1500 955 2.06e+06
Curve P1 516.04 180.00 1500 569 2.86e+04
Curve P2 1500 − 569
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The average coordinate error with respect to the length of 
the straight beam, which is defined as 

√

F∕2(n − 2)∕l , is 
13.4%. For accurate shape control the average coordinate 
error should smaller than 1%, therefore it can be concluded 
that the planar scissor structure can not be transformed into 
the target shapes by adding only one middle hinge.

Verification of motion is performed at five different steps, 
t = 7/6, 8/6, 9/6, 10/6, 11/6, which are equally spaced within 
the initially given time frame, 1 ≤ t ≤ 2 . Table 2 shows that 
the morphing scissor structure can transform between the 
two optimized configurations without locking based on the 
current parametric conditions, although there are significant 
deviations between the optimized and predesigned target 
shapes. It should be clarified that the configuration errors 
are calculated between the optimized and predesigned target 
shapes, while the motion assessment is performed between 
the two obtained controlled configurations, independent of 
the prescribed target configurations. Figure 2c illustrates 
the intermediate configuration of the planar scissor struc-
ture during the motion. Table 2 gives the errors between 
the intermediate shapes and intermediate target curves 
obtained through linear interpolation. If the error is smaller 

than 1e−6, there is a stress-free motion path between the 
controlled shapes.

2.3.2 � Case 2

To obtain a better match of the target shapes, the length 
constraints are relaxed in this case. It is not necessary for 
all the straight beams to be equal in length, as shown in 
Fig. 3a. The straight beam lengths are denoted as l1 to l16 , 
while the relative angles for all rigid arms remains the same. 
The topology design in Case 2 is the same as that in Case 1, 
and the optimization procedure is carried out again.

Figure 3b shows that the revolute joints (o2 and o4 ) and 
hinge nodes (o3 ) of the optimized configurations are in 
good alignment with the two target curves. The coordinate 
errors are reduced from Case 1, as shown in Table 3. A 
feasible solution has been obtained owing to the increase 
of optimization variables. The distribution of the straight 
beam lengths is asymmetric. The maximum difference in 
beam length reaches 64.9% between l1 and l12 . Moreover, the 
scissor structure can transform between the two target con-
figurations without stress arising from the moving process, 
which is illustrated in Fig. 3c. The configuration error in the 
motion path is smaller than 1e−6, which shows the motion 
path is stress-free.

2.3.3 � Case 3

The planar scissor structure in Case 3 is comparable to Case 
1, except that all the intermediate nodes are hinge nodes, as 
shown in Fig. 4a. Topology and geometric constraints are the 
same as Case 1. The straight beams have identical lengths, 
and there are three additional hinge nodes (o2 , o3 , and o4 ). 

Table 2   Motion analysis for Case 1

States xPt

o3
yPt

o3

Optimization 
results (mm2)

t = 7/6 1500 379 8.85e−07
t = 8/6 1500 190 2.28e−07
t = 9/6 1500 0 1.96e−07
t = 10/6 1500 − 190 2.28e−07
t = 11/6 1500 − 379 8.85e−07

Fig. 3   Case 2, one additional 
hinge and different length arms
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o2

o3

P1

P2

o4

o5
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l5
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l7 l9
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l12 l13
l14

l16

l15l4

Topology design

Geometry optimization

t=1
t=7/6
t=8/6
t=9/6
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Motion process(c)

(b)
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The geometry optimization step and motion assessment step 
are carried out similarly.

Results in Table 4 and Fig. 4b show that the optimized 
scissor system can morph into the two target shapes with a 
small error. There is only 0.65% discrepancy between the 
optimized length of beams in Case 1 and Case 3. There are 
no rigid arms in the scissor structure. All relative angles 
between straight beams in rigid arms are no longer constant 
during motion. Moreover, relative angles for these units are 
different. The relative angle is no longer regarded as the 
control geometry parameter of structural design. The stress-
free motion path of the optimized planar scissor structure 
between two controlled states is illustrated in Fig. 4c.

2.3.4 � Case 4

In Case 4, the geometrical definitions of the two tar-
get curves are set as fP1

= 2000 sin(2�x∕6000) and 
fP2

= 600 sin(�|x − 3000|∕3000) . Since there is a significant 
difference between the two target shapes, the scissor structures 
with the increased number of scissor units is required to morph 
into the target geometries P1 and P2 . The number of scissor units 
and hinge nodes are increased to n = 9 and m = 3, respectively. 
The beam lengths and the angles between the straight beams are 
all the same, respectively.

The configurations in Fig. 5 show that the scissor structure 
is divided into four parts with a symmetrical layout due to the 

Table 3   Geometry optimization 
results for Case 2

States Lengths of beams (mm) �(◦) x
o3

y
o3

Configura-
tion error 
(mm2)

Initial 619.86 161.32 1500 955 2.06e+06
Curve P1 l1 = 294.66, l2 = 602.66, l3 = 645.51,

l4 = 326.67, l5 = 687.07, l6 = 429.07,
l7 = 730.21, l8 = 659.23, l9 = 531.66,
l10 = 501.96, l11 = 468.84, l12 = 840.25,

175.86 1833 460 1.18e−10

Curve P2 l13 = 362.11, l14 = 635.33, l15 = 456.05,
l16 = 654.94

1450 − 499

Fig. 4   Case 3, three additional 
hinge and isometric arms

o1

o2

o3

P1

P2

o4

o5
l

Topology design

Geometry optimization

t=1
t=7/6
t=8/6
t=9/6
t=10/6
t=11/6
t=2

Motion process(c)

(a)

(b)

Table 4   Geometry optimization 
results for Case 3

States l x
o2

y
o2

x
o3

y
o3

x
o4

y
o4

Configura-
tion error 
(mm2)

Initial 619.86 628 − 2325 144 − 1965 2259 − 2325 2.06e+06
Curve P1 519.42 779 364 1500 500 2221 364 5.05e−11
Curve P2 631 − 307 1500 − 500 2371 − 307
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shape of the second target curve P2 . To morph into the target 
curve P1 , the two end parts approach the fully expanded state, 
while the two middle parts approach to the fully folded state. 
However, the four parts have the same configuration to morph 
into the second target shape P2 . Results in Table 5 show that the 
average coordinate error is 1.94% of the length of the straight 
beam, which is larger than the set limit. Figure 5c illustrates the 
stress-free motion process of the optimized planar scissor struc-
tures. The two end scissor components from both sides fold while 
the components in the middle unfold to morph between the two 
controlled configurations.

2.3.5 � Case 5

The planar scissor system in Case 5 is identical to that of Case 
4, except that the second target curve definition is changed to 
fP2

= 600 sin(2�x∕6000) . The left parts of shapes in these two 
cases are the same, while the right parts are mirrored. The opti-
mization problems in Case 4 and Case 5 are non-convex. From 
the optimization results shown in Table 6 and Fig. 6b, it can be 
seen that the optimized length of the straight beams is larger than 
that in Case 4, and the average coordinate error reaches 5.06% of 
the length of the straight beam. Most of the intermediate nodes 
are close to the target curves, while there is a clear offset for node 
o6 to target curve P2 . Compared with Case 4, Case 5 has more 
constraints, and the configuration error of Case 5 is larger than 
that of Case 4. Figure 6c illustrates the moving process from the 

symmetrical target shape P1 to the antisymmetric target shape P2 . 
No lock occurs during motion, which indicates that there is a fea-
sible linear stress-free motion path between the two target states.

3 � Planar scissor structures equipped 
with telescopic rods

3.1 � Scissor unit configuration with telescopic rods

Telescopic rods are introduced in the planar scissor structures 
to increase the morphing ability by increasing the number of 
degrees of freedom. Additional variable parameters are intro-
duced to model the length variation of the straight beams in the 
rigid arms g. The length variation of the telescopic rod varies 
from 0 to f, The modified scissor unit, which is illustrated in 
Fig. 7, is denoted as XT = {p1,l,s1,1,s1,2,o1,s4,2,s4,1,p1,r;p2,l,s2,1,s2,2
,o2,s3,2,s3,1,p2,r }. There are eight length parameters {g1,b1,l,b1,r,g3
;g2,b2,l,b2,r,g4 }. The corresponding maximum elongations of the 
telescopic rods are f1 , f3 , f2 , and f4 , respectively.

The inverse design process of scissor structures equipped with 
telescopic rods is similar to that of structures with additional 
hinges, except for the optimization variables. The hinge nodes 
coordinates are replaced by the lengths of the telescopic rods. In 
the topology determination step, the arrangement of the scissor 
units is set first. For the two controlled configurations and the 

Fig. 5   Case 4, eight scissor 
units, three additional hinges 
and isometric arms

o2o1 o3

o4 o5 o6 o7 o8

o9

P1

P2
l

Topology design

Geometry optimization

t=8/6

t=10/6

t=1

t=2

Motion process

(a)

(b)
(c)

Table 5   Geometry optimization 
results in Case 4

States l (mm) �(◦) x
o3

y
o3

x
o5

y
o5

x
o7

y
o7

Configura-
tion error 
(mm2)

Initial 520.35 180.00 1500 300 3000 600 4500 300 9.90e+06
Curve P1 739.15 167.43 2254 1837 3000 2000 3746 1837 2.89e+03
Curve P2 1500 617 3000 0 4500 617
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motion process, the elongations of the telescopic rods are differ-
ent. The analysis of two cases will be carried out to illustrate the 
inverse design method of the morphing planar scissor structures 
with end constraints equipped with telescopic rods. In addition 
to controlling the relative rotation angle of rigid arms and relative 
distance of end nodes on the same sides, changing the length of 
the telescopic rod can also realize the control of the morphing 
scissor structures.

3.2 � Case studies for modified scissor units 
with telescopic rods

3.2.1 � Case 6

In this case, the two prescribed target curves are the same as 
those in Case 1 given in Fig. 2. There are four conventional 
scissor units and one modified scissor unit (o3 ), as shown 
in Fig. 8a. The end nodes o1 and o5 are fixed. The lengths 
of the straight beams in all conventional scissor units are 
constrained to remain identical and are denoted as l. The 
beam lengths in the modified scissor units, denoted as l1 , are 
also constrained to remain identical. The change of length 
of the telescopic rods are denoted as g1

3
 , g2

3
 , g3

3
 , g4

3
 , and their 

maximum value with f1
3
 , f2

3
 , f3

3
 , f4

3
 (200 mm). For all scissor 

units, the relative angles are equal to �.
Length constraints, relative rotation constraints for the 

rigid arms, position constraints of all nodes, and boundary 
constraints can be obtained from Eqs. (3) to (6). However, 
additional length constraints are formulated to model the 
change of length of the telescopic rods.

The modified length constraints for the rigid arms at t 
= 1, 2:

Fig. 6   Case 5, eight scissor 
units, three additional hinges 
and isometric arms

o2o1 o3

o4 o5 o6 o7 o8

o9

P1

P2
l

Topology design

Geometry optimization

t=1

t=8/6

t=10/6

t=2

Motion process(c)

(a)

(b)

Table 6   Geometry optimization 
results in Case 5

States l (mm) �(◦) x
o3

y
o3

x
o5

y
o5

x
o7

y
o7

Configura-
tion error 
(mm2)

Initial 520.35 180.00 1500 300 3000 600 4500 300 1.63e+13
Curve P1 886.71 171.69 2019 1752 3027 2016 4013 1732 2.82e+04
Curve P2 1471 613 4039 − 537 5143 − 504

o1=o2
p1,l s1,1

s2,1

s3,1

s4,1

s1,2

s2,2

s3,2

s4,2

b1,l
g1

g2
g4

g3f 1

f 2 f 4

f 3

p2,l

b2,l

p2,r

b2,r

p1,r

b1,r

Fig. 7   A modified scissor unit with telescopic rods



	 Q. Zhang et al.

1 3

70  Page 10 of 14

Since the telescopic rod can only move in the length direc-
tion, there are addition parallel constraints for the node coor-
dinates of the telescopic rods at t = 1, 2:

(8)
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Table 7 gives the optimization results. The optimized con-
figuration is able to morph into the target shapes accurately. 
The slight asymmetry indicates that other solutions exist. 
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Fig. 8   Case 6, modified scissor 
unit with four telescopic rods
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o2 l1
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Notations of a scissor unit Modified configuration design(a) (b)

Table 7   Geometry optimization 
results in Case 6 for a planar 
scissor structure with telescopic 
rods

States l (mm) l1 (mm) �(◦) g1

3
g2

3
g2

3
g4

3
Configura-
tion error 
(mm2)

Initial 519 519 180.00 0 0 0 0 1.63e+13
Curve P1 420.4 359.73 180.00 142.23 25.63 113.89 2.08 5.59e−11
Curve P2 26.28 143.01 1.46 113.15

Fig. 9   Case 7, three modified 
scissor elements with four 
telescopic rods
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There must be a mirror result. The number of DOFs of the 
morphing planar scissor structure exceeds the required 
number to satisfy the two target curves. The modified scis-
sor unit with telescopic rods is more effective in enabling 
design flexibility compared to adding hinges. The transition 
between the target shapes is verified as for previous cases 
that there is a stress-free motion path.

3.2.2 � Case 7

More complex target curves are investigated in this section 
to evaluate the capability enabled by scissor units with tel-
escopic rods. The same target curves in Case 5 are selected, 
as shown in Fig. 9a. There are six conventional scissor units 
and three modified scissor units (o3 , o5 and o7 ). The initial 
geometry and constraint conditions are given. Similar to 
Case 6, the relative angles are equal to � , and the lengths of 
straight beams for all conventional scissor units and modi-
fied scissor units are denoted as l and l1 , respectively. For the 
modified scissor units, the change of length of the telescopic 
rod and its maximum value are denoted as g i

j
 , and f i

j
 (set to 

300 mm), i = 1, 2, 3, 4 and j = 3, 5, 7.
Optimization results are shown in Fig. 9b and Table 8. 

By comparing with Case 5, it can be seen that a better shape 
fitting is obtained using telescopic rods. The total configura-
tion error of the coordinates reduces by 33.96%, while the 
average coordinate error increases a little because of the dif-
ferent lengths of straight beams. For the antisymmetric target 
curve P2 , the optimization problem is non-convex. Moreo-
ver, the optimized configuration for the second target curve 
are asymmetric. There must be an antisymmetric optimiza-
tion result, indicating a local optimal solution is obtained. 
The change of length of the telescopic rod enable matching 
target shapes that feature significant change of curvature. 
Regarding the degree of freedom, the number of DOFs of 
the planar scissor structure with three additional hinges in 
Case 5 is six, while it is twelve for the planar scissor struc-
ture with three modified scissor units in Case 7. The latter 
structure has a larger solution space, it might require a more 
complex active control system but there is no significant 
improvement in position accuracy.

3.3 � Comparative analysis

Seven cases have been employed to illustrate two strategies 
for increasing the design flexibility of scissor units, as shown 
in Table 9. From cases 1, 2 and 3, it can be found that releas-
ing the isometric geometry constraint condition can greatly 
reduce the coordinate errors without increasing degrees of 
freedom. Adding modified units is also an effective method 
to achieve the target configuration, although there are more 
degrees of freedom, which will increase control complex-
ity. When the target shapes become complex in cases 4 and 
5, the shape cannot be controlled within the set error limit 
(1.0%) by adding hinges. For the scissor structures with tele-
scopic rods, the number of degrees of freedom is higher than 
that for the corresponding scissor structures with additional 
hinges. Generally, accurate shape control can be achieved 
for simple target shapes. If the error limit is relaxed to 10%, 
both strategies can be employed to morph the structure into 
the target shapes. This might be appropriate in some cases 
such for roof structures and arch bridges.

4 � Conclusion

The inverse design of morphing planar scissor structures 
with end constraints has been investigated in this paper. The 
design process has been formulated into two steps: geom-
etry optimization and motion assessment. In the optimiza-
tion process based on nonlinear programming, the geometric 
parameters and the minimization of position deviation of 
the scissor nodes with respect to target curves are taken as 
the optimization variables and objective function, respec-
tively. Constrains have been formulated for the length of 
the straight beams, the relative position of the nodes, the 
relative rotation of the rigid arms as well as for the bounda-
ries. Five cases have been employed to illustrate the strategy 
based on adding hinges that allow rotations of rigid arms of 
the scissor units. Results show that this strategy increases 
the number of DOFs, and the coordinate error between the 
predefined and optimized target shapes decreases. A simi-
lar conclusion is given for the scissor units equipped with 

Table 8   Geometry optimization results in Case 7 for a planar scissor structure with telescopic rods

States l (mm) l1 (mm) �(◦) g1

3
g2

3
g3

3
g4

3
g1

5
g2

5

Initial 519 519 180.00 0 0 0 0 0 0
Curve P1 429 399.97 180.00 222.7 186.1 291.7 199.5 167.4 40.8
Curve P2 143.6 0 256.8 0 0 211.5

States g3

5
g4

5
g1

7
g2

7
g3

7
g4

7
Configuration error (mm2)

Initial 0 0 0 0 0 0 5.29e+13
Curve P1 167.4 40.8 222.7 186.1 291.7 199.5 1.23e+04
Curve P2 218.5 0 0 265.6 0 136.2



	 Q. Zhang et al.

1 3

70  Page 12 of 14

telescopic rods. In this case, the change of length of the 
telescopic rod is effective to enable accurate shape control 
albeit with a relatively large increase of degrees of freedom.

The influence of target shapes, type of scissor units (con-
ventional scissor units, additional hinges and modified scis-
sor units), constraints of rigid arms are discussed. Releasing 
the isometric length constraint is a more effective method 
than increasing the number of modified units. When the 
number of scissor units is small, optimization results for 
symmetrical target curves are better than those of asym-
metric target curve. The proposed design framework ena-
ble morphing between two different target shapes without 
changing the span length. This proposed method for scissor 
structures can be used for multifunctional building roofs 
with various lift environments, arch bridges with different 
traffic modes and deployable structures. Future work could 
extend the method proposed in this work to design other 
types of morphing structures. Besides, future work could 
look into implementing additional constraints based on prac-
tical considerations and coupling the bearing capacity of 
optimized scissor structures. And more effective objective 
functions should be investigated to consider the similarity 
of controlled shapes with target ones to avoid the excessive 
influence of one shape. Since local optima occurs due to the 
non-convexity of the problem formulation, a global optimi-
zation process could be implemented.
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