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Abstract
Fluid topology optimisation has become a popular approach for optimisation of geometries in aero-thermal applications. 
However, one of the main limitations of current approaches considering turbulent flow is the fidelity of the Reynolds Aver-
aged Navier–Stokes models employed. In response, this paper shows the development of the first data-driven fluid topology 
optimisation technique based on the continuous adjoint method. The technique first extracts data from a high fidelity simula-
tion of a standard topology-optimised geometry. These data are fed through a symbolic regression-based machine learning 
algorithm called gene expression programming, to learn an explicit model for the anisotropy tensor. The novel aspect of the 
work is the derivation of the adjoint form of the generalised explicit algebraic stress model such that the developed turbulence 
model can be inserted directly into the primal and adjoint system of equations. This allows a second, data-driven optimisation 
to be performed. Finally, a high fidelity simulation of the resulting geometry is also conducted to allow comparison against 
the standard geometry. The method is first applied to the back-facing step to verify the approach and then to a 2D u-bend 
configuration. The data-driven optimisation was able to find geometries exhibiting significant reductions in pressure loss 
when compared with results from the standard optimisation.

Keywords  Topology optimisation · Continuous adjoint · Data-driven · Machine learning · Turbulence modelling

1  Introduction

Fluid topology optimisation (FTO) is fast gaining traction 
within multiple industrial sectors including aerospace and 
automotive for use in the design of parts for additive manu-
facturing. The technique was originally introduced to struc-
tural mechanics by Bendsøe and Kikuchi (1988), who used 
a homogenisation method in terms of material density to 
identify areas in a domain where material should be added to 
minimise compliance. The idea was not introduced to fluids-
based problems until Borrvall and Petersson (2003), who 
applied topology optimisation to Stokes flow by introducing 
a permeability field to the governing equations.

In general, permeability-based FTO starts with an ini-
tial guess for the permeability field and modifies this guess 
across the domain to optimise some flow-based objective 

function such as pressure loss. A variety of different gradi-
ent and non-gradient optimisation techniques can be used to 
solve these optimisation problems. Amongst the most com-
mon, and the approach adopted here is the adjoint method 
(either continuous or discrete). It is a gradient-based tech-
nique which operates by extracting topological sensitivities 
within a predefined design domain (Othmer 2008). These 
sensitivities are equivalent to the gradient of the objective 
function with respect to the chosen design variables. The 
adjoint method is popular in topology optimisation as it 
requires the evaluation of just two sets of partial differential 
equations (primal and adjoint) to compute these sensitivities 
(Giles and Pierce 2000).

Calculated sensitivities give information on favourable 
and counterproductive cells with respect to the chosen 
objective function. Favourable cells are then rewarded by 
increased permeability and counterproductive cells penal-
ised by reducing their permeability. Over several itera-
tions, the optimised fluid path is revealed as the regions 
in which sensitivities remained favourable and the perme-
ability stayed high enough for the region to be considered 
fluid (Pietropaoli et al. 2016). The corresponding opti-
mised solid geometry is taken as the opposing regions in 
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which the permeability has been reduced to zero. There-
fore, FTO provides a method of generating optimised 
geometries for associated fluid flows, where the design 
surface does not require a priori specification.

Currently, treatment of turbulence in FTO solvers 
remains limited by Reynolds Averaged Navier–Stokes 
(RANS) methods with linear constitutive laws (Yoon 2016; 
Dilgen et al. 2018b). Many recent works do not consider 
the formulation for turbulent flows and focus instead on 
laminar cases, limiting the applicability of methods to low 
Reynolds number situations (Alexandersen and Andreasen 
2020). In many aerospace applications, this assumption is 
not valid and in the free-form geometries created by FTO, 
flows are often complex and turbulent. They can exhibit 
strong streamline curvature, rotational effects and sepa-
ration, all of which are widely documented to be poorly 
predicted by RANS methods (Wilcox 2006; Spalart et al. 
2015; Pichler et al. 2016). Unfortunately, computational 
expense renders higher fidelity turbulence treatment such 
as Direct Numerical Simulation and Large Eddy Simula-
tion (DNS/LES) infeasible for direct use in FTO solvers.

In light of this, it can be argued that FTO solvers con-
sidering turbulent flow typically suffer on two accounts. 
The first is by the so called ‘frozen turbulence’ assump-
tion, where variations in the turbulent viscosity field are 
neglected and are not reflected in the optimised geom-
etries produced. Work has now been done to overcome 
this assumption and it effects are analysed in the context 
of topology optimisation by Kontoleontos et al. (2013) 
and Dilgen et al. (2018a). The former modified work by 
Zymaris et al. (2009), who derived a continuous adjoint 
form of the Spalart–Allmaras turbulence model for shape 
optimisation. The latter used automatic differentiation to 
produce discrete adjoint versions of the Spalart–Allmaras 
and k–� models for FTO. The second is that on overcom-
ing the frozen turbulence assumption, the turbulence 
model itself is still based on linear constitutive laws, so 
designs will be limited by the predictive accuracy of these 
laws. The focus of this work is overcoming this second 
limitation, by improving the predictive capabilities of the 
constitutive turbulence laws themselves.

Away from topology optimisation, much fluids-based 
research focuses on augmenting and developing RANS-
based turbulence models, making use of the rapidly growing 
availability of high fidelity flow data. Machine learning tech-
niques are being used in tandem with this data to develop 
‘data-driven’ models. The aim is to help increase the predic-
tive accuracy of RANS-based methods to be comparable to 
higher fidelity methods, whilst maintaining a computational 
cost in the region of the original RANS methods (Durbin 
2018). These techniques have seen promising results espe-
cially in cases where the flows used in training and testing 
remain similar (Duraisamy et al. 2019).

Given the research trend and successes reported in data-
driven turbulence modelling, it appears a natural solution 
to incorporate these ideas into the FTO framework, par-
ticularly given the inevitable similarity in training and 
testing flow cases. This paper outlines a newly developed 
technique for the introduction of data-driven turbulence 
models into FTO. To the authors knowledge, no work has 
yet been performed to tackle the solver fidelity limit in 
FTO. However recently, Zhang et al. (2021) developed 
a data-driven multi-fidelity shape optimisation method, 
making use of a hierarchical-Kriging surrogate framework.

Any machine learning method common to turbulence 
modelling may be chosen to enhance the optimisation, 
given a suitable implementation in the adjoint system is 
found. However here, as a first work and example of the 
approach, the data-driven aspect will rely on the Gene 
Expression Programming (GEP) algorithm. GEP was orig-
inally developed by Ferreira (2001) and has since been 
applied to turbulence problems by Weatheritt and Sand-
berg (2016). They combined GEP with explicit algebraic 
stress models (EASMs) to learn explicit functional forms 
for the anisotropic component of the Reynolds stress.

In this work, the general form of an EASM, originally 
proposed by Pope (1975), will be introduced to the FTO 
framework by deriving its continuous adjoint form, such 
that specific data-driven solutions learnt by GEP can be 
applied to different cases. Here, the frozen turbulence 
assumption has been retained to help ease the complexity 
of implementation and testing, and to isolate the effects 
of the new technique when comparing against standard 
adjoint methods. Two cases are then considered, both aim-
ing to minimise total pressure loss: the first is a backward-
facing step which acts as a good verification case for any 
turbulence based problem; the second is a 2D u-bend. This 
provides a more complex case to explore the potential of 
the method.

2 � Methods

As stated previously, this work aims to break a boundary 
present in current state-of-the-art FTO. This boundary is 
present on account of using linear constitutive laws, usu-
ally realised by eddy viscosity models, to close the RANS 
equations. Here the turbulence model will be extended to 
a data-driven EASM, the general form of which will be 
presented along with a novel derivation of the continuous 
adjoint system of equations for the EASM. The method of 
developing specific data-driven closures from the EASM 
framework, by feeding high fidelity data into the GEP 
algorithm is also outlined.
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2.1 � Explicit algebraic stress model

When closing the RANS equations, the Reynolds stresses 
� = u�u� must be modelled using mean flow characteristics. 
The Reynolds stress is often decomposed into an isotropic 
component described purely in terms of the turbulent kinetic 
energy k and an anisotropic component. This decomposition, 
rearranged for the anisotropic component and normalised by 
2k, is given as follows:

In linear eddy viscosity models, the anisotropy is simply 
modelled as proportional to the mean strain rate tensor 
� = −�t�∕k (for incompressible flow). The introduced pro-
portionality constant �t is a turbulent (eddy) viscosity which 
supplements the molecular viscosity to model the effects of 
the turbulent stresses. This linear relationship is the stem 
of many continuing problems with RANS modelling today 
(Wilcox 2006). Explicit algebraic stress models provide a 
natural extension from a linear stress–strain relationship to 
a nonlinear one. Introduced originally by Pope (1975) some 
100 years later, he reasoned based on dimensional arguments 
that the anisotropy could be modelled purely as a function 
of the mean strain and rotation rate tensors, the turbulent 
kinetic energy, and the turbulent dissipation rate such that 
� = �(�,�, k, �) . By doing so, the most general form for the 
anisotropy can be written as a 10 term sum

where �(n) is a set of linearly independent tensor bases dis-
covered by means of a weak equilibrium hypothesis pro-
posed by Rodi (1976), and application of the Cayley–Ham-
ilton theorem. The coefficients �n are themselves functions 
of a set of scalar invariants Im which also arise from the 
Cayley–Hamilton theorem. Defining the anisotropy in this 
manner also guarantees the satisfaction of various physical 
constraints such as Galilean invariance (Spencer and Rivlin 
1958). The tensor bases are defined in terms of the nondi-
mensional strain � = �t� and rotation � = �t� rate tensors 
where �t is a turbulent timescale defined as the inverse of 
the specific turbulent dissipation rate �t = 1∕� . For two-
dimensional flows, which will be considered in this paper, 
the complete sum of ten bases reduces to just three (Weath-
eritt et al. 2017) and these are defined as follows:

The variable I1 in the definition of �(3) is from the set of 
scalar invariants of which the �n coefficients are functions, 
and in 2D, these are defined as follows:

(1)� =
�

2k
−

1

3
�.

(2)� =

10∑

n=1

�n�
(n),

(3)�
(1) = �, �

(2) = �� − ��, �
(3) = �

2 −
1

3
I1�.

EASMs lend themselves well to data-driven methods as the 
inputs Im , and �(n) and target variable � , are simple to extract 
from high fidelity simulation.

Once discovered by the chosen data-driven method, spe-
cific expressions for the anisotropy can be directly substi-
tuted into the RANS equations and run with little additional 
computational cost in comparison to a standard eddy viscos-
ity model. Their non-linearity, however, allows the turbulent 
stresses to be modelled more accurately which should lead 
to better prediction of the mean velocity field.

2.2 � Gene expression programming

In this work, the machine learning method chosen to dis-
cover specific expressions for the �n coefficients, is gene 
expression programming (GEP). GEP is selected given that 
it is a symbolic regression technique, which naturally gener-
ates explicit functional forms. This not only reduces the ten-
dency of machine learning algorithms to present a black-box 
style solution but also aids in implementation of the result-
ing expression into the primal and adjoint systems. However, 
it is highlighted again that GEP is just one possible choice 
from numerous machine learning options including Neural 
Networks and other regression techniques. An overview of 
its operation will be presented here following the schematic 
in Fig. 1, and for a full description of the algorithm, the 
reader is referred to Weatheritt and Sandberg (2016).

GEP is an evolutionary algorithm, and here is used to 
discover explicit expressions for � = �(Im,�

(n)), where the 
structure of the expressions is given by Eq. 2. First, a popula-
tion of possible solutions is randomly generated within the 
solution space. This population is then iteratively subjected 
to computational imitations of natural selection and genetic 
operation, which result in a gradual drift of the population 

(4)I1 = tr(�2), I2 = tr(�2).

Fig. 1   Schematic of the gene expression programming (GEP) algo-
rithm
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towards more optimal solutions (Koza 1992). A large initial 
population is selected to span as much of the solution space 
as possible and avoid the tendency of optimisation algo-
rithms to get trapped in local minima.

Natural selection is imitated by choosing m individuals 
with replacement out of the n individuals in the population 
to compete in tournaments. The fittest individual in each 
tournament secures a place in the next generation. Tourna-
ments are repeated until all n places in the next generation 
are occupied. The surviving individuals are then stochasti-
cally subjected to genetic operations to introduce variation 
into the population. These operations include mutations of 
one symbol in an individual, and genetic crossover, where 
sequences of symbols from two individuals in the popula-
tion are swapped.

The genetically operated population then forms the ini-
tial population for the next iteration, known in evolutionary 
algorithms as a generation. Generations are then progressed 
until either the best fitness in the population reaches some 
required tolerance, or a preset number of generations have 
evolved. The fittest member of the population at the end of 
this process is then taken to be the best approximation of the 
optimal solution.

2.3 � Topology optimisation

The general form of the EASM will now be incorporated 
into the topology optimisation framework by deriving the 
corresponding adjoint system. This section details the com-
putation of sensitivities and derives the complete system of 
adjoint equations required to perform data-driven topology 
optimisations.

2.3.1 � System of primal equations

First, the primal state equations (which are the steady state 
incompressible RANS equations with generalised EASM, 
built on a baseline k–� turbulence model) are expressed as 
follows:

(5)Rp = −� ⋅ u,

(6)
R
u
= (u ⋅ �)u + �p − � ⋅ (�eff (�u + �

T
u)

− 2k�ex) + �u,

(7)Rk = (u ⋅ �)k − P + �∗�k − � ⋅ ((� + �k�t)�k),

(8)
R� = (u ⋅ �)� − �

�

k
P + ��2

− � ⋅ ((� + ���t)��),

where P = −� ∶ �u is the production term, �t = k∕� is the 
eddy viscosity, and � = 0.52 , �k = �� = 0.5 , �∗ = 0.09 and 
� = 0.072 are the standard coefficients of the Wilcox (1998) 
k–� model. The k–� model is selected here on account of 
its low Reynolds number behaviour and relative simplicity 
of implementation (although any model for computing �t 
could be directly substituted here). The first tensor basis is 
equal to the nondimensional strain rate and is linear. As dis-
cussed by Wu et al. (2019), it can, therefore, be implemented 
implicitly to improve the conditioning and stability of the 
primal solver. The viscous term in the momentum equations 
is already implicitly treated, so this is achieved through a 
simple redefinition of the effective viscosity to include the 
coefficient of the first basis as �eff = � + �t − k�t�1 . The 
remaining nonlinear part of the anisotropy �ex must be 
treated explicitly and is defined as follows:

The eddy viscosity added implicitly in �eff is cancelled out 
by the corresponding eddy viscosity term in the explicit 
anisotropy, leaving just the EASM. This approach is taken 
as including �t in the implicitly treated viscous term allows 
much more stable convergence.

The Darcy penalisation term �u is also included where � 
is a spatially varying continuous variable taking values in the 
range 0 ≤ � ≤ �max representing impermeability. A high value 
of � (limited to �max for numerical considerations) forces the 
velocity to zero to satisfy Eq. 6, simulating solid material. A 
value of � = 0 reduces Eq. 6 to the standard RANS momentum 
equations simulating the region as fluid.

2.3.2 � Statement of constrained optimisation problem

Given the set of state equations above, the subset 
R = [R

u
,Rp]

T is taken as is standard practice when consider-
ing the frozen turbulence assumption. The general optimisa-
tion problem can then be stated as follows:

where J  is a cost function, R is the set of state equations 
acting as a constraint and Ci are an additional set of con-
straints to be satisfied. X is the state vector, and � is the 
design variable which in this case is impermeability. Here, a 
volume constraint C(�) is the only additional constraint con-
sidered. This can be optionally enforced to prescribe a fluid 
volume fraction in the final design and is defined as follows:

(9)�
ex =

3∑

n=2

�n�
(n) +

�t�

k
.

(10)

minimise J = J(X, �),

subject to R(X, �) = 0,

and Ci(�) = 0, i = 1, ...,N,
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where V is the total domain volume, f is the prescribed fluid 
volume fraction and c is defined for convenience in express-
ing the sensitivity. The constrained optimisation can then be 
refactored into an unconstrained problem:

where the Lagrangian functional L is the new subject of 
minimisation. q and w are Lagrange multipliers (termed the 
adjoint pressure and velocity respectively) which set penali-
sation weightings for deviations of the state equations from 
their constraints R(X, �) = 0 . The volume constraint is 
included through an augmented Lagrangian where � is an 
estimate to the Lagrange multiplier and wC is a scalar weight.

The primal equations Rk and R� are not included in the 
formulation of Eq. 12. This constitutes the commonly used 
frozen turbulence assumption and is equivalent to considering 
the derivatives of the turbulent quantities with respect to the 
state variables negligible. The effects of this assumption have 
been analysed in topology optimisation by Kontoleontos et al. 
(2013) and Dilgen et al. (2018a).

2.3.3 � Sensitivity analysis

To calculate sensitivity information, it is necessary to take 
the total variation of the Lagrange functional L = L(X, �) 
such that

where �
X
 and �� refer to variations with respect to the state 

vector and design variable, respectively. The expression �
X
L 

is non-trivial to evaluate. However, by choosing the adjoint 
variables such that �

X
L = 0 , which from Eq. 12 is equivalent 

to setting

the total variation of L is reduced to dL = ��Ld� . It is noted 
that C does not appear in Eq. 14 as it has no dependence on 
the state variables. Again making use of Eq. 12, the total 
variation can be written as follows:

The state equation Rp has no dependence on � such that 
��Rp = 0 and the only term in R

u
 with dependence on � is 

the penalisation term �u such that ��Ru
= u . Further, for 

(11)C(�) = c2, c =
1

V ∫
V

(1 −
�

�max

)dV − f ,

(12)L = J + ∫
V

(qRp + w ⋅ R
u
) dV − �C + wCC

2,

(13)dL = �
X
LdX + ��Ld�

(14)�
X
J + ∫

V

(q�
X
Rp + w ⋅ �

X
R
u
) dV = 0,

(15)
dL

d�
=��L = ��J + ∫

V

(q��Rp
+ w ⋅ ��Ru

) dV

+ ��(−�C + wCC
2).

ducted flows, the cost function J  generally has no explicit 
dependence on the design variable � such that ��J = 0 . The 
sensitivity can then be reduced to

The quantity ��C is simple to evaluate and yields

Discretising to give local sensitivities for each cell j finally 
gives

where Vj is the volume of cell j. The design variable � is then 
updated over successive iterations n by use of the steepest 
descent method such that

where � is a step length which must be set, and the imperme-
ability � is limited such that it cannot be negative or exceed a 
maximum value �max which is considered solid. The volume 
constraint parameters are also updated with every design 
variable update following the rules:

where � and wmax
C

 are user-defined values to control the 
growth and maximum value of wC.

2.3.4 � Derivation of adjoint system

The task now is to determine the set of equations for the 
adjoint variables such that when solved the choice that 
�
X
L = 0 is satisfied. The majority of this derivation has 

been presented exhaustively in the literature, and for a full 
description, the reader is referred to Othmer (2008). How-
ever, the explicit anisotropy term has not been considered 
in an adjoint derivation before and will be presented here. 
As a starting point, the standard adjoint equation obtained 
from Eq. 14 is

(16)
dL

d�
= ∫

V

w ⋅ udV + (−� + 2wCC)��C.

(17)��C = −
2

�max

[
1

V ∫
V

(1 −
�

�max

)dV − f

]
= −

2c

�max

.

(18)
dL

d�j
= wj ⋅ ujVj −

2c

�max

(−� + 2wCC),

(19)�n+1
j

= min

[
�max,max

[
0, �n

j
− �

dL

d�j

|||
n
]]

,

(20)
�n+1 = �n − 2wn

C
C
n,

wn+1
C

= min(�wn
C
,wmax

C
),
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where � is used to represent variations of the following vari-
able with respect to the state vector, and �a = (�w + �

T
w)∕2 

is the symmetric strain rate tensor for the adjoint velocity. 
Partial derivatives of the cost function at the boundaries 
with respect to primal pressure and velocity respectively are 
represented by �pJΓ and �

u
JΓ . Terms (a–e) comprise the 

standard adjoint equation and (f) is the additional explicit 
anisotropy term that will be considered here.

To start, w is brought inside the divergence operator and 
the product rule applied. Gauss’ theorem is then applied to the 
divergence term to give

Term (a) cannot be manipulated further so attention shifts to 
term (b). Recalling the definition of �ex from Eq. 9, we start 
by considering only the final term in the sum, that is �3�(3) , 
as its analysis is the simplest to follow. Further decompos-
ing given that �(3) = �2

t
(�� −

1

3
tr(��)�) , term (b) may be 

written as follows:

where variations of �(3) have been taken. It should be high-
lighted here that this is where the extension of the frozen 
turbulence assumption has been applied. Variations with 
respect to the basis coefficients �n are not considered, 

(21)

∫
V

�p(−� ⋅ w)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

(a)

dV

+∫
V

�u ⋅ (−2u ⋅ �
a + �q − � ⋅ (2�eff�

a) + �w)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(b)

dV

+∫Γ

�p(wn + �pJΓ)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(c)

dΓ

+∫Γ

�u ⋅ (−qn + (w ⋅ u)n + w(u ⋅ n)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

(d)

+�eff (n ⋅ �)w + �
u
JΓ)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(d)

dΓ

−∫Γ

�eff (n ⋅ ��u) ⋅ w
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

(e)

dΓ

+∫
V

w ⋅ (� ⋅ (2k��ex))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

(f)

dV = 0,

(22)
+∫Γ

2k(n ⋅ ��ex) ⋅ w)
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

(a)

dΓ − ∫
V

2k��ex ∶ (�w)
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

(b)

dV.

(23)

− ∫
V

2k�2
t
�3(��� ∶ �w + ��� ∶ �w −

2

3
tr(���)� ∶ �w) dV,

and the effect of this assumption will not be investigated 
further in this work. From adjoint continuity, it follows 
that � ∶ �w = � ⋅ w = 0 and expanding the variations of 
the strain rate tensors �� = (��u + �

T
�u)∕2 gives the 

expression:

Making use of the fact that � is a symmetric tensor to isolate 
��u and �T

�u in their respective double inner products, and 
transposing terms involving the latter results in

Noticing that the term �w + �
T
w is twice the symmetric 

strain rate tensor for the adjoint velocity, we let the whole 
expression on the right of the double inner product be 
the adjoint form of the third tensor basis �(3) such that 
�(3) = �2

t
(�a� + ��a) = �a� + ��a . The term can then be 

simply written as follows:

Applying the same process to the term �2�(2) in �ex , results 
in the ability to define a corresponding adjoint form of its 
primal tensor basis. For brevity’s sake, the derivation is not 
presented here. However, the resulting set of adjoint tensor 
bases �(1)–�(3) are found as follows:

This result presents the opportunity to define an adjoint 
explicit anisotropy �ex , analogous to its primal counterpart, 
which is given as follows:

The full term given in Eq. 22 can then be written as follows:

To finish the derivation, �ex is brought inside the gradient 
operator and the product rule applied. Gauss’ theorem is 
once again applied to the resulting divergence term to give

(24)
− ∫

V

k�2
t
�3(��u� ∶ �w + �

T
�u� ∶ �w

+ ���u ∶ �w + ��
T
�u ∶ �w) dV.

(25)

− ∫
V

k�2
t
�3��u ∶ (�w� + ��

T
w + ��w + �

T
w�) dV

= −∫
V

k�2
t
�3��u ∶ ((�w + �

T
w)� + �(�w + �

T
w)) dV.

(26)−∫
V

2k�3��u ∶ �
(3) dV.

(27)
�

(1) = �
a, �

(2) = −�a� + ��
a − �

a
� + ��

a,

�
(3) = �

a
� + ��

a.

(28)�
ex =

3∑

n=2

�n�
(n) +

�t�
a

k
.

(29)+∫Γ

2k(n ⋅ ��ex) ⋅ w)dΓ − ∫
V

2k��u ∶ �
exdV.
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This expression can be directly substituted into Eq. 21 for 
term (f). The whole adjoint equation, written in a compact 
form, is then

where the terms Rq , Rw
 , BCq , BCw

 , BC1 and BC2 are defined 
as follows:

To force the equality of Eq. 31 to zero in the domain, given 
that �p and �u are not zero in general, requires Rq = 0 and 
R
w
= 0 . From this, we arrive at the adjoint RANS continuity 

and momentum equations with generalised EASM turbu-
lence closure.

2.3.5 � Treatment of boundary conditions

Similarly we require on the boundaries of the domain that each 
of the terms �pBCq , �u ⋅ BC

w
 , BC1 and BC2 vanish within the 

integral. To simplify this analysis considerably, we enforce 
that the EASM is switched off on all boundaries reverting to 
the standard k–� model. The effect of this is that in Eq. 37, 
��ex = 0 on all boundaries and this condition is automatically 
satisfied. In Eq. 35, we also have that �ex = 0 on all bounda-
ries, reducing the set of adjoint boundary conditions to those 
of the standard continuous adjoint equations seen in Othmer 
(2008). For the pressure loss cost function

which represents the power dissipation calculated as the net 
inward flux of energy through the boundaries, the adjoint 
boundary conditions at the inlet and walls are

(30)

+ ∫Γ

2k(n ⋅ ��ex) ⋅ w)dΓ − ∫Γ

�u ⋅ (2k(�ex ⋅ n))dΓ + ∫
V

�u ⋅ (� ⋅ (2k�ex))dV.

(31)
∫
V

�pR
q
+ �u ⋅ R

w
dV + ∫Γ

�pBC
q
+ �u ⋅ BC

w
− BC1 + BC2dΓ = 0,

(32)Rq = −� ⋅ w,

(33)
R
w
= − u ⋅ (�w + �

T
w) + �q

− � ⋅ (�eff (�w + �
T
w) − 2k�ex) + �w,

(34)BCq = wn + �pJΓ,

(35)
BC

w
= −qn + (w ⋅ u)n + w(u ⋅ n)

+ �eff (n ⋅ �)w − 2k(�ex ⋅ n) + �
u
JΓ,

(36)BC1 = �eff (n ⋅ ��u) ⋅ w,

(37)BC2 = 2k(n ⋅ ��ex) ⋅ w.

(38)J = −∫Γ

(p +
1

2
|u|2)undΓ,

The corresponding boundary conditions on the outlet, 
obtained by decomposing Eq. 35 into normal and tangential 
directions are

It is noted here that if the EASM is not switched off on all 
boundaries, then the task of determining appropriate bound-
ary conditions for the complete set of adjoint equations has 
not yet been solved. Attempts so far lead to continuity violat-
ing solutions where the adjoint velocity must be set to zero 
at the outlet, but not at the inlet.

2.3.6 � Optimisation algorithm implementation

The optimisation algorithm follows a one-shot method in 
which the primal and adjoint systems and the sensitivities 
and design variables are converged together. Such methods, 
which leverage the fact that the primal and adjoint systems 
are solved in a pseudo-transient manner, were introduced 
by Hazra (2008) for shape optimisation. More recently, they 
have been applied to topology optimisation by Papoutsis-
Kiachagias and Giannakoglou (2016) and shown to be 
highly efficient for fluid topology optimisation problems.

The one-shot approach used in the present work is out-
lined in Fig. 2 and is implemented in the finite volume pack-
age OpenFOAM. Instead of obtaining a fully converged 
primal and adjoint solution between sensitivity and optimi-
sation update calculations, a prescribed number of pseudo-
timesteps of the primal and adjoint system (Eqs. 5–8 and 
Eqs. 32–33, respectively) are performed between each opti-
misation update ( nupd in Fig. 2). Sensitivities are then cal-
culated based on the current values of ui and wi via Eq. 18, 
where i is the current pseudo-timestep. The optimisation 
variables can finally be updated based on these sensitivities 
through Eqs. 19 and 20. This process is iterated to conver-
gence of the primal and adjoint systems, the sensitivities, 
and the optimised design simultaneously. Although the num-
ber of optimisation updates is often large compared with 
traditional gradient methods, the total computational cost 
can be reduced as the time to calculate the sensitivities for 
each update is small. Hazra (2008) showed that converged 
optimisations can be achieved with less than two times the 
effort of converging the primal system alone (See Sects. 3.9 
and 4.3.5 for more details on the computational cost of the 
present method).

(39)w
t
= 0, wn =

{
0 walls

un inlet
, and �q = 0.

(40)
q = w ⋅ u + wnun + �eff (n ⋅ �)wn −

1

2
|u|2 − unun,

w
t
un + �eff (n ⋅ �)w

t
− u

t
un = 0.
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2.4 � Verification and testing procedure

In the present work, the developed method is applied to two 
cases. The first is a verification on the backward-facing step 
of Le et al. (1997). This is a simple test case to evaluate, 
and the physics is reduced to a level allowing some physical 
intuition of the problem. As such, it can act as a sanity check 
to show that the method is operating in the correct manner. 
The second case is a u-bend, which aims to test the method 
by presenting it with a more complex optimisation.

The general procedure follows that shown in Fig. 3. An 
overview will be given here and details for each case are 
explained in the following sections (backward-facing step 
in Sect. 3 and u-bend in Sect. 4). First, a high fidelity LES 
of the baseline geometry is performed, against which subse-
quent optimisations can be compared. In parallel, a standard 
optimisation is run using the k–� model.

To prepare this standard optimised geometry for high 
fidelity simulation, it must be extracted from the topol-
ogy optimization, smoothed and remeshed. First, the raw 
optimised fluid region is obtained by isolating the region 
in which 𝛼 < 𝛼max∕2 . Given the nature of the fixed grids 
used, this region will not have a smooth surface. Thus, to 
obtain a smooth geometry, the surface is passed through 
a smoothing filter. The filter operates by repeatedly mov-
ing each vertex in the triangulated surface to the average 
position of its neighbours (directly connected vertices). 
Once the smooth optimised geometry is obtained, it can 

be remeshed with a body-fitted mesh ready for high fidel-
ity simulation.

The next step is to run the data obtained from the high 
fidelity simulation of the standard optimised geometry 
through GEP, to obtain a model which can be implemented 
in the data-driven optimisation. The training dataset is 
generated from the LES of the standard geometry (details 
in Sect. 3.3). For the u-bend case, it will be seen that the 
topology resulting from the standard optimisation differs 
from the baseline design. Therefore, there is no guarantee 
that a model learned on the baseline design will remain 
applicable when run in the data-driven optimisation. So, by 
training on data from the LES of the standard geometry, we 
allow a rough initial design to be drafted and a turbulence 
model more representative of the optimised geometry to be 
developed.

The GEP model is then used to run a second, data-driven 
optimisation, from which the resulting geometry is again 
extracted, smoothed and remeshed with a body fitted mesh 
allowing a third LES to be conducted. By comparing the 
average total pressure loss across the domain Jbl , Jstd and 
J
dd (Eq.  38) for the baseline, standard and data-driven 

geometries, respectively, it can be determined whether the 
data-driven method has successfully generated an improved 
design.

Details of the computational cost of the method are pre-
sented for the backward-facing step and u-bend in Sects. 3.9 
and 4.3.5, respectively. In these sections, we demonstrate the 

Fig. 2   Flow diagram of the one-shot optimisation algorithm. The purple boxes relate to primal and adjoint flow solver steps, yellow boxes show 
steps related to the optimisation updates and orange boxes show steps to control the flow of the algorithm. (Color figure online)
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significant cost advantage over attempting to implement high 
fidelity methods in optimisation routines directly.

Finally, it should be noted that in the backward-facing 
step case, the baseline geometry is used to perform the GEP 
regressions (rather than the standard geometry). This is so 
the operation of GEP can be assessed independently from 
any optimisation procedure. As will be seen in the results, 
the topology of the standard optimisation remains unchanged 
from the baseline geometry and the high fidelity flows have 
very similar structures. Therefore, the GEP model can be 
considered applicable as it is still presented with similar flow 
physics during optimisation to the case it was trained on.

3 � Verification using backward‑facing step

3.1 � Backward‑facing step case details

Figure 4 shows a schematic of the backward-facing step 
case used to verify the method. The domain consists of an 
entry region of length 10H before the step and an exit region 
of length 20H after the step, the entry region has a height 
of 5H and the step height is H giving an expansion ratio 
of 1.2. The mean velocity boundary layer profile obtained 
by Spalart (1988) is imposed at the inlet with Re� = 667 
and the Reynolds no. based on the step height H and mean 
inlet velocity U0 is ReH = 5100 . When running high fidelity 
simulations, random fluctuations u′ are superimposed on the 
inlet velocity profile to match the Reynolds stresses and an 
advective boundary condition is applied at the outlet. For 
RANS-based calculations (including optimisations), the 
mean profile alone is used, and a Neumann condition for 
velocity is imposed at the outlet. In all simulations, the bot-
tom wall is set as no-slip and a slip condition representing 
free-stream flow is imposed at the top wall. For the pressure, 
an atmospheric condition is set at the outlet with Neumann 
conditions at the inlet and walls.

3.2 � Initial high fidelity simulation

The initial high fidelity simulation is run for the baseline 
geometry presented in Fig. 4 with boundary conditions as 
specified in the previous section. The chosen method for all 
high fidelity simulations is large eddy simulation (LES) 
which was run with a wall-adapting local eddy viscosity 
(WALE) sub-grid scale (SGS) turbulence model and solved 
using the pressure implicit with splitting of operator (PISO) 
algorithm. The mesh was generated such that at the lower 
wall, the first cell is placed within the range y+ < 1 , where 
y+ = yu�∕� is the nondimensional wall unit and u� is the 
friction velocity at the wall defined as u� =

√
��yu|w . The 

Fig. 3   Flow diagram of the verification and testing procedure for 
the data-driven topology optimisation method. Red, blue, and green 
boxes correspond to LES, topology optimisation, and GEP simulation 
steps, respectively. Black boxes relate to intermediary data-processing 
steps. (Color figure online)

Fig. 4   Schematic of the backward-facing step domain. The inlet is 
coloured green and the outlet red. No-slip walls are indicated by a 
black solid line and slip walls by black dashed lines. The area shaded 
grey is excluded from the optimisation domain. (Color figure online)
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mesh consists of 1,140,000 cells with 150 cells placed in the 
streamwise direction before the step, 300 cells in the stream-
wise direction after the step, 40 cells in the spanwise direc-
tion behind the step and 100 cells in the spanwise direction 
above the step. Mesh refinement was used in the spanwise 
direction at the lower wall and in both streamwise and span-
wise directions in the wake region behind the step. 20 cells 
are also placed normal to the streamwise, spanwise plane 
and cyclic boundary conditions are imposed on the front and 
back walls. The generated mesh is shown in Fig. 5, high-
lighting the refinement around the step. The total simulation 
time is ttotal = 1500H∕U0 . Assuming a mean convective 
speed of Uc ≈ 0.8U0 , the first 20 pass-throughs of the post-
expansion region with length 20H are discarded to ignore 
the effect of any initial transient behaviour. This leaves 40 
complete fluid passes ( ≈ 1000H∕U0 ) from which to acquire 
the converged statistical dataset.

3.3 � Training data extraction

The statistical quantities obtained from averaging of the LES 
data are the time averaged velocity u and the Reynolds stress 
u′u′ at each grid location in the domain. These raw data 
require some post-processing to extract the training data for 
GEP which comprises (a, Im,�(n)) . The first step is to aver-
age u and u′u′ in the z-direction as all RANS-based calcula-
tions are conducted in 2D. The nondimensional anisotropy 
a is then calculated from its definition in Eq. 1, where k is 
calculated by definition as k = tr(u�u�)∕2 . To obtain Im and 

�(n) the nondimensional strain and rotation rate tensors are 
required which themselves require the specific dissipation rate 
� . Although a value for � can be calculated directly from LES, 
it will not be consistent with the � predicted in RANS. As 
such, a ‘correct’ value of � is found by solving the �-transport 
equation (Eq. 8) such that R� = 0 , whilst holding the LES 
quantities u , u′u′ and k constant. The scalar invariants and 
tensor bases are then simple to compute from Eqs. 3 and 4.

The final step in preparing the training data set for GEP is 
to condition the data on the magnitude of the turbulent kinetic 
energy. When k is low, its value is dominated by noise in the 
high fidelity data, as we train on the anisotropy normalised 
by 2k this noise can be carried through to the training data 
and adversely affect the performance of the machine learning. 
As such we discount these regions of the domain from the 
training data. A threshold value kthreshold = 0.05kmax is used 
and the resulting region is visualised in Fig. 6. The choice of 
threshold is case dependent and has been set heuristically. Data 
in the coloured region where k > kthreshold is taken as the train-
ing dataset for GEP. This results in training data consisting of 
28 000 sets of values for (a, Im,�(n)) , one from each grid point 
inside the conditioned region.

3.4 � Application of GEP to high fidelity dataset

From the acquired training dataset for GEP, � is the tar-
get variable and the scalar invariants and tensor bases are 
the independent variables used to form specific solutions 
�GEP = �GEP(Im,�

(n)) . These solutions are constrained by the 
general EASM structure given in Eq. 2. As the flow is effec-
tively 2D, the z components of the anisotropy and tensor bases 
are not considered in the regressions. The cost function used 
to evaluate the fitness of individuals in the population is, thus, 
given as the mean square error JGEP of the x and y components 
averaged over the N training points

(41)J
GEP =

1

N

N∑

n=1

2∑

i=1

2∑

j=1

(aij − aGEP
ij

)2.

Fig. 5   Mesh used for the high fidelity simulation of the baseline 
backward-facing step geometry

Fig. 6   Data conditioning for the backward-facing step. Data from the wake region where k > k
threshold

 is used as the GEP data set. Data in the 
white region are discarded
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The parameters used in GEP are detailed in Table 1. Further 
details on the definitions of stated parameters can be found 
in Weatheritt and Sandberg (2016).

GEP was run 50 times and given the stochastic nature 
of the algorithm, each run produced a unique model. To 
mitigate against the risk of any single model over fitting the 
anisotropy, the complete set of 50 candidate solutions was 
ensemble averaged to produce the final data-driven closure. 
Although the full expression is too long to present here, to 
first order in the �n coefficients, it is given as follows:

The EASM structure should is easy to discern as each basis 
�(n) is premultiplied by some expression containing the sca-
lar invariants Im . These expressions are the �n coefficients 
and their specification is what makes the data-driven method 
realisable.

3.5 � Verification of the GEP closure

Analysing Eq. 42, it is seen that GEP has found a coefficient 
of the first tensor basis of −1.021 to leading order which is 
very close to the standard EVM as −�(1) = −�∕� = −�t�∕k . 
This is encouraging as it attests to the ability of GEP to 
discover physically relevant closures. However, GEP also 

(42)

�
GEP = (−1.021 + 0.651I1 − 1.540I2)�

(1)

+ (1.019 − 0.125I1 + 0.971I2)�
(2)

+ (1.697 − 0.903I1 + 1.094I2)�
(3).

finds strong dependency on the higher-order bases and sca-
lar invariants, and this is where the advantage of the EASM 
eddy viscosity models such as k–� is introduced.

The ensembled model found a mean square error calcu-
lated by Eq. 41 of 0.0273 in comparison to a mean square 
error of 0.0527 when using the EVM relationship � = −�(1) . 
To investigate where this improvement is obtained, we 
look at Fig. 7 which plots the �1 coefficient over the train-
ing region. Values range between −1 (recovering the linear 
EVM) and close to 0. It can be seen in the central wake 
region and the near wall region that |𝛽1| < 1 indicating a 
lower turbulent viscosity in comparison to the linear EVM. 
This suggests that the linear EVM over predicts the addi-
tional viscosity effect induced by turbulent fluctuations in 
these areas.

RANS calculations using the k–� and data-driven models 
were also performed such that the resulting velocity fields 
could be compared against the time averaged LES. Figure 8 
shows results for the streamwise and spanwise velocity pro-
files of each model plotted at several x/H locations. For both 
the streamwise and spanwise profiles, the GEP closure is 
able to more accurately recreate the LES profile than the 
k–� model. One key aspect is the ability of GEP to bet-
ter predict the length of the re-circulation bubble, which is 
slightly longer than predicted in the k–� calculation. This 
may have been expected when remembering that the GEP 
model reduced the effective viscosity in the wake region, the 
flow over the step, thus, travels further before being brought 
back to the wall by viscous effects.

Across all considered metrics, the GEP closure was found 
to outperform the k–� model in the RANS calculations. 
The MSE in the anisotropy improved 24.8% from 0.0433 
to 0.0325. These values are a slight deterioration of the 
values seen when purely considering the high fidelity data, 
although this is not unexpected as a full RANS calculation 
is a much tougher test for the closure than simply perform-
ing well in the regression. The improvements in anisotropy 
prediction propagated through to a 65.2% reduction in MSE 
for the velocity field which improved from 2.06 × 10−3 to 
7.18 × 10−4.

Table 1   Parameters for GEP algorithm

Parameter Value

Population size 200
Generations 300
Tournament size 2
Random constant range |r| < 0.2

No. random constants 5
Host terminals �(1) , �(2) , �(3)

Host functions p, + , −
Plasmid terminals 1.0, 0.01, r, I1 , I2
Plasmid functions + , −, ×

Fig. 7   Plot of the �1 coefficient across the training domain showing reduced values in the wake region compared with a linear eddy viscosity 
model
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3.6 � Topology optimisations

Now we are confident the GEP model is operating correctly, 
we proceed to consider the topology optimisation. Two opti-
misations are run according to Fig. 3. The first is a standard 
optimisation with the k–� turbulence model, and the second 
is a full data-driven optimisation complete with data-driven 
closure. For each optimisation, the same grid was used as 
for the previous RANS verification. This is a 2D grid with 
the same streamwise and spanwise cell locations as the high 
fidelity LES but with just 1 cell placed in the z-direction, 
resulting in a grid size of 57,000. The optimisation domain 
corresponds to the white area on the schematic of the case 
in Fig. 4 with the grey-shaded region excluded by turning off 
impermeability updates (Eq. 19). The maximum imperme-
ability was set to �max = 2000 with a step size � = 1 × 106 . 
The optimisation algorithm was run using the one-shot 
method detailed in Sect. 2.3.6 with nupd = 10 , meaning 
that 10 pseudo-timesteps of the primal and adjoint system 
are performed between optimisation updates. Volume con-
straints were not enforced in these optimisations, achieved 
by excluding the second term in the sensitivity calculation 
in Eq. 18.

Each optimisation was run with the converged RANS 
solutions obtained in the previous section as initial condi-
tions. The optimisations were run for 300 iterations (3000 
pseudo-timesteps) to allow convergence of � and the primal 
and adjoint systems. Optimised geometries are shown in 
Fig. 9 with the corresponding optimisation histories pre-
sented in Fig. 10. Despite the similarities in the optimised 
geometries, the data-driven optimisation generates an elon-
gated ‘ramp’ length in comparison to the standard optimisa-
tion. This is a promising result as the improvement that GEP 
found over the eddy viscosity model was attributed to an 
increase in the length of the separation bubble. An increased 
‘ramp’ length would, therefore, seem an appropriate adjust-
ment for the data-driven optimisation to make.

3.7 � Geometry extraction and high fidelity 
simulations

The aim is to produce optimised geometries reflective of 
high fidelity turbulence treatment. So, to test if the geometry 
produced by the data-driven optimisation is an improvement 
over the standard geometry, they must both be extracted 
from their optimisations, remeshed with body fitted meshes 
and run with LES.

Fig. 8   Wall normal profiles of a streamwise velocity and b spanwise velocity at various streamwise locations for the LES data, k–� and GEP 
models
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This process follows the steps outlined in Sect. 2.4. First, 
the raw geometry is extracted by taking the region where 
𝛼 < 𝛼max∕2 . Given the nature of the fixed grids used in opti-
misation, the generated surface will not be smooth and must 
be smoothed before remeshing. The smoothing operation of 
moving each vertex to the average position of it’s neighbours 
is repeated 30 times to produce the smoothed geometry. The 
raw and smoothed geometry are shown for the ramp section 
of the standard optimisation in Fig. 11.

This smoothed geometry can now be remeshed and the 
body fitted mesh for the standard geometry is shown in 
Fig. 12. The meshes for each geometry are given the same 
structure, consisting of 1, 200, 000 hexahedral cells with 600, 
100 and 20 elements in the x (streamwise), y (spanwise) and 
z directions, respectively. Cyclic boundary conditions are 
again imposed on the front and back walls. Other than the 
differing geometries, the simulations are set up with exactly 
the same boundary and initial conditions as the initial high 
fidelity simulation. All models and solution methods are 
also identical. Converged average pressure loss values are 
then calculated from the baseline, standard and data-driven 
geometries, the results of which will be presented in the 
next section.

3.8 � Verification results

Values for the average pressure drop of the fluid as it flows 
through the domain obtained: (1) directly from the topol-
ogy optimisations, (2) from RANS calculations (using the 
corresponding closure) on the body-fitted meshes, and (3) 
from LES for each of the baseline, standard and data-driven 
geometries are detailed in Table 2.

Comparing the results of the optimisations with the base-
line RANS the standard optimisation improves by 22.5% , 

Fig. 9   Resulting geometries from the standard FTO (top) and data-driven FTO (bottom). The increase in ramp length for the data-driven geom-
etry is highlighted

Fig. 10   Convergence of the standard and data-driven topology opti-
misations for the backward-facing step case

Fig. 11   Raw geometry extracted directly from the standard optimisa-
tion of the backward-facing step and the resulting smoothed geometry 
after application of the smoothing filter

Fig. 12   Body-fitted mesh generated for the high fidelity simulation of 
the standard backward-facing step geometry
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whilst the data-driven optimisation finds an improvement of 
27.2% . When running RANS calculations on the body-fitted 
geometries with their respective closures, the results dete-
riorate slightly with the standard RANS finding an improve-
ment over the baseline of 14.2% and the data-driven RANS 
improving on the baseline by 20.6% . Looking finally at the 
LES results which is the true test of the method, it is sen 
that the pressure drop for the standard geometry is actually 
higher than the baseline at 0.3950 in comparison to 0.3454 
whilst the data-driven geometry finds a slight improvement 
over the baseline of 3.7%.

The reason for the standard geometry failing to improve 
on the baseline can be explained when looking at the separa-
tion predicted in Fig. 13. The standard RANS model fails to 
accurately predict the separation over the generated ‘ramp’, 
and in the optimisation, this suggests that ramp is incorrectly 
calibrated for the LES flow where a much larger degree of 
separation is predicted. The data-driven RANS provides an 
improved prediction of the separation over the ramp so the 
optimisation is able to generate a ramp more representative 
of the high fidelity flow (by removing more of the separa-
tion region) allowing an improvement over the baseline to 
be achieved.

These results highlight the necessity of the developed 
data-driven optimisation technique and the importance 
of testing geometries with high fidelity methods. They 

demonstrate that running an optimisation using an inaccu-
rate flow model can result in a solution that fails to perform 
well in practice. Although this is unlikely to be true for all 
test cases, it serves as an important demonstration of the 
issues associated with current topology optimisation solv-
ers. The data-driven technique, however, has been shown to 
operate as expected for the backward-facing step test case.

3.9 � Computational cost

It is important to consider the computational cost of the full 
data-driven procedure as one of the benefits of the method 
is the feasibility of achieving designs representative of high 
fidelity methods. To frame this discussion, a breakdown of 
the computational cost for each step in the process of the 
backward-facing step verification is presented in Table 3.

The optimisations, GEP regressions and RANS calcula-
tions are all run on a standard desktop using 4 cores whilst 
the high fidelity LES is run on a high performance comput-
ing cluster using 32 cores. The computational cost of the 
standard optimisation is just 1.5 times that of the baseline 
RANS calculation, highlighting the efficiency of the one-
shot method in generating optimised designs. Even though 

Table 2   Pressure drop results for the backward-facing step optimisa-
tion

Geometry RANS (TO) RANS (body fit) LES

Baseline – 0.3310 0.3454
Standard 0.2564 0.2840 0.3950
Data driven 0.2410 0.2628 0.3326

Fig. 13   Plots of the y-component of velocity for each of the baseline, standard and data-driven geometries when run using both body fitted 
RANS and LES

Table 3   Details of computational cost for the backward-facing step 
data-driven optimisation verification

Optimisation step Core-h No. cores CPU model Clock 
speed/
GHz

Standard FTO 0.3 4 Intel Core i7-9700 3.0
Data-driven FTO 0.7 4 Intel Core i7-9700 3.0
GEP regressions 1.7 4 Intel Core i7-9700 3.0
RANS (baseline) 0.2 4 Intel Core i7-9700 3.0
LES (baseline) 930 32 AMD EPYC 7724 2.8
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300 optimisation iterations are required, the converged 
design is obtained in just 5 min. Adding in the data-driven 
terms slows down the optimisation, but solutions are still 
generated in around 3.5 RANS times. The GEP regressions 
take slightly more effort as 50 solutions are required for 
ensemble averaging, but these are still obtained in just 1.7 
core-h of training (25 min using 4 cores). The bottleneck in 
the method is running the high fidelity simulations, as the 
computational costs of the other steps are negligible in com-
parison. The total cost of the method is then approximated 
to the order of 3 high fidelity simulations (for the baseline, 
standard, and data-driven geometries).

Attempting to implement a high fidelity method directly 
into the optimisation framework would require a fully con-
verged, time averaged simulation with each iteration of the 
optimisation solver. This would result in N high fidelity 
simulations, where N is the number of optimisation steps 
required for convergence, which can easily be of the order 
O(102) . The present method then provides a computational 
saving of around two orders of magnitude, demonstrating 
why data-driven turbulence models are required. They ena-
ble high fidelity level turbulence treatment to be introduced 
to optimisation methods for the first time.

4 � Testing using U‑bend

4.1 � U‑bend case details

The chosen test case to evaluate the performance gains of 
the data-driven optimisation method is a 2D u-bend con-
figuration. Figure 14 shows a schematic of the case. The 
dashed line depicts the outside bend for the baseline geom-
etry which forms a standard u-bend shape. It is against this 

baseline geometry that the optimisations will be compared, 
rather than the full-square optimisation region. Further, the 
inlet and outlet ducts are excluded from the optimisation 
domain.

The turbulent inlet velocity profile is adapted from the 
DNS channel flow profile obtained by Kim et al. (1987) 
to fit an inlet Reynolds no. based on half the inlet region 
height H and the bulk inlet velocity U0 of ReH = 5000 . In 
the same manner as for the backward-facing step, random 
fluctuations u′ are superimposed on the mean velocity 
profile for all high fidelity simulations such that they 
match the DNS Reynolds stresses and a no-slip condition 
is applied at all walls. For high fidelity and RANS-based 
calculations, respectively, an advective and a zero gradi-
ent condition are applied at the outlet. The outlet pressure 
is atmospheric and zero pressure gradient is imposed at 
the inlet and walls. All models and solution methods for 
LES and RANS are the same as for the backwards-facing 
step.

In the optimisations, �max was kept at 2000 as for the 
backward-facing step but � was increased to 2 × 106 to accel-
erate the convergence. All high fidelity data post-processing 
steps and the configuration and running of GEP regressions 
are the same as for the backward-facing step and will not be 
reiterated here.

The domain for the optimisations is meshed using a struc-
tured mesh consisting of 106, 000 hexahedral elements. At 
the walls in the inlet and outlet section and around the inside 
of the u-bend, the first cell is again placed within the range 
y+ < 1 . Walls on the outer section are not refined as far as 
they are not expected to feature in the optimised designs. 
The baseline geometry is meshed with structured hexahedral 
elements and consist of 190, 000 elements in the xy-plane. 
For the high fidelity LES, a further 40 elements are also 
given in the z-direction with cyclic boundary conditions 
imposed at the front and back walls, resulting in a total ele-
ment count of 7, 600, 000.

4.2 � Volume constraint study

Before testing the data-driven method on the u-bend case a 
volume constraint study is performed. It is considered impor-
tant for real-world applications that the method is compat-
ible with volume constraints. The data-driven method needs 
to be able to find improved designs even when constrained 
to use the same fluid fraction as the standard optimisation. 
Five values of prescribed fluid fraction are tested using the 
standard optimisation, and the data-driven method is then 
applied to the fluid fraction giving the optimum results for 
pressure drop in the following section.

The fluid fractions and corresponding volume constraint 
parameters used are presented in Table 4. The fluid fraction 

Fig. 14   Schematic of the u-bend test case. The inlet is coloured green 
and the outlet coloured red. No-slip walls are indicated by a black 
solid line. The dashed line shows the shape of the baseline u-bend 
against which optimisation results are compared. The area shaded 
grey is not considered as part of the optimisation domain. (Color fig-
ure online)
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f = 0.41 corresponds to the fluid fraction present in the 
baseline design and then increments of 0.1 are considered 
up to f = 0.8 . A lower initial weighting and growth rate 
was used for the fluid fractions f = 0.7 and 0.8 as less forc-
ing was required to satisfy the volume constraints in these 
cases. Higher weighting early in the optimisation also leads 
to deteriorated performance for these fluid fractions.

The resulting optimisation histories for the objective 
functions and fluid fractions are presented in Fig. 15. The 
corresponding optimised geometries plotted with stream-
lines coloured by velocity magnitude are shown in Fig. 16. 
Here, a RANS calculation on the optimisation grid with an 
impermeability field the same as the baseline design is also 
presented.

Compared to this baseline design, it is apparent from 
examining the streamlines that all optimisations act to 
remove separated regions in the flow, and from the objec-
tive function histories, it is clear that improved designs are 
obtained with a larger fluid fraction. This appears to be in 
part due to the generation of splitters which are present on 
all optimised designs other than the baseline fluid fraction 
where f = 0.41 . The splitters help turn the flow around the 

u-bend and also reduce the velocity gradients around the 
inside of the bend helping reduce the pressure loss. Stream-
lines are also shown on each of the designs to confirm that 
the maximum impermeability used is high enough and that 
the fluid does not penetrate the solid regions. This is espe-
cially important in the designs where splitters are generated 
to check that there is not flow passing through the centre of 
the splitters.

The fluid fraction f = 0.8 marginally achieves the lowest 
value of pressure drop. However, when considering the final 
design in Fig. 16, it is apparent that the impermeability in 
the solid part of the domain has not been forced to �max . This 
is a result of the optimisation attempting to generate a design 
with a lower fluid fraction. To satisfy the volume constraint, 
the optimisation acts by reducing the impermeability across 
the whole solid region, rather than by expanding the fluid 
region. The extra fluid fraction then comes from partially 
solidified material rather than true fluid region. The uncon-
verged fluid fraction history for f = 0.8 in Fig. 15 confirms 
this observation. As such, this optimisation is discarded and 
we proceed with the data-driven method using a fluid frac-
tion f = 0.7.

4.3 � U‑bend results

4.3.1 � Geometry extraction and remeshing

To proceed with the data-driven optimzation, a high fidel-
ity simulation of the standard optimised geometry with 
a prescribed fluid fraction f = 0.7 needs to be run. The 
geometry extraction and smoothing steps are the same as 
for the backward-facing step and the raw and smoothed 

Table 4   Volume constraint parameters

Fluid fraction, f �0 w
0

C
w
max

C
�

0.41 0 10.0 10000 1.1
0.50 0 10.0 10000 1.1
0.60 0 10.0 10000 1.1
0.70 0 1.0 10000 1.03
0.80 0 1.0 10000 1.03

Fig. 15   Convergence histories of a the objective functions and b fluid fractions, for each of the prescribed fluid fractions considered in the vol-
ume constraint study
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geometries resulting from this process are shown in 
Fig. 17a. The smoothing operation is repeated 30 to pro-
duce the smoothed geometry. The generated mesh consists 

of structured hexahedral elements in the bulk of the domain 
with 25 prism layer cells used at the walls to resolve the 
boundary layer and ensure y+ < 1 at the wall. This resulted 

Fig. 16   Optimised geometries resulting from standard optimisa-
tions with volume constraints enforced, with streamlines coloured by 
velocity magnitude plotted. Each optimisation is labelled with it is 

corresponding prescribed fluid fraction. A RANS calculation with the 
impermeability field set to the baseline design is also presented

Fig. 17   a Details of the raw and smoothed geometries resulting from the geometry extraction and remeshing operations for the standard optimi-
sation. b–d Plots of the body-fitted mesh showing the structured hexahedral mesh in the bulk and prism layer refinement at the walls
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in a 2D mesh with 168, 000 cells, where 40 cells are also 
place in the z-direction when running LES, giving a total 
of 6, 720, 000 cells. Fig. 17b–d shows the mesh around the 
splitter and the inner wall.

4.3.2 � GEP regressions

Training data from the time averaged results of the high 
fidelity LES was then extracted to learn the data-driven 
model for the u-bend case. Applying GEP to this training 
data generated the following model for the anisotropy (here 
presented to first order only)

It is interesting to compare this model with the GEP closure 
found for the backward-facing step case given in Eq. 42. The 
main point of note is the magnitude of the constant coef-
ficient of �(1) . Whilst the backward-facing step model had 
a constant coefficient of close to −1 , the u-bend has a value 
of −0.465 . This suggests that the eddy viscosity model over 
predicts the additional turbulent viscosity across the domain, 
and the GEP model developed here acts to reduce it.

4.3.3 � Topology optimisations

Applying Eq. 43 in the data-driven optimisation results in 
the geometry shown on the right in Fig. 18 and the con-
vergence of the standard and data-driven optimisations 
is presented in Fig. 19. The first point to note is that the 
topologies generated by both optimisations are the same, 
this is an important feature as it helps give confidence that 
the data-driven closure is still presented with the same flow 
physics and the model is not being extrapolated beyond its 
capabilities. Beyond this, there are several key differences 
in the generated geometries. First, the data-driven geometry 

(43)

�
GEP = (−0.465 + 0.213I1 − 0.005I2)�

(1)

+ (0.896 − 0.403I1 + 0.273I2)�
(2)

+ (0.820 − 0.290I1 − 0.018I2)�
(3).

provides a flatter expansion of the outer wall for the flow 
entering from the inlet duct. The splitter itself on the data-
driven geometry is more evenly distributed around the bend 
and presents a slight elongation of the solid region cutting 
out the separated region on the inside of the bend. These 
differences lead to the reduced converged value of pressure 
drop obtained in Fig. 19.

4.3.4 � High fidelity results

The effects of these differences in geometry are realised by 
looking at the pressure drop results in Table 5. The direct 
output from the optimisations predict improvements of 
36.1% and 56.5% for the standard and data-driven respec-
tively over the baseline u-bend. When RANS calculations 
were run with body fitted meshes the results become even 
more promising with improvements of 57.5% and 64.2%, 
respectively. Finally, when the geometries were tested with 
LES the standard geometry improved on the baseline by 

Fig. 18   Resulting geometries from a the standard FTO and b the data-driven FTO of the u-bend test case

Fig. 19   Objective function (solid) and fluid fraction (dashed) optimi-
sation histories for the standard and data-driven optimisations
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64.2% and the data-driven optimisation improved even fur-
ther by 69.0%.

To investigate how the data-driven optimisation has 
been able to discover this low resistance pathway around 
the u-bend, we first look at Fig. 20a which shows the time 
averaged velocities obtained from LES of the standard (left) 
and data-driven (right) geometries. Separation on the suction 
side of the splitter for the data-driven geometry is signifi-
cantly delayed in comparison to the standard. This results 
in a much smaller separation bubble close to the trailing 
edge and also allows the flow to exit the splitter section at 
an angle closer to that of the outlet duct. This reduced angle 
then allows the separated flow on the inside of the u-bend to 
reattach sooner, reducing the size of this separated region, 
and also reduces the small separation region as the flow 
enters the outlet duct. Each of these flow features have the 

effect of reducing the drag and, thus, the pressure loss of the 
fluid in the data-driven geometry.

To visualise more clearly the reduction in turbulence 
produced by minimising separation in the data-driven 
geometry, Fig. 20b shows the turbulent kinetic energy. 
Clearly in the regions mentioned, the kinetic energy is at 
much higher levels in the standard geometry than the data-
driven geometry. This effect is most pronounced around 
the splitters trailing edge separation bubble and the inside 
wall of the u-bend.

Figure 20c shows the effect the previously described 
features have on the total pressure. The reduced loss 
regions can be seen in the separation behind the splitter 
and around the inside wall of the u-bend and these lead to 
a lower value of total pressure at the inlet, representing the 
observed reduced total pressure loss.

4.3.5 � Computational cost

Finally, a breakdown of the computational cost of each stage 
of the data-driven optimisation method is presented for the 
u-bend case in Table 6. The conclusions drawn are the same 
as for the backward-facing step; the bottleneck in the method 

Table 5   Pressure drop results for the u-bend optimisation

Geometry RANS (TO) RANS (body fit) LES

Baseline – 0.1100 0.1470
Standard 0.0703 0.0468 0.0526
Data-driven 0.0478 0.0394 0.0455

Fig. 20   Plots of time averaged 
data for the high fidelity simula-
tions on the standard (left) and 
data-driven (right) geometries 
for a velocity magnitude, b 
turbulent kinetic energy and c 
total pressure
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is the running of high fidelity LES simulations, whilst the 
optimisations and model training are computationally cheap 
in comparison. The total computational effort can again be 
approximated as that of 3 high fidelity simulations, demon-
strating the ability to generate optimised designs representa-
tive of high fidelity turbulence treatment for the first time.

5 � Conclusions

A novel data-driven technique has been developed to 
improve the treatment of turbulence in fluid topology opti-
misation. The data-driven aspect allows the optimisation 
solver to mimic high fidelity simulations whilst maintain-
ing low computational cost. This was achieved by deriv-
ing the full adjoint system, for the corresponding primal 
RANS equations closed with a fully general explicit alge-
braic stress model.

The technique was first verified on a pressure drop opti-
misation across a backward-facing step geometry. The case 
presents a situation where the physics is simplified and 
some intuition of the expected result was possible, allow-
ing confirmation of the correct operation of the method. 
This verification showed the potential performance gain 
available from the technique when tested using high fidel-
ity simulations and also highlighted some of the limita-
tions of standard fluid topology optimisation solvers. In 
fact, in this case, standard optimisations were shown to 
have detrimental performance when tested in high fidelity 
simulations, compared to the baseline design.

The technique was then tested on a u-bend optimisa-
tion for pressure drop which presents a more complex case 
where optimised geometries are hard to predict by physical 
intuition and standard turbulence models are more likely 
to suffer lower fidelity prediction. For this case, the data-
driven optimisation was able to reduce the pressure drop 
through the domain by 69.0% over the baseline u-bend in 
comparison to 64.2% for the standard optimisation.

It is hoped that this work may serve as an example of 
how high fidelity methods can be utilised when consid-
ering optimisation problems previously limited to lower 
fidelity, computationally cheap methods.

Acknowledgements  This work was supported by the Engineering and 
Physical Sciences Research Council (EPSRC) Grant EP/L016230/1. 
The authors would also like to thank R. D. Sandberg for his continued 
advice and support.

Declarations 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Replication of results  The implementation in the OpenFOAM libraries 
is taken directly from the description provided of the equations and 
numerical implementation in this article. This is possible as Open-
FOAM provides a high level interface through which the governing 
equations may be written.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Alexandersen J, Andreasen CS (2020) A review of topology optimisa-
tion for fluid-based problems. Fluids 5(1):1–32. https://​doi.​org/​
10.​3390/​fluid​s5010​029

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in struc-
tural design using a homogenization method. Comput Methods 
Appl Mech Eng 71:197–224

Borrvall T, Petersson J (2003) Topology optimization of fluids in 
Stokes flow. Int J Numer Methods Fluids 41(1):77–107. https://​
doi.​org/​10.​1002/​fld.​426

Dilgen CB, Dilgen SB, Fuhrman DR, Sigmund O, Lazarov BS (2018a) 
Topology optimization of turbulent flows. Comput Methods Appl 
Mech Eng 331:363–393. https://​doi.​org/​10.​1016/j.​cma.​2017.​11.​
029

Dilgen SB, Dilgen CB, Fuhrman DR, Sigmund O, Lazarov BS (2018b) 
Density based topology optimization of turbulent flow heat trans-
fer systems. Struct Multidisc Optim 57(5):1905–1918. https://​doi.​
org/​10.​1007/​s00158-​018-​1967-6

Duraisamy K, Iaccarino G, Xiao H (2019) Turbulence modeling in the 
age of data. Annu Rev Fluid Mech 51(1):357–377. https://​doi.​org/​
10.​1146/​annur​ev-​fluid-​010518-​040547

Durbin PA (2018) Some recent developments in turbulence closure 
modeling. Annu Rev Fluid Mech 50(1):77–103. https://​doi.​org/​
10.​1146/​annur​ev-​fluid-​122316-​045020

Table 6   Details of computational cost for the u-bend data-driven 
optimisation testing

Optimisation step Core-h No. cores CPU model Clock 
speed/
GHz

Standard FTO 1.0 4 Intel Core i7-9700 3.0
Data-driven FTO 1.8 4 Intel Core i7-9700 3.0
GEP regressions 1.9 4 Intel Core i7-9700 3.0
RANS (standard) 0.7 4 Intel Core i7-9700 3.0
LES (standard) 2085 32 AMD EPYC 7724 2.8

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/fluids5010029
https://doi.org/10.3390/fluids5010029
https://doi.org/10.1002/fld.426
https://doi.org/10.1002/fld.426
https://doi.org/10.1016/j.cma.2017.11.029
https://doi.org/10.1016/j.cma.2017.11.029
https://doi.org/10.1007/s00158-018-1967-6
https://doi.org/10.1007/s00158-018-1967-6
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1146/annurev-fluid-122316-045020
https://doi.org/10.1146/annurev-fluid-122316-045020


Topology optimisation of turbulent flow using data‑driven modelling﻿	

1 3

Page 21 of 21  49

Ferreira C (2001) Gene expression programming: a new adaptive algo-
rithm for solving problems. Complex Syst 13(2):87–129

Giles MB, Pierce NA (2000) An introduction to the adjoint approach 
to design. Flow Turbulence Combust 65(3–4):393–415. https://​
doi.​org/​10.​1023/A:​10114​30410​075

Hazra SB (2008) Multigrid one-shot method for aerodynamic shape 
optimization. J Sci Comput 30(3):1527–1547

Kim J, Moin P, Moser R (1987) Turbulence statistics in fully developed 
channel flow at low reynolds number. J Fluid Mech 177:133–166. 
https://​doi.​org/​10.​1017/​S0022​11208​70008​92

Kontoleontos EA, Papoutsis-Kiachagias EM, Zymaris AS, Papadimi-
triou DI, Giannakoglou KC (2013) Adjoint-based constrained 
topology optimization for viscous flows, including heat transfer. 
Eng Optim 45(8):941–961. https://​doi.​org/​10.​1080/​03052​15X.​
2012.​717074

Koza JR (1992) Genetic programming: on the programming of comput-
ers by means of natural selection. MIT Press, Cambridge

Le H, Moin P, Kim J (1997) Direct numerical simulation of turbulent 
flow over a backward-facing step. J Fluid Mech 330:349–374. 
https://​doi.​org/​10.​1017/​S0022​11209​60039​41

Othmer C (2008) A continuous adjoint formulation for the computa-
tion of topological and surface sensitivities of ducted flows. Int J 
Numer Methods Fluids 58:861–877. https://​doi.​org/​10.​1002/​fld.​
1770

Papoutsis-Kiachagias EM, Giannakoglou KC (2016) Continuous 
adjoint methods for turbulent flows, applied to shape and topol-
ogy optimization: industrial applications. Arch Comput Methods 
Eng 23(2):255–299. https://​doi.​org/​10.​1007/​s11831-​014-​9141-9

Pichler R, Sandberg RD, Michelassi V, Bhaskaran R (2016) Investiga-
tion of the accuracy of RANS models to predict the flow through 
a low-pressure turbine. J Turbomach. https://​doi.​org/​10.​1115/1.​
40335​07

Pietropaoli M, Ahlfeld R, Montomoli F, Ciani A, D’Ercole M (2016) 
Design for additive manufacturing: internal channel optimization. 
Heat Transf. https://​doi.​org/​10.​1115/​GT2016-​57318

Pope SB (1975) A more general effective-viscosity hypothesis. J Fluid 
Mech 72:331–340. https://​doi.​org/​10.​1017/​S0022​11207​50033​82

Rodi W (1976) A new algebraic relation for calculating the Reynolds 
stresses. Gesellschaft Angewandte Mathematik und Mechanik. 
https://​doi.​org/​10.​1002/​zamm.​19765​613093

Spalart PR (1988) Direct simulation of a turbulent boundary layer up 
to R � = 1410. J Fluid Mech 187:61–98. https://​doi.​org/​10.​1017/​
S0022​11208​80003​45

Spalart PR, Shur ML, Strelets MK, Travin AK (2015) Direct simu-
lation and RANS modelling of a vortex generator flow. Flow 
Turbulence Combust 95(2–3):335–350. https://​doi.​org/​10.​1007/​
s10494-​015-​9610-8

Spencer AJ, Rivlin RS (1958) The theory of matrix polynomials and 
its application to the mechanics of isotropic continua. Arch Ration 
Mech Anal 2(1):309–336. https://​doi.​org/​10.​1007/​BF002​77933

Weatheritt J, Sandberg RD (2016) A novel evolutionary algorithm 
applied to algebraic modifications of the RANS stress–strain rela-
tionship. J Comput Phys 325:22–37. https://​doi.​org/​10.​1016/j.​jcp.​
2016.​08.​015

Weatheritt J, Pichler R, Sandberg RD, Laskowski G, Michelassi V 
(2017) Machine learning for turbulence model development using 
a high-fidelity HPT cascade simulation. In: Turbomachinery tech-
nical conference and exposition, Charlotte, NC, pp 1–12. https://​
doi.​org/​10.​1115/​gt2017-​63497

Wilcox DC (1998) Turbulence modeling for CFD, 2nd edn. DCW 
Industries, La Canada

Wilcox DC (2006) Turbulence modeling for CFD, 3rd edn. DCW 
Industries, La Canada

Wu JL, Xiao H, Sun R, Wang Q (2019) Reynolds-averaged Navier–
Stokes equations with explicit data-driven Reynolds stress closure 
can be ill-conditioned. J Fluid Mech 869:553–586. https://​doi.​org/​
10.​1017/​jfm.​2019.​205

Yoon GH (2016) Topology optimization for turbulent flow with 
Spalart–Allmaras model. Comput Methods Appl Mech Eng 
303:288–311. https://​doi.​org/​10.​1016/j.​cma.​2016.​01.​014

Zhang Y, Dwight RP, Schmelzer M, Gómez JF, hua Han Z, Hickel 
S (2021) Customized data-driven RANS closures for bi-fidelity 
LES-RANS optimization. J Comput Phys 432:110153. https://​doi.​
org/​10.​1016/j.​jcp.​2021.​110153

Zymaris AS, Papadimitriou DI, Giannakoglou KC, Othmer C (2009) 
Continuous adjoint approach to the Spalart–Allmaras turbulence 
model for incompressible flows. Comput Fluids 38:1528–1538. 
https://​doi.​org/​10.​1016/j.​compf​luid.​2008.​12.​006

Publisher’s note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1023/A:1011430410075
https://doi.org/10.1023/A:1011430410075
https://doi.org/10.1017/S0022112087000892
https://doi.org/10.1080/0305215X.2012.717074
https://doi.org/10.1080/0305215X.2012.717074
https://doi.org/10.1017/S0022112096003941
https://doi.org/10.1002/fld.1770
https://doi.org/10.1002/fld.1770
https://doi.org/10.1007/s11831-014-9141-9
https://doi.org/10.1115/1.4033507
https://doi.org/10.1115/1.4033507
https://doi.org/10.1115/GT2016-57318
https://doi.org/10.1017/S0022112075003382
https://doi.org/10.1002/zamm.19765613093
https://doi.org/10.1017/S0022112088000345
https://doi.org/10.1017/S0022112088000345
https://doi.org/10.1007/s10494-015-9610-8
https://doi.org/10.1007/s10494-015-9610-8
https://doi.org/10.1007/BF00277933
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1016/j.jcp.2016.08.015
https://doi.org/10.1115/gt2017-63497
https://doi.org/10.1115/gt2017-63497
https://doi.org/10.1017/jfm.2019.205
https://doi.org/10.1017/jfm.2019.205
https://doi.org/10.1016/j.cma.2016.01.014
https://doi.org/10.1016/j.jcp.2021.110153
https://doi.org/10.1016/j.jcp.2021.110153
https://doi.org/10.1016/j.compfluid.2008.12.006

	Topology optimisation of turbulent flow using data-driven modelling
	Abstract
	1 Introduction
	2 Methods
	2.1 Explicit algebraic stress model
	2.2 Gene expression programming
	2.3 Topology optimisation
	2.3.1 System of primal equations
	2.3.2 Statement of constrained optimisation problem
	2.3.3 Sensitivity analysis
	2.3.4 Derivation of adjoint system
	2.3.5 Treatment of boundary conditions
	2.3.6 Optimisation algorithm implementation

	2.4 Verification and testing procedure

	3 Verification using backward-facing step
	3.1 Backward-facing step case details
	3.2 Initial high fidelity simulation
	3.3 Training data extraction
	3.4 Application of GEP to high fidelity dataset
	3.5 Verification of the GEP closure
	3.6 Topology optimisations
	3.7 Geometry extraction and high fidelity simulations
	3.8 Verification results
	3.9 Computational cost

	4 Testing using U-bend
	4.1 U-bend case details
	4.2 Volume constraint study
	4.3 U-bend results
	4.3.1 Geometry extraction and remeshing
	4.3.2 GEP regressions
	4.3.3 Topology optimisations
	4.3.4 High fidelity results
	4.3.5 Computational cost


	5 Conclusions
	Acknowledgements 
	References




