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Abstract
The problem which is actually being addressed in this study includes two parts: One is on establishing time-dependent 
reliability-based design optimization (tRBDO) formulation under fuzzy and interval uncertainties to obtain the optimal design 
parameter solution for the time-dependent structure. The other is on presenting a serial single-loop optimization (SSLO) strat-
egy to estimate the optimal design parameter. For addressing the optimal design parameter of the time-dependent structure 
involving fuzzy and interval uncertainties, a novel tRBDO model with the constraint of time-dependent failure possibility 
(TDFP) based on the possibility theory of the safety measure is proposed. For evaluating the optimal design parameter, the 
established SSLO method converts the original triple-loop optimization which is TDFP-index-based approach into a sequence 
of deterministic optimization, interval value corresponding to the worst case scenario, the estimation of time instant, and 
the minimum most probable point. Iterative searching step is not needed to find the minimum most probable point at each 
iteration step in the proposed SSLO strategy; therefore, the computational time is extremely reduced. Several examples are 
given to demonstrate the efficiency of the proposed approach.

Keywords Time-dependent reliability based design optimization · Fuzzy uncertainty · Interval uncertainty · Serial single-
loop optimization · Time-dependent failure possibility

1 Introduction

In most engineering design field, the problem of the 
game between the low cost and high safety level is widely 
explored. Traditional deterministic design optimization 
(DDO), robust design optimization (RDO), and reliability-
based design optimization (RBDO) have many achievements 

in this filed (Schuëller and Jensen 2008). DDO focuses on 
estimating the optimum solution under the constraint func-
tions without considering uncertainties. However, it is gen-
erally known that the uncertainties unavoidably exist in 
structural geometric dimension, material property, external 
loading, and other system parameters which are included in 
the design process (Ling et al. 2019; Hu et al. 2020; Zadeh 
1965). These uncertainties may cause structural performance 
to change or fluctuate, or even cause severe deviation and 
result in unanticipated or even unprecedented function fault 
(Yao et al. 2011). Therefore, RDO and RBDO that consider 
structural uncertainties have been studied in many works, 
RDO aims at minimizing the variation of the objective func-
tion, and RBDO model aims at searching for the optimal 
solution under reliability constraints considering uncertain-
ties. This paper mainly focuses on RBDO.

As is well known, current research and practice on RBDO 
are mainly concentrated in probabilistic framework (Kes-
htegar and Hao 2018; Zhang et al. 2017; Meng and Kes-
htegar 2019; Royset et al. 2001). Under this framework, 
calculating the reliability requires precise information of 
the tail of the random probability distribution (Elishakoff 
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and Ferracuti 2006), and the accurate tail characteristics of 
the random distribution require large amount of data (Fan 
et al. 2018). It is too hard for the engineering application 
to provide so much data for accurately representing the tail 
distribution, which makes the estimation of the reliability 
completely unconvincing, and potentially with severe con-
sequences. In allusion to the existing defects represented by 
probabilistic model in RBDO, interval set and fuzzy sets 
theory have attracted large attentions in uncertainty repre-
sentation, and bounds of the uncertainty and the membership 
function of the fuzzy variables can be generated with few 
sample data, for example, human behaviors and expert expe-
rience (Jiang et al. 2007; Hao et al. 2017; Wang et al. 2019a, 
2020, 2019b; Du et al. 2006; Xiong et al. 2019; Wang and 
Xiong 2019). The practical applications usually face the situ-
ation with mixed uncertainties. Some uncertainties involving 
human behaviors and expert experiences can be measured 
within a fuzzy set framework, and the bounds of other uncer-
tainties are well-defined, but the sample information is miss-
ing and can be represented within an interval variable. Some 
works focusing on mixed uncertainties have been proposed, 
such as the mixture of random and interval uncertainties, the 
combination of random and fuzzy variables, etc.; however, 
fewer works deal with the time-dependent situation with 
fuzzy variables and interval variables.

RBDO involving fuzzy uncertainty under different reli-
ability index constraints have been studied (Wang et al. 
2019a, 2017; Tang et al. 2014; Du et al. 2006; Du and Choi 
2008; Mourelatos and Zhou 2005). Wang et al. proposed a 
sequential optimization and fuzzy reliability analysis method 
for multidisciplinary systems to decouple the fuzzy relia-
bility analysis from the optimization; furthermore, a novel 
adaptive collocation method is established to analyze the 
fuzzy reliability for multidisciplinary systems (Wang et al. 
2019a). A new formulation of possibility-based design opti-
mization using the performance measure approach (PMA) is 
established by Du and Choi; for the inverse possibility analy-
sis, the maximal possibility search method is proposed to 
improve numerical efficiency and accuracy (Du et al. 2006). 
Wang et al. proposed a credibility-based design optimiza-
tion, and the sequential optimization and credibility assess-
ment are established to solve the credibility-based design 
optimization (Wang et al. 2020). Tang et al. presented the 
possibilistic safety index-based design optimization model 
for structures with fuzzy variable vector, and a technique 
called target performance-based design approach is pro-
posed to solve the optimization model (Tang et al. 2014). A 
hybrid reliability-based optimization model is established 
with random, interval, and fuzzy parameters, and a subin-
terval vertex method is presented to calculate the optimiza-
tion model (Wang et al. 2017). A possibility-based design 
optimization method is proposed, and a computationally 
efficient and accurate hybrid (global–local) optimization 

approach is subsequently described for calculating the con-
fidence level of fuzzy response, the method combines the 
advantages of the commonly used vertex and discretization 
methods (Mourelatos and Zhou 2005). By approximating 
the fuzzy credibility constraint by the adaptive kriging sur-
rogate model, a fuzzy credibility-based design is decoupled 
to a common deterministic optimization (Jia et al. 2020).

All RBDO involving the fuzzy uncertainty in the lit-
erature mentioned above deal with the time-independent 
structure. The time-dependent reliability-based design opti-
mization (tRBDO) under the mixed fuzzy uncertainty and 
interval uncertainties is seldom investigated in the reported 
literatures. Therefore, this work firstly constructs a tRBDO 
with time-dependent failure possibility (TDFP) constraints 
involving fuzzy and interval variables. The TDFP can meas-
ure the safety degree of the time-dependent structure (Fan 
et al. 2019). The TDFP-index-based approach is investigated 
to solve the tRBDO, but the computational cost is extremely 
high for engineering application. In order to improve the effi-
ciency of the solution of tRBDO, (extreme value combined 
performance measure approach) EVCPMA is proposed 
which is motivated by the performance measure approach 
(Tu et al. 1999) and concerned performance-based approach 
(Kang et al. 2011). The TDFP-index-based approach and 
EVCPMA is a double-loop optimization strategy, in which 
the outer loop is a deterministic optimization, and the inner 
loop is reliability analysis. Meanwhile, the TDFP analysis 
is a double-loop optimization for the structure involving 
fuzzy and interval uncertainties; therefore, the computa-
tion burden of the tRBDO of the engineering problem is 
unbearable. To decrease the high computational cost, a serial 
single-loop optimization (SSLO) is established in this work 
to deal with the tRBDO with fuzzy and interval uncertain-
ties. Generally, directly solving this problem needs a triple-
loop optimization process in which the outer loop solves 
the optimal parameters, the middle loop computes the mini-
mum performance of constraint function with respect to the 
interval variables, and the inner loop evaluates the TDFP. 
In the proposed SSLO, the original triple-loop optimization 
is converted into a sequence of deterministic optimization, 
the evaluation of time instant and interval value correspond 
to the worst case scenario, and the minimum most probable 
point searching. Thus, the efficiency of the solution of the 
tRBDO model is greatly improved by the SSLO method. It 
should be noted that the main aim of this work is to propose 
a new estimation strategy for solving the tRBDO involving 
fuzzy and interval uncertainties. The SSLO is proposed by 
extending the idea in Ref. (Du and Chen 2004) and inte-
grating with the definition of the TDFP. Original sequential 
optimization and reliability assessment is employed to solve 
RBDO involving random variable.

This paper is organized as follows. In Sect. 2, the TDFP 
safety model of structure with fuzzy and interval variable 
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vector is reviewed. The tRBDO involving fuzzy and interval 
uncertainties is proposed, and the double-loop optimization 
strategy is established which is TDFP-index-based approach 
and EVCPMA in Sect. 3. Section 4 provides SSLO method 
to calculate the optimal solutions. Six applications are given 
to demonstrate the rationality and computational efficiency 
of the proposed approach in Sect. 5. A summary and conclu-
sions are given in Sect. 6.

2  Formulation of tRBDO under fuzzy 
and interval uncertainties

For the time-dependent structure with fuzzy and interval 
uncertainties, its performance function can be expressed as 
g(�,�, t) , where � is the nZ− dimensional fuzzy input vari-
able vector which is characterized by the membership func-
tion u

�
 , � ∈ [�,�] is the nY− dimensional interval input var-

iable vector with upper boundary � and lower boundary � , 
t ∈ [t0, te] is the time parameter. Generally, the failure state 
corresponds to negative values of g(�,�, t) , and the safe 
state corresponds to positive values of g(�,�, t) . Accord-
ing to the propagation theory of the interval uncertainty, 
the time-dependent failure possibility (TDFP) is an interval 
variable because of the interval input variables � . The TDFP 
is denoted as �ft(�) , and the mathematical expression of 
�ft(�) is defined as

where poss{⋅} and sup(⋅) represent the possibility operator 
and supremum operator, ∃t ∈ [t0, te] means there is a time 
node t  in [t0, te] , � ∈ [0, 1] is the membership level of the 
output response.

From Eq. (1), one can see that the TDFP model can meas-
ure the safety degree of structure under the fuzzy and inter-
val uncertainties over a specified time interval. The TDFP is 
defined as the possibility of the performance less than zero 
under the fuzzy and interval uncertainties at a given time 
interval t ∈ [t0, te] . The expression min

t∈[t0,te]
g(�,�, t) which is 

independent of the time parameter t  is extreme value 
response of g(�,�, t) , thus following min

t∈[t0,te]
g(�,�, t) can be 

denoted as gmin(�,�) . By the extreme value transformation 
of the time-dependent performance function, the TDFP is 
equivalent to the time-independent failure possibility of the 
extreme value response gmin(�,�) of g(�,�, t) as follows:

(1)
�ft(�) = poss{g(�,�, t) ≤ 0,∃t ∈ [t0, te]}

= sup{�|g(�,�, t) ≤ 0,∃t ∈ [t0, te]},

(2)
�ft(�) = Poss{gmin(�,�) ≤ 0} = sup{�|gmin(�,�) ≤ 0}.

According to the formulation of the TDFP, two basic prop-
erties can be concluded. Firstly, the value of the TDFP is 
bounded in interval [0, 1] . Secondly, if the start of the time 
t0 and the interval variable � are fixed, �ft is non-decreasing 
function of the upper boundary te.

The TDFP �ft(�) is an interval variable, and the upper 
boundary �ft(�) and lower boundary �

ft
(�) of the TDFP 

�ft(�) can be, respectively, computed by

Generally, the upper boundary �ft(�) of the TDFP �ft(�) 
demonstrates the worst case scenario of the structure. Con-
sequently, the upper boundary �ft(�) of the TDFP is used 
to measure the reliability in constraints for establishing the 
tRBDO model under fuzzy and interval uncertainties. Denote 
the interval variable value corresponding to the upper bound-
ary �ft(�) of the TDFP of the ith possibility constraint as �∗

i
 ; 

therefore, the tRBDO model under fuzzy and interval uncer-
tainties can be defined as follows:

where

f (�,�c) denotes the objective function, which is generally 
the commercial cost or the weight of structure in engineering 
design. gi(�,�,�∗

i
, t) (i = 1, 2,… , ng) is the performance 

function of the ith TDFP constraint. � means the nd-dimen-
sional deterministic design parameter vector with the upper 
boundary and lower boundary are �U and �L , respectively. 
� represents the nX-dimensional fuzzy design vector with 
nominal value vector �c , and the upper and lower boundary 
of �c are �U and �L , respectively. � is the nP-dimensional 
fuzzy parameter vector and �∗

fti
 represents the target TDFP 

index of the ith reliability constraint. It should be noted that 
�

∗
i
 is generally unknown before estimating the TDFP �fti(�) 

for different design parameter solutions. It is a nested pro-
cess for calculating �∗

i
 in solving tRBDO with fuzzy and 

interval uncertainties. In this work, a sequential single-loop 
process is established to efficiently estimate �∗

i
 and solve the 

tRBDO model shown in Eq. (3).

(3)�ft(�) = max
�∈[�,�]

�ft(�),

(4)�
ft
(�) = min

�∈[�,�]

�ft(�).

(5)

min f (�,�c)

s.t. poss{gi(�,�,�
∗
i
, t) ≤ 0,∃t ∈ [t0, te]} ≤ �∗

fti
(i = 1, 2,… , ng)

� = [�,�],�∗
i
∈ [�,�], �L ≤ � ≤ �U ,�L ≤ �c ≤ �U

(6)�
∗
i
= arg max

�∈[�,�]

�fti(�),
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3  Solution strategy of the tRBDO with fuzzy 
and interval uncertainty

In this section, we introduce two basic strategies with the 
double-loop method, which is preparatory work for our 
proposed method. Results from these two strategies are 
compared with those from our established method in final 
applications.

3.1  TDFP‑index‑based approach

The typical solution of tRBDO is a double-loop nested 
optimization, the outer loop is a deterministic optimization 
process, and the inner loop is the TDFP analysis process. 
The detailed implementation of the double-loop optimiza-
tion method (DLOM) to estimated TDFP can refer to the 
literature (Fan et al. 2019). The TDFP-index-based approach 
cannot be directly applied to the formulation of Eq. (5), thus 
the original tRBDO formulation involving fuzzy and interval 
uncertainties can be expressed as follows:

The TDFP-index-based approach is not the focus of this 
article; thus, the basic solution idea of the TDFP-index-
based approach is described in the following. Based on the 
Eq. (1), the initialization of the design variable �(0) and �C0 
is set in the outer loop which is the deterministic optimiza-
tion process. Secondly, the TDFP analysis in the inner loop 
is given in the following. In the DLOM, the time interval 
[t0, te] and the interval variables � are discretized, and then 
time-independent failure possibility (TIFP) for every dis-
crete time instant and a discrete point of interval variables 
� is computed; the computation of TIFP is divided into two 
steps: one step is that the membership function of the per-
formance is estimated by discretizing the membership level 
(Graf et al. 2000), and another is that the TIFP is addressed 
with the simple interpolation. Thereupon, the TDFP for a 
discrete point of interval variables is the maximum of the 
values of the TIFP for all discretized time instants. Finally, 
�ft(�) is the maximum of the values of the �ft for all discre-
tized points of the interval variables. According to Eq. (7), 
the optimal design parameter should fulfill inequality 
�fti(�) ≤ �∗

fti
i = 1, 2,… , ng . When the numbers of discre-

tized time parameter t and interval variables � are extremely 
huge, the �ft(�) will converge. Thus, the TDFP-index-based 
approach with DLOM is time-consuming for engineering 
problem.

The solution of the TDFP-index-based approach with 
single-loop optimization method (SLOM) in the outer loop 
is a deterministic optimization process that is same with 

(7)

min f (�,�c)

s.t. poss{gi(�,�,�, t) ≤ 0,∃t ∈ [t0, te]} ≤ �∗
fti
(i = 1, 2,… , ng)

� = [�,�],� ∈ [�,�],�L ≤ � ≤ �U ,�L ≤ �c ≤ �U

.

the TDFP-index-based approach with DLOM. From 
Eq. (2), the solution of TDFP analysis with SLOM in the 
inner loop is introduced as follows: The SLOM only dis-
cretizes the membership level � ∈ [0, 1] and estimates the 
lower boundary of the minimum g(L)

min
(�,�,�) for each dis-

crete membership level by Eq.  (8). Finally, �fti(�) is 
addressed with the simple interpolation. From Eq. (7), the 
optimal design parameter should fulfill inequality 
�fti(�) ≤ �∗

fti
i = 1, 2,… , ng . Thus, the SLOM is more effi-

cient than the DLOM to estimate the tRBDO with fuzzy 
and interval uncertainties.

where �(k) and �(k) are the realization in the kth iteration, m 
is the discretized number of the membership level �.

3.2  Extreme value combined performance measure 
approach

The performance measure approach (PMA) is widely 
used in RBDO involving random uncertainty (Huang 
et al. 2016; Zhang et al. 2017), and PMA is introduced 
to analyze the RBDO with fuzzy uncertainty with inverse 
possibility analysis method (Du et al. 2006). Actually, the 
PMA can be achieved by the following equivalent con-
straint transformation:

Based on the equivalent constrain transformation by 
Eq. (9), the tRBDO formulation defined by Eq. (7) can be 
transformed as follows:

where g(L)
imin

(�,�(�∗
fti
),�) can be estimated with Eq. (8) at the 

target membership level �∗
fti

.
From Eq. (10), the conclusion can be easily deduced 

that extreme value combined performance measure 
approach is more efficient than the TDFP-index-based 
method, since the target performance is considered at the 
target membership level �∗

fti
.

(8)

min g(�(k),�(k),�, t)

s.t. �(k)(�i) ∈ [�(k)(L)(�i),�
(k)(U)(�i)](i = 1, 2,… ,m)

� ∈ [�
−
,�]

t ∈ [t0, te]

(9)
Poss{Gmin(�,�,�

∗
i
) ≤ 0} − �∗

fti
≤ 0 ⇔ G

(L)

min
(�,�(�∗

fti
),�∗

i
) ≥ 0

(10)

min
�

f (�,�c)

s.t. gimin(L) (�,�(�
∗
fti
),�∗

i
) ≥ 0

�L ≤ � ≤ �U

�L ≤ �c ≤ �U

0 ≤ �∗
fti
≤ 1

i = 1, 2,… , Nc

.
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4  Serial single‑loop optimization strategy

In this section, maximal possibility search approach is 
firstly introduced, and then the detailed SSLO strategy is 
established.

4.1  Most probable point searching

In this study, it is assumed that the membership function 
of the independent input fuzzy variable vector � satisfies 
three properties (Dubois and Prade 1987; Cremona and 
Gao 1997): (1) unity, (2) strong convexity, and (3) bounded. 
These three properties can guarantee the independent input 
fuzzy variable vector be uniquely transformed to the stand-
ard normalized fuzzy variable vector � , For instance, the 
Gaussian membership function is formulated as

The transformation can be written as

where Zc
i
 is fuzzy mean of Zi , �Zi represents fuzzy standard 

variance, and the membership function of Vi is exp[−(Vi)
2].

The inverse most probable point problem is formulated 
and shown in the following minimization model(Du et al. 
2006),

where � = (�
�
,�

�
) , MPPV∗

�∗
fti

 is the optimum point on the 

target possibility domain ‖�‖∞ ≤ 1 − �∗
fti

 is identified as the 
most probable point with the prescribed possibility of TDFP 
�∗
fti

 . ‖�‖∞ is the Infinite norm of the vector �.
By the inverse most probable point search algorithm, the 

optimum solution of most probable point MPPV∗

�∗
fti

 can be 

identified and extreme value combined performance measure 
approach is evaluated by

The solution of MPPV∗

�∗
fti

 in the literature (Du et al. 2006) is 

dealt with maximal possibility search method. In this article, 

(11)uZi(zi) = exp

[
−

(
Zi − Zc

i

�Zi

)]2

, i = nZ = nX + nP.

(12)Vi =
Zi − Zc

i

�Zi

,

(13)

find MPPV∗

�∗
fti

min gi(�,�,�
∗
i
, t)

s.t. ‖�‖∞ ≤ 1 − �∗
fti

,

(14)
g
(L)

imin
(�,�(�∗

fti
),�∗

i
) = gimin(�,MPPV∗

�∗
fti

,�∗
i
)

= gimin(�,MPPX∗

�∗
fti

,MPPP∗

�∗
fti

,�∗
i
).

the single-loop optimization is proposed for inverse most prob-
able point analysis to ensure numerical efficiency and accuracy 
in tRBDO under fuzzy and interval uncertainties. The detailed 
analysis process is given in next subsection.

4.2  The solution of the tRBDO with SSLO strategy

To improve the efficiency of tRBDO analysis, we adopt in 
this work the strategy of a sequential optimization and TDFP 
assessment to develop SSLO method. The SSLO method is 
different from the TDFP-index-based approach and extreme 
value combined performance measure approach in the way 
that equivalent deterministic constraints from the TDFP con-
straints are established. We also employ an efficient inverse 
most probable point search algorithm as an integral part of 
the proposed procedure.

To this end, we use the extreme value combined perfor-
mance measure approach for TDFP constraints with the 
SSLO method. Based on Eq. (14), the design model (10) 
is rewritten as

This model establishes the equivalence between a possi-
bility optimization and a deterministic optimization since 
the original constraint function gimin(�,MPPX∗

�∗
fti

,MPPP∗

�∗
fti

,�∗
i
) 

is used to evaluate design feasibility using the inverse most 
probable point corresponding to the extreme value combined 
performance measure approach. It is noted that in a possibil-
ity design, most of the computations are used for TDFP 
assessments. Therefore, to improve the efficiency of possi-
bility optimization, we need to reduce the number of reliabil-
ity estimation as much as possible. The essence is to move 
the design solution as quickly as possible to its optimum to 
reduce the most probable point searching.

The realization process diagram is shown in Fig. 1. In this 
illustrative diagram, only two fuzzy design variables X1 and X2 
are considered, there are no fuzzy parameters � . For the con-
straint gimin(X

c
1
,Xc

2
, Y∗

i
) = 0 (Fig. 1), the actual TDFP (possi-

bility of constraint being feasible) is only around 0.5. After the 
deterministic optimization, the TDFP assessment is imple-
mented at the optimum solution � = (Xc

1
,Xc

2
) to locate the 

inverse MPPX∗

�∗
fti

 corresponding to the target safety level. 

MPPX∗

�∗
fti

 of constraint gimin(X
c
1
,Xc

2
, Y∗

i
) falls outside (to the left) 

the deterministic feasible region, but the MPPX∗

�∗
fti

 that corre-

(15)

min
�

f (�,�c)

s.t. gimin(�,MPPX∗

�∗
fti

,MPPP∗

�∗
fti

,�∗
i
) ≥ 0

�L ≤ � ≤ �U

�L ≤ �c ≤ �U

0 ≤ �∗
fti
≤ 1

i = 1, 2,… , Nc

.
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sponds to the target safety level should fall within the deter-
ministic feasible region to ensure the feasibility of a TDFP 
constraint. Therefore, when establishing the equivalent deter-
ministic optimization model in next cycle, the constraints 
should be updated to shift MPPX∗

�∗
fti

 onto the deterministic 

boundary to insure the feasibility of the possibility constraint. 
The formulation of this realization process which is mentioned 
as SSLO is proved in the following subsection.

From Fig. 1, we employ the following equivalent determin-
istic optimization based on SSOL to solve Eq. (15), in which 
extreme value and �∗

i
 are iteratively updated.

in which �(k)
i

 is the shifting vector in the kth iteration and it 
is estimated by

where Xc(k−1) and MPP
(k−1)

X∗

�∗
fti

 are the nominal value vector and 

most probable point in the (k − 1)th iteration in the original 
possibility space. MPP

(k−1)

X∗

�∗
fti

 can be converted into the 

(16)

min
�

f (�,�c)

s.t. gimin(�,�
c − �

(k)

i
,MPP

(k)

P∗

�∗
fti

,�
∗(k)

i
) ≥ 0

�L ≤ � ≤ �U

�L ≤ �c ≤ �U

0 ≤ �∗
fti
≤ 1

i = 1, 2,… , Nc

,

(17)�
(k)

i
= �

c(k−1) −MPP
(k−1)

X∗

�∗
fti

MPP
(k−1)

V∗
X
�∗
fti

 in the standard normal space based on Eq. (12) 

with the Gaussian fuzzy distribution.
Directly solving MPPV∗

�∗
fti

 needs a nested triple-loop optimi-

zation, in which the outer loop addresses the upper boundary 
of the TDFP with respect to interval variable � as follows:

The middle loop estimates the extreme value of possibility 
constraint function with respect to time parameter t which is 
formulated as

The inner loop calculates the most probable point by

where �(k−1) is the deterministic design parameter vector 
solution in the (k − 1)th iteration.

(18)

⎧⎪⎨⎪⎩

find 𝐘
∗(k)

i

min gimin(𝐝
(k−1),MPP

(k−1)

V∗

�∗
fti

,𝐘)

s.t. 𝐘 ∈ [𝐘
−
, �̄�]

(19)

⎧⎪⎨⎪⎩

find t
∗(k)

i

min gi(�
(k−1),MPP

(k−1)

V∗

�∗
fti

,�
(k)

i
, t)

s.t. t ∈ [t0, te]

(20)

⎧⎪⎨⎪⎩

find MPP
(k−1)

V∗

�∗
fti

min gi(�
(k−1),�,�

∗(k)

i
, t

∗(k)

i
)

s.t. ‖�‖∞ ≤ 1 − �∗
fti

Fig. 1  Shift constraint boundary
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Calculating this nested triple-loop optimization will 
cause extremely computational demand. We propose to 
estimate this nested triple-loop optimization by the single-
loop optimization process with Eq. (21).

It is easy to find that the formulation shown in Eq. (21) 
for searching most probable point under the mixture of fuzzy 
variable vector, interval variable vector and time parameter 
are similar to the general situation where only fuzzy variable 
vector under the same input dimensional condition at target 
TDFP is �∗

fti
 being contained. Therefore, the computational 

demand of this proposed single-loop optimization is gener-
ally in the same order of magnitude as most probable point 
searching with only fuzzy variable vector.

Above analysis shows that the proposed SSLO strategy 
addresses the tRBDO by a sequence of deterministic opti-
mization and shifting vector estimation, in which the shift-
ing vector is estimated by the proposed single-loop opti-
mization. Consequently, the proposed SSLO is an accurate 
and efficient method to solve the tRBDO formulation.

4.3  Implementation of SSLO strategy

The estimation procedure of the proposed SSLO is briefly 
summarized in this section. The most probable point search-
ing in SSLO as well as the deterministic optimization is 
solved by the FMINCON toolbox in MATLAB. The conver-
gence criterion is set to be the relative errors of two adjacent 
objective performances and do not exceed �=10−3.

Step 1 Set the initial design parameter solution �(0) , �c(0) , 
the most probable point MPP

(0)

V∗

�∗
fti

 , the time instant t∗(0)
i

 

and estimate the corresponding objective performance 
f (0)(�(0),�c(0)) and let k = 1.

Step 2 Employ the single-loop optimization shown in 
Eq. (21) in Fig. 2 to address the updated time instant 
t
∗(k)

i
 , �∗(k)

i
 , and MPP

(k)

V∗

�∗
fti

 . Convert MPP
(k)

V∗

�∗
fti

 to the original 

possibility space MPP
(k)

Z∗

�∗
fti

 by Eq. (12) involving Gaussian 

fuzzy distribution. Calculate the shifting vector �(k)
i

 by 
Eq. (17).

Step 3 Compute the updated design parameter solution 
�(k) , �c(k) and the corresponding objective performance 

(21)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

find �
∗(k)

i
, t

∗(k)

i
,MPP

(k)

V∗

�∗
fti

min gi(�
(k−1),�(�∗

fti
),�, t)

s.t. t ∈ [t0, te]

� ∈ [�
−
,�]

V ∈ [V (L)(�∗
fti
),V (U)(�∗

fti
)]

f (k)(�(k),�c(k)) by the deterministic optimization in 
Eq. (16) in Fig. 2.

Step 4 Solve the relative errors of two adjacent objective 
performances, i.e.,

  �
(k)

f
=
|||
f (k)(�(k),�c(k))−f (k−1)(�(k−1),�c(k−1))

f (k)(�(k),�c(k))

||| . If �(k)
f

≤ � , let 

� = �(k) and �c = �c(k) , then go to step 5. Otherwise, let 
k = k + 1 and go to step 2.

Step 5 Output the optimized design parameter solution 
(�,�c) and the corresponding objective performance 
f (�,�c).

5  Applications

This section is dedicated to the validation and assessment 
of the proposed method. Three approaches involving the 
TDFP-index-based method with DLOM, SLOM, and 
extreme value combined performance measure approach 
are employed to be references. In this paper, the optimiza-
tion problems solved in DLOM, SLOM, EVCPMA, and 
SSLO method are performed with Sequential Quadratic 
Programming (SQP) algorithm (Belegundu and Arora 
1984). An available executable program of the SQP 
method has been provided by the MATLAB 2018b, which 
is embedded in the optimizer FIMINCON. It is employed 
as an optimization tool in this paper. In all examples, a 
finite difference method is used for derivative evaluations.

Fig. 2  Proposed series single-loop optimization procedure
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5.1  Numerical example 1

Considering the following tRBDO mathematical 
formulation:

where two fuzzy design parameters X1 and X2 are  
fuzzy Gaussian distribution with the standard deviation 

�Xi
= 0.6 (i = 1, 2) , i.e., uX1

(x1) = exp

�
−

�
x1−x

c
1√

2�X1

2
��

 and 

uX2
(x2) = exp[−(

x2−x
c
2√

2�X2

)2] , interval variable Y  is bounded in 

[−0.1, 0.1].
The specified time interval is [0, 5] and the target TDFP 

value is 0.5 for these three constraints.
The design parameter solutions estimated by TDFP-

index-based approach with DLOM and SLOM, extreme 
value combined performance measure approach (EVCPMA), 
and SSLO are shown in Table 1, in which the correspond-
ing computational cost is also provided. It should be noted 
that the computational cost in the Table 1 involves all the 
necessary estimation of the constraint functions. The final 
TDFP index statistics of these methods are also repre-
sented in Table 2. The initial design parameters are set to be 
[Xc

1
,Xc

2
] = [5, 5] for all these methods. Figure 3 illustrates 

the constraint situations in the original fuzzy space in the 

(22)

find Xc
1
,Xc

2

min f (�c) = Xc
1
+ Xc

2

s.t. poss{gi(�,Y , t) ≤ 0,∃t ∈ [ts, te]} ≤ �∗
fti
(i = 1, 2, 3)

where g1(�,Y , t) = X2
1
X2 − 5X1t + (X2 + 1)t2 + Y − 20

g2(�,Y , t) =
(X1+X2+Y−0.1t−5)

2

30
+

(X1−X2−Y+0.2t−12)
2

120
− 1

g3(�,Y , t) =
90

(X1+0.05t)
2+8(X2+0.1t)−sin t+5

+ Y − 1

0 ≤ �c ≤ 10,�∗
fti
= 0.5(i = 1, 2, 3)

,

entire optimization process, and the initial design parameters 
[Xc

1
,Xc

2
] = [5, 5] are not shown in Fig. 3.

From Table 1, one can see that the optimal parameters 
addressed by the proposed SSLO can match well with that 
of the DLOM, SLOM, and EVCPMA representing the basic 
strategies, which demonstrates the accuracy of the SSLO for 
tRBDO. It can be found that the design parameters calcu-
lated by EVCPMA are much close to those of the proposed 
SSLO, but the computation cost of the EVCPMA is more 
than two thousands, which is almost six times of that of 
the proposed SSLO. The optimal solution calculated by the 
DLOM and SLOM need huge computational cost, especially 
the DLOM, which is mainly caused by the quadruple nested 
loop optimization. The computational statistics in Table 1 
show that the calls of the objective function by the DLOM, 
SLOM, and EVCPAM are about 20 times and the proposed 
SSLO just need 5 times, which makes the proposed SSLO 
more efficient than other method. The reason is that the 
design solution shifts its optimum as quickly as possible so 
to reduce the needs for locating most probable point.

T h e  o p t i m a l  p a r a m e t e r  s o l u t i o n s  a r e 
[Xc

1
,Xc

2
] = [3.8179, 4.1798] solved by those methods. It can 

be seen from Fig. 3 that these two optimal parameters make 
these TDFP constraints satisfy the target safety level for 

Table 1  Summary of the optimization results for the Example 5.1

Methods Objective Design variable Number of function calls Number of gradient 
computation

Computation 
time/second

Objective Constraint Total

DLOM 7.9977 [3.8179,4.1798] 24 1,303,992 1,304,016 4,211,968 271.3781
SLOM 7.9977 [3.8179,4.1798] 21 23,723 23,744 84,169 3.4496
EVCPMA 7.9977 [3.8179,4.1798] 18 2062 2080 9360 0.8699
SSLO 7.9977 [3.8179,4.1798] 5 360 365 1625 0.4243

Table 2  The TDFP-index constraints at optimal design parameters of 
example 5.1

Methods �ft1 �ft2 �ft3 �∗
fti
(i = 1, 2, 3)

DLOM 0.4999 0.5000 0.1112 0.5
SLOM 0.4999 0.5000 0.1112 0.5
EVCPMA 0.4999 0.5000 0.1112 0.5
SSLO 0.4999 0.5000 0.1112 0.5

Fig. 3  Iteration history by SSLO of example 5.1
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SSLO. It can be seen from Fig. 3 that the design parameters 
are removed from the first constraint; thus, optimal solutions 
can make the TDFP index of first constraint satisfy the target 
safety level. The design solution moves to its optimum very 
quickly which is also shown in Fig. 3.

5.2  Numerical example 2

Let us consider the following tRBDO problem

where the fuzzy design parameter Xi(i = 1, 2) is triangle 
fuzzy distribution, whose membership function is expressed 

by uXi
(xi) =

{
1 + (xi − xc

i
)
/
0.3

1 − (xi − xc
i
)
/
0.3

 , and the considered time 

interval is t ∈ [0, 1].
The initial design parameter in the numerical example 2 

is [Xc
1
,Xc

2
] = [3, 3] . The optimal design parameter solutions 

estimated by DLOM, SLOM, and EVCPMA are listed in 
Table 3, which can match well with that of SSLO. This dem-
onstrates the accuracy of three methods in solving tRBDO 
problems. As is shown in Table 3, the number of function 
calls of the DLOM and SLOM are extremely high, which is 
impractical for engineering application, while the function 
calls of SSLO is fewer than the EVCPMA. Therefore, the 
proposed SSLO method is efficient and accurate for solving 
the tRBDO problems.

From the Table 4, we can conclude that the first constraint 
is active, while the second constraint is inactive. The TDFP 
of the optimal parameters estimated by DLOM, SLOM, 
EVCPMA, and SSLO fulfill the target TDFP. Thus, the pro-
posed method is more efficient than other methods.

5.3  Two bars frame

Let us consider the two bar frame shown in Fig. 4 already 
studied in reference (Hu and Du 2016; Shi et al. 2020a). 
The frame is subjected to a dynamic force F(t) = F0 sin(t) . 

(23)

min f (�c) = (Xc
1
− 3.7)2 + (Xc

2
− 4)2

s.t. P{gi(�, t) ≤ 0∃t ∈ [ts, te]} ≤ �∗
fti
(i = 1, 2)

g1(�, t) = −X1 sin(4X1) − 1.1X2 sin(2X2) + 1.2t

g2(�, t) = X1 + X2 − 3t

0 ≤ Xc
1
≤ 3.7, 0 ≤ Xc

2
≤ 4,�∗

fti
= 0.5(i = 1, 2)

,

The yield strength of the two bars degenerates over time, 
i.e., S1(t) = S01 exp(−0.01t) and S2(t) = S02 exp(−0.01t) , in 
which S01 and S02 are the initial yield strengths of two bars, 
respectively. The structural failure is defined as the maxi-
mum stress of the bar higher than the corresponding yield 
strength, and the objective is to minimize the weight of this 
frame work. The tRBDO of this two bars frame is formu-
lated as follows:

where t ∈ [0, 10] year.
Distribution parameters of the input variables are listed 

in Table 5.
In this example, the fuzzy design vector, the fuzzy param-

eter vector, and the time parameter are involved in the con-
straint functions. The initial design parameters are set to be 
[Xc

D1
,Xc

D2
] = [0.15, 0.15] for all these methods. The design 

parameter solutions and computational statistics calculated 
by TDFP-index-based method with DLOM and SLOM, 
EVCPMA, and SSLO are listed in Table 6. The final TDFP 
indexes of these methods are shown in Table 7.

The optimal solutions of the two bars frame shown in 
Table 6 demonstrate again that the SSLO is an accurate algo-
rithm to compute the tRBDO with fuzzy and interval 

(24)

min f (d) =
�l1X

c2

D1
+�

�
l2
1
+l2

2
Xc2

D2

4

s.t. poss{gi(�, t) ≤ 0,∃t ∈ [ts, te]} ≤ �∗
fti
(i = 1, 2)

g1(�, t) = 1 −
4F(t)

√
l2
1
+l2

2

�l2D
2
1
S1(t)

g2(�, t) = 1 −
4F(t)l1

�l2D
2
2
S2(t)

� = [�,�],� = [D1,D2],� = [S01, S02, l1, l2,F0]

0.07 m ≤ Xc
Di

≤ 0.25 m, �∗
fti
= 0.4(i = 1, 2)

,

Table 3  Summary of the 
optimization results for the 
Example 5.1

Methods Objective Design variable Number of function calls Number of 
gradient compu-
tation

Computation 
time/second

Objective Constraint Total

DLOM 0.6476 [3.2291,3.3474] 9 24,231 24,240 84,840 87.8147
SLOM 0.6476 [3.2291,3.3474] 9 6154 6163 21,571 38.9058
EVCPMA 0.6476 [3.2291,3.3474] 6 2349 2355 8949 6.1270
SSLO 0.6476 [3.2291,3.3474] 4 147 151 543 0.9134

Table 4  The TDFP index constraints at optimal design parameters of 
example 5.1

Methods �ft1 �ft2 �∗
fti
(i = 1, 2)

DLOM 0.4997 0.0000 0.5
SLOM 0.4997 0.0000 0.5
EVCPMA 0.4997 0.0000 0.5
SSLO 0.4997 0.0000 0.5
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uncertainties. Strictly speaking, the design parameter solu-
tions estimated by the TDFP-index-based approach with 
DLOM and SLOM have little errors, because the final TDFP 
of the constraint is less than the target safety level. The opti-
mal  solut ions  i l lust ra te  that  the  parameters 
[Xc

D1
,Xc

D2
] = [0.1741, 0.1561] of the two bars frame can guar-

antee the given safety degree under the dynamic force F(t) . 
According to the definition of the TDFP, if the values of 

dimensional parameters are bigger than the optimal solu-
tions, the TDFP of constraints will larger than the target 
safety degree, but material waste will be made under this 
situation; therefore, the optimal solutions can simultane-
ously balance cost and safety. The comparison of the num-
bers of the function calls for different methods in Table 6 
and demonstrates the efficiency of the SSLO.

5.4  A three‑bar truss structure

A three-bar truss structure shown in Fig. 5 is considered. 
The cross-sectional area of truss 2 is denoted by A2 with 
the length L = 50.8 cm . Truss 1 and 3 has the same length 
and cross-sectional area which are 

√
2L and A1 , respec-

tively. The density and elastic modulus of the material 
are � = 2.768 × 10−3kg/cm3 and E = 6.895 × 103kN/cm2 . 
The load P applied on the node 4, the strengths of three 
trusses are degenerated over time, i.e., �t = �0t exp(−0.01t) 
and �c = �0c exp(−0.01t) , allowable horizontal and vertical 
displacements ( u4 and v4 ) are fuzzy parameter variables, 
the frame is subjected to a dynamic force P = P0 sin t . The 
design objective is to minimize the total weight of the three-
bar structure and cross-sectional areas are treated as fuzzy 

Fig. 4  Two bar frame

Table 5  Distribution parameters of the fuzzy input variable vector of 
Example 5.2

Input Distribution Fuzzy mean Fuzzy 
standard 
deviation

D1∕m Gaussian Xc
D1

1e−3
D2∕m Gaussian Xc

D2
1e−3

S01∕pa Gaussian 1.7e−8 1.7e−7
S02∕pa Gaussian 1.7e−8 1.7e−7
l1∕m Gaussian 0.4 1e−3
l2∕m Gaussian 0.3 1e-3
F0∕N Gaussian 2.2e−6 2e−5

Table 6  Summary of the optimization results for the Example 5.2

Methods Objective Design variable Number of function calls Number of gradient 
computation

Computation 
time/second

Objective Constraint Total

DLOM 0.0196 [0.1763,0.1585] 26 215,792 215,818
SLOM 0.0194 [0.1756,0.1573] 19 69,295 69,314 237,185 4.6734
EVCPMA 0.0191 [0.1741,0.1561] 16 1971 1987 6814 0.5794
SSLO 0.0191 [0.1741,0.1561] 2 42 44 182 0.3177
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design variables, with the lower bound as 0.64516  cm2. It is 
assumed that variables are all Gaussian fuzzy sets, and the 
distribution parameters are shown in Table 8. The tRBDO 
of this three bars frame is formulated as follows:

The initial design parameters are set to be 
[Xc

A1
,Xc

A2
] = [80, 20] for all these methods. The design 

parameter solutions and computational statistics calculated 
by DLOM, SLOM, EVCPMA, and SSLO are listed in 
Table 9. The final TDFP indexes of these methods are listed 
in Table 10.

The optimal solutions of the three bars frame listed in 
Table 9 show that the SSLO closely meets other algorithms. 
The optimal solutions demonstrate that the design parame-
ters [Xc

A1
,Xc

A2
] = [72.3004, 18.6553] of the three bars frame 

can hold the target safety degree under the external load P 
which is listed in Table 10. From Table 10, the fourth and 
fifth constraints are inactive. The comparison of the number 
of the function calls demonstrates that the SSLO is an accu-
rate and efficient method.

5.5  A welded beam with a time‑dependent force

A welded beam shown in Fig. 6 is subjected to a time-
dependent loading F(t) = F0 sin t in the right end of this 
beam (Jiang et al. 2017; Shi et al. 2020b), and the left end 
of this beam is welded. The fuzzy design variable vector 
is relative to the welding point containing it’s depth X1 , 

(25)

min f (d) = �L(2
√
2Xc

A1
+ Xc

A2
)

s.t. poss{gi(�, t) ≤ 0,∃t ∈ [t0, te]} ≤ �∗
fti
(i = 1, 2,… , 5)

g1(�, t) = u4 −

√
2PL cos �

A1E

g2(�, t) = v4 −

√
2PL sin �

(A1+
√
A2)E

g3(�, t) = �t −

√
2

2

�
P cos �

A1

+
P sin �

A1+2
√
A2

�

g4(�, t) = �t −

√
2P sin �

A1+2
√
A2

g5(�, t) = �c −

√
2

2

�
P cos �

A1

+
P sin �

A1+2
√
A2

�

� = [�,�],� = [A1,A2],� = [P, u4, v4, �t, �c]

0.64516 ≤ Xc
Ai
,�∗

fti
= 0.4(i = 1, 2)

,

length X2 , height X3 , and thickness X4 . A time-independ-
ent possibility constraint function and four time-depend-
ent possibility constraint functions are introduced in this 
optimization problem, in which the time-independent 
possibility constraint function is the restriction of weld-
ing size, and four time-dependent possibility constraint 
functions referred to the shear stress, bucking, bending 
stress and the displacement of free end. The objective 
function is to minimize the cost of welding. The random 
parameters are the young’s Modulus E , the length of this 
beam L , the shear Modulus G , the allowable displace-
ment of free end d0 , and maximum shear stress � , and 
the maximum normal stress � . The tRBDO of this welded 
beam is constructed as follows.

Fuzzy distribution parameters of the input variables are 
listed in Table 11.

In this application, the fuzzy design variables and 
their parameters are involved in the constraint func-
tions. The initial design parameters are set to be 
[Xc

1
,Xc

2
,Xc

3
,Xc

4
] = [15, 220, 220, 15] for all these methods. The 

design parameters solved by TDFP-index-based approach 
with SLOM, EVCPMA, and SSLO and computational statis-
tics are listed in Tables 12 and 13, while the DLOM cannot 
converge, because the TDFP analysis with DLOM traps in 
local optima, and the solutions of TDFP index cannot reach. 

(26)

find � = [Xc
1
,Xc

2
,Xc

3
,Xc

4
]

min f (�c) = c1X
c
1
Xc
2
+ c2X

c
3
Xc
4
(L + Xc

2
)

s.t. poss{gi(�, t) ≤ 0,∃t ∈ [0, 10]} ≤ �
fti
(i = 1, 2, 4, 5)

poss{g3(�) ≤ 0} ≤ �
f

� = [�,�],� = [X1,X2,X3,X4],� = [E, L,G, d, �, �,F0]

3.175 ≤ Xc
1
≤ 50.8,Xc

2
≤ 254,Xc

3
≤ 254,Xc

4
≤ 50.8

�∗
fti
= 0.5(i = 1, 2, 4, 5),�∗

f
= 0.5, [t0, te] = [0, 10]year

,

(27)

where g1(�, t) =1 −
�(�, t)

�
, g2(�, t) = 1 −

�(�, t)

�

g3(�) =1 −
X1

X4

, g4(�, t) = 1 −
�(�, t)

d0

g5(�, t) =
Pc(�)

F
− 1

�(�, t) =

�
L2(�, t) +

2L(�, t)S(�, t)X2

2R(�)
+ S2(�, t)

L(�, t) =
F√
2X1X2

, S(�, t) =
M(�, t)R(�)

J(�)

M(�, t) =F(L + 0.5X2), �(�, t) =
4FL3

EX3
3
X4

R(�) =0.5

�
X2
2
+ (X1 + X3)

2, J(�) =
√
2X1X2

�
X2
2

12
+

(X1 + X3)
2

4

�

�(�, t) =
6FL

X2
3
X4

,Pc(�) =
4.013X3X

3
4

√
EG

6L2

�
1 −

X3

4L

�
E

G

�

Table 7  The TDFP-index constraints at optimal design parameters of 
example 5.2

Methods �ft1 �ft2 �∗
fti
(i = 1, 2)

DLOM 0.3998 0.3998 0.4
SLOM 0.3999 0.3999 0.4
EVCPMA 0.4000 0.4000 0.4
SSLO 0.4000 0.4000 0.4
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The final TDFP index solutions of five constraints are listed 
in Table 14.

From Table 12, the conclusion can be obtained that the 
design parameter solutions calculated by the TDFP-index-
based approach with SLOM, EVCPMA, and SSLO are 
almost the same with each other. From Table 14, it is easy 
to find that all the TDFP index of constraints with the param-
eter solutions addressed by the proposed method can match 
well with the target safety level, while the TDFP index of 
the third and fourth constraints with the optimal parameters 
calculated by the SLOM do not match the target safety level 
very well. It is shown in Table 13 that the calls of the objec-
tive function are only 9 times and the calls of the constraints 
are 1675 times. In a word, the established tRBDO under the 
fuzzy and interval uncertainties is rational and the proposed 
SSLO method is efficient in solving tRBDO.

5.6  A wing reinforcing rib

The design of the wing reinforcing rib demonstrated in 
Fig. 7 is modified to illustrate the effectiveness of the pro-
posed SSLO. Six round holes are punched in the middle 
of the reinforcing rib, which are represented by A, B, C, 
D, E and F respectively that is demonstrated in Fig. 8. 
the largest hole represented by A is used to fix the engine 
which generates the torque to retract slat, and the top 
hole represented by B is performed to insert pipes and 
cables, and the remaining four holes represented by C, D, 
E and F respectively are performed to support the slide 

Fig. 5  Three-bar truss structure

Table 8  Distribution parameters of the fuzzy input variable vector of 
Example 5.3

Input Distribution Fuzzy mean Fuzzy stand-
ard deviation

A1∕cm
2 Gaussian Xc

A1
0.01Xc

A1

A2∕cm
2 Gaussian Xc

A2
0.01Xc

A2

P0∕kN Gaussian 1779.2 177.92
u4∕cm Gaussian 0.285 0.0285
v4∕cm Gaussian 0.217 0.0217
�0t∕kN/cm

2 Gaussian 34.475 3.4475

�0c∕kN/cm
2 Gaussian 6.825 0.6825

Table 9  Summary of the optimization results for the Example 5.3

Methods Objective Design variable Number of function calls Number of gradient 
computation

Computation 
time/second

Objective Constraint Total

DLOM 31.3783 [72.3004,18.6553] 21 351,911 351,932 743,272 107.2693
SLOM 31.3783 [72.3004,18.6553] 15 51,379 51,394 17,480 20.3671
EVCPMA 31.3783 [72.3004,18.6553] 9 1164 1173 4290 3.4812
SSLO 31.3783 [72.3004,18.6553] 3 58 61 258 1.3692

Table 10  The TDFP-index constraints at optimal design parameters of example 5.3

Methods �ft1 �ft2 �ft3 �ft4 �ft5 �∗
fti
(i = 1, 2, ...5)

DLOM 0.4001 0.3999 0.3891 0.1274 0.0001 0.4
SLOM 0.4001 0.3999 0.3891 0.1274 0.0001 0.4
EVCPMA 0.4001 0.3999 0.3891 0.1274 0.0001 0.4
SSLO 0.4001 0.3999 0.3891 0.1274 0.0001 0.4



Advanced solution framework for time‑dependent reliability‑based design optimization under…

1 3

Page 13 of 17 25

rails for retracting the slat. The radius of these holes is 
fuzzy variables and the mean of these variables is design 
parameters, which are represented by Ac , Bc , Cc , Dc , Ec 
and Fc respectively. The thickness of the reinforcing rib 
d , the elastic modulus E, aerodynamic pressure P1 and P2 , 
concentrated loads F1 , F2 , F3 , F4 are supposed as fuzzy 
variables. The loads F5(t) = F5 sin t and F6(t) = F6 sin t 
are time-dependent variables. The failure state of the rib 
corresponds to that the maximum longitudinal displace-
ment Δdmax or maximum principal stress Smax exceeds the 
specified thresholds. The optimization objective is to mini-
mize the structural weight, therefore maximize the sum of 
squares of radius of these holes. The tRBDO of the wing 
reinforcing rib is expressed as follows:

(28)

max
Rc

f (Rc) = Rc2

A
+ Rc2

B
+ Rc2

C
+ Rc2

D
+ Rc2

E
+ Rc2

F

s.t. poss{gi(�, Y , t,Δdallow, Sallow) ≤ 0∃t ∈ [0, 12]} ≤ �
−
fti
(i = 1, 2)

g1(Z, d, t,Δdallow) = Δdallow − Δdmax(RA,RB,RC ,RD,RE ,RF , d,

E,P1,P2,F1,F2,F3,F4,F5(t),F6(t))

g2(Z, d, t, Sallow) = Sallow − Smax(RA,RB,RC ,RD,RE ,RF , d,

E,P1,P2,F1,F2,F3,F4,F5(t),F6(t))

�∗
fti
= 0.5(i = 1, 2),Δdallow = 0.075 exp(−0.01t), Sallow = 55000 exp(−0.02t)

30.0 mm ≤ Rc
A
≤ 36.0 mm, 18.5 mm ≤ Rc

B
≤ 21.5 mm

7.9 mm ≤ Rc
C
≤ 9.0 mm, 7.9 mm ≤ Rc

D
≤ 9.0 mm

7.9 mm ≤ Rc
E
≤ 9.0 mm, 7.9 mm ≤ Rc

F
≤ 9.0 mm

Fig. 6  A welding beam struc-
ture

Table 11  The distribution parameters of the input variables of exam-
ple 5.4

Fuzzy input 
variable

Distribution Fuzzy mean Fuzzy 
standard 
variance

X1∕mm Gaussian Xc
1

0.3
X2∕mm Gaussian Xc

2
3

X3∕mm Gaussian Xc
3

3
X4∕mm Gaussian Xc

4
0.3

E∕Mpa Gaussian 20,685 2068.5
L∕mm Gaussian 355.6 35.56
G∕Mpa Gaussian 82,740 8274
d0∕mm Gaussian 6.35 0.635
�∕Mpa Gaussian 9.377 0.9377
�∕Mpa Gaussian 206.85 20.685
F0∕N Gaussian 26,688 2668.8

Table 12  The design parameter solution for the Example 5.4

Methods Objective Design variable

DLOM Cannot converge
SLOM 8.2684 [12.0954,199.4124,253.8655,15.2342]
EMCPMA 8.3106 [12.0964,199.4224,253.8755,15.3342]
SSLO 8.3106 [12.0964,199.4224,253.8755,15.3342]

Table 13  Number of function 
calls of example 5.4

Methods Number of function calls Number of gradient 
computation

Computation 
time/second

Objective Constraint Total

SLOM 206 9,340,135 9,339,929 20,020,126 637.1973
EMCPMA 83 33,525 33,608 77,050 15.0675
SSLO 9 1675 1684 4300 1.5039
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Distribution parameters of these inputs are illustrated 
in Table 15. The finite element models of the reinforcing 
rib with respect to longitudinal displacement and principal 
stress are illustrated in Fig. 9.

The design parameter solutions estimated by EVCPMA 
and SSLO are listed in Table 16 because it needs huge 
computational cost to solve this engineering application 
by using DLOM and SLOM; thus, we only provide the 
solutions estimated by the EVCPMA and SSLO methods. 
Anyhow, the effectiveness of the proposed SSLO can be 
shown by comparing with EVCPMA, and the target failure 
possibility solutions evaluated based on the real finite ele-
ment model are provided inside parentheses.

As is shown in Table 16, one can see that the design 
parameters solved by EVCPMA and SSLO have similar 
accuracy. Table 17 shows that the proposed SSLO is the 
most efficient one among these methods, which requires 
4154 times calls of the constraints functions, while the 
EVCPMA requires 12,358 times calls of the constraints 
functions. Therefore, the efficiency of the proposed 
SSLO is demonstrated. From Table 18, the target failure 

Table 14  TDFP index of constraints at optimal design parameters of example 5.4

Methods �ft1 �ft2 �ft3 �ft4 �ft5 �∗
fti
(i = 1, 2, 4, 5)

SLOM 0.4899 0.3803 0.5097 0.5013 0.000 0.5
EVCPMA 0.4863 0.3799 0.5000 0.4999 0.000 0.5
SSLO 0.4863 0.3799 0.5000 0.4999 0.000 0.5

Fig. 7  The wing reinforcing rib of a civil aircraft

Fig. 8  The diagram of the reinforcing rib

Table 15  Distribution parameters of the inputs of example 5.5

Fuzzy input variable Distribution Fuzzy mean Fuzzy 
standard 
variance

RA∕mm Gaussian Rc
A

0.05
RB∕mm Gaussian Rc

B
0.05

RC∕mm Gaussian Rc
C

0.05
RD∕mm Gaussian Rc

D
0.05

RE∕mm Gaussian Rc
E

0.05
RF∕mm Gaussian Rc

F
0.05

d∕mm Gaussian 5 0.25
E∕Mpa Gaussian 100,000 5000
P1∕Mpa Gaussian 0.005 0.000025
P2∕Mpa Gaussian 0.005 0.000025
F1∕N Gaussian 35,239 1762
F2∕N Gaussian 23,758 1188
F3∕N Gaussian 5949 297
F4∕N Gaussian 16,245 812
F5∕N Gaussian 10,140 507
F6∕N Gaussian 19,185 959
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possibility solutions illustrate that the first constraint is 
active and the second constraint is inactive, and the final 
TDFP fulfills the target failure possibility. In a word, the 
accuracy and the efficiency of the proposed SSLO method 
are proved in all examples.

6  Conclusions

The TDFP index can accurately measure the safety degree 
of the time-dependent structure under the fuzzy and inter-
val uncertainties, and the tRBDO based on TDFP index is 
established to solve the optimal design parameters with the 
TDFP constraints. The tRBDO with both fuzzy and inter-
val uncertainties is time-consuming in engineering practice 
and generally needs huge computational burden. An efficient 
estimation strategy named SSLO is established to solve the 
tRBDO with both fuzzy and interval uncertainties. In our 
strategy, the deterministic optimization, time instant, and 
interval value estimations corresponding to the worst case 
scenario and most probable point searching are alternately 
performed to obtain the optimal design parameters. Our 
strategy avoids the triple-loop estimation process in the 
original tRBDO with fuzzy and interval uncertainties by 
the TDFP-index-based approach for cost-consuming engi-
neering problems; thus, it can save computational cost. Two 
vital points in our strategy guarantee its high efficiency. One 
is that no iterative searching step is needed to find the most 
probable point at each iteration step. The other one is that the 
time instant, interval value estimations corresponding to the 
worst case scenario, and most probable point are solved with 
single-loop optimization, which can improve the efficiency 
of the proposed SSLO method.

Several numerical and engineering examples are intro-
duced to show the effectiveness of the proposed SSLO. 
The solutions demonstrate that the established tRBDO 
under the fuzzy and interval uncertainties is rational, and 
the proposed SSLO method is accurate and efficient in 
solving the tRBDO. Simultaneously, the proposed SSLO 
is robust in various examples, and this kind of method is 
firstly introduced to solve tRBDO involving fuzzy and inter-
val uncertainties. It should be noted that one key point of 
the established SSLO is based on the optimization, for the 
problem with large dimensionality and highly nonlinearity, 
optimization based method may introduce big computational 

Fig. 9  The finite element models of the reinforcing rib

Table 16  The design parameter solution for the Example 5.5

Methods Objective Design variable

EMCPMA 1903.3819 [34.8147,20.27
85,8.1576,7.9
572,8.6555,8.
6787]

SSLO 1924.1296 [34.7922,20.97
06,8.0971,7.9
340,8.4218,8.
6324]

Table 17  Number of function 
calls of example 5.5

Methods Number of function calls Number of gradient 
computation

Computation 
time/second

Objective Constraint Total

EMCPMA 21 12,358 12,379 31,725 651.4218
SSLO 6 4154 4160 9268 193.0971



 C. Fan et al.

1 3

25 Page 16 of 17

demand. Therefore, the established SSLO is suitable for the 
problem with small or moderate dimensionality and non-
linearity. Dealing with the tRBDO under fuzzy and interval 
uncertainties with large dimensionality and highly nonlin-
earity will be our future focus, and the meta-model can deal 
with high nonlinear and dimensional engineering problem 
in tRBDO. Machine learning techniques, such as Kriging/
Gaussian process, support vector machine, neural networks, 
and polynomial chaos expansion, can approximate realistic 
engineering high nonlinear and dimensional problems, i.e., 
FEM problem. The active learning algorithm only needs few 
training samples to get accurate explicit performance func-
tion. Finally, the proposed method can deal with the explicit 
function efficiently.
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