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Abstract
Use of a sensor network to provide adequate and reliable information is paramount for accurate damage detection of struc-
tures. However, unavoidably, deployed sensors are occasionally subject to failure faults, which, in turn, cause missing 
information. Placement of multiple backup sensors in a local region could overcome this difficulty and increase the sensor 
redundancy; however, this approach leads to a sensor clustering problem and higher costs in sensor deployment. Further, 
model uncertainty is another important issue that should be considered in a sensor network design. Accordingly, this work 
is dedicated to presenting a framework for optimization of sensor distribution that considers both sensor faults under uncer-
tainty and sensor clustering for vibration-based damage detection. Based on the effective independence method, the first 
design objective is newly formulated to consider sensor faults under uncertainty. Moreover, a novel index that is universally 
applicable for any type of structure is proposed to evaluate sensor clustering, which is treated as the second objective. The 
non-dominated sorting genetic algorithm II is adopted to solve this multi-objective optimization problem, and Monte Carlo 
simulation (MCS) is employed for uncertainty analysis in the first objective. To reduce computation costs, real performance 
evaluations in MCS are replaced with Gaussian process regression models. Based on the vibration information achieved from 
optimized sensors, an optimization-based damage detection process is applied to validate the optimal sensor layout. Three 
case studies (i.e., a cantilever beam, a laminated composite structure, and a spatial frame) are presented to demonstrate the 
effectiveness and applicability of the developed framework.
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1 Introduction

Engineered structural systems, like bridges, wind turbines, 
and aerospace vehicles, among others, are subject to dete-
rioration after a period of service (Ostachowicz et al. 2019). 

This deterioration is caused by continuous use and/or harsh 
working environments, such as extreme temperatures, 
impact, and related issues. Extensive damage or failure of 
such systems and components can result in massive prop-
erty loss and even in human casualties in extreme situations. 
Instantaneous evaluation of structural conditions is thus 
essential to conduct proper maintenance and avoid occur-
rence of hazards. With the goal of enhancing the integrity 
and safety of structures, structural health monitoring (SHM) 
and damage detection techniques have gained much atten-
tion from both academic and engineering communities (Tan 
and Zhang 2020). Accurate health condition evaluations are 
largely dependent on sensor systems that acquire data for 
analysis (Jayalakshmi et al. 2017; Bigoni et al. 2020). To 
collect as much information as possible, and also to have a 
minimal number of sensors for cost savings related to data 
processing, sensor network design is posed as an optimiza-
tion problem by seeking the optimal number of sensors and 
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their locations from a discrete set of candidate positions. 
This is a typical combinatorial optimization problem (Yi 
and Li 2012; Chisari et al. 2017). A great deal of research 
has been performed to date on the topic of optimal sen-
sor placement (OSP) for structural health monitoring and 
damage detection; corresponding optimization methodolo-
gies are mainly determined by developed SHM techniques, 
according to the classifications outlined in a review article 
(Ostachowicz et al. 2019). Vibration-based techniques for 
damage detection observe the changes in dynamic charac-
teristics caused by any changes in mechanical properties of 
structures, for further deducing the health conditions (Bar-
man et al. 2021). As the earliest proposed methods, vibra-
tion-based techniques have been commonly used in different 
structures. Optimal sensor deployment for vibration-based 
damage detection in structures is the main focus of the pre-
sent work.

In vibration-based techniques for damage detection, 
accelerator sensors should be placed in critical positions to 
capture the key dynamic information of the structure. The 
most popular and classical approach for optimally plac-
ing this type of sensor is the effective independence (EFI) 
method (Kammer 1991); this method is based on maximiz-
ing the determinant of the Fisher information matrix (FIM) 
to maintain the linear independence of the modal shapes, so 
that the best set of degrees-of-freedom (DOFs) locations are 
selected for sensors to measure. This is realized in an itera-
tive process by gradually removing DOFs that contribute 
less to the linear independence from the modal shape matrix, 
resulting in a sub-optimal solution (Castro-Triguero et al. 
2013). Meanwhile, some other approaches that are based on 
formal optimization strategies have been proposed; in these 
approaches, an objective function in terms of an assess-
ment criterion (e.g., the determinant of the FIM or the root 
mean square for off-diagonal terms of the modal assurance 
criterion (MAC)) (Sun and Büyüköztürk 2015) is defined 
and then minimized/maximized. Since the OSP problem 
is a typical combinatorial optimization, the defined opti-
mization problem is commonly solved using evolutionary 
algorithms, such as genetic algorithms and particle swarm 
algorithms (Liu et al. 2008; Rao and Anandakumar 2007), 
which do not require gradient information and are easily 
implemented. Those approaches have largely increased the 
possibility of achieving the global optimum solution for OSP 
problems. In real-world structures, the manufacturing pro-
cess always carries different levels of uncertainties; thus, the 
performances of final products are influenced to a certain 
extent. These uncertainties should be accounted for in OSP 
problems. Some researchers have examined OSP techniques 
under uncertainties. Castro-Triguero et al. (Castro-Triguero 
et al. 2013) used Monte Carlo simulation to find optimal 
sensor positions for a truss structure under model parametric 
uncertainties. For each sample in the MCS, sensor locations 

were selected using the EFI method and the most frequently 
selected locations among all samples were determined as the 
final optimal solution. Kim et al. (Kim et al. 2018) proposed 
a stochastic EFI method for optimal sensor placement in a 
similar truss structure under material uncertainty. Through 
the use of an interval possibility model, Yang et al. (Yang 
et al. 2020) solved uncertain OSP problems for sensor num-
ber determination and configuration optimization. Those 
efforts have demonstrated the significance of incorporating 
uncertainties associated with structures into OSP problems.

Because of their long-term service requirements, and 
various accidental factors, such as harsh working environ-
ments and intrinsic sensing malfunctions, sensor faults may 
occur in a sensor network; some common sensor fault types 
include bias (shifted signal values by a constant from the true 
value), drifting (continuous changes in deviation between 
the observed signal and the true value), precision degrada-
tion (stochastic deviations between the observed signal and 
the true value), and complete failure (loss of observed sig-
nal), among others (Balaban et al. 2009; Jesus et al. 2017; 
Jäger et al. 2018). It can be seen that sensor functions can-
not be properly performed by faulty sensors, and false or 
null information may be provided, thus making the health 
evaluation system unreliable (Kullaa 2013). Yet the repair 
cost of those sensors may be too high considering limited 
budgets, or maintenance operations may be even impractical 
in some cases. However, a proper sensor distribution can 
effectively mitigate the adverse effects of sensor faults on 
information loss (Salari et al. 2019). Hence, this issue has 
motivated quite a few prior research efforts on optimal sen-
sor configuration, especially in the field of traffic networks 
(Li and Ouyang 2011; Danczyk et al. 2016; Zhu et al. 2017); 
however, quite limited work on OSP has been conducted for 
structural systems. Staszewski et al. (Staszewski and Worden 
K et al. 2000) studied the OSP problem for impact detection 
and location in composite materials, considering the sen-
sor fault of complete failure; in this work, because of the 
information loss resulting from sensor failure, the worst case 
among all sensor failure cases were assessed, and then used 
as the fitness in the genetic algorithm to find near-optimal 
sensor distributions for damage detection. However, this 
research team solved the problem only in a deterministic 
way, neglecting the real uncertainties in structural models. 
Accordingly, this research gap has formed one motivation 
of the present work: to optimally design a sensor network 
that accounts for sensor faults under uncertainty; the sensor 
fault type of complete failure (meaning complete loss of 
information) is examined herein. As for other types of sensor 
faults, such as bias and drifting, sensing performances could 
be mitigated by calibration and measurand reconstruction 
as well as some other signal processing techniques based on 
the observed information(Jesus et al. 2017), and they are not 
considered in the present work.
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By placing multiple sensors in a local region, also 
known as sensor clustering, duplicated information can 
be provided for that local region; a previous study has 
shown that selecting multiple positions to configure sen-
sors in a local region is basically equivalent to selecting 
one place to deploy a sensor (Friswell and Castro-Triguero 
2015). This is indeed a good way to avoid information loss 
when encountering sensor faults. However, such redundant 
information can lead to wasted resources when all sensors 
are working normally; further, the costs in data acquisition 
and processing increase with sensor clustering. For these 
reasons, some strategies have been developed to disperse 
close sensors to collect as much information as possible; 
relatedly, redundant information elimination methods or 
indices have been proposed to alleviate sensor clustering 
configuration issues (Lu et al. 2016; Yang et al. 2019a). 
The popular EFI method always produces clustering of 
sensors when the number of placed sensors is larger than 
the number of target modal shapes. In order to overcome 
this disadvantage, Lian et al. (Lian et al. 2013) proposed 
a new fitness function that employed the nearest neighbor 
index to weight the FIM to avoid information redundancy. 
Taking the overall sensor configuration into account, Yang 
et al. (Yang et al. 2020) presented a novel CAD (clustering 
avoidance distribution) index with the integration of the 
center of sensor configuration, mean distance between sen-
sors and their center, as well as the standard deviation of 
all sensor distances to the center. Moreover, by consider-
ing the local and global effects of sensor clustering, Yang 
et al. (Yang et al. 2019b) also developed a sub-clustering 
strategy including three main procedures: a sub-clustering 
algorithm, a check step, and the smallest enclosing circle 
method. However, these prior studies only considered the 
mean value of the nearest neighbor distance of the sensors; 
they neglected the effects of its standard deviation. This 
omission may result in misleading evaluation of sensor 
layouts in certain cases; this will be illustrated with exam-
ples in this paper. Furthermore, these prior approaches 
are mainly suitable for 2D surface sensor layouts; they 
lack general applicability for any type of structure. Thus, 
these two drawbacks provide another motivation for the 
work described in this paper, which seeks to develop an 
effective and universally applicable evaluation criterion for 
assessing sensor clustering. When taking sensor faults into 
account as well, sensor clustering could be an effective 
way to mitigate the problem of information loss because 
of sensor failures. So, it can be obviously seen that sensor 
clustering and sensor faults are two conflicting objectives 
when attempting to optimally configuring sensors. That 
forms the research target of the present work to involve 
both design objectives in the sensor placement prob-
lem, and to the best of the authors’ knowledge, this work 

simultaneously considers sensor fault and sensor cluster-
ing avoidance for the first time.

In the present work, a robust framework is presented 
for optimal sensor distribution considering both sensor 
faults under uncertainty and sensor clustering for vibra-
tion-based damage detection. Material properties of the 
observed structure are considered as random variables. 
Based on the EFI method, a sensor layout that has the 
maximum determinant of the FIM is sought. With sen-
sors suffering complete failure, the minimal determinant 
among all possible failures is to be maximized. Under 
consideration of model uncertainty, the sum of the mean 
value of that minimal determinant and its standard devia-
tion replaces the original deterministic determinant. Thus, 
the first design objective is newly formulated, account-
ing for both sensor faults and model uncertainty. To avoid 
sensor clustering, a novel index applicable for assessing 
any type of sensor configuration is proposed, involving 
the mean value of the nearest neighbor distance for each 
sensor, its standard deviation value, as well as the mini-
mum volume to enclose all sensor positions; this is then 
treated as the second design objective. The non-dominated 
sorting genetic algorithm II (NSGA-II) is adopted as the 
optimizer to solve this problem and Monte Carlo simula-
tion (MCS) is applied for uncertainty analysis. To save 
computation costs, a Gaussian process regression (GPR) 
model is employed to approximate real performance evalu-
ations in the MCS. After achieving optimized sensors, an 
optimization-based damage detection process is imple-
mented with the measured incomplete modal data from 
the sensors, where the associated optimization problem 
is solved with a genetic algorithm (GA). The optimized 
sensor layout is then validated.

The present work first proposes a novel framework for 
robust sensor distribution that considers both sensor fault 
uncertainty and sensor clustering for vibration-based dam-
age detection; then, that framework is applied to three case 
studies to demonstrate its efficacy. More specifically, the 
first design objective that considers sensor faults under 
uncertainty is formulated based on the EFI method out-
lined in Sect. 2; the second design objective, evaluating 
sensor clustering, is developed based on a novel index 
proposed in Sect. 3. Section 4 first constructs the problem 
formulation and then presents the optimization methodol-
ogy to address this problem. Section 5 is focused on pre-
senting an optimization-based damage detection process 
for validation of optimized sensors. Three case studies—a 
cantilever beam, a stiffened composite panel, and a spatial 
frame—are presented in Sect. 6, to demonstrate the effi-
cacy of the developed optimization framework. Conclud-
ing remarks are provided in Sect. 7.
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2  Optimization objective based on the EFI 
method, considering sensor faults 
under uncertainty

The original EFI method for optimal sensor placement is 
only suitable for well-functioning sensors and also only for 
deterministic structural models. When considering both sen-
sor faults and model uncertainty, the original design objec-
tive, in terms of the determinant of the FIM, requires a refor-
mulation. In this section, a new objective function based on 
the EFI method is defined to incorporate sensor faults and 
model uncertainty into the OSP problem.

The sensor network attempts to gather as much dynamic 
information as possible about the measured structure with a 
limited number of sensors; the amount of information is pos-
itively associated with the linear independency of the modal 
vectors observed by the sensors. The original EFI method is 
such an approach; it maximizes the linear independency of 
modal vectors so as to collect maximal information (Kam-
mer 1991). With m target modes to be identified, the output 
vibration signal from n placed sensors can be expressed as

where ys is the vector of the outputs at selected sensor loca-
tions; � is the modal shape matrix with n × m dimensions; 
q is the target modal coordinates; and w is the zero-mean 
Gaussian white nose with the variance of �2 . Evaluating 
the target modal coordinates using an unbiased estimator 
and estimating the covariance of error gives the following 
expression:

where Q is the Fisher information matrix (FIM). The best 
estimation of q is achieved when minimizing the error covar-
iance matrix P , which is equivalent to maximizing the FIM. 
For simplification, the measurement noise is assumed to be 
uncorrelated and identical statistical properties are assumed 
for each sensor; thus, the Fisher information matrix becomes

In this way, the EFI method seeks the best sensor loca-
tions by maximizing the following objective:

where s stands for the design variable vector of the sensor 
location, with its element of si ( i = 1,… , n).

Because of their long-term usage and adverse working 
environments, sensor faults may occur, such as bias, drifting, 
precision degradation, or even complete failure. The sensor 
fault of complete failure is so severe that the information 

(1)ys = �q + w

(2)P = E[(q − q̂)(q − q̂)T] =
[
1

𝜎2
�

T
�

]−1
= Q−1

(3)Q = �
T
�

(4)f1(s) = det(Q(s)) = det(�T (s)�(s))

from the measured structure at the location of the faulty sen-
sor is completely lost; this can lead to task failure of accurate 
monitoring and prevent proper decision-making. However, 
optimal configuration of sensors is a good way to mitigate 
the adverse effects of sensor faults on information loss.

Let L be the maximum number of allowable faulty sen-
sors in an OSP problem. For a case in which the number 
of faulty sensors from an initial sensor distribution of s is 
kl(kl = 0, 1,… , L) , a sensor configuration only consisting of 
the remaining effective sensors is then obtained as

where s�
{
sk1 ,… , skj ,… , skl

}T

 stands for removing all faulty 
sensors, from sk1 to skl , from the initial sensor distribution of 
s . Obviously, s(kl)

f
 only contains sensors without any faults 

and is a subset of s . Considering all possible faulty cases 
under the condition in which the maximum number of allow-
able faulty sensors is L , a set of sensor configurations com-
posed of the remaining well-functioning sensors is achieved 
as follows:

When accounting for a sensor fault of complete failure 
in the OSP problem, it is hard to tell which sensor(s) will 
fail; this implies that the sensor fault presents uncertainty. 
For this reason, the most severe fault case, which has the 
minimal value of f1(s) among the set of well-functioning 
sensor configurations, should be sought first; subsequently, 
this minimal value requires maximization to optimally con-
figure the sensor location of s , so as to improve the robust-
ness of the sensor configuration with respect to the sensor 
fault. Correspondingly, to cope with the sensor fault in the 
OSP problem, the modified objective to be maximized is 
formulated as follows:

Uncertainties always exist in models of real-world struc-
tures; these uncertainties arise from several causes, one of 
which is the complex manufacturing process. Model uncer-
tainty influences structural performance and further sensor 
configurations. Thus, model uncertainty should be taken into 
account to reduce the variation of information collected by 
sensors with respect to the random variables in the OSP prob-
lem. Thus, this becomes a robust optimization problem. How-
ever, both of the objectives formulated in Eqs. (1) and (7) are 
only applicable for deterministic models. Thus, reformulation 
is essential to incorporate the model uncertainty into the objec-
tive function. In robust design optimization of structures, the 

(5)

s
(kl)

f
=

{
s, kl = 0

s�
{
sk1 ,… , skj ,… , skl

}T(
kj ∈ {1,… , n}

)
, kl = 1,… ,L

(6)sf =
{
s
(0)

f
, s

(1)

f
,… , s

(kl)
f

,… , s
(L)

f

}
, kl = 0, 1,… ,L

(7)f2(s) = min
sf

f1(s) = min
sf

det
(
�

T(s)�(s)
)
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original deterministic design objective is always replaced with 
a linear combination of the mean and standard deviation of a 
performance function. Likewise, in the present OSP problem, 
based on the formulation in Eq. (7), the new design objective 
to be maximized is constructed by combining the mean and 
standard deviation of the determinant of the FIM, as presented 
below:

where �det (s,X) and �det (s,X) represent the mean and stand-
ard deviation of the determinant of the FIM, respectively, 
with respect to random variables of X , under a specific sen-
sor layout of s ; � is a weight factor to balance the mean and 
standard deviation (in the present work, � = 1).

Using Eq. (8), the most severe faulty case, which has a 
smaller value of the mean of the determinant of the FIM and 
also has a larger value of standard deviation of the determi-
nant of the FIM, is sought among the set of well-functioning 
sensor configurations. By maximizing this severe fault case, 
i.e., maximizing Eq. (8) with design variables of s , the best 
sensor configuration is obtained, which is the one most robust 
to sensor fault and model uncertainty. Consequently, based on 
the original EFI method, a new objective function of Eq. (8) 
is formulated to alleviate the adverse effects of sensor faults 
and model uncertainty, which should be maximized to find a 
robust sensor layout.

3  Optimization objective based on a novel 
index for evaluation of sensor clustering

Sensor clustering, or configuring multiple sensors in a local 
region, provides repeated and redundant information; this can 
be another effective way to mitigate the negative impacts of 
sensor faults on information loss. However, placing multiple 
backup sensors produces high costs in data acquisition and 
data processing; this approach also causes a waste of resources 
when no sensor faults occur. Many studies have been per-
formed to disperse sensors and avoid sensor clustering; corre-
spondingly, some indices have been developed to evaluate sen-
sor clustering. In this section, a brief overview of some recent 
evaluation indices for sensor clustering is provided, pointing 
out their limitations and disadvantages that could result in mis-
leading assessments in certain cases. Then, a novel evaluation 
index for sensor clustering is proposed and its effectiveness is 
demonstrated with examples.

3.1  An overview of representative evaluation 
indices for sensor clustering and their 
deficiencies

The EFI method has proved to be one of the most widely 
used OSP techniques for maximization of the determinant of 

(8)f3(s,X) = min
sf

�det (s,X) − � ∙ �det (s,X)

the FIM. However, sensor clustering appears when the num-
ber of placed sensors surpasses the number of target modes 
to be identified. Since the objective of the EFI method is 
to maximize the determinant of the FIM, the spatial cor-
relation is neglected, which results in clustering sensors in 
two adjacent nodal positions or DOFs. To avoid the redun-
dancy of information caused by sensor clustering in the EFI 
method, Lian et al. (Lian et al. 2013) proposed a novel fit-
ness function that combines the determinant of the FIM with 
the nearest neighbor index (NNI). The NNI was employed 
to evaluate the sensor clustering condition; it compares the 
distances between the nearest points and expected distances 
based on chance, which is expressed as follows:

where D(NN) is the nearest neighbor distance; Dii
′ is the 

d i s t ance  be tween  sensor  pos i t ion  i  and  i
′ 

( i� = 1,… , n and i
�

≠ i ), and min
i
�

(
Dii

�

)
 is the nearest neigh-

bor distance for i ; A is the area of the structural region. A 
larger value of this index is expected, which indicates that 
the sensors are dispersed.

The above index in Eq. (9) considers the ratio of the 
nearest neighbor distance over the structural region, while 
it neglects the overall sensor configurations. Yang (Yang 
2018) demonstrated that this index could cause mistakes 
in some special cases. Taking the overall sensor configura-
tion into consideration, Yang et al. (2020) developed a CAD 
(clustering avoidance distribution) index, as shown below:

where �s and �s are the mean and standard deviation of all 
located sensor distances to their center. The mean of �s and 
the center of the sensor configuration are expressed in the 
following two equations:

where xi and yi are the location coordinates of the i-th sen-
sor, respectively.

Considering both the local and global effects in sen-
sor configuration, Yang et al. (Yang et al. 2019b) devel-
oped another index called a redundancy elimination model 
(REM), based on a sub-clustering strategy, which is suit-
able for evaluating both local and global sensor distributions. 
This index is defined as follows:

(9)fNNI =
D(NN)

D(ran)
=

∑n

i=1

min

i
�

�
D
ii
�

�

n

1

2

√
A

n

(10)fCAD =
(�s−�s)

∑n

i=1
min
i
�
(Dii

� )

2A

(11)�s =
1

n

∑n

i=1

��
xi − xc

�2
+
�
yi − yc

�2

(12)
�
xc, yc

�
=
�

1

n

∑n

i=1
xi,

1

n

∑n

i=1
yi

�
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where Amin is the minimum area of a circle that encloses all 
sensors, i.e., the area of the smallest enclosing circle, and 
rmin is its corresponding radius.

From those three recent indices listed above, we can 
see that they share one limitation: they are only applicable 
for sensor distributions in surface-type structures. Further, 
those indices mainly focus on the sum or mean of the near-
est neighbor distance, neglecting the variance effect, which 
can lead to mistaken evaluations in certain cases. In order 
to illustrate this drawback, three cases of sensor layouts, as 
shown in Fig. 1, where purple dots stand for sensors and 
dashed blue curves represent the smallest circle that encloses 
the sensors, are evaluated with those three indices. In each 
case, 5 sensors are deployed. The three cases of sensor 

(13)fREM =
rmin

∑n

i=1
min
i
�
(Dii

� )

nAmin

layouts are assumed to be deployed in a square structural 
region, with dimensions of 2 × 2 . From the sensor coordi-
nates presented in Table 1, there is only one difference in 
sensor locations between Case I and Case II, i.e., the central 
sensor is moved to the enclosing boundary. In Case III, the 
sensors are uniformly distributed on the enclosing circle; 
this enclosing circle is much smaller than that in Case I.

The three cases of sensor layouts are evaluated with the 
aforementioned three indices, and the evaluation results are 
tabulated in Table 1. Here, it should be noted that a larger 
value of any index above indicates a more dispersed sensor 
distribution; a smaller index value denotes a more clustered 
sensor deployment. Further, since our goal is to identify the 
difference between any two cases of sensor layouts, we focus 
on the relative index value between the cases of sensor lay-
outs, rather than the absolute index value itself. Under one 
evaluation criterion, the index value is maximized among 

Fig. 1  Three cases of sensor 
layouts using five sensors

Table 1  Evaluation results 
of sensor clustering for three 
example cases

Case Sensor coordinates Evaluation indices for sensor clustering

f
NNI

 (Lian 
et al. 
2013)

f
CAD

 (Yang 
et al. 2020)

f
REM

 (Yang 
et al. 
2019b)

f
SCI

 (Present 
work)

I (0,0), (1,1), (− 1,1), (− 1,− 1), (1,− 1) 3.1623 0.5000 0.3183 1.2676
II (1.4023,0.18285), (1,1),

(− 1,1), (− 1,− 1), (1,− 1)
3.1623 1.0215 0.3183 1.0206

III (0.78456,0.25492), (0,0.82494),
(− 0.78456,0.25492), 

(− 0.48489,− 0.66739), 
(0.48489,− 0.66739)

2.1685 0.5000 0.3742 0.8118



Optimal Sensor Placement Considering Both Sensor Faults Under Uncertainty and Sensor Clustering…

1 3

Page 7 of 32 102

all cases of sensor layouts to find the least clustered case; 
instead, for each case, the comparison of the index value 
among all evaluation criteria has no significance. In this 
way, it can be seen that the NNI index produces the same 
evaluation result for Case I and Case II. This indicates that 
this index cannot identify the difference between these two 
cases, showing the drawback of this index, which has been 
demonstrated by Yang (2018) using other cases of sensor 
layouts. When this index is used to compare the clustering 
condition between Case I (or Case II) and Case III, it can 
be found that Case I (or Case II) has a larger index value 
than Case III, which correctly recognizes their difference, 
as the sensors in Case III are obviously clustered, as com-
pared with Case I (or Case II). When using the CAD index, 
a lager index value is generated for Case II when comparing 
Case I and Case II, concluding that Case II should be more 
dispersed than Case I; however, this conclusion goes against 
the reality that sensor clustering appears in Case II, while 
sensors in Case I are evenly distributed, as can be easily seen 
from Fig. 1. Moreover, the same value is obtained for Case 
I and Case III, showing that the CAD index cannot tell the 
difference between these two cases. As for the REM index, 
it cannot distinguish between Case I and Case II. In addition, 
it makes a wrong judgment between Case I (or Case II) and 
Case III, giving a relatively larger index value in Case III, 
which means Case III has a better scatter of sensor layout 
than Case I (or Case II). However, this conclusion does not 
match the facts; it is totally opposite of that determined by 
the NNI index.

From the observations above, we can determine that 
the NNI and REM indices cannot identify the difference 
between Case I and Case II, mainly due to the fact that they 
only consider the mean of the nearest neighbor distance, 
while they neglect its standard deviation. Even though the 
CAD index considers the overall sensor configuration, it pro-
duces a misleading judgment between these two cases; when 
evaluating Case I and Case III, only the NNI index makes a 
correct assessment, while the CAD index cannot distinguish 
them and the REM index may even produce an incorrect 
evaluation. The drawbacks of these indices motivate us to 
propose a new evaluation index to correctly identify sensor 
clustering conditions.

3.2  A novel evaluation index for sensor clustering

As stated above, previous indices have a limitation in that 
they are only applicable for sensor distributions in surface-
type structures; they also have drawbacks in that they can-
not identify the difference between sensor layouts in some 
cases and may even produce incorrect evaluations. In order 
to overcome these shortcomings, a novel sensor clustering 
index (SCI) is proposed in this work. The proposed SCI 
can be applicable for curved, surface, and spatial types of 

structures and can also correctly evaluate sensor clustering 
conditions.

By simultaneously accounting for the mean value of the 
nearest neighbor distance for each sensor and its standard 
deviation value, as well as the minimum volume to enclose 
all sensor positions, a novel index to evaluate the clustering 
condition of sensor layout s is proposed as follows:

where �nnd(s) and �nnd(s) are the mean and standard devia-
tion of the nearest neighbor distance of min

i
�

(
Dii

�

)
 , respec-

tively, related to all sensor locations; �(s) is the density of 
the sensor distribution, and the exponent of � equals 1, 1/2, 
and 1/3, respectively, for a curved, surface, and spatial sen-
sor layout; ds is the feature size of the monitored structure. 
The density of the sensor distribution is defined by the num-
ber of sensors over the minimum volume that encloses all 
sensors, as expressed below:

where Lmin(s) is the minimum length of the curve that 
encloses all sensors of s when sensors are configured on 
a curve-type structure; Amin(s) is the minimum area of the 
enclosing circle for sensors that are placed on a surface-type 
structure; and Vmin(s) is the minimum volume of the enclos-
ing sphere if sensors are configured on a spatial structure. 
The length of the shortest enclosing curve, Lmin(s) , can be 
easily obtained by computing the distance between any two 
sensor locations and then finding the maximum. As for the 
approach to get the minimum enclosing circle and sphere, 
readers are directed to Refs. (Welzl 1991; Ritter 1990).

When the index proposed in Eq. (14) is used as an opti-
mization objective, it should be maximized, indicating that 
a larger value of this index means a more dispersed sensor 
layout. Moreover, as the density of the sensor distribution is 
concerned in this formulation, maximization of Eq. (14) also 
means minimizing the number of employed sensors. In order 
to show the effectiveness of this proposed evaluation index, 
it is used to assess the three sensor configurations presented 
in Fig. 1; the evaluation results are shown in the last column 
of Table 1. Since the dimensions of the structural region are 
2 × 2 , the feature size for this structure, ds , is selected as 2. 
Three different evaluation values are generated correspond-
ing to three different sensor layout cases.

For Case I and Case II, even though the mean values of 
the nearest neighbor distances and the areas of the smallest 
enclosing circles for both cases are the same, as reflected by 
the same evaluation value of the NNI and REM indices, the 

(14)fSCI(s) =
�nnd(s)−�nnd(s)+1∕�

� (s)

ds

(15)�(s) =

⎧⎪⎨⎪⎩

n∕Lmin(s), for a curved layout

n∕Amin(s), for a surface layout

n∕Vmin(s), for a spatial layout
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standard deviation values of the nearest neighbor distances 
are different. The difference in the standard deviation values 
is reflected in the formulation of the prosed index of SCI, 
leading to the result that Case I has a larger value of SCI than 
that of Case II, which indicates that Case I has a more dis-
persed sensor layout than Case II. As mentioned above, the 
only difference between these two cases is that the central 
sensor in Case I is moved to the enclosing circle boundary of 
Case II, causing a local sensor clustering in Case II; the pro-
posed index successfully identifies this difference. For Case 
I and Case III, it is evident that the mean value of the nearest 
neighbor distance in Case I is larger than that in Case III, 
while the corresponding standard deviation values for both 
cases are zero. The occupied area in Case I is also appar-
ently larger than that in Case III; as a consequence, a larger 
index value of SCI is produced in Case I, also successfully 
identifying the difference between Case I and Case III. Addi-
tionally, when looking at Case II and Case III, a larger index 
value has been achieved in Case II; this is mainly caused by 
the larger mean value of the nearest neighbor distance and 
also the larger occupied circle area. Among all these three 
cases, Case I has the largest index value, meaning that Case 
I has the best scattered sensor distribution; this can also be 
easily observed graphically from Fig. 1.

The successful application of the proposed approach in 
the three example sensor layouts in Fig. 1 demonstrates that 
the proposed SCI index can correctly identify sensor clus-
tering conditions. Further, from the formulation of Eqs.(14) 
and (15), this proposed index can break through the limita-
tion of being applicable only for a specific structure; rather, 
it is universally applicable for sensor layouts in any type of 
structure. This novel index is then used an objective to be 
maximized in the present OSP problem.

4  Problem formulation and optimization 
methodology for OSP

Considering both sensor faults under uncertainty and sensor 
clustering, a robust design problem for sensor placement 
optimization is first formulated in this section. To solve this 
design problem, a novel and efficient global optimization 
strategy is developed; the techniques employed in this opti-
mization strategy are elaborated in this section.

4.1  Problem formulation of OSP, considering sensor 
faults under uncertainty and sensor clustering

In this work, the OSP problem treats both the num-
ber of sensors, n , and corresponding sensor locations, 
s =

{
s1,… , sn

}T , as design variables. Suppose that DOFs 
of all nodes in the finite element model of the measured 
structure compose a set, S ,  which stands for the available 

sensor placement space. Then, S is a subset of S , i.e., s⊂. 
The design variable vector, S, is formed as S = {n;s} . To 
determine a robust sensor placement design with respect 
to sensor faults and model uncertainty, the new objective 
function in formulated in Eq. (8) should be maximized; 
simultaneously, to avoid sensor clustering, the novel evalu-
ation index for sensor clustering proposed in Eq. (14) should 
be also be maximized. Accordingly, the sensor placement 
design problem is formulated in a typical form of an optimi-
zation problem, which is presented as follows:

where X denotes the random variable vector of model uncer-
tainty; fSF represents the design objective, considering sen-
sor faults under uncertainty; fSC standards for the design 
objective, considering sensor clustering; and, n(l) and n(u) 
are the lower and upper bounds on the number of sensors, 
respectively. In addition, it should be noted that the objective 
function of fSF is evaluated under the sensor fault condition, 
while the other objective function of fSC is evaluated under 
the assumption that all sensors are normal.

The set of S representing DOFs of all available nodes is 
fixed after the finite element model of the structure is con-
structed. As sensor locations are a subset of S , all design 
variables in S take discrete values. To the best of our knowl-
edge, this is the first attempt to simultaneously consider sen-
sor fault and model uncertainty, as well as sensor clustering, 
in OSP problems. The solving process for this problem is 
illustrated in the following subsection.

4.2  Optimization methodology

4.2.1  Global optimization strategy

The problem of Eq. (16) involves discrete variables, multi-
ple objectives, and uncertainty analysis. To deal with this 
problem, a novel and efficient global optimization strategy 
is developed and presented in Fig. 2.

Equation (16) implies that the design space is composed 
of all available DOFs of the finite element model associated 
with the measured structure and optimal sensor locations 
are a subset of this design space. For a large and complex 
structure, plentiful nodes and DOFs are generated, especially 
when a refined finite element mesh is employed, leading to 
a large design space and further influencing the efficiency 
in optimization. To shrink the design space to improve the 
efficiency, while maintaining the optimal solution in the 
shrunken design space, a modal kinetic energy (MKE)-based 

(16)

⎧
⎪⎪⎨⎪⎪⎩

f ind S = {n;s} =
�
n, s1,… , sn

�T

min
�
fSF = 1∕f3(S,X), fSC = 1∕fSCI(S)

�T

s.t. n(l) ≤ n ≤ n(u),

s ⊂ S.
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index is proposed to remove some unnecessary candidate 
node locations from the original design space. This modal 
kinetic index was used directly in previous studies to select 
optimal sensor locations with high MKE values (Li et al. 
2007); this provided a rough measure of the dynamic con-
tribution of candidate sensor locations to target modes but 
neglected the linear independence of the modal vectors 
(Gomes et al. 2018). In the present study, instead of directly 
using MKE to determine optimal sensor locations, MKE 
is used to choose nodes that have relatively high values of 
MKE at each target mode; gathering those chosen nodes and 
combining them together forms a shrunken design space. 
Nodes with low MKE values, which exhibit low vibrational 
amplitudes and contribute little in selecting optimal sen-
sor locations, are removed from the original design space; 
therefore, the narrowed design space still presents enough 
dynamic information of the structure. Moreover, since the 
linear independence of the measured modal vectors is con-
sidered in the objective, the optimal solution obtained in 
the shrunken design space maintains both a good level of 
linear independence for target modes and a high level of 
MKE values.

To solve the present optimization problem, the non-dom-
inated sorting genetic algorithm II (NSGA-II) is adopted as 
the optimizer; NSGA-II has the ability to deal with multi-
ple objectives and also discrete variables. In order to evalu-
ate the mean and standard deviation of the determinant of 
the FIM in the objective function, Monte Carlo simulation 
(MCS) is employed. MCS can provide an excellent estima-
tion when the number of sampling points is large enough; 
the analysis result of MCS is often regarded as the exact 
solution. However, this is a quite time-consuming process, 

as it involves numerous deterministic function evaluations at 
random samples, especially when used together with a pop-
ulation-based evolutionary algorithm. To reduce the compu-
tational cost in MCS, a surrogate model, which replaces the 
real function evaluations in terms of the determinant of the 
FIM, is constructed based on the Gaussian process regres-
sion (GPR) modeling technique. Accordingly, an accurate 
and efficient uncertainty analysis procedure is proposed.

The global optimization strategy proposed to solve the 
problem of Eq. (16) is briefly introduced, and the techniques 
used are illustrated in the following subsections.

4.2.2  MKE‑based index to narrow the design space

According to its definition, the computation of modal kinetic 
energy is shown as follows:

where MKEk,q denotes the modal kinetic energy value for the 
k-th node in the q-th target mode; pk represents the DOF that 
is related to the k-th node; Φpkq(lq)

 is the pk(l)-th component 
in the q-th modal vector, and Mpkl

 is an element in the mass 
matrix, M , in terms of the pk-th row and the l-th column. 
The MKE can roughly measure the dynamic contribution 
of candidate sensor locations to target modes; it was previ-
ously used to select nodes and DOFs that possess the high-
est values of MKE as sensor locations. In this way, most of 
the relevant dynamic information can be captured. However, 
the linear independence of target modes was not taken into 
consideration in this approach (Gomes et al. 2018).

(17)MKEk,q =
∑

pk
Φpkq

∑N0

l=1
Mpkl

Φlq

Fig. 2  Proposed global opti-
mization strategy for the OSP 
problem
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In this work, we use MKE as a reference index to narrow 
the original design space. At each target mode, MKE values 
for all nodes are first calculated, and nodes with relatively 
high values of MKE are picked. To this end, the maximum 
MKE value at each mode is found, and nodes whose asso-
ciated MKE values are larger than a certain percentage of 
that maximum value (i.e., MKEk,q ≥ � ∙

{
MKEk,q

}
max

 , 
where � = 0.2 ∼ 0.3 is recommended) are chosen. Follow-
ing this process, the nodes selected at each target mode are 
collected and combined together as a set, and DOFs associ-
ated with the nodes in this set produce a shrunken design 
space. This reduced design space is used as a substitute for 
the full design space of in Eq. (16). This approach removes 
DOFs for related nodes that have relatively low values of 
MKE from the original design space. Since those DOFs pre-
sent small amplitudes in dynamic signals, they always have 
little effect on optimal selection of sensors. This procedure 
of shrinking the design space can save computation costs, 
especially for large and complex structures with a great num-
ber of nodes and DOFs; this approach has been successfully 
applied in our previous work on optimal sensor placement 
in composite structures (An et al. 2022).

4.2.3  GPR‑model‑based NSGA‑II to optimize multiple 
objectives and discrete design variables

The non-dominated sorting genetic algorithm II (NSGA-II) 
has proved to be a computationally fast and elitist multi-
objective evolutionary algorithm that can find a good spread 
of Pareto front solutions. Further, it has the ability to handle 
both discrete and continuous design variables. More details 
about this algorithm can be found in Ref. (Deb et al. 2002). 
In this study, NSGA-II is employed to solve the problem 
outlined in Eq. (16).

In order to compute the probabilistic objective of fSF , 
Monte Carlo simulation (MCS) is used to find the mean 
and standard deviation of the determinant of the FIM with 
respect to random variables; this is actually a highly com-
putationally expensive process. For efficiency improvement, 
the Gaussian process regression (GPR) model is used as a 
surrogate model to replace the real computation of the deter-
minant of the FIM in the MCS. Gaussian process regression 
is a supervised learning algorithm in a machine learning 
task. GPR makes predictions for new inputs based on a 
series of training datasets of known inputs and outputs; it is a 
flexible, non-parametric Bayesian model that can make pre-
dictions in terms of the posterior mean and variance, which 
have been widely used in optimization problems (An et al. 
2021). For more details about GPR, readers are referred to 
Refs. (MacKay 1998; Williams and Rasmussen 2006).

The Latin Hypercube sampling (LHS) method is used to 
generate the training data points for constructing the GPR 
model. After the GPR model is constructed, its accuracy 

is measured with two metrics using test points, which are 
R-square and relative average absolute error (RAAE) (Jin 
et al. 2001), as formulated below:

where yj is the real response value at the j-th test point; ŷj 
denotes the predicted value from the GPR model; yj repre-
sents the mean of the real values at all test points; J0 is the 
number of all test points, and STD stands for the standard 
deviation. A larger value of R-square and a smaller value of 
RAAE denote higher accuracy of the surrogate model.

5  Problem formulation 
for optimization‑based damage detection

Successful damage detection based on the information meas-
ured from sensors can validate the optimized sensor layout. 
Thus, in order to demonstrate the optimized sensors, an opti-
mization-based damage detection process is implemented 
using data provided by the optimized sensors.

In vibration-based damage detection, modal flexibility 
has proved to be a damage-sensitive parameter, as com-
pared with the natural frequency and the modal shape 
(Zhao and DeWolf 1999; Dinh-Cong et al. 2018). The 
modal flexibility is a derivative of natural frequencies and 
modal shapes, which is defined as follows:

where ΦI and �I(I = 1,… ,m) are the modal shape vector 
and the natural frequency for the I-th mode, respectively. 
Using this modal flexibility matrix, a design objective is 
formulated for the optimization-based damage detection 
process, as shown below:

where � is a variable vector regarding damage, whose com-
ponents include damage location and damage degree; Fms 
is the modal flexibility matrix measured with sensors from 
the damaged model; F(�) is the modal flexibility matrix to 
deduce damage conditions from a numerical model, and 
‖ ∙ ‖Frob represents the Frobenius norm for a matrix.

Based on the objective function in Eq. (21), the damage 
detection process is formulated as an optimization prob-
lem, as presented below:

(18)R2 = 1 −
∑J0

j=1

�
yj − ŷj

�2
∕
∑J0

j=1

�
yj − yj

�2

(19)RAAE =
∑J0

j=1

���yj − ŷj
���∕(J0 ∗ STD )

(20)
F =

[
Φ1,… ,Φm

]
∙ diag

{
1∕�2

1
,… , 1∕�2

m

}
∙
[
ΦT

1
,… ,ΦT

m

]

(21)Obj(�) =
‖Fms−F(�)‖Frob

‖Fms‖Frob
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where �(l) and �(u) are the lower and upper bound vectors for 
variable � , respectively. To solve this typical minimization 
problem, a real-coded genetic algorithm is adopted as the 
optimizer, and the simulated binary cross-over operator and 
polynomial mutation are used in this real-coded GA (Deb 
and Agrawal 1995).

6  Case studies

In this section, the proposed strategy for sensor placement 
optimization, which considers both sensor faults under 
uncertainty and sensor clustering, is examined by apply-
ing it to three case studies with different structures, i.e., a 
1D cantilever beam, a 2D composite plate, and a 3D space 
frame. Different cases with varying numbers of allow-
able faulty sensors are tested, and a set of non-dominated 
solutions is achieved. Based on the dynamic information 
measured with optimized sensors, optimization-based 
damage detection is conducted. Results verify the use-
fulness of the developed optimization strategy.

To shrink the design space, the value of parameter � 
used in the MKE-based index is set as 0.2 for all case 
studies. Using the NSGA-II to solve the sensor placement 
problem, the population size and maximum generation 
are given as 100 and 500, respectively. Considering the 
randomness of the algorithm, 20 independent runs are 
repeated for each problem. When using GA to conduct 
optimization-based damage detection, the probability 
of cross-over and mutation are specified as 0.8 and 0.2, 
respectively.

(22)

⎧
⎪⎨⎪⎩

find �

min Obj(�)

s.t. �(l) ≤ � ≤ �(u)

6.1  A cantilever beam – 1D curved sensor layout

The first case study considers a simple structure of a cantile-
ver beam with its left end clamped. A finite element model 
of this beam is built with 50 elements, and the element num-
bering is assumed to be from the leftmost gradually to the 
rightmost, starting from 1 to 50. The beam has a length of 
1 m, a width of 20 mm, and a thickness of 2 mm. The mean 
values for the elastic modulus of material property, Poisson’s 
ratio, and density are 70 GPa, 0.33, and 2700 kg/m3, respec-
tively. All of these measures follow normal distributions, 
with coefficients of variation of 8%, 5%, and 4%, respec-
tively. Only the in-plane transverse vibrations are considered 
for this simple structure, and accordingly, the translational 
DOFs at every node of the finite element model are candi-
date sensor locations. The first three modes are considered 
as the target modes, as depicted in Fig. 3, where circles rep-
resent nodes of the finite element mesh, and also represent 
the candidate sensor locations.

6.1.1  Optimal sensor placement

The proposed OSP strategy that considers sensor faults 
under uncertainty and sensor clustering for better data 
acquisition is first investigated. For this purpose, the strat-
egy is performed by assuming different numbers of allow-
able faulty sensors, i.e., 0, 1, and 2, respectively. Using the 
MKE-based index to narrow the design space, 44 nodes are 
retained out of the original 50 nodes; the first 6 nodes on 
the left end are removed from the initial design space. From 
Fig. 3, we can see that the vibration amplitudes for the three 
modes of concern are relatively low on the left part, imply-
ing that they have small modal kinetic energy values; as a 
consequence, some nodes on the left side are deleted from 
the initial design space. To construct the GPR model, 50 
data points are generated using the Latin hypercube sam-
pling method; approximation accuracy of the constructed 
surrogate model is tested with another 200 random points. 
As a result, the R-square and RAAE values for this surrogate 

Fig. 3  The first three mode shapes of the discretized cantilever beam (clamped at the left end)
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model are 1.0 and 0.0024, respectively, showing a quite high 
level of accuracy. To evaluate the sensor clustering index 
of fSCI in Eq. (14), the feature size of this beam structure is 
assigned as 1 m, which is just the beam length. The lower 
and upper bounds on the number of sensors are given as 3 
and 6, respectively. After optimization, all non-dominated 
solutions obtained for this problem are summarized in Fig. 4.

From Fig. 4, it can be easily seen that when the maximum 
number of allowable faulty sensors increases, the objective 
function values in terms of the determinant of FIM (i.e., 
min
sf

�det (S,X) − �det (S,X) ) decrease gradually. With the 

complete failure of sensors, the information obtained from 
sensors is reduced, further resulting in the decrease of the 
objective function regarding the determinant of the FIM. As 
for the range of the sensor clustering index in the non-dom-
inated solutions, there is no significant difference between 
the case of no faulty sensors and the case of one faulty sen-
sor; both cases are in the range of 0.12 ~ 0.71. In contrast, 
when the number of faulty sensors gets larger, the range gets 
smaller (it becomes 0.16 ~ 0.71); the main change lies in the 
lower bound. The results show that an increased number of 
faulty sensors also affects values of the sensor clustering 
index in the non-dominated solutions, implying that the opti-
mized sensor locations are influenced by sensor faults.

With so many non-dominated solutions, it is hard to 
determine which solution among them should be selected 
for next-step damage detection; thus, post-processing of 
the results is required to assist in selecting an appropriate 
solution. A common way to treat multiple optimization 
objectives is to combine them with some simple arithmetic 
expressions, such as exponents, logarithms, and products 
(Yang 2021; An et al. 2018). Herein, to properly balance 

the sensor placement performance and the sensor cluster-
ing index, a combined function is defined by introducing 
a weighting factor and normalization, as expressed below:

where � is the weighting factor that balances the two objec-
tives, it takes a value between 0 and 1; f ∗

SF
 and f ∗

SC
 are the 

best values corresponding to the objectives regarding the 
determinant of the FIM and the sensor clustering index, 
respectively, which are found from the non-dominated solu-
tions. By minimizing this new combined function of f  and 
varying the weighting factor of � , trade-offs between these 
two objectives are made, and corresponding solutions of sen-
sor placement can be achieved.

When the weighting factor of � takes the value of 0.0, 
the problem is then transformed into a single-objective 
optimization, which only considers the sensor clustering 
index. Under this condition, the optimized sensor distribu-
tions for different numbers of allowable faulty sensors are 
presented in Fig. 5a ~ c. Since only the sensor clustering is 
considered, all three cases produce the same sensor layout, 
leading to the same value of fSCI , as shown in Table 2; the 
number of employed sensors reaches the lower bound of 3. 
According to Eqs. (14) and (15), a smaller number of sen-
sors should generate a larger value in the nearest neighbor 
distance among the sensor locations, and result in a larger 
value of fSCI . Consequently, when only optimizing the sen-
sor clustering, the number of optimized sensors arrives at 
the lower bound. From the sensor distributions in Fig. 5a–c, 
we can see that the three sensors are almost uniformly dis-
tributed on the beam length direction. As mentioned before, 
after using the MKE-based index to narrow the design space, 
the first 6 nodes on the left end are removed from the ini-
tial design space, and the available sensor locations become 
#7–#50 of nodes. To have the maximum distance between 
sensors along the beam length direction, the two extreme 
locations in the shrunken design space, i.e., #7 and #50, are 
captured to locate two sensors, respectively; the third sensor 
is located in the middle of these two extreme locations, i.e., 
#29. As for the performances regarding the determinant of 
the FIM under sensor faults and model uncertainty, when 
the most severe fault case occurs, faulty sensors are denoted 
in Fig. 5a ~ c with a red color, and corresponding mean and 
standard deviation values are summarized in Table 2. It can 
be observed that under the most severe fault case, locations 
of faulty sensors are gradually from the right end to the 
left side. Since the right side of the beam always possesses 
quite high vibration amplitudes for the first three modes, 
conveying much dynamic information, failure of sensors on 
the right side results in serious loss of information, which 
explains why the most severe fault cases occur on the sen-
sors on the right side. From the data for the mean value 

(23)f = �
fSF

f ∗
SF

+ (1 − �)
fSC

f ∗
SC
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Fig. 4  Non-dominated solutions for the cantilever beam
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Fig. 5  Selected sensor locations by varying the weighting factor of � 
(red diamonds represent faulty sensors when the most severe faulty 
case occurs). a � = 0.0 for the case in which the number of allow-
able faulty sensors is 0. b � = 0.0 for the case in which the number of 
allowable faulty sensors is 1. c � = 0.0 for the case in which the num-
ber of allowable faulty sensors is 2. d � = 1.0 for the case in which 
the number of allowable faulty sensors is 0. e � = 1.0 for the case in 

which the number of allowable faulty sensors is 1. f� = 1.0 for the 
case in which the number of allowable faulty sensors is 2. g � = 0.5 
for the case in which the number of allowable faulty sensors is 0. h 
� = 0.5 for the case in which the number of allowable faulty sensors 
is 1. i � = 0.5 for the case in which the number of allowable faulty 
sensors is 2
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of the determinant of the FIM under the most severe fault 
case, as listed in Table 2, it can be seen that this mean value 
decreases gradually as the number of allowable faulty sen-
sors grows; this indicates that the failure of sensors contrib-
utes to the reduction of measured information.

The case for � = 1.0 is also examined, which means 
that only the determinant of the FIM that considers sensor 
faults and model uncertainty is optimized. Correspond-
ing optimized sensor distributions with different num-
bers of allowable faulty sensors are given in Fig. 5d–f. In 
Fig. 5d, as the number of allowable faulty sensors is 0, it 
only involves model uncertainty; to have the maximum 
determinant of the FIM and also the minimum variation, 
the number of used sensors gets to the upper bound, i.e., 
6, and sensor clustering takes place, as the number of 
sensors exceeds the number of target modes. With more 
than one sensor in a local region, repeated information is 
produced in the local region, and the redundant sensors 
can be seen as backup sensors. If one of the sensors fails, 
the backup sensors will supplement the information that 
is lost because of a sensor fault. Figure 5e demonstrates 
this point, where a sensor fault is also taken into account. 
Because Fig. 5d and e have the same sensor layout, they 
have the same value in the sensor clustering index, as 
shown in Table 2. The most severe fault case happens 
when the rightmost sensor fails, as the right side of the 
beam conveys a large amount of dynamic information. 
When the maximum number of allowable faulty sensors 
is increased to 2, another backup sensor should be added 
in each local region on the basis of the sensor distribu-
tion found in Fig. 5d. However, that will make the total 
number of sensors reach 9, beyond the upper bound of 6. 
With 6 sensors deployed, the optimal sensor distribution 
is obtained with a goal of minimizing the effects of sen-
sor faults and model uncertainty, as depicted in Fig. 5f. 
Likewise, failures of the rightmost two sensors cause 
the worst fault case. Additionally, the mean value of the 

determinant of the FIM decreases as the number of faulty 
sensors increases, just like the case when � = 1.0.

When � = 0.5 , a trade-off between the two objectives is 
made, and the locations of corresponding solutions are marked 
with a red star in Fig. 4. The sensor distributions of those solu-
tions are presented in Fig. 5g–i. All of these three sensor dis-
tributions have 6 sensors, reaching the upper bound value to 
get as much information as possible so as to minimize the 
effects of sensor faults and model uncertainty. Similar to the 
results when � = 0.0 and � = 1.0 , the most severe faulty cases 
occur on the rightmost sensors, as the right side of the beam 
possesses a large amount of dynamic information; the mean 
value of the determinant of the FIM declines with more faulty 
sensors, as more information is lost with failed sensors. When 
making a comparison between Fig. 5d, g, it can be seen that 
a more dispersed sensor distribution is achieved in Fig. 5g, 
which is a result of balancing the two optimization objec-
tives. Similar phenomena can also be observed when mak-
ing a comparison between Fig. 5e and h, and a comparison 
between Fig. 5f and i. Since these three results consider both 
sensor faults under uncertainty and sensor clustering, they are 
selected for further damage detection processes.

Besides the determinant of the FIM, the modal assurance 
criterion (MAC) is another commonly used criterion to assess 
the performance of sensor placement; it also has been widely 
used as an objective in many OSP problems (Ostachowicz 
et al. 2019). The MAC value checks the correlation between 
two mode vectors. A small MAC value indicates two distin-
guishable vectors. Hence, off-diagonal terms in the MAC 
matrix are always used to check the linear independence of 
modal shapes. The (I, J) term of the MAC matrix is defined 
as follows:

(24)MACIJ =
(ΦT

I
ΦJ)

2

(ΦT
I
ΦI)(ΦT

J
ΦJ)

Table 2  Performances of 
selected sensor placements by 
varying the weighting factor for 
the cantilever beam

Weighting 
factor,�

Maximum number 
of faulty sensors

After occurrence of a sensor fault (the most severe 
faulty case)

Sensor cluster-
ing index, f

SCI

Locations of 
faulty sensors

�
det

�
det

0.0 0 – 1.5110 ×  104 1.8263 ×  103 0.7039
1 #50 3.3574 ×  10–14 7.7372 ×  10–20 0.7039
2 #29, #50 1.0855 ×  10–33 2.3242 ×  10–34 0.7039

1.0 0 – 8.0054 ×  105 9.6698 ×  104 0.1300
1 #50 3.6710 ×  105 4.4369 ×  104 0.1300
2 #48, #50 3.1235 ×  104 3.7701 ×  103 0.1674

0.5 0 – 5.0086 ×  105 6.0460 ×  104 0.2633
1 #50 2.0896 ×  105 2.5252 ×  104 0.1862
2 #46, #50 2.8685 ×  104 3.4657 ×  103 0.2067
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Diagonal terms in the MAC matrix always keep the value of 
1, while off-diagonal terms take a value between 0 and 1. Low 
values in off-diagonal terms represent a good sensor configura-
tion, which indicates less correlation between the associated 
modal shape vectors. The obtained three sensor distributions 
when � = 0.5 are further evaluated with this criterion of the 
MAC. When random variables take their mean values in the 
analysis model, MAC values corresponding to those three sen-
sor distributions under the most severe fault case are graphi-
cally given as shown in Fig. 6. The maximum off-diagonal 
value of the MAC matrix is 0.00915 in Fig. 6a, which is the 
case in which no sensor fault is allowed; the maximum off-
diagonal value is 0.0033 in Fig. 6b, which denotes the case 
in which one sensor fails. The difference in the MAC values 
results from the number of deployed sensors and also their 
locations. From Fig. 5g and h, we can see that most of the 
sensor positions for these two distributions are the same or 

very close to each other; thus, we can say that the differences 
in the MAC values are mainly caused by the number of sen-
sors; because Fig. 6b is obtained under the evaluation when the 
rightmost sensor fails, the number of sensors used in Fig. 6b 
is thus smaller. As stated in Ref. (Yang et al. 2020), redundant 
vibration information is collected when the number of sensors 
is larger than the number of target modes, and a linear depend-
ence relationship could be caused by the information from the 
modal shape vectors measured with additional sensors; as a 
result, the extra sensor in Fig. 5g results in less independence 
between the obtained modal shape vectors, which is indicated 
by the larger off-diagonal MAC values in Fig. 6a than those 
found in Fig. 6b. When two sensors are allowed to have a 
fault, MAC values corresponding to the sensor distribution in 
Fig. 5i are as shown in Fig. 6c. For this case, the two rightmost 
sensors have failed, causing a loss of much relevant dynamic 
information; consequently, the off-diagonal MAC values are 

Fig. 6  MAC values for selected sensor locations with � = 0.5 under 
the most severe fault case. a MAC for the case in which the num-
ber of allowable faulty sensors is 0. b MAC for the case in which the 

number of allowable faulty sensors is 1. c MAC for the case in which 
the number of allowable faulty sensors is 2
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much larger than those in Fig. 6a and b, with a maximum 
value of 0.2273. These analysis results further demonstrate 
the optimized sensors.

6.1.2  Damage detection with incomplete modal data 
from optimized sensors

The optimized sensors are further examined via the damage 
identification in the cantilever beam using the incomplete 
modal data from the sensors. The three sensor placements 
obtained when � = 0.5 are used for the damage detection 
process. For this case study of a cantilever beam, only sensor 
placements after occurrence of sensor faults (which is also 
the most severe fault case) are considered. In the analysis 
model, stiffness of the damaged element is reduced to a cer-
tain level, i.e., K =

∑ne

e=1

�
1 − �e

�
ke , where K and ke repre-

sent the global and element stiffness matrix, respectively; 
�e denotes the damage ratio of the e-th element, taking a 
continuous value between 0 and 1; and ne is the total num-
ber of finite elements. The cantilever beam was originally 
discretized into 50 elements; here, a simple case of aggre-
gated damage occurring on two adjacent elements, which 
are Elements 25 and 26, is assumed, with damage ratios of 
0.35 and 0.25, respectively. In order to simplify the damage 
identification process, it is also assumed that the aggregated 
damage type in which damages occur on a set of adjacent 
elements is known beforehand; thus, the optimization-based 
damage detection process is then to decide how many adja-
cent elements are damaged among the 50 elements, the 
locations of these damaged elements, as well as the damage 
ratios of these elements. Two scenarios of different meas-
ured models are tested. In the first scenario of the measured 
model, random variables take their mean values, and in the 
second measured model, the values of random variables are 
randomly generated following corresponding distributions, 
where the elastic modulus of material property, Poisson’s 
ratio, and density are 70.025 GPa, 0.3238, and 2734.6 kg/
m3, respectively. In the damage detection processes for both 
measured models, the random variables in the numerical 
model, which is used to deduce the damage condition, take 
their mean values. Thus, for the first scenario of the meas-
ured model, it means that the measured model is completely 
known, while for the second scenario, it indicates that some 
parameters of the model are not precisely known.

The genetic algorithm is used to solve the optimization-
based damage detection problems, as formulated in Eq. (22), 
for both scenarios of measured models. Each problem is 
repeated with 5 independent runs, and the best optimal 
solution with the minimum objective value is treated as the 
detection result. Optimization results (i.e., damage detection 
results) are graphically presented in Fig. 7 for both meas-
ured models. For the first scenario of the measured model, 
we can see that all three optimized sensor placements can 

accurately locate the damage, as shown in Fig. 7(a). For the 
second scenario of the measured model, Fig. 7(b) shows that 
damage locations on Elements 25 and 26 have been detected, 
while it also shows that additional damage occurs on Ele-
ment 27 with a smaller damage ratio, which is inconsistent 
with the actual case. Table 3 also gives detailed quantitative 
damage detection results. From Fig. 7 and Table 3, we can 
see that when random variables in the measured model take 
their mean values, which means the measured model is com-
pletely known, the damage locations and damage ratios can 
be detected in a quite accurate way, especially when no sen-
sors are allowed to be faulty. When a sensor fault happens, 
the number available sensors becomes fewer, and less infor-
mation will be measured; as a consequence, the detected 
damage ratios show some inaccuracy; however, the results 
are still quite close to the actual values. When some param-
eters of the measured model are unknown (to represent this 
case, values of random variables are generated randomly), 
and we use the mean values of uncertain parameters in the 
numerical model for damage prediction, it can be seen that 
the detected damage ratios get less accurate as the number of 
faulty sensors increases. An extra element is also identified 
as being damaged; fortunately, the identified damage ratio 
of this extra element is not large. Additionally, Fig. 8 plots 
the convergence processes of GA in solving these inverse 
problems, with the best objective value in each generation. 
It can be seen that the best objective value tends to approach 
the value of zero as the generation number increases for both 
scenarios of measured models, showing the convergence of 
the algorithm.

Damage detection results given in Fig. 7 and Table 3 pre-
liminarily demonstrate the effectiveness of optimized sensor 
placements. The detection result is actually determined by 
several aspects, like the sensor layout, data used for damage 
detection, detection algorithms, and related factors. Here, 
in the present work, we just show the detection results of 
one case among the many non-dominated solutions that are 
shown in Fig. 4. More detections are to be conducted in the 
future work by examining different optimized sensor con-
figurations and using some other recent damage detection 
approaches, like artificial neural network (Avci et al. 2021).

6.2  A stiffened laminated composite plate—2D 
surface sensor layout

A composite plate with uniformly distributed T-shaped stiff-
eners is considered in this section, as shown in Fig. 9. The 
whole structure is fixed on its one short edge, with three 
other edges being free. Material properties of the compos-
ite layers are E11 = 128GPa , E22 = 13GPa , G12 = 6.4GPa , 
�12 = 0.3 , and density � = 1600kg∕m3 . Composite stacking 
sequences in both the panel and stiffeners are assigned as 
[90/ ± 45/02]s; the basic ply thickness is tply = 0.127mm.
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We focus on the out-of-plane vibrations for this stiff-
ened laminated composite structure; sensors are assumed 
to measure out-of-plane translational motions. The first six 
modes are considered as the target modes; Fig. 10 gives 

the first six modal shapes and the corresponding natural 
frequencies. Material properties of E11 , E22 , G12 , and �12 
are considered as random variables, with mean values of 
128GPa , 13GPa , 6.4GPa , and 0.3 , respectively. All of them 

Fig. 7  Damage detection results 
for the cantilever beam with dif-
ferent measured models, using 
observed dynamic information 
after occurrence of a sensor 
fault(s) (under the most severe 
fault case). a Values of random 
variables take their mean in the 
measured model; b Values of 
random variables are randomly 
generated in the measured 
model
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Table 3  Damage detection 
results for the cantilever beam 
under different measured 
models, using observed 
dynamic information after 
occurrence of a sensor fault(s) 
(under the most severe fault 
case)

Measured 
model type

Element no Damage ratios

Actual Detected (Max 
faulty sensor: 0)

Detected (Max 
faulty sensor: 1)

Detected (Max 
faulty sensor: 
2)

Mean 1 ~ 24, 27 ~ 50 0 0 0 0
25 0.35 0.3561 0.3321 0.3344
26 0.25 0.2440 0.2735 0.2738

Random 1 ~ 24, 28 ~ 50 0 0 0 0
25 0.35 0.3070 0.3457 0.2996
26 0.25 0.2487 0.1772 0.2275
27 0 0.0806 0.0984 0.1333
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follow normal distributions, with the coefficient of varia-
tion of 5%. The sensor placement problem is solved under 
these uncertainties.

6.2.1  Optimal sensor placement

For this sensor placement problem, as we only focus on 
out-of-plane vibrations, sensors are assumed to measure 
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Fig. 8  Iteration history of GA for damage detection in the cantilever beam. a Values of random variables take their mean in the measured model; 
b Values of random variables are randomly generated in the measured model

Fig. 9  Geometry of the stiffened laminated composite plate. a Composite stiffened plate. b T-shaped stiffener
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out-of-plane translational motions. Available sensor posi-
tions are restricted to the surface of the composite panel. 
After applying the MKE-based index to narrow the design 
space, 3116 nodes are retained in the design space out of 
the original 5265 nodes, causing a 40.82% reduction in the 
design space. When considering sensor faults, the maximum 
number of allowable faulty sensors assumed to be 0 and 1, 
respectively. The lower and upper bounds on the number of 
sensors are given as 6 and 9, respectively. The LHS method 
is employed to generate sampling points, and 50 data points 
are produced to build the GPR model. By using another 200 
random points, the accuracy of the constructed surrogate 
model is tested, and the corresponding R-square and RAAE 
values are found to be 1.0 and 0.0022, respectively, pre-
senting a high level of accuracy. The feature size used in 
Eq. (14) for evaluation of the sensor clustering condition is 
given as 1000 mm, i.e., the length of the composite panel. 
All non-dominated solutions obtained for this problem are 
summarized in Fig. 11.

With so many non-dominated solutions, the combined 
function formulated in Eq. (23) is used to help select the 

Fig. 10  The first 6 modal shapes and natural frequencies for the composite stiffened plate
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Fig. 11  Non-dominated solutions for the stiffened composite plate
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sensor layout for further damage detection. By varying the 
weighting factor of � , trade-offs between the two objectives 
are made, and corresponding solutions of sensor placement 
can be obtained. From Fig. 11, we can see that the relation 
between the two considered objectives are not linear; the 
value ranges for these two objectives are quite different, with 
different orders of magnitude. Further, compared with the 
case of no faulty sensors, the value ranges of the two objec-
tives are much smaller for the case of maximum one faulty 
sensor. As a result, even though in Eq. (23) two objectives 
have been normalized, it is still found that the same solu-
tion is obtained for the latter case when � is in the range of 
0.3 ~ 1.0. When � = 0.5 , a contour line related to Eq. (23) is 
shown with a dashed green line in Fig. 11. The positions of 
solutions when � = 0.5 are also indicated with red stars in 
Fig. 11. Corresponding to three values of weight factor, i.e., 
0.0, 0.5 and 1.0, optimized sensor distributions and their 
performances are presented in Fig. 12 and Table 4.

When � = 0.0 , the selecting problem is equivalent to 
optimizing the sensor clustering index only. As a conse-
quence, for both cases, the number of employed sensors 
reaches the lower bound of 6, and sensors are located as 
far away from each other as possible in the shrunken design 
space, as shown in Fig. 12a and d, leading to large values of 
fSCI . Considering the sensor fault, it can be easily seen from 
Table 4 that the mean value of the determinant of the FIM 
significantly falls off after the most severe faulty case occurs; 
this is because the faulty sensor results in a smaller amount 
of measured information. From Table 4, we can see that 
before the occurrence of a sensor fault, the mean value of the 
determinant of the FIM for the case of one allowable faulty 
sensor is even larger than that of the case with no sensor 
fault allowed; however, this mean value declines drastically 
when the most severe faulty case occurs.

When � = 1.0 , this means only the determinant of the 
FIM that considers sensor faults and model uncertainty is 
involved. To get a robust design with respect to both sensor 
faults and model uncertainty, the number of sensors used 
reach the upper bound of 9 for both cases. From Fig. 12c, 
sensor clustering happens for the case in which the num-
ber of allowable faulty sensors is 0. When the number of 
allowable faulty sensors is given as 1, sensor clustering has 
been mitigated, as seen in Fig. 12f. Since the first six modes 
are to be identified, the minimum number of sensors should 
be 6, which is determined from the perspective of control 
theory and also the perspective of mathematics (Yang et al. 
2020); considering sensor faults, these original 6 sensors 
should be backed up with another 6 sensors around their 
local locations, resulting in the use of 12 sensors; how-
ever, as the upper limit of the number of sensors is 9 in this 
study, the optimized sensor locations are obtained without 

sensor clustering to collect as much information as possi-
ble, as seen in Fig. 12f, which is quite similar to the result 
of Fig. 5f. When � = 0.5 , even the same sensor configura-
tion is obtained, as shown in Fig. 12e and f. For the case in 
which no sensor fault is allowed, a different sensor layout 
is achieved, as presented in Fig. 12b, which is a result of a 
trade-off between the performance regarding the determinant 
of the FIM and the sensor clustering.

The obtained sensor layouts for both cases when � = 0.5 
consider sensor faults under uncertainty and sensor cluster-
ing; these two sensor distributions are selected for further 
damage detection processes. The criterion of MAC is also 
used to evaluate the sensor deployments. When random vari-
ables take their mean values in the analysis model, MAC 
values corresponding to these sensor layouts before and after 
sensor faults occur (under the most severe fault case) are 
graphically shown in Fig. 13. For the case in which the max-
imum number of allowable faulty sensors is 0, the maximum 
value in the off-diagonal MAC is around 0.32. When the 
maximum number of allowable sensors becomes 1, before 
any sensor is faulty, the maximum off-diagonal MAC value 
is around 0.34. When the worst sensor fault case happens, 
the maximum value of the off-diagonal MAC becomes 0.51. 
This sensor fault makes the number of effective sensors 
fewer, and further results in a smaller amount of observed 
information, consequently making the linear independence 
of the measured modal data become weaker.

6.2.2  Delamination detection with incomplete modal data 
from optimized sensors

Damage from delamination between adjacent composite 
layers can be encountered anytime in the complicated 
manufacturing process or during the service period. The 
obtained sensor distributions when � = 0.5 , before or after 
a sensor fault happens, are further examined in the delami-
nation detection processes. Here, an embedded delamina-
tion, which is located in the center of the composite panel, 
is assumed with a rectangular shape, as shown in Fig. 14. 
For this kind of delamination, the delamination length, 
dL , delamination width, dW  , as well as its through-the-
thickness position, i.e., the interface at which the delami-
nation is located, are to be identified. These delamina-
tion parameters are determined by the optimization-based 
damage detection process through the use of incomplete 
dynamic data from optimized sensors. The delamination 
is assumed to have a length of dL = 100mm and a width 
of dW = 80mm . The through-the-thickness position is at 
Interface 1. Two different models where random variables 
take different values are involved in each case. In one of 
the measured models, random variables take their mean 
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values; in the other, values for random variables are gen-
erated randomly following their distributions, which are: 
E11 = 127.88GPa , E22 = 13.073GPa , G12 = 6.4275GPa , 
�12 = 0.2968 . As random variables in the numerical 

prediction model take their mean values, the two models 
considered above represent the completely known model 
and the partly unknown model with some uncertain param-
eters, respectively.

Fig. 12  Sensor locations selected by varying the weighting factor of 
� (red diamonds represent faulty sensors when the most severe fault 
case occurs). a � = 0.0 for the case in which the number of allow-
able faulty sensors is 0. b � = 0.5 for the case in which the number of 
allowable faulty sensors is 0. c � = 1.0 for the case in which the num-

ber of allowable faulty sensors is 0. d � = 0.0 for the case in which 
the number of allowable faulty sensors is 1. e � = 0.5 for the case in 
which the number of allowable faulty sensors is 1. f � = 1.0 for the 
case in which the number of allowable faulty sensors is 1
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Table 4  Performances of selected sensor placements calculated by varying the weighting factor for the stiffened composite plate

Weighting 
factor,�

Maximum number of 
faulty sensors

Before occurrence of a sensor fault After occurrence of a sensor fault (the most severe 
faulty case)

Sensor cluster-
ing index, f

SCI

�
det

�
det

Location of 
faulty sensor

�
det

�
det

0.0 0 2.9988 ×  1020 1.8436 ×  1018 – – – 0.6214
1 1.0590 ×  1022 9.9731 ×  1018 #196 1.3690 ×  106 9.8651 ×  105 0.5941

0.5 0 5.7261 ×  1024 6.3614 ×  1021 – – – 0.3527
1 3.3076 ×  1024 3.6543 ×  1021 #2878 5.8793 ×  1023 6.5237 ×  1020 0.3677

1.0 0 7.0474 ×  1024 5.5350 ×  1021 – – – 0.2451
1 3.3076 ×  1024 3.6543 ×  1021 #2878 5.8793 ×  1023 6.5237 ×  1020 0.3677

Fig. 13  MAC values for selected sensor locations with � = 0.5 . a 
MAC for the case in which the number of allowable faulty sensors 
is 0. b MAC for the case in which the number of allowable faulty 

sensors is 1 (before a sensor fault occurs). c MAC for the case in 
which the number of allowable faulty sensors is 1 (after a sensor fault 
occurs—the most severe faulty case)
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Next, the inverse problem of optimization-based delami-
nation detection is solved with the genetic algorithm as the 
optimizer. Table 5 summarizes the optimization results, 
which are also the delamination detection results. For the 
scenario of the mean model, where the observed model can 
be completely known, it can be seen that the delamination 
can be identified with a considerably high level of accuracy, 
with all relative errors smaller than 3%, regardless of the 
occurrence of senor faults. As for the scenario of the random 
model, where values for random variables in the measured 
model are randomly generated, representing the situation 

of modeling error, the delamination result under the opti-
mized sensor layout without allowance of sensor faults is 
quite similar to actual damage condition; however, when the 
maximum number of allowable faulty sensors is 1, there is a 
certain level of bias in predicting the delamination of length 
(before the occurrence of sensor fault) or width (after the 
occurrence of sensor fault), which is mainly caused by the 
modeling error. Nevertheless, it should be noted that delami-
nation thickness-wise locations can be accurately detected, 
without any errors. The delamination detection results indi-
cate that the optimized sensors are reasonable and that the 
solving procedure for the inverse problem is effective. The 
performance of damage detection depends not only on sen-
sor distributions but also on detection approaches. More 
detection processes will be implemented in future work by 
examining different numbers of sensors and sensor loca-
tions that are from the obtained non-dominated solutions, 
and also by exploring some other damage detection methods. 
In addition, for vibration-based delamination assessment, it 
has been found that even though numerical predictions based 
on frequency changes could achieve high levels of accuracy, 
experimental validation showed low prediction accuracies, 
especially when predicting the through-the-thickness posi-
tion (Zhang et al. 2018), as more uncertainties could be 
involved in the experimental implementation. Thus, future 
work will also focus on the investigation of experimental 
validation.

6.3  A three‑story, two‑bay spatial frame 
structure—3D spatial sensor layout

For further validation of the proposed OSP strategy in 3D 
structures, a three-story, two-bay steel frame structure 
is studied here. As shown in Fig. 15, this spatial frame 
structure is composed of 39 frame members and 24 nodes, 
with the bottom 6 nodes fixed. Each frame member has a 
length of 0.6 m, and a circular cross-section with a radius 
of 0.015 m. The mean values for the elastic modulus of 
material property, Poisson’s ratio, and density are 196 

Fig. 14  An embedded delamination with rectangular shape in the 
composite panel

Table 5  Delamination detection 
results for the stiffened 
composite plate under different 
measured models

Measured 
model type

Delamination parameters Actual Detected (Max 
faulty sensor: 0)
[error]

Detected (Max faulty sensor: 1) 
[error]

Before fault After fault (The 
most severe 
case)

Mean Length dL , mm 100 100.95 [0.95%] 101.42 [1.42%] 99.61 [0.39%]
Width dW , mm 80 81.76 [2.21%] 79.98 [0.03%] 81.62 [2.03%]
Layer interface 1 1 [0%] 1 [0%] 1 [0%]

Random Length dL , mm 100 100.59 [0.59%] 126.98 [26.98%] 100.82 [0.82%]
Width dW , mm 80 83.09 [3.86%] 82.36 [2.95%] 101.48 [26.85%]
Layer interface 1 1 [0%] 1 [0%] 1 [0%]
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GPa, 0.26, and 7880 kg/m3, respectively. All of these 
parameters follow normal distributions, with the coef-
ficient of variation of 5%. For modal analysis, the finite 
element model is established with beam elements and 
each frame member is discretized into 5 beam elements. 
The first 6 modes are considered as the target modes. 
From Fig. 16, we can see that all the target modes are 
bending modes along the x- or y- direction, or torsion 
modes along the z- direction. Accordingly, the 36 trans-
lational DOFs (along the x- and y-directions) at Nodes 
#7 - #24 are considered as candidate sensor locations. 
Since we use uniaxial sensors, one sensor can only meas-
ure dynamic information in a specific direction; when two 
sensors are placed in the same node but instrumented in 
different directions, this condition is not considered to be 
sensor clustering, as the measured information is com-
ing from different directions. Consequently, the sensor 
clustering condition is evaluated in different directions 
separately, and then the evaluation values from different 
directions are summed to obtain the final value regarding 
the sensor clustering index. 

6.3.1  Optimal sensor placement

For this case study, two cases are considered; in each case, 
the maximum number of allowable faulty sensors is assumed 
to be 0 and 1, respectively. The lower and upper bound on 
the number of sensors is given as 6 and 10, respectively. 
Based on the LHS method, 50 data points are generated to 
build the GPR model. The accuracy of the constructed sur-
rogate model is then tested with another 200 random points 
and the corresponding R-square and RAAE values are 1.0 
and 0.0035, respectively, showing a high level of accuracy. 
The feature size used in Eq. (14) for evaluation of the sensor 
clustering condition is specified as 1.8 m, which is the height 
of the spatial frame structure. All non-dominated solutions 
obtained for this problem are summarized in Fig. 17.

The defined combined function in Eq. (23) assists in the 
selection of sensor layout for the next-step damage detection 
process. Varying the weighting factor of α, balances between 
the two objectives are made, and corresponding solutions 
are obtained. Three different values of α, which are 0.0, 0.5, 
and 1.0, are considered. Figure 17 shows the position of the 
solution when α = 0.5 with a red star. Corresponding to these 
three weight factor values, optimized sensor distributions 
and their performances are given in Fig. 18 and Table 6.

When the weighting factor is assigned to be 0, only the 
sensor clustering index is considered. From Table 6, we can 
see that the same value of the sensor clustering index is 
obtained for the cases in which the maximum number of 
allowable faulty sensors is 0 and 1, even though the sensor 
distributions for these two cases are not totally the same, as 
shown in Fig. 18a and d. As aforementioned, the sensor clus-
tering index of fSCI is computed by summing the correspond-
ing index values in the different directions. From Fig. 18a 
and d, it can be easily seen that 

(
fSCI

)
y
 ( fSCI in the y-direc-

tion) in Fig. 18a is equal to the 
(
fSCI

)
x
 ( fSCI in the x-direc-

tion) in Fig. 18d, as they have the same sensor positions 
regarding these two directions; with structural symmetry, (
fSCI

)
x
 in Fig. 18a also equals 

(
fSCI

)
y
 in Fig. 18d, as the two 

concerned sensors in the related directions are located in the 
diagonal vertices of the structure. Consequently, the summed 
value of fSCI is the same for both cases. For the case in which 
the maximum number of allowable faulty sensors is 1, the 
most severe faulty case occurs when the sensor instrumented 
in the x-direction of Node #19 fails. Because of this sensor 
fault, the mean value of the determinant of the FIM is dra-
matically reduced from 3.7376 ×  10–10 to 1.4188 ×  10–27, as 
shown in Table 6, showing the severe impact of the sensor 
fault.

Gradually increasing the value of weighting factor, � , 
to 0.5 and 1.0, which corresponds to a trade-off between 
the two objectives and only optimizing the performance 
regarding the determinant of the FIM, respectively, relevant 

Fig. 15  Geometry and boundary condition of a three-story, two-bay 
frame structure
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solutions are achieved. When the maximum number of 
allowable faulty sensors is 0, i.e., no sensor fault is allowed, 
sensors in the y-direction are distributed in the upper, mid-
dle and lower layers of nodes in the structure, while sensors 
in the y-direction are deployed only in the upper and lower 
layers of nodes. From the first 6 modal shapes presented 
in Fig. 16, relatively large vibration amplitudes represent-
ing main dynamic information are mainly exhibited in the 
upper and lower layers of nodes. This also results in sensor 
distributions only in the lower and upper layers of nodes for 
the case in which the maximum number of allowable faulty 

sensors is 1, for both � = 0.5 and � = 1.0 . Considering the 
torsion modes, which are the 3rd and 6th modes, as shown 
in Fig. 16, vibration amplitudes in the y-direction are larger 
than the x-direction, while for the bending modes, there is no 
such difference in the two directions. As a result, the number 
of employed sensors in the y-direction is larger than that in 
the x-direction, as can be seen in Fig. 18b, c, e and f; this 
kind of dynamic characteristic also leads to the occurrence 
of the most severe fault case in the y-direction, as shown in 
Fig. 18e, f, as well as Table 6. When considering a sensor 
fault, compared with the performance before the occurrence 

Fig. 16  The first 6 modal shapes 
and natural frequencies for the 
spatial frame structure
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of sensor fault, the mean value of the determinant of the 
FIM goes down significantly after a sensor fault occurs. For 
example, when � = 0.5 , the mean of the determinant of the 
FIM goes from 1.2179 ×  10–7 before a sensor fault happens 
to 3.2751 ×  10–8 after the occurrence of a sensor fault (under 
the most severe fault case), meaning that the sensor fault 
causes some information loss.

Since the solutions corresponding to � = 0.5 allow for 
both design objectives, these optimized sensor distributions 
are then used for the damage detection processes, and they 
are also evaluated with the criterion of the MAC. When ran-
dom variables take their mean values in the analysis model, 
MAC values corresponding to the sensor layouts are graphi-
cally shown in Fig. 19. For the case in which the maximum 
number of allowable faulty sensors is 0, the maximum value 
in the off-diagonal MAC is around 0.19. When the maxi-
mum number of allowable sensors becomes 1, before the 
sensor fault occurs, the maximum off-diagonal MAC value 
is about 0.20 and this maximum value turns to 0.23 after a 
sensor fault happens (for the most severe fault case), show-
ing that information loss because of the sensor fault leads 
to a decrease in the linear independency of the measured 
modal shapes.

6.3.2  Damage detection with incomplete modal data 
from optimized sensors

Based on the incomplete modal data from the sensors, 
damage detection processes are implemented in the spa-
tial frame structure to verify the optimized solutions of 
sensor configurations when � = 0.5 . Similarly, the sim-
ulation model that is used in the beam structure is also 
applied here to simulate the damage, i.e., by reducing the 

stiffnesses of the damaged frame members to a certain 
level. Here, it is assumed that the frame member of 14 is 
encountered with a damage ratio of 0.3. The optimization-
based damage detection process is to decide the number 
of damaged frame members, the locations of these dam-
aged members, and the damage ratios on these members. 
Likewise, two scenarios of different measured models are 
tested. In the first scenario of the measured model, random 
variables take their mean values; in the second model, the 
values of random variables are randomly generated fol-
lowing their corresponding distributions, where the elastic 
modulus of material property, Poisson’s ratio, and density 
are 196.56 GPa, 0.2682, and 8061.0 kg/m3, respectively. 
In the damage detection processes for both scenarios, the 
random variables in the numerical model to deduce the 
damage condition take their mean values. In this way, for 
the first scenario of the measured model, the measured 
model is completely known; as for the second scenario, 
this means that some parameters of the model are not 
exactly known with certain levels of error.

The optimization-based damage detection problems are 
then solved with GA for both measured model scenarios. 
Damage detection results are graphically presented in Fig. 20 
for both measured models and the detailed damage detection 
results are quantitatively tabulated in Table 7. For the first 
measured model scenario, we can see that not only the frame 
member of 14 is identified as damaged, but also several other 
members are deemed to be damaged. Even so, the identified 
damage ratios on frame member 14 are quite close to the 
actual value, while some other identified damaged mem-
bers have quite small values of damage ratios; the largest 
one is 0.0126, which occurs just when the most severe fault 
case happens. As for the positions of the identified damaged 
members with small damage ratios, it can be found that they 
are adjacent to or quite near the frame member of 14 from 
Fig. 15 and Table 7. Further, based on the data of the dam-
age ratios, we can see that the highest detection accuracy 
is reached when the maximum number of allowable faulty 
sensors is 0, i.e., no sensor fault is allowed. The detection 
accuracy goes down when the maximum number of allow-
able faulty sensors is varied from 0 to 1. Under the condition 
in which the maximum number of allowable faulty sensors 
is 1, the detection accuracy becomes worse after the most 
severe fault case occurs, as compared with the result before 
the occurrence of a sensor fault. A similar phenomenon can 
also be observed for the second scenario of the measured 
model regarding the detection accuracy of the damage ratios. 
However, the number of damaged frame members and the 
damage location have been accurately identified without any 
errors. These damage detection results have preliminarily 
demonstrated the effectiveness of optimized sensors. More 
detections are to be conducted in the future work by using 
some other recent advanced damage detection approaches.
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Fig. 17  Non-dominated solutions for the spatial frame structure
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Fig. 18  Sensor locations selected by varying the weighting factor of 
� (red arrows with explosion shapes represent faulty sensors when 
the most severe fault case occurs). a � = 0.0 for the case in which 
the number of allowable faulty sensors is 0. b � = 0.5 for the case in 
which the number of allowable faulty sensors is 0. c � = 1.0 for the 

case in which the number of allowable faulty sensors is 0. d � = 0.0 
for the case in which the number of allowable faulty sensors is 1. e 
� = 0.5 for the case in which the number of allowable faulty sensors 
is 0. f � = 1.0 for the case in which the number of allowable faulty 
sensors is 1
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In this work, lower and upper bounds are assigned on 
the number of sensors, which means available and limited 
budgets for sensor placement and data processing. Non-
dominated optimal solutions are then achieved within this 
range. In order to select an appropriate solution from those 
non-dominated solutions for further damage detection pro-
cesses, a combined function is defined and suggested by 
introducing a weighting factor and combining both objec-
tives. When the weighting factor takes the value of 0.5, a 
solution is chosen and then validated for damage detection 
processed. For this selected solution, the number of sensors 
often reaches the corresponding upper bound, which can be 

seen from Figs. 5, 12 and 18, meaning sufficient sensors. 
As a result, even if sensor fault occurs, the damage detec-
tion results seem still good because of redundant sensors. 
Meanwhile, it can also be seen that the damage detection 
performance goes worse in the case of occurrence of sen-
sor faults, especially when the number of allowable faulty 
sensors goes up. In addition, since only one solution when 
weighting factor takes the value of 0.5 is selected in damage 
detections, more solutions decided by assigning the weight-
ing factor with different values are to be examined. Actually, 
when larger weights are assigned on the aspect of avoiding 
sensor clustering, for example, when the weighting factor 

Fig. 18  (continued)

Table 6  Performances of selected sensor placements calculated by varying the weighting factor for the spatial frame structure

Weighting 
factor,�

Maximum number 
of faulty sensors

Before occurrence of a sensor fault After occurrence of a sensor fault (the most severe 
faulty case)

Sensor cluster-
ing index, f

SCI

�
det

�
det

Location of 
faulty sensor

�
det

�
det

0.0 0 3.7388 ×  10–10 1.8304 ×  10–11 – – – 2.8928
1 3.7376 ×  10–10 1.8333 ×  10–11 #19(x) 1.4188 ×  10–27 1.4135 ×  10–40 2.8928

0.5 0 1.9511 ×  10–7 9.5319 ×  10–9 – – – 2.0046
1 1.2179 ×  10–7 5.9495 ×  10–9 #22(y) 3.2751 ×  10–8 1.6015 ×  10–9 2.1427

1.0 0 1.9511 ×  10–7 9.5290 ×  10–9 – – – 1.5518
1 1.2182 ×  10–7 5.9624 ×  10–9 #24(y) 3.2749 ×  10–8 1.5999 ×  10–9 1.7084
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of α equals 0.0, fewer sensors are obtained, which can also 
be observed from Figs. 5, 12 and 18, and the redundancy 
of sensors becomes less. Furthermore, mean values of the 
determinant of Fisher information matrix for those solutions, 
as presented in Tables 2, 4 and 6, become smaller along with 
smaller values of α, which means less observed informa-
tion and less redundancy. So, it could be expected that when 
these solutions are used for damage detection, the detection 
results could be worse than those solutions when α equals 
0.5, which will be examined in our future work.

If the number of available sensors becomes even 
smaller, for example, the number of available sensors is 
smaller than the number of observed target modes, the 
phenomenon of sensor clustering will not occur. Accord-
ingly, when applying the proposed framework for optimal 

sensor placement considering uncertainty and sensor 
faults, the design objective regarding the sensor cluster-
ing can be removed, and only the objective related to the 
determinant of Fisher information matrix remains. In this 
way, the proposed framework is still applicable after a 
minor modification, regardless of the complexity of the 
observed structure and system. With smaller number of 
sensors, it is true that the damage detection results could 
possibly be not that accurate and reliable. However, that 
is mainly resulted from the limited sensors, and optimi-
zation of sensor placements is just trying to produce the 
maximum benefits of the limited resources.

Fig. 19  MAC values for selected sensor locations with α = 0.5. a 
MAC for the case in which the number of allowable faulty sensors 
is 0. b MAC for the case in which the number of allowable faulty 

sensors is 1 (before a sensor fault occurs). c MAC for the case in 
which the number of allowable faulty sensors is 1 (after a sensor fault 
occurs—the most severe faulty case)
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Fig. 20  Damage detection 
results for the spatial frame 
structure with different 
measured models. a Values 
of random variables take their 
mean in the measured model; 
b Values of random variables 
are randomly generated in the 
measured model
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Table 7  Damage detection 
results for the spatial frame 
structure under different 
measured models

Measured 
model type

Member No Damage ratios

Actual Detected (Max 
faulty sensor: 0)

Detected (Max faulty sensor: 1)

Before fault After fault (The 
most severe 
case)

Mean 1 ~ 11, 13, 16 ~ 19, 
21 ~ 25, 27 ~ 30, 
32 ~ 39

0 0 0 0

12 0 0 0.0046 0
14 0.3 0.2974 0.2740 0.2675
15 0 0.0019 0 0
20 0 0 0 0.0126
26 0 0 0 0.0070
31 0 0 0.0064 0

Random 1 ~ 13, 15 ~ 39 0 0 0 0
14 0.3 0.2848 0.2664 0.2328
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7  Conclusions

Under the consideration of sensor faults and model uncer-
tainty, as well as sensor clustering, this study investigates 
optimal sensor placement for vibration-based damage 
detection. A new objective is formulated, considering sen-
sor faults and model uncertainty, and a novel sensor clus-
tering index is proposed to evaluate the sensor clustering 
condition. Based on these two objectives, the design prob-
lem is formulated to seek the optimal number of sensors 
and their locations. As any available place in the structure 
can represent a potential candidate sensor position, which 
causes a large design space, a modal kinetic energy-based 
index is developed to narrow the design space to enhance 
the optimization search capability. To solve this multi-
objective optimization problem under a shrunken design 
space, the non-dominated genetic algorithm II is adopted 
as the optimizer and MCS is used to evaluate the design 
objective involving uncertainty. To reduce the computation 
cost of the MCS, a GPR model is employed to approxi-
mate the real performance evaluations. For the valida-
tion of optimized sensors, an optimization-based damage 
detection process is conducted based on the incomplete 
dynamic data from the sensors. Three case studies, includ-
ing a cantilever beam, a stiffened laminated composite 
plate, and a spatial frame structure are presented to verify 
the developed optimization framework and the optimized 
sensors. Some conclusions are summarized as follows:

(1) Based on the EFI method, a new objective is formu-
lated to account for sensor faults and model uncertainty. 
Under uncertainty, a compound function is constructed, 
combining the mean and standard deviation of the 
determinant of the FIM. The minimum value of this 
compound function is sought under all possible sensor 
fault cases. After maximizing this minimum value, a 
sensor configuration that can be robust to both sensor 
faults and model uncertainty is obtained.

(2) To overcome the limitations and disadvantages of 
previous sensor clustering indices, a novel evaluation 
index for sensor clustering is proposed based on the 
mean and standard deviation of the nearest neighbor 
distance, as well as the density of the sensor distribu-
tion. Simple examples and case studies demonstrate 
that the proposed index can correctly identify sensor 
clustering conditions and can also be universally appli-
cable for any type of structures, i.e., 1D, 2D and 3D 
type of structures.

(3) Through the use of non-dominated genetic algorithm 
II as the optimizer and a GPR-based surrogate model, 
non-dominated solutions for sensor distributions are 
achieved in an efficient way.

(4) Optimized sensor configurations are obtained for the 
three case studies that correspond to 1D, 2D and 3D 
sensor layout types. As the maximum number of allow-
able faulty sensors increases, the linear independency 
of the measured modal data can be decreased; when 
a sensor fault occurs, the number of effective sensors 
decreases and information loss happens, leading to 
an increase in the linear dependency of the observed 
modal shapes, as compared to the case before the 
occurrence of the sensor fault. Successful optimization-
based damage processes verify the optimized sensor 
distributions, and also show that because of the infor-
mation loss resulting from faulty sensors, the damage 
detection accuracy may go down after the occurrence 
of a sensor fault.

(5) The proposed methodology, which combines a robust 
optimal sensor placement strategy and a damage detec-
tion approach, can be considered a promising tool in 
practical SHM applications. More recent advanced 
damage identification methods, such as machine-learn-
ing-based methods, will be explored in the next-step 
work. Moreover, only sensor fault of complete failure is 
examined in the present work, and more types of sensor 
faults, like signal bias and drifting, will be considered 
in our future work.
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