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Abstract
This work presents a new method for efficiently designing loads and supports simultaneously with material distribution in 
density-based topology optimization. We use a higher-order or super-Gaussian function to parameterize the shapes, loca-
tions, and orientations of mechanical loads and supports. With a distance function as an input, the super-Gaussian function 
projects smooth geometric shapes which can be used to model various types of boundary conditions using minimal numbers 
of additional design variables. As examples, we use the proposed formulation to model both concentrated and distributed 
loads and supports. We also model movable non-design regions of predetermined solid shapes using the same distance 
functions and design variables as the variable boundary conditions. Computing the design sensitivities using the adjoint 
sensitivity analysis method, we implement the technique in a 2D topology optimization algorithm with linear elasticity and 
demonstrate the improvements that the super-Gaussian projection method makes to some common benchmark problems. 
By allowing the optimizer to move the loads and supports throughout the design domain, the method produces significant 
enhancements to structures such as compliant mechanisms where the locations of the input load and fixed supports have a 
large effect on the magnitude of the output displacements.

Keywords Topology optimization · Compliant mechanisms · Design of loads · Design of supports · Boundary condition 
optimization · Geometry projection

1 Introduction

Topology optimization is a computational method used to 
automatically generate optimal layouts of material within a 
design domain (Bendsoe and Sigmund 2013), with common 
design problems including minimization of compliance for 
maximally stiff structures (Andreassen et al. 2011) or maxi-
mization of an output displacement for compliant mecha-
nism design (Sigmund 1997; Zhu et al. 2020). It is cur-
rently standard practice for the boundary conditions in these 
problems to be predetermined by the user based only on 
intuition, where the locations of applied loads and rigid sup-
ports remain fixed and unchanging during the optimization 
process. In topology optimization studies such as multiple 

degree-of-freedom compliant mechanisms (Frecker et al. 
1999; Alonso et al. 2014; Zhu and Chen 2018; Sigmund 
2001), several input loads are applied which can have com-
plex interactions between each other and desired output dis-
placements. This makes it conceivable that the configuration 
of the boundary conditions could have a large effect on the 
final topology and performance of the optimized designs. In 
another application of topology optimization for the design 
of a bi-stable airfoil compliant mechanism (Bhattacharyya 
et al. 2019), the input load and fixed supports were manu-
ally placed at particular locations on the domain which the 
authors noted required specific user inputs to determine. In 
examples such as these it is unlikely that the loads and sup-
ports have been placed in optimal positions and orientations, 
suggesting that a more systematic way of determining their 
configuration would be useful. In this paper, we therefore 
seek to develop an efficient method of including the bound-
ary conditions as automatically optimized parameters in the 
topology optimization formulation.

Optimizing the locations of mechanical (fixed displace-
ment) supports is not a new idea and has been explored in 
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other studies. An early work by Thomas Buhl (2002) used an 
additional set of design variables to control the stiffness of 
support springs connected to each element in the finite ele-
ment mesh of the structure. With its many design variables 
representing the supported areas, the method allowed for 
arbitrary support configurations to appear, but also required 
a penalization method to avoid supports with intermediate 
stiffness and extra constraint functions for the total area of 
the domain being supported. In a similar but more complex 
method by Zhu and Zhang (2010), supports were modeled 
using separate movable components subjected to boundary 
conditions, constraints to prevent component overlap, and 
a finite element mesh that adapted to the updating compo-
nent locations. For the design of multi-component systems 
or assemblies, similar techniques to the mechanical support 
design methods have been applied. Rakotondrainibe et al. 
(2020) optimized rigid and bolted connections using a type 
of Robin boundary condition to model the locations, while 
using the topological derivative to allow for introduction 
of new connections during the optimization. Ambrozkie-
wicz and Kriegesmann (2021) simultaneously optimized 
the joint locations and topologies of mechanical assemblies 
using spring connections to transfer the loads between parts. 
In another study for the design of multi-body mechanisms, 
Swartz and James (2019) used spring connections between 
components which were parameterized by a Gaussian func-
tion to model the behavior of pin joints and to optimize their 
locations.

For applied loads that change during the course of the 
optimization, studies such as those by Lee et al. (2012); Lee 
and Martins (2012) have implemented design-dependent 
pressure loads or self-weights, where the nodal forces were 
computed by using detected solid-void material interfaces 
for pressure or by using the weights of each element based 
on their density value. Other problems such as homogeni-
zation-based microstructure design and thermal structure 
design (Alacoque et al. 2021) also feature design-dependent 
loads, but like with pressure and self-weight, these loads are 
calculated based on the current design and are not controlled 
by a design variable to find an optimal way of applying them.

In certain scenarios, such as for distributed loads, we 
will also need to apply continuously movable non-design 
regions to ensure that the varying loads are applied to 
completely solid surfaces, while for supports we may wish 
to have a predetermined solid shape for manufacturability 
reasons. In the paper by Ambrozkiewicz and Kriegesmann 
(2021), they enforced circular and cylindrical non-design 
regions at the movable connections between components 
using parametric equations and “mask” vectors, which 
were combined with the structural topology. With a some-
what similar concept, Pollini and Amir (2020) projected 
shapes onto the design domain from linear segmented 
profiles using super-Gaussian functions. They used the 

projections to control material properties or local con-
straints in specific parts of the domain that were movable 
by the optimizer. This method of geometry projection onto 
a domain discretized by a fixed mesh was first introduced 
by Norato et  al. (2015), who defined the geometry of 
bars using distance functions and used design variables 
for the spatial locations of their endpoints. Since then, 
the geometry projection method has been used for other 
problems such as multi-material lattice structures (Kazemi 
et al. 2020) and for problems involving projection of more 
complex discrete shapes (Zhang et al. 2016, 2018; Jessee 
et al. 2020).

In this paper, we take inspiration from and combine 
the concepts of spring connections from Buhl (2002), dis-
tance functions from Norato et al. (2015), and projection 
using Gaussian functions from Swartz and James (2019) 
and Pollini and Amir (2020) to parameterize and optimize 
both loads and supports simultaneously with the struc-
tural topology. The Gaussian function method we develop 
using these concepts offers several attractive features: (1) 
Efficient modeling of variable boundary conditions which 
adds no additional degrees of freedom and requires no 
remeshing, (2) geometry projection characteristics that can 
be easily adjusted by choosing the values of a few scalar 
parameters in the Gaussian function, (3) projection shapes 
and topologies that can be changed in a modular way by 
using different distance functions as the input to the same 
Gaussian function, (4) overlapping of multiple loads or 
supports projected by a single Gaussian function which 
cause no issues because they merge together seamlessly 
without requiring any additional formulations, and (5) 
formulations and sensitivities which are simple to derive 
and to implement in existing topology optimization codes.

We begin the paper with a description of the standard 
Solid Isotropic Material with Penalization (SIMP) topol-
ogy optimization method in Sect. 2. In Sect. 3, we extend 
the finite element model by augmenting it with spring con-
nections and nodal forces to allow for variable load and 
support boundary conditions. The general higher-order 
Gaussian function is introduced in Sect. 4, and two differ-
ent distance functions used for projecting point and line 
geometries into the domain are given. Sections 5 and 6 
describe the specific Gaussian functions and formulations 
used to model the variable boundary conditions and the 
movable non-design regions, respectively. The main objec-
tive and constraint functions used for the topology optimi-
zation example problems are given in Sect. 7 along with 
their adjoint sensitivity analysis formulations. Numerical 
examples showing the efficacy of the Gaussian function 
projection method are shown in Sect. 8, and conclusions 
and potential for future applications of the method are dis-
cussed in Sect. 9.
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2  Topology optimization

We base our method on the standard SIMP (Solid Isotropic 
Material with Penalization) topology optimization formula-
tion. The linear elasticity problem is used, which we discretize 
into a uniform grid of rectangular 4-node bilinear finite ele-
ments. Each finite element e is assigned a design variable �e 
which represents the density or volume fraction of material in 
the element ranging from �e = 0 (void) to �e = 1 (solid). To 
avoid checkerboard patterns and enforce a minimum length 
scale on the optimized designs, we use the density filtering 
method (Bruns and Tortorelli 2001). The filtered densities, 
representing the actual physical design to be manufactured, 
are given by

where Ne is the number of elements in the mesh, rmin is the 
filter radius specified by the user, and Δ(e, i) is the distance 
between element e and element i. The physical densities �̄�e 
are then used to calculate the Young’s modulus of each ele-
ment using the SIMP interpolation model:

where Emin is a minimum value of Young’s modulus given to 
void elements to avoid singular stiffness matrices in the finite 
element analyses, p is the SIMP penalization factor used to 
avoid intermediate densities by setting it to a value greater 
than 1, and E0 is the Young’s modulus of the solid material. 
The Poisson’s ratio, � , is a constant.

(1)�̄�e =

∑Ne

i=1
Hei𝜌i∑Ne

i=1
Hei

,

(2)Hei = max(0, rmin − Δ(e, i)),

(3)Ee = Emin + �̄�p
e
(E0 − Emin),

3  Finite element formulation

Expanding on the standard SIMP method to allow for simul-
taneous optimization of the structural topology, mechanical 
supports, and applied forces, the finite element mesh is con-
nected to a system of spring elements. Like in the method 
introduced by Buhl (2002), all degrees of freedom in the 
continuum part of the mesh are connected to rigid fixtures 
by a spring. In the present paper, we base the stiffness of 
the support springs on element-centric values ks

e
 assigned 

to each element. We also apply forces to every node of the 
continuum mesh at an angle � , with a magnitude based on 
a value fe assigned to each of the continuum elements. For 
the design of compliant mechanisms using the spring model, 
springs opposing the input forces are also placed at every 
node at the same angle � and with element-centric stiffness 
values kin

e
 . We have used element-centric values rather than 

nodal values in order to simplify the computations required 
for creating variable non-design regions of density (which 
are element-centric values) that follow the boundary condi-
tion locations (described in Sect. 6). The general mesh setup 
is illustrated in Fig. 1. In the following sections of this paper, 
we explain how to vary the distributions of the spring stiff-
nesses and force magnitudes in order to control the effective 
shapes and locations of the boundary conditions.

The finite element equations for the mesh setup are 
assembled as follows, where the symbol � is used to denote 
the finite element assembly operator. The global stiffness 
matrix K of the continuum mesh is assembled in the usual 
way as

where e is the element number, Ve is the element volume, 
Be is the element strain–displacement matrix, and C0 is the 
constitutive matrix for a unit Young’s modulus. The integral 

(4)K = �
Ne

e=1
Ee ∫Ve

BT
e
C0BedVe = �

Ne

e=1
Eek

0
e
,

Fig. 1  The general finite ele-
ment mesh setup with forces, 
input force springs, and support 
springs applied to each node
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in Eq. (4) is the element stiffness matrix for a unit Young’s 
modulus and is written more simply as k0

e
 . The support and 

input load springs add no additional degrees of freedom 
to the model, so their contributions to the global stiffness 
matrix can be simply added to K . The contribution of the 
support springs, Ks , is the assembly of spring element stiff-
ness matrices

where I8 is the 8 × 8 (8 degrees of freedom per element) 
identity matrix used to apply ks

e
 to both the x and y degrees 

of freedom of each node. For the global force vector, the 
applied forces at each element are assembled as

where � is an 8 × 1 rotation vector that converts the nodal 
force magnitudes into their corresponding components in 
the x and y directions based on the global reference frame:

The contribution of the input springs to the global stiffness 
matrix is assembled in a similar way to the force vector:

Here, the vector ⟨�⟩ is a smooth approximation of the abso-
lute values of each entry of � in order to avoid negative 
values of spring stiffness while keeping the function dif-
ferentiable at all values of �:

where a small positive number � is added inside the square 
root of each entry to smooth the sharp corner of the absolute 
value function. The output spring for compliant mechanism 
problems is modeled by adding a single spring of stiffness 
kout to the output degree of freedom on the main diagonal of 
the total global stiffness matrix. The global vector of nodal 
displacements U is then found by solving the finite element 
equilibrium equations, where the spring stiffness matrices 
are added to the continuum stiffness matrix:

4  Gaussian function parameterization

To control the distributions of force magnitude and support 
stiffness using only a small number of parameters, we use a 
super-Gaussian function of the form

(5)Ks
= �

Ne

e=1
ks
e
I8,

(6)F = �
Ne

e=1
fe�,

(7)� =
[
cos � sin � ⋯

]T
.

(8)Kin
= �

Ne

e=1
kin
e
I8⟨�⟩.

(9)⟨�⟩ =
�√

cos2 � + �
√
sin2 � + � ⋯

�T
,

(10)(K + Ks
+ Kin

)U = F.

The super-Gaussian function has a flat plateau-shaped top 
with a smooth Gaussian fall-off in the directions of increas-
ing distance represented by the function d(x, y). The param-
eter P controls the sharpness of the plateau, the coefficient 
A is the height, and the radius parameter r determines the 
length from the center of the plateau to a point in the fall-off 
region with height A divided by the base parameter b:

The properties of the super-Gaussian function are illustrated 
in Fig. 2, where we use a simple one-dimensional distance 
function describing the distance to the origin point.

In two dimensions, we have made use of two different 
types of distance functions. The first is used to model concen-
trated loads and small circular supports and is the minimum 
distance to a number of zero-dimensional points, where the 
positions of the N points are described by the sets of design 
variables xD and yD , where xD =

[
x
(1)

D
x
(2)

D
⋯ x

(N)

D

]
 

and yD =
[
y
(1)

D
y
(2)

D
⋯ y

(N)

D

]
 . The subscript D indi-

cates the coordinate is a design variable and not just a spa-
tial point in the domain. The minimum distance from an 
element centroid coordinate pe =

[
x(e) y(e)

]
 to the N points 

ci =
[
x(i) y(i)

]
 is

where di = pe − ci . An example of the minimum distance 
function to five different points and the resulting circular 
shapes with radius r projected into the domain by using the 
Gaussian function is shown in Fig. 3. Notice that as the cir-
cular regions overlap, the value of the Gaussian function is 
always as if we took the maximum value of separate Gauss-
ian functions applied to each point individually. If multiple 

(11)G(x, y) = Ab
−

(
d(x,y)2

r2

)P

.

(12)G(d = r) =
A

b
.

(13)de = min(‖d1‖, ‖d2‖,⋯ , ‖dN‖),

Fig. 2  Super-Gaussian function with a 1D distance function for sev-
eral values of the exponent P 
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points occupy identical coordinates, the Gaussian function 
produces a distribution exactly as though only a single point 
were at that position. Although this function is non-smooth, 
it is continuous and its derivative with respect to all design 
variables is defined everywhere throughout the domain (see 
Eq. 52). The discontinuities in the first derivative do not 
coincide with any local minima within the design space. 
Therefore, they do not hinder or prevent convergence of the 
algorithm.

The second distance function we use is to model distrib-
uted loads and supports. This function is the minimum dis-
tance to a one-dimensional line, defined by two endpoints 
c1 and c2 as shown in Fig. 4 and described by the piecewise 
function (Norato et al. 2015)

where

In Eq. (18), I is an identity matrix and the symbol ⊗ is 
the tensor product. This piecewise function and its deriva-
tives are fully smooth and continuous. After passing the line 

(14)de =

⎧⎪⎨⎪⎩

‖h‖ if a ⋅ h ≤ 0,

‖g‖ if 0 < a ⋅ h < a ⋅ a,

‖e‖ if a ⋅ h ≥ a ⋅ a,

(15)a = c2 − c1,

(16)h = pe − c1,

(17)e = pe − c2,

(18)g =

�
I −

1

‖a‖2 a⊗ a

�
h.

Fig. 3  Using the Gaussian function to project circular shapes from zero-dimensional points

Fig. 4  Using the Gaussian function to project a bar shape from a one-dimensional line
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distance function through the Gaussian function, a rounded 
bar shape of radius r is projected onto the domain.

5  Variable loads and supports

The locations of the supports are allowed to vary by 
assigning point coordinates as design variables for the 
optimizer. We define the vector of all design variables, z , 
by concatenating the vector of element densities � with the 
vectors of support point coordinates xs and ys:

The support points are then used to define a distance func-
tion using either of Eqs. (13) or (14). Using the Gaussian 
function to define the projection based on the distance func-
tion, we obtain the distribution of support spring stiffness 
throughout the design domain. In the Gaussian function 
(Eq. 11), the coefficient A is assigned a value of spring stiff-
ness, k0 , chosen by the user which should be large enough to 
adequately simulate rigid supports but low enough to avoid 
poor convergence characteristics:

Through numerical experiments we found that supports 
of roughly the same stiffness as the solid material gave 
smoother convergence, where the spring constant corre-
sponding to a certain Young’s modulus can be determined 
by multiplying it by the element size. The location and ori-
entation of loads are optimized by including the coordinates 
xf  and yf  and the orientation of the forces � in the design 
variable vector. Appending these parameters to the vector of 
design variables gives

The design variables for the forces are used to define another 
distance function, which is passed to the Gaussian function 
to obtain a force value in each element:

We define the coefficient Af  such that the user can specify 
the approximate total load applied in the design domain as 
a single constant f0 . As the Gaussian function superscript 
P approaches infinity, the total load in the domain becomes 
equal to the total load under the projected shape of radius r. 
For concentrated loads, this is written as

(19)z =
[
� xs ys

]
.

(20)ks
e
= k0b

−

(
d2e

r2

)P

.

(21)z =
[
� xs ys xf yf �

]
.

(22)fe = Af b
−

(
d2e

r2

)P

.

while for distributed loads it is written as a function of the 
line length ‖a‖ , given by

where nn is the number of overlapping nodes between ele-
ments (four in the case of 2D rectangular bilinear elements). 
For the design of compliant mechanisms using the spring 
model, we scale the stiffness of the input springs proportion-
ally to the force magnitudes using a user-specified constant 
kin
0

:

In Eqs. (20) and (22), the radius parameter r can be chosen 
based on the physical size of the components intended to be 
providing the load or support. For example, if the structure is 
held down by a bolted connection, r can be set as the radius 
of the bolt.

6  Variable non‑design regions

To create movable non-design regions that follow the 
locations of the variable boundary conditions, we use the 
Gaussian function to project a density distribution onto the 
domain which is then combined with the filtered densities 
in a smooth and differentiable way. The filtered element 
densities are calculated from the density design variables 
in the same way as before:

The projected density distribution is given by the Gauss-
ian function of unit height ( A = 1 ) with a distance function 
based on load and support point variables:

Since the load and supports are based on element-centric 
values, their distance functions can be directly reused here 
to define the distribution of element densities. The filtered 
densities �̃�e and the projected densities �̂�e are then combined 
into a physical density field using a generalized mean to take 
the maximum of the two fields:

(23)Af =
f0Ve

nn�r
2
,

(24)Af =
f0Ve

nn(�r
2 + 2r‖a‖) .

(25)kin
e
=

kin
0

Af

fe.

(26)�̃�e =

∑Ne

i=1
Hei𝜌i∑Ne

i=1
Hei

.

(27)
�̂�e = b

−

(
d2e

r2

)P

.
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With Q = 1 , �̄�e is the average of �̃�e and �̂�e , and as Q 
approaches infinity, �̄�e approaches the maximum of the two 
values from below. Thus, we can set Q to a finite value to 
approximate the maximum of the filtered and projected den-
sity fields in a smooth and differentiable way.

7  Optimization problems and sensitivity 
analysis

The optimization problem considered in this paper is a mini-
mization of an objective function fobj subjected to constraints 
on the design variable upper and lower limits (denoted by 
the subscripts U and L, respectively, with ns representing 
the number of support design variables and nf  representing 
the number of load variables), the amount of material in the 
domain or overall volume fraction Vf  , and any additional 
number, nc , of functions hi(z) that may be desired in particu-
lar problem setups:

This problem is solved using the traditional method of 
moving asymptotes (MMA) (Svanberg 1987), which as a 
gradient-based numerical optimization method requires the 
objective and constraint function values along with their first 
derivatives as inputs. For compliance minimization prob-
lems, the objective function fobj(z) takes the form

In the case of compliant mechanism design, the objective is 
the specified output displacement

where LT is a constant vector of all zeros except at the output 
degree of freedom, where it has a value of one.

To determine the derivative of the compliance with 
respect to each of the design variables, we use adjoint sen-
sitivity analysis to find

(28)�̄�e =

(
�̃�Q
e
+ �̂�Q

e

2

) 1

Q

.

(29)

min
z

fobj(z)

s.t. 0 ≤ 𝜌e ≤ 1, e = 1,… ,Ne,

x
(i)

sL
≤ x(i)

s
≤ x

(i)

sU
, i = 1,… , ns,

y
(i)

sL
≤ y(i)

s
≤ y

(i)

sU
, i = 1,… , ns,

x
(i)

fL
≤ x

(i)

f
≤ x

(i)

fU
, i = 1,… , nf ,

y
(i)

fL
≤ y

(i)

f
≤ y

(i)

fU
, i = 1,… , nf ,

𝜃L ≤ 𝜃 ≤ 𝜃U ,∑Ne
e=1

�̄�e

Ne

≤ Vf ,

hi(z) ≤ 0, i = 1,… , nc.

(30)fobj(z) = C(z) = F(z)TU(z).

(31)fobj(z) = Uout(z) = LTU(z),

Similarly for the output displacement objective function, we 
find the following form:

where the adjoint vector is first computed as

The adjoint sensitivity equations then take on different forms 
for each design variable type � , xs or ys , xf  or yf  , and � . For 
the sensitivity with respect to the density variable at each 
element e ( zi = �i ), the derivative with respect to the physi-
cal density �̄�e is taken first and the chain rule is subsequently 
used to find the sensitivity with respect to the base design 
variable:

where

The final adjoint sensitivity equations are summarized in 
Table 1.

We now list the partial derivatives of the stiffness matri-
ces and force vectors. The sensitivity of the global stiffness 
matrix with respect to the physical densities is given by

where the subscript e on the global matrix indicates that 
we only consider entries within the global stiffness matrix 
that correspond to degrees of freedom associated with the 
element e, since the derivatives of all other entries vanish.

For the derivative of the stiffness matrix of the continuum 
structure with respect to each support variable zi = x(i)

s
 or 

zi = y(i)
s

 (and similarly with respect to the force location vari-
ables), the derivative is

(32)

�C(z)

�zi
=

�FT

�zi
U + UT

×

(
�F

�zi
−

(
�K

�zi
+

�Ks

�zi
+

�Kin

�zi

)
U

)
.

(33)

�Uout(z)

�zi
= �T

×

(
�F

�zi
−

(
�K

�zi
+

�Ks

�zi
+

�Kin

�zi

)
U

)
.

(34)� =
(
K + K

s
+ K

in
)−1

L.

(35)
𝜕fobj(z)

𝜕𝜌i
=

Ne∑
e=1

𝜕fobj(z)

𝜕�̄�e

𝜕�̄�e

𝜕�̃�e

𝜕�̃�e

𝜕𝜌i
,

(36)𝜕�̄�e

𝜕�̃�e
=

1

2

(
�̃�Q
e
+ �̂�Q

e

2

) 1

Q
−1

�̃�Q−1
e

,

(37)
𝜕�̃�e

𝜕𝜌i
=

Hie∑Ne

j=1
Hij

.

(38)
𝜕Ke

𝜕�̄�e
= p�̄�p−1

e
(E0 − Emin)k

0
e
.
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where

and

For the support spring component of the global stiffness 
matrix, it is

where

For the derivative with respect to each force variable zi = x
(i)

f
 

or zi = y
(i)

f
 , The derivative of the input spring stiffness matrix 

is

The force vector is also a function of the force design vari-
ables and its derivative is given by

(39)
𝜕K

𝜕z
(i)
s

= 𝛬
Ne

e=1
p�̄�p−1

e

𝜕�̄�e

𝜕z
(i)
s

(E0 − Emin)k
0
e
,

(40)𝜕�̄�e

𝜕z
(i)
s

=
1

2

(
�̃�Q
e
+ �̂�Q

e

2

) 1

Q
−1

�̃�Q−1
e

𝜕�̂�e

𝜕z
(i)
s

,

(41)
𝜕�̂�e
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where for the case where the coefficient Af  is a function of 
the line length

The derivative of the coefficient is given by

for the case of a line load or else is equal to zero for the case 
of a point load.

For the derivative of the global stiffness matrix with 
respect to the force angle variable � , the input spring stiff-
ness matrix has dependence:

where

Finally, the derivative of the global force vector with respect 
to the load orientation is given by
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Table 1  Adjoint sensitivity equations for the derivative of the compli-
ance and output displacement functions with respect to each design 
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for the first point of the line and

for the second point of the line.

8  Numerical examples

In this section, we demonstrate the performance of the algo-
rithm for several benchmark problems. To avoid letting the 
designs prematurely converge to local minima, we use a con-
tinuation strategy on the SIMP penalty parameter p where 
the optimization runs with p = 1 until the average change in 
the density design variables from the previous iteration is 
less than 10−3 , after which p is increased by 0.5. This pro-
cess repeats until p = 3 , and at this point the optimization 
continues until the average change in density variables is 
less than 10−4 , at which point we consider the optimization 
fully converged and stop the program. We use the average 
change, rather than the maximum change that is often used 
in topology optimization (Andreassen et al. 2011), since it is 
less sensitive to localized changes in the density caused by 
small oscillations in the load and support design variables 
(Ferrari and Sigmund 2020).

The common parameters used for all of the following 
examples are summarized in Table 2. Since we are using 
linear elasticity, the elastic modulus of the solid material 
is set to E0 = 1 Pa to represent an arbitrary material. The 
total load is also given a small value by setting f0 = 1 N, 
which prevents extremely large displacements from occur-
ring. To make the supports roughly the same stiffness as 
the solid material, the values for support spring stiffness 
are set to E0 × 10−3 , since all examples have element sizes 
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on the order of 10−3 meters. For the smoothing parameter 
� , we conservatively chose a relatively large value of 0.1 
to ensure differentiability of the input force string stiffness 
matrix. Smaller values such as � = 0.01 also work acceptably 
well, although it is not critical that the distribution of input 
spring stiffness precisely follows the distribution of the input 
forces. The Gaussian function superscript is set to P = 4 to 
create flat-topped projections which still have smooth fall-
off regions. This value can be set to higher values for finer 
meshes or larger projection radii. The superscript for the 
generalized mean of the filtered and projected density fields 
is set to Q = 10 , which is based on numerical experiments 
to determine a value that is high enough to approximate a 
maximum without causing convergence issues due to non-
smoothness. The superscript values for similar smooth maxi-
mum functions have typically also been set to values of 8 
to 10 in the previous studies (Lee et al. 2012; Norato et al. 
2015; Alacoque et al. 2021).

For the MMA optimizer, the move limits are set to plus 
or minus 20% of the current values for the densities, 2r for 
the load and support locations, and 2 degrees for the load 
orientation.

In the design plots shown in the following sections, red 
contour lines represent the support geometry projected by 
the Gaussian function at a radius r. Loads are similarly 
shown by blue contour lines, with an arrow pointing in the 
direction � and originating at the design variable coordinates 
(xf , yf ).

8.1  Minimum compliance design

We begin by validating the framework for a simple mini-
mum compliance cantilever beam problem which has a well-
known solution with obvious optimal locations for the loads 
and supports. A rectangular design domain of dimensions 
30 × 7.5 centimeters and discretized by a grid of 200 × 50 

Table 2  Optimization 
parameters common to all 
example problems

E0 1 Pa
Emin E0 × 10−9 Pa
� 0.3
rmin 2.5 Elements
� 0.1
k0 E0 × 10−3 N/m
f0 1 N
kin
0

E0 × 10−3 N/m
kout E0 × 10−3 N/m
b 2
r 5 mm
P 4
Q 10
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elements is initialized with a uniform distribution of 20% 
density, a distributed line support at the left side with both 
endpoints at the same position, and a concentrated load at 
the right side. We note that although the structure is initially 
supported by only a single point, the Gaussian function pro-
jects a circle of finite radius r which provides rotational stiff-
ness. The design variables included are the densities, support 
line endpoint coordinates, and load point coordinates:

The load orientation is set to a constant value of � = −90◦ 
(pointing straight downwards). The areas of the design 
domain where the support and load coordinates are allowed 
to move in are constrained to one-fourth of the length of 
domain from the left and right ends, as shown by the red 
and blue dashed regions in Fig. 5a. Minimum and maximum 
values of the points are set such that they must remain at 
least a distance of the Gaussian function radius, r, from the 
overall domain boundaries.

Running the optimization, we get the design we would 
expect with fast convergence. The loads and supports move 
horizontally as close together as possible to minimize the 
moment arm, and the two endpoints of the distributed sup-
port move vertically as far apart as possible to maximize 
the second moment of area. The density resolves to a can-
tilever beam design that is typical with the standard SIMP 
method. The optimized design is shown in Fig. 5b and the 
convergence history is shown in Fig. 5c. The sharp kinks in 
the objective function history starting near 25 iterations cor-
respond to the point where the loads and supports reach their 
vertical and horizontal limits, and the small upward jumps 
afterwards are caused by the continuation scheme when the 
SIMP penalty parameter p increases by 0.5.

(55)z =
[
� xs ys xf yf

]
.

As a second compliance minimization problem, we opti-
mize a bridge structure. We initialize a 20 × 20 centimeter 
design domain with 200 × 200 elements and 15% uniform 
density as shown in Fig. 6a. One point support is placed in 
each of the top corners of the domain, and two overlapping 
supports are placed at each of the two bottom corners for 
a total of six support points. A distributed line load with 
a solid non-design region projected underneath is placed 
across the width of the center of the domain with the orien-
tation initially pointing downwards. These parameters are 
represented by the following vector of design variables:

The upper bound of the material volume fraction is con-
strained to 15%, and the supports are allowed to move only 
along the edges of the domain as shown in Fig. 6a by the 
red dashed lines. The distributed load is allowed to move in 
the middle third of the domain as shown in Fig. 6a by the 
blue dashed region.

The results of the optimization are shown in Fig. 6b. As 
would be expected, the distributed load moves as close as 
possible to the supports along the bottom edge, which dis-
tribute themselves underneath it. The load also remains dis-
tributed across the entire domain and the orientation does 
not change from its initial downward direction. The supports 
allowed to move along the vertical edges place themselves 
at the ends of the bridge to directly support it.

8.2  Compliant mechanism design

While for the simple compliance minimization problems 
in the previous section the optimal locations of the loads 
and supports were somewhat obvious and could be guessed 
intuitively, typically the same cannot be said for compliant 

(56)z =
[
� xs ys xf yf �

]
.

Fig. 5  Results of the cantilever beam problem
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mechanism design problems. The positions and orientations 
of the boundary conditions have a significant effect on the 
motion of the output degrees of freedom and initial guesses 
based on intuition are likely suboptimal.

To demonstrate this, we use the standard benchmark com-
pliant mechanism problem of a displacement inverter. The 
domain is initialized as a 20 × 20 centimeter square with a 
grid of 200 × 200 elements, with a uniform 20% material 
density. This same 20% value was used for the constraint 
on the volume fraction upper bound, and the load and sup-
port locations are placed in the positions shown in Fig. 7a, 
which are the typical locations in the inverter mechanism 
problem. A spring of stiffness kout is placed on the degree of 
freedom for the horizontal displacement at the center of the 
right edge, which is the displacement being minimized as 
the objective function (to maximize the displacement in the 
leftward direction). This initial design and volume constraint 
is the same for each of the following examples. First, we set 
only the material densities as the design variables:

The results of this optimization gives a familiar displace-
ment inverter design, shown in Fig. 7b.

As a second problem, we add the positions of the load and 
supports as design variables:

These positions are unconstrained and can move anywhere in 
the design domain, with the exception that they must remain 

(57)z =
[
�
]
.

(58)z =
[
� xs ys xf yf

]
.

at least a distance of r from the edges of the domain. Since 
asymmetry in the design was observed, we also include an 
additional constraint function to prevent the output displace-
ment from deviating significantly in the vertical direction:

The problem results in a different design, shown in Fig. 7c, 
where the supports have moved very close to the input load, 
which shifts to a position further inside the domain. As a 
result of this change in the boundary condition locations, 
the output displacement increases by 123% compared to 
the conventional design that had predetermined boundary 
conditions.

For a third problem, we include the orientation of the 
load as a design variable:

Keeping the constraint function for controlling the unwanted 
vertical output displacement, Eq. (59), this results in an 
asymmetrical design, shown in Fig. 7d, where the load is 
applied at an oblique angle relative to the direction of the 
output displacement. A displacement 151% larger than the 
conventional fixed boundary condition design is achieved 
for the same input force magnitude, which shows that the 
optimizer is able to exploit the additional design freedom 
to obtain better objective function values. The increase in 
performance and the counterintuitive, asymmetrical design 
when the boundary conditions are included as design 

(59)
(
U

y

out

)2 ≤ (
0.05Ux

out

)2
.

(60)z =
[
� xs ys xf yf �

]
.

Fig. 6  Results for the bridge design problem
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variables shows the effectiveness of allowing them to be 
determined automatically by the optimizer.

The asymmetrical design of Fig. 7d performs well based 
on the finite element analysis, however, the support closest 
to the applied load is somewhat difficult to interpret as a 
manufacturable structure. It is surrounded by solid material 
with a region of soft intermediate density in the middle, 
making the support rotate and act more like a pin joint than a 
compliant hinge. To get a fully compliant mechanism design 
with no need for bearings or significant post-processing, 
we run the asymmetrical inverter problem once more and 
include variable non-design solid regions projected on both 
the load and the supports. We implement this by defining a 
new distance function of three points, d(xs, ys, xf , yf ) , and 
using it in the equations of Sect. 6. The initial design and 
optimized results are shown in Fig. 8, where there are now 
clearly formed compliant hinges for each boundary condi-
tion point. By forcing the material to be solid at the load and 
support locations, the optimizer was no longer able to take 
advantage of the soft intermediate density material to make 

a pin joint. This came at a small cost to the overall perfor-
mance, with the design achieving 1.7% less displacement 
at the output point compared to the asymmetrical inverter 
without the non-design regions. The deformation is visual-
ized in Fig. 9, where the bending of compliant hinges and a 
substantial geometric advantage can be seen. The locations 
of the supports translate very little in relation to the input 
load and the output point, showing that the stiffness of the 
support springs is adequately high.

To validate our methodology, we manufactured a half-
scale model of the design of Fig. 8 on an Objet260 Con-
nex3 3D printer using the digital material FLX9885-DM, 
a blend of VeroWhite and TangoBlack+ polymers. The 
mechanism’s supports were inserted into a base plate, 3D 
printed from VeroWhite, with a cutout included to guide 
the input actuation handle at the correct angle. Figure 10 
shows the 3D printed model as it is actuated through a 
large displacement. While the numerical modeling was 
only based on linear elasticity, the physical prototype is 
still able to maintain a small vertical output displacement 

Fig. 7  Results for the displacement inverter design problem
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through the large actuation shown in Fig. 10. In both 
the partially actuated and fully actuated states shown in 
Fig. 10, the vertical displacement of the output point is 
about 8% the magnitude of the horizontal displacement 
based on measurements of the image. This can be com-
pared to the 5% constraint imposed on the design in the 
topology optimization by Eq. (59).

9  Conclusion

In this paper, we introduced a framework for including 
variable load and support boundary conditions in topology 
optimization. Starting with the standard SIMP method with 
linear elasticity, we extended it to use a system of spring 
elements to model elastic supports and loads. The stiffness 
of the springs and the magnitudes of input forces applied to 
every structural element were parameterized and controlled 
by a higher-order Gaussian function. By using the distance 
functions of simple points and lines, the Gaussian function 
was used to model the effective location and orientation of 
different boundary conditions in a smooth, differentiable, 
and optimizable way with minimal numbers of additional 
design variables.

Two examples of compliance minimization problems 
were shown, demonstrating the effectiveness and efficiency 
of the Gaussian function approach in automatically find-
ing optimal placements of the boundary conditions. Sev-
eral examples of compliant mechanism problems were then 
presented, resulting in significantly increased performance 
over designs in which the boundary conditions were defined 
a priori. Using our method to design displacement invert-
ers, we produced several designs with more than double the 
performance of the design with conventionally predeter-
mined boundary conditions. The relatively counterintuitive 
design of these mechanisms shows the usefulness of allow-
ing a numerical optimizer to automatically find the optimal 
boundary conditions, rather than relying only on experience 
or trial and error methods.

The super-Gaussian projection method proposed here was 
applied only to linear elasticity problems with the boundary 

Fig. 8  Results for the asymmetric displacement inverter problem with variable non-design regions included

Fig. 9  Deformation of the asymmetrical inverter design superim-
posed on the undeformed design
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conditions modeled by simple points and straight lines. 
However, it should be straightforward to add new features 
in future applications. Different and more complex boundary 
condition geometries can be used by defining new distance 
functions. Movable and rotatable roller supports could be 
implemented by using a rotation vector in the assembly of 
the support spring stiffness matrix, like what was done in 
this paper for the load vector assembly. Extension to three 
dimensions can be done easily, as long as some attention is 
paid to maintaining manufacturable supports and load appli-
cation zones that do not become entirely enclosed in mate-
rial. The method should also be extendable to more complex 
problems such as those that include geometric non-linearity 
or multiple physics disciplines. Future work will utilize the 
super-Gaussian projection method developed in this paper 
for problems involving some of these extensions.
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