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Abstract
Reliability-based design optimization (RBDO) derives an optimum design that satisfies target reliability and minimizes an 
objective function by introducing probabilistic constraints that take into account failures caused by uncertainties in random 
inputs. However, existing RBDO studies treat all failures equally and derive the optimum design without considering the 
magnitude of failure exceeding the limit state. Since the damage caused by failure varies according to the magnitude of 
failure, a probabilistic framework that considers the magnitude of failure differently is necessary. Therefore, this study pro-
poses a weighted RBDO (WRBDO) framework that assigns a different weight to each failure according to the magnitude of 
failure and derives an optimum design that quantitatively reflects the magnitude of failures. In the WRBDO framework, the 
weight function is modeled based on warranty cost or damage cost according to the magnitude of failure, and the weighted 
failure is determined by assigning different weights according to the magnitude of failure through the weight function. Then, 
weighted probabilistic constraints reflecting the weighted failure are evaluated. Sampling-based reliability analysis using 
the direct Monte Carlo simulation (MCS) is performed to evaluate the weighted probabilistic constraints. Stochastic sensi-
tivity analysis that calculates the sensitivities of the weighted probabilistic constraints is derived, and it is verified through 
numerical examples that the stochastic sensitivity analysis is more accurate and efficient than the sensitivity analysis using 
the finite difference method (FDM). To enable the practical application of WRBDO, AK-MCS for WRBDO in which the 
Kriging model is updated to identify both the limit state and the magnitude of failures in the failure region is proposed. The 
results of various WRBDO problems show that the WRBDO yields conservative designs than a conventional RBDO, and 
more conservative designs are derived as the slope of weight functions and the nonlinearity of constraint functions increase. 
The optimum results of a 6D arm model show that the cost increases by 3.39% and the number of failure samples decreases 
by 88.48% in WRBDO and the weighted failures of WRBDO are averagely 9.1 times larger than those of RBDO. The results 
of applying AK-MCS for WRBDO to the 6D arm model verify that the AK-MCS for WRBDO enables practical application 
of WRBDO with a small number of function evaluations.

Keywords  Weighted reliability-based design optimization (WRBDO) · Weight function · Monte Carlo simulation (MCS) · 
Stochastic sensitivity analysis · Kriging · Active learning

List of symbols
d	� Design variable vector
X	� Random variable vector
P[⋅]	� Probability measure
g(X)	� Constraint function
P
Target

F
	� Target probability of failure

dL	� Lower design bound

dU	� Upper design bound
PF	� Probability of failure
�	� Vector of the mean of the random input
f�(�;�)	� Joint probability density function of X
E[⋅]	� Expectation operator
ΩF	� Failure set
IΩF

(�)	� Indicator function for the failure set
fW	� Weight function
PF,W	� Weighted probability of failure
ΩS	� Safe set
IΩS

(�)	� Indicator function for the safe set
P
Target

F,W
	� Target-weighted probability of failure

S	� Monte Carlo population
SF	� Monte Carlo population in the failure region
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1  Introduction

Reliability-based design optimization (RBDO) has been 
studied to consider failures caused by uncertainties in the 
design of engineering systems and has been widely applied 
in fields such as mechanical engineering (Wang and Wang 
2012; Shin and Lee 2014; Wang et al. 2020a), aerodynam-
ics (Lian and Kim 2006; Kim et al. 2011; Hu et al. 2016; 
Kusano et al. 2020), vehicle safety (Shi and Lin 2016; Wang 
et al. 2020b), and structural analysis (Papadrakakis et al. 
2005; López et al. 2017; Meng et al. 2018; Ni et al. 2020; 
Yang et al. 2020). RBDO introduces probabilistic constraints 
to derive the optimum design that minimizes the objective 
function and satisfies the target reliability. Recently, many 
studies related to analytical and surrogate model-based 
methods have been conducted to improve the accuracy 
and efficiency of RBDO. Jiang et al. (2017) proposed an 
adaptive hybrid single-loop method (AH-SLM) that auto-
matically find and calculate the approximate most probable 
point (MPP) or accurate MPP. Infeasible approximate MPP, 
which does not satisfy KKT-condition, is replaced by accu-
rate MPP obtained using iterative control strategy (ICS) that 
adaptively updates the step length required to search for the 
MPP. This method solves the problem of the single-loop 
method that derives an incorrect MPP in complex nonlin-
ear RBDO problems; however, the error that occurs in the 
approximation of the limit state function at the MPP still 
remains. To improve the computational efficiency of the 
novel novel second-order reliability method (SORM) that 
fully integrates a linear combination of non-central random 
variables, Park and Lee (2018) proposed a method to obtain 
the PDF of the quadratically approximated function using 
the convolution integral method. The proposed method 
shows better computational efficiency with the same accu-
racy than the existing novel SORM; however, an error occurs 
when the nonlinear limit state function is approximated as 
a quadratic function at the MPP. Meng et al. (2019) pro-
posed an importance learning method (ILM) that considers 
the importance degree of points on the limit state function 
during the active learning process, improving the computa-
tional efficiency and accuracy of reliability analysis based 
on the Kriging model; however, there is still a disadvantage 
that high-dimensional or highly nonlinear problems are not 
modeled effectively with the Kriging model.

However, when evaluating the probabilistic constraint in 
the RBDO problem, the aforementioned studies have limi-
tations as the probability of failure is calculated by treat-
ing all parts of the failure region exceeding the limit state 
equally regardless of the extent to which the limit state is 
exceeded. In actual engineering applications, the damage 
caused by failure may vary according to the magnitude of 
failure (Mukhopadhyay et al. 2015; Karagiannis et al. 2017). 

Since failures have different magnitudes, a different weight 
should be assigned for each failure, and thus, a probabilistic 
framework that considers the magnitude of failure in the 
probability of failure calculation is necessary. Therefore, 
this study proposes a weighted RBDO (WRBDO) frame-
work that determines the weighted failure according to the 
magnitude of failure and evaluates the weighted probabil-
istic constraints reflecting the weighted probability of fail-
ure. Weighted failure is determined by the weight function, 
which is a function of the magnitude of failure, and the 
weighted probability of failure is calculated as the propor-
tion of the weighted failure among both safe and failure sets. 
In general, the magnitude of failure far from the limit state 
can be considered to be higher than that of failure near the 
limit state. In addition, the nonlinearity of the constraint 
function in the failure region also affects the magnitude of 
failure. In actual WRBDO applications, the weight func-
tion can be modeled based on warranty cost or damage cost 
according to the magnitude of failure. First, the function 
type is determined by considering the trend in warranty or 
damage costs according to the magnitude of failure. Then, 
the function parameters can be determined using the rela-
tionship between the magnitude of failure and the warranty 
or damage costs. As the cost incurred by failure increases, 
the weight function operates so that the weighted failure 
increases. The weight function quantifies how many low 
magnitude of failures correspond to a high magnitude of 
failure.

The reliability analysis of WRBDO evaluates the 
weighted probabilistic constraints, and in this study, 
sampling-based reliability analysis is performed using 
the direct Monte Carlo simulation (MCS) method that 
evaluates weighted probabilistic constraints through large 
number of function evaluations. The design optimization 
process of WRBDO requires sensitivities of probabilis-
tic responses derived from MCS, as in RBDO (Lee et al. 
2011). Sensitivity analysis can be performed with the finite 
difference method (FDM) using the difference between two 
probability of failures; however, a large number of samples 
are required to obtain accurate sensitivity due to statisti-
cal noise of MCS and the number of MCSs required for 
the sensitivity analysis increases as the number of random 
variables increases. In addition, the accuracy of sensitivity 
obtained from FDM is reduced if an inadequate perturba-
tion size is used (Montoya and Millwater 2017). Instead, 
this study presents a method to calculate the sensitivities 
of weighted probabilistic constraints based on stochastic 
sensitivity analysis, which does not require approximation 
in calculating the sensitivities (Rahman 2009). The direct 
MCS method used for sampling-based reliability analy-
sis is accurate but computationally inefficient. Therefore, 
AK-MCS, which is defined as an active learning reliabil-
ity method combining Kriging and MCS, is introduced 
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and AK-MCS for WRBDO in which the Kriging model is 
updated to identify both the limit state and the magnitude 
of failures is proposed. Once an accurate Kriging model is 
established by sequentially adding samples through a learn-
ing function that determines the next best sample, MCS 
can be applied to the Kriging model to evaluate weighted 
probabilistic constraints without computational burden.

The innovations and contributions of this paper can be 
summarized as follows. The proposed WRBDO derives an 
optimum design that quantitatively reflects the magnitude 
of failures in the failure region, and therefore, it alleviates 
the limitation of the existing RBDOs that classify only safe 
or failure and cannot reflect the magnitude of failures in the 
design. Unlike risk-based approaches that achieve the same 
conservativeness for given magnitude of failures, WRBDO 
can achieve various conservativeness by reflecting the mag-
nitude of failures differently through the establishment of 
appropriate weight functions. Since the weight function is 
established based on the information of the resulting dam-
age or cost according to the magnitude of failure, it can be 
evaluated that WRBDO secures desirable conservativeness.

The rest of this paper is organized as follows. In Sect. 2, 
the conventional sampling-based RBDO is briefly reviewed. 
Section 3 suggests the necessity of the WRBDO framework 
and presents the proposed WRBDO framework, stochastic 
sensitivity analysis, and MCS for WRBDO framework. The 
AK-MCS for WRBDO is proposed in Sect. 4. Section 5 
demonstrates the accuracy of sensitivities of the weighted 
probabilistic constraints through numerical examples con-
sisting of highly nonlinear and/or high-dimensional prob-
lems. In addition, WRBDO results obtained using various 
optimization methods and weight functions are compared, 
and an engineering example is used to compare the results 
of RBDO and WRBDO. The AK-MCS for WRBDO is also 
validated through numerical examples in Sect. 5. Finally, 
discussions and conclusion are provided in Sect. 6.

2 � Fundamentals of sampling‑based RBDO

This section briefly reviews fundamentals of the conven-
tional RBDO. Before explaining the sampling-based RBDO, 
Sect.  2.1 presents a general RBDO formulation. Then, 
Sect. 2.2 explains the stochastic sensitivity analysis that 
calculates sensitivities of probabilistic constraints without 
using sensitivities of limit states. Finally, Sect. 2.3 shows 
how to obtain the probability of failure and its sensitivity 
through MCS in the sampling-based RBDO.

2.1 � RBDO formulation

In the conventional RBDO framework, a general RBDO 
problem is formulated as follows:

where d is the nd-dimensional design variable vector; X is 
the N-dimensional random variable vector; P[⋅] indicates the 
probability measure; PTarget

Fj
 is the target probability of failure 

for the jth probabilistic constraint gj(�) ; dL and dU represent 
the lower and upper design bounds, respectively; and nc, nd, 
and N are the number of probabilistic constraints, design 
variables, and random variables, respectively.

A reliability analysis evaluates the probabilistic con-
straint, which involves the probability of failure defined as 
follows:

where � is a vector of the mean of the random input 
� = {X1,… ,XN}

T ; ΩF  is the failure set defined as 
{� ∶ g(�) > 0} ; f�(�;�) represents a joint probability den-
sity function of X; and E[⋅] is the expectation operator. IΩF

(�) 
is an indicator function for the failure set and defined as 
follows:

2.2 � Stochastic sensitivity analysis

This section explains the stochastic sensitivity analysis for 
the probabilistic constraints. By taking the partial derivative 
of probability of failure in Eq. (2) with respect to the ith 
design variable μi, the sensitivity of probability of failure 
can be obtained as follows:

Since IΩF
(�) is not a function of μi, interchange between the 

integral and differential operators using the Leibniz’s rule 
of differentiation (Browder 1996) yields

(1)
minimize cost(�)

subject to P
[
gj(�) > 0

] ≤ P
Target

Fj
, j = 1,… , nc

�L ≤ � ≤ �U, � ∈ �nd and � ∈ �N

,

(2)

PF(�) ≡ P[� ∈ ΩF] = �
�N

IΩF
(�)f�(�;�)d� = E[IΩF

(�)],

(3)IΩF
(�) ≡

{
1, � ∈ ΩF

0, otherwise
.

(4)
�PF(�)

��i

=
�

��i
∫
�N

IΩF
(�)f�(�;�)d�.
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2.3 � MCS for RBDO framework

In the sampling-based RBDO, MCS is used to calculate the 
probability of failure and its sensitivity. The probabilistic 
constraint can be estimated by using MCS as follows:

where L is the number of MCS samples, �(l) is the lth realiza-
tion of X, and PTarget

F
 is the target probability of failure. Then, 

the sensitivity of the probability of failure in Eq. (5) can be 
obtained as follows:

In Eqs. (6) and (7), a surrogate model can be utilized 
to reduce the computational burden of calculating the 

(5)

�PF(�)

��i

= ∫
�N

IΩF
(�)

�f�(�;�)

��i

d� = ∫
�N

IΩF
(�)

� ln f�(�;�)

��i

f�(�;�)d� = E

[
IΩF

(�)
� ln f�(�;�)

��i

]
.

(6)PF =
1

L

L∑

l=1

IΩF

(
�(l)

) ≤ P
Target

F
,

(7)
�PF(�)

��i

=
1

L

L∑

l=1

{
IΩS

(
�(l)

)� ln f�(�(l);�)
��i

}
.

probability of failure and its sensitivity. Even if the surro-
gate model is used in Eq. (7), only the function values of 
the surrogate model are used in the indicator function and 
the sensitivity of the surrogate model is not required, and 
thus the sensitivity of probability of failure can be obtained 
accurately and efficiently.

3 � Proposed WRBDO framework

This section explains the proposed WRBDO framework. Sec-
tion 3.1 explains limitations of the existing RBDO framework 
and why the proposed WRBDO framework is necessary. 
Then, Sect. 3.2 presents the WRBDO framework and explains 
weighted probabilistic constraints that involve the weighted 
probability of failure calculated using a weight function. Sec-
tion 3.3 derives sensitivities of the weighted probabilistic con-
straints. A method that evaluates the weighted probabilistic con-
straint and its sensitivity using MCS is explained in Sect. 3.4.

3.1 � Necessity of WRBDO

As shown in the indicator function of Eq. (3), the reliability 
analysis of the conventional RBDO framework assigns the 
same value to all failures in the failure set; however, failures 
have different magnitude of failure, which is determined by the 

Fig. 1   Illustration of failures 
exceeding the limit state
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limit state function value: Fig. 1 shows an example of the limit 
state and MCS samples to illustrate the magnitude of failures 
exceeding the limit state, and the color bar indicates the limit 
state function values representing the magnitude of failures in 
the failure region. This implies that the conventional RBDO 
cannot explain different damages caused by each failure, and 
this is why it is necessary to develop a new RBDO framework 
where failures are differently evaluated according to their mag-
nitudes. To this end, risk-based design optimization attempts to 
consider the failure magnitude in design optimization by intro-
ducing conditional value-at-risk (CVaR) and buffered probabil-
ity of failure (bPoF) approaches (Rockafellar and Uryasev 2000; 
Rockafellar and Royset 2010; Zhang et al. 2016; Royset et al. 
2017; Chaudhuri et al. 2020). In the CVaR approach, target 
reliability α is defined and the constraint is given so that the tail 
expectation of a set greater than or equal to the α-quantile is less 
than the failure threshold. The bPoF approach assigns a buffer 
zone to safe set near the failure threshold so that the expectation 
of the buffer zone and failure set becomes the failure threshold. 
Then, the proportion of the sum of the buffer zone and failure 
set among the total sets is defined as bPoF, and the constraint 
is given so that bPoF is less than or equal to the probability of 
failure. These risk-based approaches consider the magnitude of 

failure, but only simple tail expectation is reflected. In order to 
consider the magnitude of failure more realistically and deli-
cately, the resulting damage should be considered as well as the 
magnitude of failure. That is, a new probability measure that 
quantifies how many low magnitude of failures correspond to 
a high magnitude of failure is necessary.

Therefore, this study proposes a WRBDO framework 
that defines the weighted probability of failure, which is the 
proportion of the sum of weighted failures—calculated by 
assigning weights to failures according to the magnitude 
of failure—among both safe and failure sets. The WRBDO 
framework considers the characteristics of the limit state 
function in the failure region and determines to what extent 
the magnitude of failure is reflected.

3.2 � WRBDO framework

The flowchart for obtaining the weighted probability of fail-
ure in the WRBDO framework is shown in Fig. 2. For a 
given design, the failure region and magnitude of failures 
can be specified. As mentioned in Sect. 3.1, the magnitude 
of failure determined by the limit state function in the failure 
region is different from failure to failure. A failure with a 

Fig. 2   Flowchart for obtaining the weighted probability of failure
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high magnitude of failure corresponds to several low mag-
nitude of failures. For example, one failure with a cost of 
$1000 can be matched to 10 failures with a cost of $100 for 
each failure. In order to reflect this relationship in the reli-
ability analysis, a weight function is introduced to determine 
the weighted failure, which is defined as follows:

where f is a function that increases with the magnitude of 
failure in the failure set and three examples of weight func-
tion are shown in Fig. 3. In Eq. (8), the weight is assigned 
to failure regions only, not to safe regions. The weight func-
tion can be modeled based on warranty cost or damage cost 
according to the magnitude of failure. The function type is 
determined by taking into account the trend in warranty or 
damage costs according to the magnitude of failure. Then, 
the function parameters can be determined using the rela-
tionship between the magnitude of failure and the warranty 
or damage costs. Since the weight function can have a sig-
nificant effect on the optimization results of WRBDO, suf-
ficient data are required to accurately model the weight func-
tion. As the cost incurred by failure increases, the weight 
function operates so that the weighted failure increases. 
The weight function quantifies how many low magnitude of 
failures corresponds to a high magnitude of failure. Since 
the weight function represents the relationship of warranty 
or damage costs according to the magnitude of failure, the 
number of low magnitude of failures corresponding to a high 

(8)fW (g(�)) ≡
{

f (g(�)), � ∈ ΩF

1, otherwise
,

magnitude of failure can be determined by comparing the 
warranty or damage costs of high and low magnitude of 
failures. Although weights can be similarly assigned to safe 
regions, only weighted failures are considered in this study.

The weighted probability of failure, which is calculated by 
reflecting the weighted failure for the failure set, is expressed 
as follows:

where ΩS is the safe set defined as {� ∶ g(�) ≤ 0} and IΩS
(�) 

is an indicator function for the safe set defined as follows:

The weighted probability of failure in Eq. (9) consists of 
two probabilities calculated from the failure set and the safe 
set. The probability calculated in the failure set is given by

and the probability calculated in the safe set is given by

(9)

PF,W (�) =

∫
�N

IΩF
(�)fW (g(�))f�(�;�)d�

∫
�N

IΩF
(�)fW (g(�))f�(�;�)d� + ∫

�N

IΩS
(�)fW (g(�))f�(�;�)d�

,

(10)IΩS
(�) ≡

{
1, � ∈ ΩS

0, otherwise
.

(11)

P1(�) = ∫
�N

IΩF
(�)fW (g(�))f�(�;�)d� = E

[
IΩF

(�)fW (g(�))
]
,

(12)P2(�) = ∫
�N

IΩS
(�)f�(�;�)d� = E

[
IΩS

(�)

]
.

Fig. 3   Three examples for 
weight function
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Compared to the probability of failure in Eq. (2), the 
safe region is considered in the calculation of the weighted 
probability of failure. In addition, the magnitude of failure 
is reflected through the weight function. Since the multi-
dimensional integrals in Eqs. (11 and 12) are difficult to 
calculate, several approximation techniques can be used to 
ease the computational difficulties. However, in this study, 
direct MCS without any approximation is used to calculate 
the weighted probability of failure to present the basic con-
cept of WRBDO, which will be covered in Sect. 3.4.

3.3 � Stochastic sensitivity analysis for WRBDO

This section explains the derivation of stochastic sensitivity 
for the weighted probabilistic constraints. By taking a partial 
derivative of the weighted probability of failure in Eq. (9) 
with respect to the ith design variable �i and using the chain 
rule, the sensitivity of the weighted probability of failure can 
be obtained as follows:

The partial derivative of P1(�) with respect to �i is given 
by

and similar to Eq. (5), interchange between the integral and 
differential operators using the Leibniz’s rule of differentia-
tion yields

since IΩF
(�) and fW (g(�)) are not a function of �i . Similarly, 

the partial derivative of P2(�) with respect to �i is given by

(13)

�PF,W (�)

��i

=
�

��i

( ∫
�N

IΩF
(�)fW (g(�))f�(�;�)d�

∫
�N

IΩF
(�)fW (g(�))f�(�;�)d�+ ∫

�N

IΩS
(�)fW (g(�))f�(�;�)d�

)

=
�

��i

(
P1(�)

P1(�)+P2(�)

)
=

�P1(�)

��i
(P1(�)+P2(�))−P1(�)

�(P1(�)+P2(�))
��i

(P1(�)+P2(�))
2

.

(14)
�P1(�)

��i

=
�

��i
∫
�N

IΩF
(�)fW (g(�))f�(�;�)d�,

(15)

�P1(�)

��i

= ∫
�N

IΩF
(�)fW (g(�))

�f�(�;�)

��i

d�

= ∫
�N

IΩF
(�)fW (g(�))

� ln f�(�;�)

��i

f�(�;�)d�

= E

[
IΩF

(�)fW (g(�))
� ln f�(�;�)

��i

]

,

(16)

�P2(�)

��i

= ∫
�N

IΩS
(�)

�f�(�;�)

��i

d�=∫
�N

IΩS
(�)

� ln f�(�;�)

��i

f�(�;�)d�

= E

[
IΩS

(�)
� ln f�(�;�)

��i

]
.

Finally, the sensitivity of the weighted probability of fail-
ure in Eq. (13) can be obtained using Eqs. (11, 12, 15, and 
16). As shown in Eqs. (15 and 16), the proposed stochastic 
sensitivity analysis uses the sensitivity of the joint distribu-
tion, which can be obtained analytically, whereas the FDM 
is based on the perturbation of the probabilistic response. 
Therefore, the proposed stochastic sensitivity analysis results 
in higher accuracy and efficiency compared to FDM.

In comparison with Eq. (5), the stochastic sensitivity of 
the weighted probability of failure in Eq. (13) shows that the 
magnitude of failure is reflected through the weight function 
and the sensitivity of the joint distribution in the safe region 
is considered. If fW (g(�)) = 1 , the weighted probability of 
failure in Eq. (9) and its sensitivity in Eq. (13) can be simpli-
fied as follows:

and

respectively. This implies that the conventional sampling-
based RBDO is a special case of the proposed WRBDO 
where fW (g(�)) = 1.

3.4 � MCS for WRBDO framework

In this study, MCS is used to calculate the weighted prob-
ability of failure and its sensitivity. The weighted probabil-
istic constraint can be estimated by using MCS as follows:

where PTarget

F,W
 is the target-weighted probability of failure. 

To apply MCS in calculating the sensitivity of the weighted 
probability of failure in Eq. (13), estimations in Eqs. (11, 12, 
15, and 16) are given as follows:

(17)

PF,W (�) =

∫
�N

IΩF
(�)f�(�;�)d�

∫
�N

IΩF
(�)f�(�;�)d� + ∫

�N

IΩS
(�)f�(�;�)d�

= �
�N

IΩF
(�)f�(�;�)d� = E[IΩF

(�)],

(18)

�PF,W (�)

��i

=
�

��i

⎛
⎜
⎜
⎜
⎝

∫
�N

IΩF
(�)f�(�;�)d�

∫
�N

IΩF
(�)f�(�;�)d� + ∫

�N

IΩS
(�)f�(�;�)d�

⎞
⎟
⎟
⎟
⎠

=
�

��i

⎛
⎜
⎜
⎝
�
�N

IΩF
(�)f�(�;�)d�

⎞
⎟
⎟
⎠

= �
�N

IΩF
(�)

� ln f�(�;�)

��i

f�(�;�)d� = E

�
IΩF

(�)
� ln f�(�;�)

��i

�
,

(19)

PF,W =

L∑
l=1

�
IΩF

�
�(l)

�
fW
�
g
�
�(l)

���

L∑
l=1

�
IΩF

�
�(l)

�
fW
�
g
�
�(l)

��
+ IΩS

�
�(l)

�
fW
�
g
�
�(l)

���
≤ P

Target

F,W
,

(20)P1(�) =
1

L

L∑

l=1

{
IΩF

(
�(l)

)
fW
(
g
(
�(l)

))}
,
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The aforementioned sensitivity analysis of the weighted 
probability of failure obtained using MCS does not require 
the sensitivity of the constraint function and the weight 
function. In addition, since no approximation is involved 
in the sensitivity analysis, the statistical noise occurred 
because MCS is the only factor that degrades the accuracy 
of the sensitivity analysis, which can be resolved by using 
a sufficiently large number of MCS samples.

4 � AK‑MCS for WRBDO

In WRBDO framework, the direct MCS method that 
evaluates weighted probabilistic constraints through large 
number of function evaluations is very accurate but com-
putationally inefficient. Therefore, to enable the practical 
application of WRBDO, this section proposes AK-MCS 
for WRBDO in which the Kriging model is updated to 
identify both the limit state and the magnitude of fail-
ures. Once an accurate Kriging model is established by 
sequentially adding samples through a learning function 
that determines the next best sample, MCS can be applied 
to the Kriging model to evaluate weighted probabilistic 
constraints without computational burden. In the existing 
AK-MCS for RBDO, the learning function is defined so 
that samples are added near the limit state since the clas-
sification of safe or failure is the only interest; however, in 
WRBDO, a newly defined learning function is required to 
identify both the limit state and the magnitude of failures 
in the failure region. In Sect. 4.1, the learning function U 
used in the existing AK-MCS for RBDO and a new learn-
ing function proposed for the AK-MCS for WRBDO are 
explained. Then, the framework of AK-MCS for WRBDO 
is presented in Sect. 4.2.

4.1 � Learning functions

A Kriging predictor is considered as a realization of stochastic 
process. Kriging is an interpolation method based on Gaussian 
process, and the uncertainty of local predictions can be quanti-
fied by Kriging variance. In AK-MCS, the next best sample 

(21)P2(�) =
1

L

L∑

l=1

{
IΩS

(
�(l)

)
fW
(
g
(
�(l)

))}
,

(22)

�P1(�)

��i

=
1

L

L∑

l=1

{
IΩF

(
�(l)

)
fW
(
g
(
�(l)

))� ln f�(�(l);�)
��i

}
,

(23)
�P2(�)

��i

=
1

L

L∑

l=1

{
IΩS

(
�(l)

)� ln f�(�(l);�)
��i

}
.

is determined through the learning functions considering the 
uncertainty information, and the Kriging model is sequentially 
updated by adding new samples. Learning functions represent 
the active learning characteristics of AK-MCS. In this sec-
tion, the learning function U used in the existing AK-MCS 
for RBDO is explained, and a learning function named V is 
proposed for the AK-MCS for WRBDO.

4.1.1 � Learning function U

The learning function U proposed by Echard et al. (2011) is 
used to identify the limit state in the AK-MCS for RBDO. 
To select a sample close to the limit state and having a large 
prediction uncertainty as the next best sample, the learning 
function U is defined as follows:

where ĝ(�) and 𝜎ĝ are the mean and standard deviation of a 
Kriging model, respectively. Then, the next best sample x* 
is given as follows:

where S is a Monte Carlo population. The learning function 
U focuses on the samples near the limit state, and therefore, 
the ability to classify safety or failure of the sequentially 
updated Kriging model can be improved.

4.1.2 � Learning function V

To evaluate weighted probabilistic constraints in WRBDO, the 
identification of the magnitude of failures as well as the limit 
state is required. To identify them, the learning function V is 
proposed for the AK-MCS for WRBDO as follows:

Then, the next best sample x* is given as follows:

where SF is a Monte Carlo population in the failure region, 
indicating that candidates for the next best sample are limited 
to samples in the failure region. The first term of the learn-
ing function V, fW (ĝ(�)) , prioritizes the sample with a large 
weighted failure. This enables the exploration of the fail-
ure region by considering the magnitude of failure and the 
weight function. The second term of the learning function 
V, 𝜎ĝ(�) , prioritizes the sample with a high prediction uncer-
tainty. This term is also considered in the learning function 
U. Finally, the last term of the learning function V, f�(�;�) , 
prioritizes the sample with a high probability density. This 

(24)U(�) =
|ĝ(�)|
𝜎ĝ(�)

,

(25)�∗ = min
�∈S

U(�),

(26)V(�) = fW (ĝ(�))𝜎ĝ(�)f�(�;�).

(27)�∗ = max
�∈SF

V(�),
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enables the exploration of the limit state because the sample 
close to the limit state has a high probability density when 
the mean of random variables μ is located in the safe region. 
By sequentially updating the Kriging model with the sam-
ples obtained through the learning function V consisting of 
the three terms, both the limit state and the magnitude of 
failures in the failure region can be accurately identified, and 
therefore, weighted probabilistic constraints can be evalu-
ated successfully.

4.2 � Framework of AK‑MCS for WRBDO

In this section, the active learning process of AK-MCS 
for WRBDO using the learning function V described in 
Sect. 4.1.2 is presented. The flowchart of AK-MCS for 
WRBDO is presented in Fig. 4. The active learning process 
consists of 8 steps.

(1)	 Generate an initial design of experiments (DoE) and 
perform function evaluations on the generated samples.

(2)	 Construct the Kriging model according to the generated 
DoE.

(3)	 Estimate the Kriging predictions—ĝ(�) and 𝜎ĝ—for all 
Monte Carlo population S.

(4)	 Evaluate stop criteria 1: if the maximum Kriging stand-
ard deviation is less than �1 , terminate the method and 
calculate the estimated weighted probability of failure 
P̂F,W . If the prediction uncertainty of the Kriging model 
is sufficiently small, the limit state and failure region 
can be accurately identified without additional samples, 
and 10–10 is used as �1 in this study.

(5)	 Evaluate stop criteria 2: if the average relative change 
of sum of weighted failures �WF

 is less than �2 , termi-
nate the method and calculate the estimated weighted 
probability of failure P̂F,W . The sum of weighted fail-
ures WF is given as follows:

Fig. 4   The flowchart of AK-MCS for WRBDO
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and the average relative change of WF is given 
asfollows:

	 
If the change in WF is small even when a new sample 
is added, the Kriging model is considered to be con-
verged, and 0.1% is used as �2 in this study.

(6)	 Identify the next best sample. As already explained 
in Sect. 4.1.2, the learning function V uses the Monte 
Carlo population in the failure region as candidates for 
the next best sample, and therefore, if there exists a 
failure region, the sample with the maximum learn-
ing criterion V becomes the next best sample x*. If a 
failure region does not exist, the focus is on identify-
ing the limit state using the learning function U, and 
thus the sample with the minimum learning criterion 
U becomes the next best sample x*.

(7)	 Perform function evaluation on x* and update the DoE.
(8)	 Go back to Step 2 and construct the Kriging model 

according to the updated DoE.

5 � Numerical studies

In this section, the results of numerical studies related to 
the proposed WRBDO framework are presented. To ana-
lyze the characteristics of the WRBDO framework, Sect. 5.1 
presents the results obtained by applying the direct MCS on 
WRBDO. Section 5.2 validates the AK-MCS for WRBDO, 
which is proposed in Sect. 4 to enable the practical applica-
tion of WRBDO.

5.1 � Direct MCS for WRBDO

Through numerical examples, this section verifies the sto-
chastic sensitivity of the weighted probabilistic constraints 
derived in Sect. 3.3 and shows observations obtained from 
the results of the WRBDO applications. In order to focus on 
analyzing the characteristics of the WRBDO framework, this 
section performs WRBDO through the direct MCS without 
using a surrogate model. The FDM using MCS is used to 
compare the accuracy of the proposed stochastic sensitivity 
analysis. For the benchmark sensitivity, the fitting sensitiv-
ity obtained from the derivative of the function established 
by performing polynomial fitting with weighted probability 
of failure values, which are calculated near the design point 
where the sensitivity is measured, is used. In numerical 

(28)WF =

L∑

l=1

{
IΩF

(
�(l)

)
fW
(
g
(
�(l)

))}
,

(29)�WF
=

1

2

N∑

i=N−1

|||W
i
F
−Wi−1

F

|||
Wi−1

F

.

examples, the MCS sample size for stochastic sensitivity, 
the FDM, and weighted probability of failure is 108. The 
results of stochastic sensitivities of the weighted probabil-
istic constraints for highly nonlinear and high-dimensional 
functions are explained in Sects. 5.1.1 and 5.1.2, respec-
tively. Section 5.1.3 compares the results of a WRBDO 
problem obtained using the stochastic sensitivity and FDM. 
Observations obtained through various weight functions 
and standard deviations of the design variables are shown 
in Sect. 5.1.4. In Sect. 5.1.5, an engineering example using a 
6D arm model is presented and the optimum results obtained 
from RBDO and WRBDO are compared.

5.1.1 � Sensitivities of the weighted probabilistic constraints 
for highly nonlinear function

To verify the applicability of the proposed stochastic sensi-
tivity analysis for highly nonlinear functions, a 2D polyno-
mial function is given as follows:

where 

{
Y

Z

}
=

[
0.9063 0.4226

0.4226 − 0.9063

]{
X1

X2

}
 , and X1, X2 fol-

low a normal distribution. The standard deviations of two 
random variables are 0.4 and all random variables are 
assumed to be statistically independent. A linear function 
given by

is used as the weight function in the failure region. The 
sensitivities of weighted probability of failure at several 
design points are listed in Table 1. For the perturbation 
size of FDM, 0.1% of �i is used. The fitting sensitivity with 
respect to �i , which is used as the benchmark sensitivity, 
can be obtained by differentiating the function established 
using 20D polynomial fitting with the weighted probability 
of failure values calculated from the interval [ �i − 1, �i + 1] 
with step size of 0.01. The results in Table 1 show that the 
stochastic sensitivity and the sensitivity obtained using FDM 
agree well at design points of the highly nonlinear func-
tion. Compared to the sensitivity obtained using FDM, the 
stochastic sensitivity is closer to the fitting sensitivity used 
as the benchmark sensitivity since the stochastic sensitiv-
ity does not involve any approximation except the statistical 
noise due to MCS, as explained in Sect. 3.4. In addition, 
to obtain the sensitivity, the stochastic sensitivity analysis 
requires only one MCS at a given design point, whereas 
FDM requires N + 1 MCSs. Therefore, the stochastic sensi-
tivity analysis derives the sensitivity of the weighted proba-
bilistic constraints more accurately and efficiently than the 

(30)
g(�) = −1 + (Y − 6)2 + (Y − 6)3 − 0.6 × (Y − 6)4 + Z,

(31)fW (g(�)) ≡
{

2g(�) + 1, � ∈ ΩF

1, otherwise
,
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sensitivity analysis using FDM, and does not require deter-
mination of perturbation size.

5.1.2 � Sensitivities of the weighted probabilistic constraints 
for high‑dimensional functions

Sensitivity analysis for 9D, 20D, and 30D polynomial func-
tions is performed to verify that the proposed stochastic sen-
sitivity analysis works well for high-dimensional functions. 
Table 2 shows the high-dimensional constraint functions, 
the properties of random variables, and the sensitivities of 
weighted probability of failure. All random variables are 
assumed to be statistically independent, and the function 
presented in Eq. (31) is used as the weight function. As 
in Sect. 5.1.1, the stochastic sensitivity and the sensitivity 
obtained using FDM agree well, and the stochastic sensitiv-
ity is closer to the fitting sensitivity compared to the sensitiv-
ity obtained using FDM. Therefore, the proposed stochastic 
sensitivity analysis can be used to accurately and efficiently 
derive the sensitivity of weighted probability of failure even 
for highly nonlinear and high-dimensional functions.

5.1.3 � WRBDO using the proposed stochastic sensitivity 
analysis

This section shows how the proposed stochastic sensitivity is 
applied to the WRBDO problem. Consider a 2D mathematical 
WRBDO problem formulated as follows:

where the weight function and three constraint functions are 
given as follows:

where � = �(�) is the design vector and �(�)(l) is the lth real-
ization of �(�) . The cost function and three constraint func-
tions are plotted in Fig. 5, and the deterministic optimum 
�0 = [5.1969, 0.7405]T obtained from deterministic design 
optimization is used as the initial design point to enhance 
the efficiency of the WRBDO. The properties of random 
variables are presented in Table 3 and they are assumed to be 

(32)
minimize Cost(�) = −

(d1+d2−10)
2

30
−

(d1−d2+10)
2

120

subject to PF,Wj
≤ P

Target

F,Wj
= 2.275%, j = 1 ∼ 3

�L ≤ � ≤ �U, � ∈ �2 and � ∈ �2

,

(33)fWj

(
gj(�)

) ≡
{

2gj(�) + 1, � ∈ ΩF

1, otherwise
,

(34)g1(�) = 1 −
X2
1
X2

20
,

(35)

g2(�) = −1 + (0.9063X1 + 0.4226X2 − 6)2 + (0.9063X1

+0.4226X2 − 6)3 − 0.6 × (0.9063X1 + 0.4226X2 − 6)4

+(0.4226X1 − 0.9063X2)

,

(36)g3(�) = 1 −
80

X2
1
+ 8X2 + 5

,

Table 1   Sensitivities of 
weighted probability of failure 
for highly nonlinear problems

X Sensitivity with respect to μ1 Sensitivity with respect to μ2

Proposed 
sensitivity

FDM Fitting sensitivity Proposed sensitivity FDM Fitting sensitivity

[6,2] 0.9412 0.9395 0.9413  − 0.3863  − 0.3859  − 0.3866
[5.5,2] 0.5721 0.5758 0.5719  − 0.5305  − 0.5301  − 0.5309
[5.17,0.74] 1.0127 1.0102 1.0128  − 0.0706  − 0.0693  − 0.0707
[4.7,1.5] 0.3226 0.3250 0.3235  − 0.1606  − 0.1586  − 0.1606
[4.9,2.25] 0.0454 0.0462 0.0454  − 0.0517  − 0.0510  − 0.0517

Table 2   Sensitivities of 
weighted probability of failure 
for high-dimensional problems

Constraint functions Random vari-
ables

Sensitivity with respect to μ1

Proposed 
sensitivity

FDM Fitting sensi-
tivity

g =

8∑

i=1

[(1 − Xi)
2+

100(Xi+1 − X2

i
)2 − 2500]

X1…9: N(1,0.4) 0.0998 0.1001 0.0999

g = −X3

1
+

20∑
i=2

X3

i
− 27

X1…20: N(1,0.2)  − 0.0919  − 0.0924  − 0.0920

g = −400 +
30∑
i=1

[X2

i
− 10 cos(2πXi) + 10]

X1…30: N(1,1) 0.0105 0.0104 0.0105
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statistically independent. The target-weighted probability of 
failure ( PTarget

F,W
 ) is 2.275% for all three constraints as shown 

in Eq. (32).
Table 4 shows the WRBDO results obtained using vari-

ous optimization methods. Sequential quadratic program-
ming (SQP) is a gradient-based optimization method, and 
the optimization results obtained using the stochastic sensi-
tivity and FDM are compared. Genetic algorithm (GA) is a 
non-gradient approach and is used to verify whether the pro-
posed stochastic sensitivity works properly in the WRBDO 
framework. The optimum design obtained using the stochas-
tic sensitivity and FDM is identical; however, the number of 
iterations—the number of design points required to reach the 
optimum design—is smaller when the stochastic sensitivity 
is used. This verifies that since the proposed sensitivity is 

more accurate, the WRBDO converged faster to the optimal 
design. The optimum results obtained using SQP and GA are 
almost similar, indicating that the proposed stochastic sen-
sitivity analysis works properly in the WRBDO framework.

5.1.4 � WRBDO with various weight functions

Various weight functions are applied to the problem pre-
sented in Sect. 5.1.3 to observe the effect of the weight func-
tion on the results of WRBDO. Three cases with different 
weight functions are compared: a different weight function 
is used for each case, and the weight function given for each 
case applies equally to three constraint functions of Eqs. 
(34, 35, and 36). Each weight function has a linear function 
in the failure region, and the slope of the linear function is 
different for each case. The weight function of the first case 
is given as follows:

Since the weight function has the same value in both the 
safe region and the failure region, the magnitude of failure 
is not considered, and thus, the same result as in the existing 
RBDO is derived. The weight function presented in Eq. (33) 
is used in the second case. The weight function of the third 
case is given as follows:

Table 5 presents the WRBDO results of three cases, and 
the optimum designs are depicted in Fig. 6. The WRBDO 
designs of Cases 2 and 3 are more conservative than the 
RBDO design of Case 1, resulting in higher costs. Compared 
to Case 1, the costs of Cases 2 and 3 increase by 1.37% and 
4.29%, respectively. The results also show that the weight 
function affects the optimum design. As the slope of the 
weight function in the failure region increases, the magni-
tude of failure is more significantly reflected, resulting in a 
more conservative design. This can be verified by comparing 
the number of failure samples, which is the number of sam-
ples in the failure region, in Cases 1, 2, and 3. As the slope 
of the weight function in the failure region increases, the 
decrease rate of the number of failure samples also increases. 

(37)fWj

(
gj(�)

) ≡ 1.

(38)fWj

(
gj(�)

) ≡
{

10gj(�) + 1, � ∈ ΩF

1, otherwise
.

Fig. 5   Shape of cost and constraint functions

Table 3   Properties of random variables

Random 
variables

Distribution type Standard 
deviation

dL d0 dU

X1 Normal 0.4 0 5.1969 10
X2 Normal 0.4 0 0.7405 10

Table 4   WRBDO results obtained using various optimization methods

Methods Cost Optimum design MCS (100 M) Number of  
iterations

d1 d2 P
F,W1

,% P
F,W2

,%

SQP  Stochastic sensitivity  − 1.7702 4.6814 1.8566 2.2750 2.2750 7
 FDM  − 1.7702 4.6814 1.8566 2.2750 2.2750 8

GA  − 1.7700 4.6812 1.8570 2.2710 2.2693 −
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Compared to Case 1, the numbers of failure samples of g1 
and g2 in Case 2 decrease by 21.98% and 24.37%, respec-
tively, whereas in Case 3, the numbers of failure samples 
of g1 and g2 decrease by 56.16% and 59.54%, respectively. 
The decrease in the number of failure samples is due to the 
increased weight of each failure sample.

In addition, the nonlinearity of the constraint function 
affects the WRBDO design. The numbers of failure sam-
ples of g1 and g2 in Case 1 are almost the same. However, 
the numbers of failure samples of g2 in Cases 2 and 3 are 
lower than that of g1. The numbers of failure samples of g2 
in Cases 2 and 3 are 3.05% and 7.71% lower than that of g1, 
respectively. The fact that the number of failure samples in 
g2 is less than g1 indicates that the WRBDO design is more 
conservative for g2 than g1. This is because the nonlinearity 
of g2 is higher than that of g1, so the failure samples of g2 
tend to have a relatively high weight, and thus, the design 
is derived to reduce the number of samples in the failure 
region. As the slope of the weight function increases, the 
weight of the magnitude of failure increases, resulting in a 
more conservative design with a reduced number of failure 

samples in the failure region. And thus, it has the same effect 
as decreasing the target probability of failure in RBDO from 
the perspective of the conventional probability of failure. 
Therefore, the accuracy of reliability analysis decreases rela-
tively under the same number of MCS samples, resulting 
in decrease in the accuracy of cost and optimum design. 
For clear comparison between the WRBDO design and 
the RBDO design, RBDO is performed by setting the con-
ventional probability of failures of the WRBDO designs in 
Cases 2 and 3 − 1.775% for g1 and 1.721% for g2 in Case 2 
and 0.997% for g1 and 0.920% for g2 in Case 3 − as the tar-
get probability of failure of the RBDO problem. The results 
show that the RBDO designs in Cases 2 and 3 are exactly 
the same as the WRBDO designs, and it can be said that the 
weighted probability of failure of WRBDO provides RBDO 
a more conservative target probability of failure.

In order to observe the effect of standard deviations 
of design variables on WRBDO results, optimum results 
obtained with different standard deviations of random vari-
ables are compared. Table 6 presents the optimum results 
obtained when the standard deviations of X1 and X2 are 0.7, 
and the optimum designs are depicted in Fig. 7. As the stand-
ard deviations of random variables increase, the number of 
failure samples for the same design increases, resulting in 
more conservative designs with increased cost for all three 
cases. However, the WRBDO designs have a higher cost 
increase rate compared to the RBDO design. As the standard 
deviations of random variables increase, the costs of Cases 
1, 2, and 3 increase by 19.65%, 23.57%, and 32.85%, respec-
tively. This is because the magnitude of failure increases 
as the standard deviations increase, and the magnitude of 
failure increases more critically as the slope of the weight 
function increases. This can be explained by comparing the 
number of failure samples at the optimum designs. In Case 
1, even if the standard deviations increase, the number of 
failure samples at the optimum design remains the same 
because the magnitude of failure is not considered and all 
failure samples are treated equally. However, in Cases 2 and 
3, since the weight of each failure sample increases as the 
standard deviations increase, the number of failure sam-
ples in optimum designs decreases. In Cases 2 and 3, the 
averaged decrease rates of the number of failure samples 

Table 5   WRBDO results obtained using various weight functions (standard deviations of X1 and X2 are 0.4)

*Conventional probability of failure is enclosed in parentheses

Case Weight function Cost Optimum design Number of failure samples (total 
100 M)

Weighted probability of failure

d1 d2 g1 g2 g3 P
F,W1

,% P
F,W2

,% P
F,W3

,%

1 fW = 1  − 1.7947 4.6996 1.8008 2,274,980 2,275,000 0 2.275 (2.275)* 2.275 (2.275) 0 (0)
2 fW = 2g + 1  − 1.7702 4.6814 1.8566 1,774,810 1,720,630 0 2.275 (1.775) 2.275 (1.721) 0(0)
3 fW = 10g + 1  − 1.7177 4.6495 1.9767 997,344 920,486 0 2.275 (0.997) 2.275 (0.920) 0 (0)

Fig. 6   Shape of cost and constraint functions (standard deviations of 
X1 and X2 are 0.4)
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are 18.30% and 35.59%, respectively. The larger average 
decrease rate in Case 3 than in Case 2 is due to the tendency 
that the weight of the failure sample increases as the slope 
of the weight function increases. As in the case where the 
standard deviations of X1 and X2 are 0.4, if the conventional 
probability of failure corresponding to the weighted prob-
ability of failure of WRBDO is set as the target probability 
of failure of RBDO, the RBDO results in the same design 
as WRBDO.

Furthermore, the increase in magnitude of failure caused 
by increasing standard deviations is affected by the nonlin-
earity of the constraint function. As the standard deviations 
increase, the numbers of failure samples of g1 decrease by 
7.31% and 15.76% in Cases 2 and 3, respectively, while the 
numbers of failure samples of g2 decrease by 29.28% and 
55.41% in Cases 2 and 3, respectively. In the case of g2, 
since the nonlinearity is higher than that of g1, the weight 
of the failure sample in g2 tends to be larger than that of 

g1 as the standard deviation increases, resulting in a larger 
decrease rate of the number of failure samples. As the stand-
ard deviation increases, the target probability of failure from 
the perspective of the conventional probability of failure 
decreases since the effect of the weight function increases, 
and therefore, more MCS samples are required to maintain 
the accuracy of the reliability analysis. Once an appropri-
ate weight function is selected according to the problem, a 
WRBDO design reflecting the given standard deviation can 
be derived.

5.1.5 � Engineering example: 6D arm model

This section compares the results of RBDO and WRBDO for 
the 6D arm model provided by Hyperworks tutorial (Altair 
2017). The loading and boundary conditions for the arm 
model are shown in Fig. 8 where six random variables con-
sisting of morphing parameters denoted as d are used to 
control the geometry of the arm. Properties of the random 
variables are shown in Table 7 and the MCS sample size for 
weighted probability of failure is 105. The WRBDO for the 
6D arm model is formulated as follows:

Table 6   WRBDO results obtained using various weight functions (standard deviations of X1 and X2 are 0.7)

*Conventional probability of failure is enclosed in parentheses

Case Weight function Cost Optimum design Number of failure samples (total 
100 M)

Weighted probability of failure

d1 d2 g1 g2 g3 P
F,W1

,% P
F,W2

,% P
F,W3

,%

1 fW = 1  − 1.4420 4.6010 2.6503 2,275,001 2,274,998 0 2.275(2.275)* 2.275 (2.275) 0(0)
2 fW = 2g + 1  − 1.3530 4.4915 2.8824 1,645,047 1,216,853 0 2.275 (1.645) 2.275 (1.217) 0 (0)
3 fW = 10g + 1  − 1.1535 4.2990 3.4388 840,144 410,409 83,292 2.275 (0.840) 2.275 (0.410) 0.111 (0.083)

Fig. 7   Shape of cost and constraint functions (standard deviations of 
X1 and X2 are 0.7)

Fig. 8   Loading and boundary conditions
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where the objective is to minimize the volume of the arm 
and failure is defined such that the maximum displacement 
exceeds the target displacement. The weight function is 
modeled based on the vehicle repairing cost caused by pot-
holes. The arm is a part of the vehicle and the repairing cost 
varies depending on the magnitude of failure of the arm, 
because other parts are also damaged by the arm's damage as 
well as the arm itself is damaged. The repairing cost ranges 
from less than $250 to over $1000 (AAA Exchange 2017). 
By considering the repairing cost and variance of displace-
ment, the weight function is assumed to be given as follows:

The optimum design results of RBDO and WRBDO 
are listed in Table 8 where it can be shown that WRBDO 
yields a more conservative optimum design than RBDO: the 
cost increases by 3.39% and the number of failure samples 

(39)

minimize Cost(�)

subject to PF,W ≤ P
Target

F,W
= 5%

�L ≤ � ≤ �U, � ∈ R6 and � ∈ R6

where Cost(�): Volume of arm

g(�) = umax(�) − ut
umax: Maximum displacement

ut: Target displacement ( = 1.3mm)

,

(40)fW (g(�)) ≡
{

exp (27g(�)), � ∈ ΩF

1, otherwise
.

decreases by 88.48%. In WRBDO, the magnitude of failure 
exceeding the maximum displacement determines the weight 
of each failure through the weight function modeled accord-
ing to the repair cost, and therefore, a high magnitude of fail-
ure can be converted into multiple low magnitude of failures, 
resulting in fewer number of failure samples than in RBDO. 
The weighted failures of WRBDO have averagely 9.1 times 
larger values than those of RBDO. From the perspective of 
the weighted probability of failure, it can be seen that the 
RBDO design is infeasible.

To further investigate the characteristic of WRBDO, the 
histograms of g(�) derived from the optimum designs of 
RBDO and WRBDO are compared in Fig. 9. The Y-axis 
indicates the frequency of g(�) obtained by propagating 
uncertainties, and the figure shows that the conventional 
probability of failure of the WRBDO design is smaller than 
that of the RBDO design. In addition, the figure shows that 
high magnitudes of failures of WRBDO design almost dis-
appear because the weight function assigns high weights 
to high magnitudes of failures. Strictly setting reliabil-
ity constraints can lead to similar results; however, it just 
derives more reliable designs than required without con-
sidering any information on the magnitude of failure. The 
risk-based approaches consider the magnitude of failure 
to obtain the optimal design, but only simple tail expec-
tation is reflected and information on damage or repair 
according to the magnitude of failure is not considered. 
Unlike risk-based approaches, different conservativeness 

Table 7   Properties of random 
variables

Random 
variables

Distribution type Lower bound dL Initial design d0 Upper 
bound dU

Standard 
deviation

d1 Normal  − 0.5 0.75 2.0 0.18
d2 Normal 0.0 1.0 2.0 0.50
d3 Normal  − 1.0 0.0 1.0 0.08
d4 Normal  − 1.0 0.0 1.0 0.47
d5 Normal  − 1.0 0.0 1.0 0.10
d6 Normal  − 1.0 0.0 1.0 0.07

Table 8   Optimum design 
comparison

*Conventional probability of failure is enclosed in parentheses

Random variables RBDO WRBDO

d1 0.6668 0.5489
d2 1.0719 1.3848
d3 0.0747 0.0966
d4 0.3240 0.4186
d5 0.3798 0.4907
d6  − 0.4552  − 0.5882
Cost 1.9659 2.0324
Number of failure samples (total 0.1 M) 5000 576
Weighted probability of failure 64.463% (5.000%)* 5.000% (0.576%)
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can be induced in WRBDO depending on the nature of the 
weight function. As presented in this engineering exam-
ple, WRBDO can be considered to secure desirable con-
servativeness because it considers information on resulting 
repair cost according to the magnitude of failure by defin-
ing an appropriate weight function. As in Sect. 5.1.4, if 
the conventional probability of failure corresponding to 
the weighted probability of failure of WRBDO is set as 
the target probability of failure of the RBDO problem, the 
RBDO design is the same as the WRBDO design.

5.2 � Validation of AK‑MCS for WRBDO

In this section, the AK-MCS for WRBDO proposed in 
Sect. 4 is validated through numerical examples. To vali-
date the AK-MCS for WRBDO, the results of AK-MCS 
obtained using learning function U and learning func-
tion V are compared. The AK-MCS for RBDO using U 
in AK-MCS is referred to as AK-MCS + U, and the AK-
MCS for WRBDO using V in AK-MCS is referred to 
as AK-MCS + V. For fair comparison, the stop criteria 
presented in Sect. 4.2 are equally applied to both meth-
ods. The results obtained through direct MCS are used 
as benchmarks. Section 5.2.1 compares the reliability 
analysis results obtained using AK-MCS + U and AK-
MCS + V. WRBDO results of 3D mathematical problem 
and 6D arm model obtained by applying AK-MCS + U 
and AK-MCS + V are presented in Sects. 5.2.2 and 5.2.3, 
respectively.

5.2.1 � Reliability analysis in WRBDO: 2D mathematical 
problem

Consider a 2D constraint function formulated as follows:

where the weight function is given as follows:

The properties of random variables, which are assumed 
to be statistically independent, are presented in Table 9. 
To validate AK-MCS + V, reliability analysis results of 
AK-MCS + U and AK-MCS + V are compared. AK-MCS 
employs 10 initial samples obtained by Latin hypercube 
sampling, and the result obtained from direct MCS with 107 
samples is used as a benchmark. The results of reliability 
analysis are summarized in Table 10, and the results of sam-
ple distribution are shown in Fig. 10. The results show that 
AK-MCS + V requires fewer additional samples and more 
accurately derives PF,W than AK-MCS + U. Compared to 
AK-MCS + U, the number of added samples and error in 
AK-MCS + V decrease by 55.26% and 85.5%, respectively. It 
is verified that AK-MCS + V can perform accurate reliability 
analysis in WRBDO even with a small number of function 
evaluations. From the sample distribution results, it can be 
seen that samples are added only near the limit state when 
using AK-MCS + U, whereas samples are added through-
out the failure region as well as near the limit state when 
using AK-MCS + V. Since the Kriging model generated by 
AK-MCS + U cannot accurately predict the magnitude of 
failures, the error of PF,W becomes large.

(41)g(�) =
X2
1
(12 − 6.3X2

1
+ X4

1
)

3
+ X1X

2
2
− 3,

(42)fW (g(�)) ≡
{

10gj(�) + 1, � ∈ ΩF

1, otherwise
.

Fig. 9   Histograms of g(�)

Table 9   Properties of random variables

Random vari-
ables

Distribution type Mean Standard 
deviation

X1 Normal 1.05 0.3
X2 Normal 0 0.2

Table 10   Results of reliability analysis

a Number of function evaluations required to perform reliability analy-
sis

Methods Ncall
a MCS (10 M) Error (%)

P
F,W , %

Direct MCS 107 0.02388  − 
AK-MCS + U 10 + 38 0.02511 5.14
AK-MCS + V 10 + 17 0.02370 0.75
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5.2.2 � WRBDO of 3D mathematical problem

This section shows how the AK-MCS for WRBDO is 
applied to the WRBDO problem. Consider a 3D math-
ematical WRBDO problem formulated as follows:

where the weight function and constraint function are given 
as follows:

(43)
minimize Cost(�) = −

(d1+d2+d3)
2

10
−

(d1+d2−d3)
2

10

subject to PF,W ≤ P
Target

F,W
= 5%

�L ≤ � ≤ �U, � ∈ �3 and � ∈ �3

,

The properties of random variables are presented in 
Table 11, and they are assumed to be statistically independ-
ent. The target-weighted probability of failure ( PTarget

F,W
 ) is 

5%. AK-MCS employs 20 initial samples obtained by Latin 
hypercube sampling and the results obtained from direct 
MCS with 106 samples are used as a benchmark.

The WRBDO results are summarized in Table 12, and 
the relative error of PF,W according to design point is shown 
in Fig. 11. The results show that the AK-MCS + V requires 
fewer additional samples and more accurately derives opti-
mum design than AK-MCS + U. Compared to AK-MCS + U, 
the number of added samples and the error of PF,W in AK-
MCS + V decrease by 51.54% and 97.93%, respectively. As 
shown in Fig. 11, AK-MCS + V accurately calculates PF,W 
at every changed design point, and therefore, the optimum 

(44)fW (g(�)) ≡
{

exp (0.16g(�)), � ∈ ΩF

1, otherwise
,

(45)g(�) = −100 + X2
1
+ X2

2
+ X2

3
.

Fig. 10   Results of sample distribution

Table 11   Properties of random variables

Random 
variables

Distribution type Standard 
deviation

dL d0 dU

X1 Normal 1 0 5 10
X2 Normal 1 0 5 10
X3 Normal 1 0 5 10

Table 12   Comparison of 
WRBDO results

a Number of function evaluations required to perform WRBDO

Methods Cost Optimum design Ncall
a MCS (1 M) Error (%)

d1 d2 d3 P
F,W , %

Direct MCS  − 22.0565 5.1097 5.3879 0.2888  −  5.000  − 
AK-MCS + U  − 22.0807 5.0988 5.4058 0.2403 20 + 97 5.072 1.45
AK-MCS + V  − 22.0573 5.1100 5.3878 0.2861 20 + 47 5.002 0.03
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design can be accurately derived. However, in the case of 
AK-MCS + U, an inaccurate optimum design is derived 
because inaccurate PF,W  is calculated at almost every 
changed design point. This numerical example verifies that 
AK-MCS + V can accurately perform WRBDO with a small 
number of function evaluations.

5.2.3 � Engineering example: 6D arm model using AK‑MCS 
for WRBDO

The results of applying AK-MCS to the 6D arm model pre-
sented in Sect. 5.1.5 are compared in this section.

AK-MCS employs 30 initial samples obtained by Latin 
hypercube sampling, and the results obtained from direct 
MCS with 105 samples are used as a benchmark. The 
WRBDO results are summarized in Table 13 and the relative 
error of PF,W according to design point is shown in Fig. 12. 
Similar to the results of Sect. 5.2.2, AK-MCS + V derives a 
more accurate optimum design with fewer additional sam-
ples compared to AK-MCS + U. Compared to AK-MCS + U, 
the number of added samples and the error of PF,W in AK-
MCS + V decrease by 60.78% and 91.37%, respectively. 
As shown in Fig. 12, AK-MCS + V calculates PF,W more 

accurately at every changed design point compared to 
AK-MCS + U, resulting in accurate optimum design. This 
numerical example verifies that AK-MCS + V enables practi-
cal application of WRBDO with a small number of function 
evaluations.

6 � Discussions and conclusion

This study proposes a WRBDO framework that considers 
the magnitude of failure. By defining a weight function 
that reflects the magnitude of failure exceeding the limit 
state, weighted failures can be determined for failures and 
how many low magnitude of failures correspond to a high 
magnitude of failure can be quantified. Then, the weighted 
probability of failure is calculated as the probability of 
weighted failure. The stochastic sensitivity for the weighted 
probabilistic constraints is also derived enabling accurate 
and efficient WRBDO. From the sensitivity results of the 
weighted probability of failure for highly nonlinear and/or 
high-dimensional functions, it is verified that the proposed 
stochastic sensitivity analysis is more accurate and efficient 

Fig. 11   Relative error of PF,W according to design point

Table 13   Comparison of WRBDO results

a Number of function evaluations required to perform WRBDO

Methods Cost Optimum design Ncall
a MCS (0.1 M) Error (%)

d1 d2 d3 d4 d5 d6 P
F,W , %

Direct MCS 2.0324 0.5489 1.3848 0.0965 0.4186 0.4907  − 0.5882  −  5.000  − 
AK-MCS + U 2.0181 0.2008 1.3937 0.0168 0.4660 0.4060  − 0.4582 30 + 459 5.099 1.97
AK-MCS + V 2.0314 0.5385 1.4042 0.1087 0.4308 0.4492  − 0.5746 30 + 180 5.009 0.17

Fig. 12   Relative error of PF,W according to design point
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than the sensitivity analysis using FDM. This is because 
the stochastic sensitivities do not use any approximation 
and FDM requires more MCSs to obtain the sensitivity of 
the probabilistic response than the stochastic sensitivity 
analysis. To enable the practical application of WRBDO, 
the AK-MCS for WRBDO is proposed. In the AK-MCS 
for WRBDO, the Kriging model is sequentially updated by 
using learning function V to identify both the limit state and 
the magnitude of failures in the failure region, and MCS 
is applied to the established Kriging model to evaluate 
weighted probabilistic constraints without computational 
burden.

The characteristics of the WRBDO framework are ana-
lyzed through numerical examples performing WRBDO 
with direct MCS. The WRBDO results obtained through 
various optimization methods indicate that using the sto-
chastic sensitivity yields the same optimum design as using 
FDM, but its convergence rate to the optimum design is 
faster. In addition, the results obtained from the non-gradi-
ent approach GA and the gradient-based approach SQP are 
similar, which verifies that the proposed stochastic sensitiv-
ity analysis is working properly in the WRBDO framework. 
The WRBDO results obtained using various weight func-
tions show that the WRBDO yields conservative designs 
than a conventional RBDO, and more conservative designs 
are derived as the slope of the weight function increases. 
The nonlinearity of the constraint function also affects the 
WRBDO design, and a more conservative design is obtained 
as the nonlinearity increases. Furthermore, the WRBDO 
results with different standard deviations of design vari-
ables show that as the slope of the weight function and the 
nonlinearity of the constraint function increase, the influence 
of the standard deviations on the optimum design increases, 
resulting in a more conservative design. An engineering 
example using the 6D arm model is used for practical appli-
cation of RBDO and WRBDO. The optimum results show 
that WRBDO leads to a more conservative design than 
RBDO, and the weighted failures of WRBDO are averagely 
9.1 times larger than those of RBDO. It is noteworthy that 
the RBDO design becomes the same as the WRBDO design 
if the conventional probability of failure corresponding to 
the weighted probability of failure of WRBDO is set as the 
target probability of failure of the RBDO problem. In actual 
applications, RBDO only requires the company to set the 
target probability of failure, whereas WRBDO requires the 
company to set the weight function and target-weighted 
probability of failure, which can be cumbersome; however, 
the weighted probability of failure of WRBDO is meaning-
ful in that it can provide RBDO a more conservative target 
probability of failure.

The AK-MCS for WRBDO is validated through numeri-
cal examples. Through the results of reliability analysis in 

WRBDO, it is verified that AK-MCS + V using learning 
function V in AK-MCS can perform accurate reliability 
analysis in WRBDO with a small number of function evalu-
ations. The results of 3D mathematical problem show that 
AK-MCS + V can accurately perform WRBDO with a small 
number of function evaluations. The results obtained by per-
forming WRBDO of the 6D arm model using AK-MCS + V 
verify that AK-MCS + V enables practical application of 
WRBDO with a small number of function evaluations.

This study is novel in that it alleviates the limitation of 
the existing RBDOs, which considers all failures equally, 
by numerically quantifying the weight between failures 
according to the magnitude of failure. Unlike risk-based 
approaches, different conservativeness can be achieved in 
WRBDO depending on the nature of the weight function, 
and WRBDO can be evaluated as securing desirable con-
servativeness because it considers information on resulting 
damage or cost according to the magnitude of failure.

In this study, a sampling-based WRBDO framework 
using the direct MCS and the AK-MCS for WRBDO is pre-
sented. In future work, a framework that combines WRBDO 
with analytical methods such as the first-order reliability 
method (FORM), SORM, and dimension reduction method 
(DRM) can be presented.
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